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Abstract

An alternative to using normally distributed random effects in modeling clus-
tered binary and ordered responses is based on using a finite-mixture. This approach
gives rise to a flexible class of generalized linear mixed models for item responses,
multilevel data, and longitudinal data. A test of misspecification for these finite-
mixture models is proposed which is based on the comparison between the Marginal
and the Conditional Maximum Likelihood estimates of the fixed effects as in the
Hausman’s test. The asymptotic distribution of the test statistic is derived; it is of
chi-squared type with a number of degrees of freedom equal to the number of covari-
ates that vary within the cluster. It turns out that the test is simple to perform and
may also be used to select the number of components of the finite-mixture, when
this number is unknown. The approach is illustrated by a series of simulations and
three empirical examples covering the main fields of application.
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1 Introduction

Generalized Linear Mixed Models (GLMMs, Skrondal and Rabe-Hesketh, 2004; McCul-

loch et al., 2008; Stroup, 2012) represent a very useful instrument for the analysis of

clustered data, as they use random effects to account for the dependence between obser-

vations within the same cluster. This structure of the data arise in Item Response Theory

(IRT) applications (Hambleton and Swaminathan, 1985; De Boeck and Wilson, 2004), in

the multilevel context where individuals are collected in groups (Goldstein, 2003), and in

longitudinal/panel studies in which repeated responses on the same individuals are avail-

able (Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2009). In this article,

we focus on logistic regression models for binary and ordered responses; for one of the

first applications see Stiratelli et al. (1984) and Anderson and Aitkin (1985).

The random effects in a GLMM are typically assumed to have a normal distribution

and the consequences of non-normality have been receiving considerable attention in the

literature, especially for nonlinear models. In fact, in linear models, the wrong specifica-

tion of the random effect distribution tends to have minor consequences, as the maximum

likelihood estimators are consistent and asymptotically normally distributed under mild

conditions. In particular, recent studies conclude that the consequences of violations of

normality on the quality of the estimates and on random effects predictions are rather

severe (Heagerty, 1999; Heagerty and Kurland, 2001; Rabe-Hesketh et al., 2003; Agresti

et al., 2004; Litière et al., 2008). The negative effects of distributional misspecification

motivate the development of alternative approaches to formulate and test hypotheses

about this latent (also called mixing) distribution.

A well known approach, that formulates in a flexible way the random effect distribu-

tion, is based on assuming a discrete distribution that leads to a finite-mixture model.

This approach is seen as semiparametric because a discrete distribution may approximate

arbitrary well any continuous distribution. Nevertheless, the idea of approximating the

true mixing distribution by a discrete one goes back to studies preceding the development

of the class of GLMMs and, then, in the context of simpler models involving incidental

parameters. In particular, we refer to the nonparametric maximum likelihood approach

(Kiefer and Wolfowitz, 1956; Laird, 1978; Lindsay, 1983).

The first applications of random effects with discrete distribution in the GLMM con-

text are Lindsay et al. (1991) in the IRT context, Aitkin (1999) in the general context

of clustered data, and Vermunt (2003) with multilevel data. Heckman and Singer (1984)

used the finite-mixture approach to formulate a flexible model for survival data, and

Aitkin (1996) used this approach to create overdispersion in a generalized linear model.

In addition to a greater flexibility, the finite-mixture approach has some advantages

over the normal approach. Mainly, it avoids integrating out the random effects, which may

be complex when random effects are multidimensional, and a rather simple Expectation

Maximization (EM) algorithm (Dempster et al., 1977) may be used instead. Moreover,

the approach leads to a natural clustering of sample units that may be of main interest in
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certain relevant applications (e.g., Deb, 2001). In fact, a GLMM based on finite-mixture

formulation may be seen as a latent class model (Lazarsfeld and Henry, 1968; Goodman,

1974; Hagenaars and McCutcheon, 2002) extended with the inclusion of covariates. The

finite-mixture approach has also some limitations with respect to the normal approach

for the distribution of the random effects, such as the difficult interpretation in certain

contexts, in which these effects represent missing covariates that are naturally seen as

continuous. Moreover, there is the need to choose the number of mixture components

(also called latent classes or support points), and some instability problems in estimation

often arise due to multimodality of the likelihood function. For a comparison between

the normal and the finite-mixture approaches we refer the reader to Skrondal and Rabe-

Hesketh (2004) and Bartolucci et al. (2014a). Nevertheless, the finite-mixture approach is

the main alternative to the normal approach to formulate the distribution of the random

effects for GLMMs, and in particular for logistic regression models. This is testified by

recent applications such as Jain et al. (1994) and Kim et al. (1995) in the context of brand

preferences, Pudney et al. (1998) for the analysis of data about farm tenure contracts, and

Deb (2001) for the study of the demand for preventive care. Several further applications

are described in Skrondal and Rabe-Hesketh (2004); see also Azzimonti et al. (2013) and

Heinzl and Tutz (2013).

Testing hypotheses about the mixing distribution, and in particular the normality,

has attracted a considerable attention in the recent statistical literature. A standard

method to check for normality of the mixing distribution is based on empirical Bayes

estimates of the individual effects (Lange and Ryan, 1989). However, this method has

been criticized because of its lack of power (Verbeke and Lesaffre, 1996; Verbeke and

Molenberghs, 2013). Among other methods, it is worth mentioning the method based on

residuals (Ritz, 2004; Pan and Lin, 2005), the method based on simulating the random

effects from their posterior distribution given the observed data (Waagepetersen, 2006),

the method based on comparing Marginal Maximum Likelihood (MML) and Conditional

Maximum Likelihood (CML) estimates (Tchetgen and Coull, 2006), methods based on

the covariance matrix of the parameter estimates and the information matrix (Alonso

et al., 2008, 2010), and that based on the gradient function (Verbeke and Molenberghs,

2013).

In the present article, we propose a general test for misspecification of the discrete

mixing distribution in logistic models with binary and ordered responses. We extend the

approach developed by Tchetgen and Coull (2006) which, as mentioned above, is based

on the comparison of CML and MML estimates for the fixed effects, as in the Hausman’s

test (Hausman, 1978); the difference between the two estimates is normalized on the basis

of an estimate of the variance-covariance matrix of this difference. The test relies on the

consistency of the CML estimator that is attained under mild distributional assumptions;

essentially the only requirement is that the random effects are constant within each cluster.

At least to our knowledge, this approach has not been developed in the context of finite-

mixture models. Moreover, with respect to the approach of Tchetgen and Coull (2006),
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which is only referred to the case of normally distributed random effects, our approach

presents some novelties and peculiarities deriving from the finite-mixture nature of the

models of interest, as we argument below.

First of all, since none of the two estimators compared is ensured to be fully efficient,

we use a generalized estimate of the variance-covariance matrix of the difference through

a method adopted, in a related context, by Bartolucci et al. (2014c). This also ensures

stable results in small samples, while retaining the simplicity of the approach and its

low computational complexity. Second, the proposed test may also be used to select the

number of support points of the discrete distribution, which is alternative to commonly

used selection criteria, such as the Akaike Information Criterion (AIC; Akaike, 1973) and

the Bayesian Information Criterion (BIC; Schwarz, 1978). This is a crucial issue in the

use of the models of our interest that, obviously, does not arise when random effects are

normally distributed. Third, an issue that is typically ignored in the statistical field is

that one of the possible sources of misspecification is the dependence between the random

effects and the observable covariates, that is, a problem of endogeneity. In the finite-

mixture approach, a greater variety of methods to model this dependence is available

with respect to the normal approach, and the proposed test has an important role in this

regard, as will be clear in the following.

The paper is organized as follows. In the next section we describe the class of GLMMs

with a special focus on the case of binary and ordinal response variables. In Section 3,

the two estimation methods applied for the test are described, that is, the MML method

under the discreteness assumption of random effects and the CML method. In Section 4

we recall the traditional Hausman test and, then, we illustrate the proposed test in the

finite-mixture context. Application on real data are provided in Section 6 and some final

remarks conclude the work in Section 7. The finite-sample properties of the proposed test

are investigated through an extensive Monte Carlo study, whose design and main results

are reported in the Appendix, whereas a summary of this study is provided in Section

5. Upon request, we also make available the R codes we used to implement the proposed

approach.

2 The class of GLMMs of interest

The class of GLMMs is highly flexible, because it allows us to accommodate several

types of response variables (e.g., continuous, binary, count) and to account for different

hierarchical data structures (i.e., multilevel data, longitudinal data, and item response

data). These models are based on a link function (McCullagh and Nelder, 1989) applied

to the conditional expected value of each response variable given the available covariates

and a set of random effects having a suitable distribution, which is typically normal. As

mentioned in Section 1, we focus in particular on versions of these models for binary and

ordinal response variables, which are based on a logit link function.
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Let n denote the number of clusters and, for each cluster i, let Ji denote the number of

units in the cluster and let xi be a column vector of covariates. Moreover, for each unit j

in cluster i, let yij denote the response variable of interest and let zij be the corresponding

column vector of specific covariates. In the binary case we have yij = 0, 1, whereas in

the more general ordinal case we have yij = 0, . . . , L − 1, where L is the number of

categories. In any case the response variables are collected in the cluster-specific vectors

yi = (yi1, . . . , yiJi)
′, i = 1, . . . , n. Similarly, the unit-specific covariates are collected in

the matrices Zi = (zi1, . . . , ziJi), i = 1, . . . , n.

The notation defined above is completely general as it is suitable for different settings

of interest. In the multilevel setting, units j refer to individuals, each of them being nested

in a given group i (e.g., pupils within schools, patients within hospitals). In such a case,

xi is a vector of group-specific characteristics (e.g., number of pupils per school, number of

hospital beds), whereas zij is a vector of individual-specific covariates (e.g., age, gender).

In the case of longitudinal data, index j refers to time occasions and i identifies different

individuals. In such a context, xi is a vector of time-constant individual covariates (e.g.,

gender) and zij is a vector of time-varying individual covariates (e.g., income). Finally,

in the similar context of item responses data, j denotes the item to which individual i

answers, but zij is simply a vector of dummies and xi is usually null.

In the case of binary responses, the basic model we consider is the random intercept

logit model based on the assumption

log
p(yij = 1|αi,xi, zij)

p(yij = 0|αi,xi, zij)
= αi + x

′

iβ + z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji, (1)

where αi is the random effect for cluster i, β is the vector of regression parameters

for the cluster-specific covariates, and γ is that for the unit-specific covariates. The

random effects αi are typically assumed to have distribution N(0, σ2), so that the common

intercept is absorbed in β. The alternative approach, that is of main interest in the present

paper, assumes that the distribution of each of these random parameters is discrete with

k support points ξ1, . . . , ξk and corresponding probabilities πh = p(αi = ξh), h = 1, . . . , k,

so that the result is a finite-mixture model (McLachlan and Peel, 2000). In each case,

local independence is assumed, that is, the response variables in each yi are conditionally

independent given αi, xi, andZi = (zi1, . . . , ziJi). It is also well-known that an alternative

to random-effects approaches is a fixed-effects approach in which the αi parameters are

estimated together with β and γ or are eliminated by conditioning on suitable sufficient

statistics, as in the CML method. For an up to date review see Bartolucci et al. (2014b).

With ordinal responses, the above model is extended as follows:

log
p(yij ≥ l|αi,xi, zij)

p(yij < l|αi,xi, zij)
= αi + δy + x

′

iβ + z′ijγ, l = 1, . . . , L− 1, (2)

on the basis of cumulative logits in increasing order, also known as global logits (Mc-

Cullagh, 1980; Agresti, 2002). In the above expression, the cut-points are in suitable
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order, that is, δ1 < . . . < δL−1. A more general formulation is based on substituting the

cut-points δl with cluster-specific cut-points αil, as follows:

log
p(yij ≥ l|αi,xi, zij)

p(yij < l|αi,xi, zij)
= αil + x

′

iβ + z′ijγ, l = 1, . . . , L− 1, (3)

with αi = (αi1, . . . , αi,L−1) having multivariate normal distribution N(0,Σ) or a discrete

distribution with support points ξ1, . . . , ξk and corresponding probabilities πh = p(αi =

ξh), h = 1, . . . , k.

It is worth noting that, in the IRT setting, models (1) and (2) correspond to the

Rasch model (Rasch, 1960) in the binary case and to the graded response model with

fixed discriminating parameters (Samejima, 1969) in the ordinal case, being xi the null

vector and the elements of γ corresponding to item difficulty parameters. For details

on the possible parameterizations for polytomous IRT models, see Bacci et al. (2014).

Moreover, a nice interpretation of these models is provided by introducing an underlying

continuous response y∗ij defined as

y∗ij = αi + x
′

iβ + z′ijγ + εij.

This variable is related to the observed response yij through a suitable function, that is,

yij = G(y∗ij), defining an observation rule. In particular, G(·) is a parametric function

which depends in a suitable way on specific parameters according to the different nature

of yij. With binary responses, we have

G(y∗ij) = I{y∗ij > 0}, (4)

where I{·} is an indicator function assuming value 1 when its argument is true and value

0 otherwise, so that the model defined in (1) results, provided that εij has a standard

logistic distribution. More generally, when yij is an ordinal variable with l categories, the

model in (2) derives when

G(y∗ij) =





0, y∗ij ≤ −δ1,
1, −δ1 < y∗ij ≤ −δ2,
...

...
L− 1, y∗ij > −δL−1,

(5)

with εij still having standard logistic distribution.

All the above models may be extended to deal with the dependence of the random

effects on one or more cluster-specific covariates wi, which may be seen as a form of

endogeneity. Two approaches are here considered. First, an interaction term may be

included so that, in the binary case, we have

log
p(yij = 1|αi,wi,xi, zij)

p(yij = 0|αi,wi,xi, zij)
= w′

iαi + x
′

iβ + z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji, (6)
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where the cluster-specific covariates inwi may be a subset of those in xi. Another possible

extension consists in assuming that mass probabilities may depend on the covariates in

wi by a multinomial logit parametrization:

log
p(αi = ξh+1|wi)

p(αi = ξ1|wi)
= φh +w

′

iψh, h = 1, . . . , k − 1, (7)

where φh are intercepts and ψh are vectors of regression parameters (see also Huang

and Bandeen-Roche, 2004). When the support points ξh are suitably ordered, then al-

ternative parametrizations based on cumulative logits may be adopted, which are more

parsimonious and easier to interpret than the multinomial logits.

3 Estimation methods

In this section we describe two estimation methods for the GLMM parameters that will

be used for the proposed Hausman test. First, we illustrate the MML method under the

assumption of the discreteness of αi. Then, a description of the CML method is provided,

which is based on a fixed-effects approach.

3.1 Discrete Marginal Maximum Likelihood

The assumption of local independence implies that

p(yi|αi,xi,Zi) =
∏

j

p(yij|αi,xi, zij), i = 1, . . . , n, (8)

where p(yij|αi,xi, zij) depends on the model specification; see, for instance, equation (1)

for the random-intercept model for binary responses. Then, the manifest distribution of

yi given the covariates is obtained by marginalizing p(yi|αi,xi,Zi) with respect to αi:

p(yi|xi,Zi) =
∑

h

[∏

j

p(yij|ξh,xi, zij)

]
πh, i = 1, . . . , n,

that provides the following marginal log-likelihood function

ℓM(θ) =
∑

i

log p(yi|xi,Zi) =
∑

i

log
∑

h

[∏

j

p(yij|ξh,xi, zij)

]
πh,

with θ denoting the overall vector of free parameters including β, γ, the support points

ξh, h = 1, . . . , k, and k − 1 logits for the probabilities πh.

The maximization of function ℓM(θ) may be efficiently performed through an Expec-

tation Maximization (EM) algorithm (Dempster et al., 1977), based on the complete data

log-likelihood function, that is the log-likelihood that could be computed knowing the

latent class from which every unit comes (i.e., knowing the discrete random effects αi):

ℓ∗M(θ) =
∑

i

ahi

[
log πh +

∑

j

log p(yij|ξh,xi, zij)

]
, (9)
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with ahi being an indicator variable equal to 1 if αi = ξh and to 0 otherwise.

The EM algorithm is implemented along the usual lines, alternating two steps. The

E-step consists in computing the posterior expected value of each ahi, which is equal to the

posterior probability of belonging to a certain latent class given the response configuration

he/she provided, that is,

âhi = p(αi = ξh|xi,Zi,yi) =
p(yi|ξh,xi,Zi)πh

p(yi|xi,Zi)
.

The resulting values âhi are then substituted in (9) so as to obtain ℓ̂∗M(θ). The following

M-step consists in maximizing function ℓ̂∗M(θ) with respect to θ and the result is used

to update the estimates at the E-step. This iterative process continues until convergence

so as to obtain the MML estimate θ̂M . Besides, this scheme may be easily adapted to

estimate extended models based on assumptions (6) and (7).

For deriving the Hausman test, it is important to recall that the asymptotic variance-

covariance matrix for θ̂M may be estimated by the sandwich formula (White, 1982), as

follows:

V̂ M(θ̂M) =HM(θ̂M)−1 SM(θ̂M)HM(θ̂M)−1, (10)

with

HM(θ) =
∑

i

∂2 log p(yi|xi,Zi)

∂θ∂θ′
,

SM(θ) =
∑

i

uM,i(θ)[uM,i(θ)]
′,

uM,i(θ) =
∂ log p(yi|αi,xi,Zi)

∂θ
.

In particular,HM(θ) is the Hessian of the log-likelihood function, whereas SM(θ) is equal

to n times the empirical variance-covariance matrix of the score vector. From the matrix

V̂ M(θ̂M) we can extract in the usual way the standard errors for the parameter estimates.

3.2 Conditional Maximum Likelihood (CML)

An alternative to the semi-parametric MML approach described above is given by the

CML method (Andersen, 1970, 1972; Chamberlain, 1980), which is based on consider-

ing intercepts αi as fixed parameters rather than random effects. This method gives a

consistent estimator of the γ parameters for the covariates in Zi under mild regularity

conditions and independently of the true distribution from which values αi come, as it

relies on conditioning on a sufficient statistic for αi.

In presence of binary data, the CML approach consists of maximizing the conditional

log-likelihood function

ℓC(γ) =
∑

i

log p(yi|yi+,Zi), yi+ =

Ji∑

j=1

yij,
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where

p(yi|yi+,Zi) =
exp

(∑
j yij z

′
ijγ

)

∑
s∈SJi

(yi+) exp
(∑

j sj z
′
ijγ

) (11)

and the sum
∑
s∈SJi

(yi+) is extended to all binary vectors s = (s1, . . . , sJi)
′ with sum

equal to yi+. We observe that p(yi|yi+,Zi) does not depend anymore on αi and xi (and,

possibly, onwi under extended model based on assumption (7)), but only on the regression

parameters γ for the unit-specific covariates in Zi.

The conditional log-likelihood ℓC(γ) may be simply maximized by a Newton-Raphson

algorithm, based on the score vector

uC(γ) =
∑

i

uC,i(γ),

uC,i(γ) =
∂ log p(yi|yi+,Zi)

∂γ
,

and Hessian matrix

HC(γ) =
∑

i

∂2 log p(yi|yi+,Zi)

∂γ∂γ ′
,

so as to obtain the CML estimate θ̂C . Finally, the asymptotic variance-covariance matrix

for γ̂C is estimated as

V̂ C(γ̂C) =HC(γ̂C)
−1SC(γ̂C)HC(γ̂C)

−1, (12)

with

SC(γ) =
∑

i

uC,i(γ)[uC,i(γ)]
′.

There exist several ways to implement the CML method in the presence of ordinal

response variables; see Baetschmann et al. (2011) for a review. Here we rely on the idea

of reducing the model of interest to a model for binary data by suitably dichotomizing

the response variables and considering the contributions to the conditional log-likelihood

as those resulting from all the possible dichotomizations of these variables (Chamberlain,

1980); see also Bartolucci et al. (2014c).

More in detail, we consider the L− 1 possible dichotomizations and for each of them

we transform the response variables yij in the binary variables

y
(l)
ij = I{yij ≥ l}, i = 1, . . . , n, j = 1, . . . , Ji.

The sum of the conditional log-likelihood functions corresponding to each dichotomization

provides the pseudo conditional log-likelihood function

ℓ̃C(γ) =
∑

i

∑

l

log p(y
(l)
i |y(l)i+,Zi), y

(l)
i+ =

Ji∑

j=1

y
(l)
ij , (13)
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where y
(l)
i = (y

(l)
i1 , . . . , y

(l)
iJi
) and p(y

(l)
i |y(l)i+,Zi) is defined as in (11) substituting each yij

with y
(l)
ij .

The pseudo conditional log-likelihood ℓ̃C(γ) may be maximized by a simple extension

of the Newton-Raphson algorithm implemented for the binary case, using the pseudo-score

vector

ũC(γ) =
∑

i

ũC,i(γ),

ũC,i(γ) =
∑

l

∂ log p(y
(l)
i |y(l)i+,Zi)

∂γ

and the pseudo-observed information matrix

H̃C(γ) =
∑

i

∑

l

∂2 log p(y
(l)
i |y(l)i+,Zi)

∂γ∂γ ′
.

Finally, the sandwich estimator of the variance-covariance matrix of the resulting pseudo

CML estimator, still denoted by θ̂C to simplify the notation, has the same expression as

in (12) with the appropriate adjustments.

To conclude, we remind that the CML method does not allow to estimate the effect

of cluster-specific covariates in vector xi, differently from the MML method. Moreover, it

is known to provide less efficient estimators than MML if the distribution of the random

effects is correctly specified. Nonetheless, the robustness of CML estimator to misspec-

ification of the distribution of αi makes it appropriate for the comparison with MML

estimator in finite-mixture models, as will be illustrated in the following.

4 The proposed Hausman-type test for misspecifica-

tion

In this section we describe the proposed Hausman-type test for misspecification of the

distribution of the random effects for the finite-mixture GLMMs illustrated in Section 2.

We also discuss its use for selecting the number of mixture components.

4.1 Test formulation

The traditional Hausman test (Hausman, 1978) is typically used to test the assumption

of normality of the random effects in linear mixed models, which are a special case of

GLMMs for normal responses. The test is based on the comparison of two estimators

that under the null hypothesis of correct model specification (H0) are both consistent,

but if the model is misspecified (H1) only one of them remains consistent. Consequently,

we have evidence of misspecification from the distance between the two estimators as they
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converge to two different points in the parameter space under H1. Moreover, it is required

that one of the two estimators is asymptotically efficient under H0, so as to simplify the

estimation of the variance-covariance matrix of the difference between them.

In the present context, H0 corresponds to a model of type (1) for binary data or (2)

for ordinal data, or its extended versions defined in Section 2, in which the distribution

of the random effects αi is discrete with k support points. Moreover, under the basic

formulations there is independence of these random effects from the observable covariates,

so as to rule out endogeneity. In this context, the Hausman test is based on the statistic

T1 = n(γ̂M − γ̂C)
′Ŵ

−1

1 (γ̂M − γ̂C), (14)

Ŵ 1 = V̂ C(γ̂C)− V̂ M(γ̂M), (15)

which has asymptotical χ2
c distribution under H0, where c is the dimension of parameter

vector γ or, equivalently, the number of unit-specific covariates in zij. Note that the test

is based on a comparison between the CML and MML estimators for the unit-specific

covariates, as only these parameters are estimable under the CML approach. In this

regard, we have to clarify that V M(γ̂M) is a suitable block of matrix V M(θ̂M) defined

in (10). Moreover, the variance-covariance matrix of
√
n(γ̂M − γ̂C), denoted by W ,

is estimated as the difference between V̂ C(γ̂C) and V̂ M(γ̂M) due to the efficiency of

γ̂M under H0 which, in turn, implies that the covariance matrix between γ̂M and γ̂C is

C(γ̂M , γ̂C) = V M(γ̂M).

It is worth noting that, in the present context, the formula to estimate W may rise

some instability problems for small samples in which the difference between V C(γ̂C) and

V M(θ̂M) is not ensured to be positive definite; see also Vijverberg (2011) for related

problems. Therefore, we rely on a generalized version of the test based on a different way

of estimating W that has been used by Bartolucci et al. (2014c) in a related context. In

particular, we propose to use the following estimator:

Ŵ 2 = nD V̂ (θ̂M , γ̂C)D
′,

D = (E,−I),

with I being the identity matrix of dimension q and E a matrix such that γ̂M = E θ̂M .

Moreover, the joint variance-covariance matrix of γ̂C and θ̂M is obtained by the general-

ized sandwich formula

V̂ (θ̂M , γ̂C) =

(
HM(θ̂M) 0

0 HC(γ̂C)

)−1

S
(
θ̂M , γ̂C

)(
HM(θ̂M) 0

0 HC(γ̂C)

)−1

,

with

S
(
θ̂M , γ̂C

)
=

∑

i

(
uM,i(θ̂M)
uC,i(γ̂C)

)(
uM,i(θ̂M)′ uC,i(γ̂C)

′
)
,

and HM(θ̂M), HC(γ̂C), uM,i(θ̂M), and uC,i(γ̂C) defined as in Sections 3.1 and 3.2.

HC(γ̂C) and uC,i(γ̂C) are substituted by H̃C(γ̂C) and ũC,i(γ̂C) in case of ordinal re-

sponses, as illustrated in Section 3.2.
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Overall, the test statistic defined as

T2 = n(γ̂M − γ̂C)
′Ŵ

−1

2 (γ̂M − γ̂C) (16)

has still an asymptotically distribution of type χ2
c under H0, but it gives more stable

results, while being easy to compute. This is the approach that we adopt in the following.

4.2 Use of the proposed test for finite-mixture GLMMs

The traditional Hausman test is typically employed to investigate about the possible

sources of misspecification of the distribution of the random effects, being the absence

of normality and the possible dependence between the random effects and the covariates

(i.e., endogeneity) the most relevant ones. Similarly, the proposed test based on statistic

T2 allows us to assess the model specification in the general setting of GLLMs, with some

peculiarities deriving from the discrete nature of the distribution of the random effects,

as we argument in the following.

A crucial aspect related to the models with discrete random effects is the choice of the

number of latent classes (or mixture components), denoted by k. In general, the prevailing

approaches which have been adopted in the literature balance model fit and parsimony

and are based on information criteria, obtained through penalization of the maximum log-

likelihood. Among these criteria, the most common are the Akaike Information Criterion

(AIC; Akaike, 1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978), which

are based on the minimization of the following indices:

AIC = −2 ℓ̂+ 2 #par,

BIC = −2 ℓ̂+ log(n) #par,

where ℓ̂ = ℓ(θ̂M) is the maximum of the marginal log-likelihood of the model of interest

and #par stands for the number of free parameters. Several alternatives have been devel-

oped in the literature, which are based on different penalization terms; see the Appendix

for a detailed description. Unfortunately, there is not any result in the literature that

indicates one of these criteria as clearly outperforming the others, although there is a

certain evidence in favor of BIC. Among the most recent comparative studies, see Dias

(2006), Nylund et al. (2007), and Yang and Yang (2007).

The proposed Hausman test based on T2 represents an interesting alternative to the

information criteria mentioned above to select the number of mixture components, when

this number is unknown. In this regard, we suggest to adopt a sequential strategy consist-

ing in increasing k until the test does not stop to reject H0. We expect that the selection

criterion for k based on T2 is more parsimonious with respect to the available criteria men-

tioned above, provided that the assumption of independence between the random effects

and the covariates hold. In particular, this is expected to happen when the distribution of

the random effects is continuous rather than discrete. In this situation, the estimator γ̂M
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may attain values very close to the estimator γ̂C , which is consistent, even for small values

of k; see also Lindsay et al. (1991). On the other hand, note that the above information

criteria are typically considered unsatisfactory by applied researches because they tend to

select large values of k and then non parsimonious models, especially with large samples.

It is also worth noting that, while the other criteria to select k only perform relative

comparisons among differently specified models, the proposed test allows us to formulate

an absolute judgment about the appropriateness of the model based on a certain number

of mixture components. In fact, a sufficiently high p-value for a certain k leads to conclude

for the correct specification of such a model in the complex.

Finally note that, with longitudinal data, the proposed test can be used in connection

with that proposed by Bartolucci et al. (2014c) to test the assumption that the random-

effects are time-constant rather than time-varying. More in detail, we may adopt a two-

step procedure consisting in testing first the assumption of time-constant random effects

and, only if this hypothesis is not rejected, the modified Hausman test here proposed is

applied to select the correct number of mixture components.

5 Simulation study

In order to analyze the proposed approach, we performed a Monte Carlo simulation study.

A detailed description of the design and results of this study is reported in the Appendix,

whereas we provide a brief summary in the following.

The simulation study is based on the random intercept model specified in Section 2 by

assumptions (1) and (2). We consider two scenarios: one refers to the longitudinal setting

and the other to the IRT setting. In our benchmark design, the distribution of the random

effects αi has k0 = 3 support points
[
−
√
3/2, 0,

√
3/2

]
with probabilities 0.25, 0.50, and

0.25 respectively. For the longitudinal setting, we consider one cluster-specific covariate

xi following a standard normal distribution together with one unit-specific covariate zij,

with j = 1, . . . , J denoting the time occasions, generated from an AR(1) process with

correlation ρ = 0.5. The parameters of the mean specification are both scalars and equal

to 1. The Hausman test statistic will therefore be asymptotically distributed as a χ2
1. For

the IRT setting, model (1) based on a logit link function simplifies to a Rasch model.

Therefore, the Hausman test statistic T2 will have null asymptotic distribution of type

χ2
J−1, where J is the number of items.

The experiment on the two models is repeated with different discrete distributions

for αi, including a shift in the original distribution, αi ∈
[
1−

√
3/2, 1, 1 +

√
3/2

]
with

probabilities 0.25, 0.50, and 0.25, and formulating a strongly asymmetric distribution,

αi ∈ [−5, 0, 25] with probabilities 0.33, 0.50, and 0.17 respectively.

The second part of our simulation study deals with possible misspecifications of the

random effect distribution. First, a case where the true distribution of αi is continuous

is considered: the data are generated as above with the exception of the random effects
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which are now αi ∼ N(0, 3). Second, the analysis considers a case where the random

effects are correlated with the regression covariates.

In terms of results, the proposed test presents good size properties under the null

hypothesis of correct specification of the number of mixture components of the distribution

of the random effects. If the number of classes is underspecified, the Hausman test’s

rejection rate considerably increases when the distribution of the random effects is skewed.

Instead, if the random effects follow a continuous distribution, a situation that is likely to

occur with real data, the proposed Hausman test typically chooses a more parsimonious

model in comparison to standard model selection criteria. This is particularly true for

large values of J , which usually leads to a clearer interpretation of the results, especially

when the aim is data classification or when the interest in on the regression parameters.

In the presence of correlation between the random effects with the regression covariates,

rejection rates are remarkably high even in very small samples. In addition, the power

of the test increases in the intensity of the correlation, while an increasing number of

occasions J seems to only slightly affect the rejection rates.

6 Applications

We illustrate three applications of the Hausman test in different settings. We first de-

scribe the problem of choosing the number of mixture components in a Rasch model and

in a random intercept logit model for clustered data. Then, we deal with the proper

specification of a model for ordered longitudinal data.

Example 1: Rasch model for the assessment of ability in mathe-

matics

We illustrate the proposed Hausman test by using a dataset concerning the responses of a

sample of 1510 examines to 12 binary items on Mathematics, which has been extrapolated

from a larger dataset collected in 1996 by the Educational Testing Service within the

National Assessment of Educational Progress (NAEP) project. The same set of data

was also analyzed by Bartolucci and Forcina (2005) and Bartolucci (2007). In particular,

Bartolucci and Forcina (2005) fitted some types of LC models under different constraints.

The Hausman test and the information criteria described in the Appendix are applied

to a sequence of Rasch models with an increasing number of latent classes. As shown in

Table 1, the Hausman test selects k = 3 latent classes, as well as BIC, CAIC, and the

corresponding modified versions BIC∗ and CAIC∗, whereas the other criteria detect four

or more classes.

Intuitively, the correct specification of the Rasch model is confirmed by the results

in Table 3, which show the item difficulty estimates obtained with the CML approach

and with the MML approach. In fact, we observe that with k = 3 mixture components

14



Table 1: Naep data, Rasch model: selection of the number k of mixture components.

k = 1 k = 2 k = 3 k = 4 k = 5
Hausman T2 414.850 90.071 6.721 2.895 1.639
Hausman p-value 0.000 0.000 0.821 0.992 0.999
AIC 22042.3 20511.4 20364.6 20361.8 20365.0
BIC 22106.2 20585.9 20449.7 20457.6 20471.4
AIC3 22054.3 20525.4 20380.6 20379.8 20385.0
CAIC 22118.2 20599.9 20465.7 20475.6 20491.4
HTAIC 22042.6 20511.7 20365.0 20362.3 20365.6
AICc 22018.5 20483.6 20332.9 20326.2 20325.5
BIC∗ 22068.1 20541.4 20398.9 20400.4 20407.8
CAIC∗ 22080.1 20555.4 20414.9 20418.4 20427.8

Table 2: Naep data, Rasch model: item difficulty estimates under CML (γ̂C) and under

MML with k = 1, . . . , 5 (γ̂M).

CML MML
k = 1 k = 2 k = 3 k = 4 k = 5

Item 1 0.000 0.000 0.000 0.000 0.000 0.000
Item 2 -0.047 -0.038 -0.045 -0.047 -0.047 -0.047
Item 3 0.691 0.549 0.670 0.689 0.691 0.691
Item 4 -1.040 -0.855 -0.984 -1.032 -1.037 -1.040
Item 5 1.521 1.207 1.478 1.518 1.521 1.521
Item 6 0.013 0.010 0.012 0.013 0.013 0.013
Item 7 0.662 0.527 0.642 0.661 0.662 0.662
Item 8 1.191 0.945 1.158 1.189 1.191 1.191
Item 9 0.334 0.267 0.323 0.333 0.334 0.334
Item 10 0.525 0.418 0.508 0.524 0.525 0.525
Item 11 2.427 1.945 2.339 2.418 2.427 2.427
Item 12 2.474 1.984 2.383 2.464 2.474 2.474

the item estimates by MML are already very close to those obtained with CML; see also

Lindsay (1983).

We also perform the Hausman test for the Rasch model based on the assumption of

normality of the distribution of the random effects (Tchetgen and Coull, 2006). A value

of the test statistic T2 equal to 10.230 with a p-value equal to 0.510 lead to accept the null

hypothesis of correct model specification. However, the normality assumption does not

allow us to cluster subjects in homogeneous classes in an easy way, differently from the

discreteness assumption. Indeed, according to the Rasch model with k = 3, we observe

(Table 3) that the 37.9% of subjects is allocated to class 3, which identifies the best

performers, whereas the 16.4% of subjects belongs to the worst performers’ class, that is

class 1.
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Table 3: Naep data, Rasch model with k = 3: estimated support points and weights

(standard errors in brackets).

h = 1 h = 2 h = 3

ξ̂h -0.647 (0.138) 0.967 (0.131) 2.430 (0.120)
π̂h 0.164 (–) 0.457 (0.154) 0.379 (0.251)

Example 2: a random intercept logit model for the use of con-

traceptives in Bangladesh

The data come from a study about fertility in Bangladesh carried out by the Bangladesh

National Institute of Population Research and Training. It collects information on the

knowledge and use of family planning methods of a sample of ever-married women. For

a detailed description of data see Huq and Cleland (1990); see also Mazharul Islam and

Mahmud (1995).

Here we consider a subset of 1934 women nested in 60 administrative districts (clus-

ters).1 The response of interest is a binary variable denoting whether the interviewed

woman is currently using contraception. The unit-specific covariates correspond to the

following women’s characteristics: geographical residence area (0= rural, 1=urban), age,

number of children (no children, a single child, two children, three or more children; no

children is the reference category). No variable describing the district characteristics is

available.

The Hausman test and the information criteria are applied to a sequence of random

intercept logit models with an increasing number of latent classes. As shown in Table 4,

all information criteria agree in selecting two latent classes, whereas the Hausman test

is more parsimonious and gives evidence for just one latent class at 5% level. In other

words, according to the proposed Hausman-type test, the detection of a latent structure

seems to be superfluous with data at issue and this also simplifies the interpretation of

the results.

Parameter estimates for k = 1, reported in Table 5, show that contraceptive use is

higher in urban than in rural areas (odds ratio = 2.219) and it declines a little with age

(2.358% lower odds per year of age). Besides, contraceptive use is higher among women

with a child and much higher among women with two or more children, than among those

with no children, with odds ratios of almost three and more. Note that, if we adopt k = 2

as suggested by the information criteria, we obtain regression parameter estimates very

similar to those shown in Table 5 (output here omitted).

1Data freely downloadable from http://www.stata-press.com/data/r11/bangladesh.dta
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Table 4: Bangladesh contraceptive data, random intercept logit model: selection of the

number k of mixture components.

k = 1 k = 2 k = 3 k = 4
Hausman T2 10.160 9.778 5.164 5.163
Hausman p-value 0.071 0.082 0.400 0.396
AIC 2469.1 2427.2 2430.0 2434.0
BIC 2481.7 2444.1 2451.1 2459.4
AIC3 2475.1 2435.2 2440.0 2446.0
CAIC 2487.7 2452.1 2461.1 2471.4
HTAIC 2471.2 2430.8 2435.4 2441.8
AICc 2458.2 2413.4 2413.6 2415.5
BIC∗ 2462.8 2418.9 2419.7 2421.6
CAIC∗ 2468.8 2426.9 2429.7 2433.6

Table 5: Bangladesh contraceptive data, random intercept logit model with k = 1: esti-

mates of regression coefficients (γ̂), standard errors, odds ratios (exp(γ̂)).

γ̂ st.err.(γ̂) exp(γ̂)
urban area 0.800 0.189 2.218
age -0.024 0.007 0.976
one child 1.067 0.183 2.906
two children 1.276 0.170 3.582
three or more children 1.214 0.201 3.368

Example 3: random intercept global logit models for the assess-

ment of self-reported health status

The third example we propose is based on a longitudinal dataset about Self-Reported

Health Status (SRHS), which derives from a subset of version I of the Health and Retire-

ment Study (HRS)2 (Juster and Suzman, 1995), conducted by the University of Michigan

and supported by the US National Institute on Aging and the Social Security Admin-

istration. Our data comprise 1308 individuals who were asked to express opinions on

their health status at 4 equally spaced time occasions, from 2000 to 2006. The response

variable (SRHS) is measured on a Likert type scale based on 5 ordered categories (poor,

fair, good, very good, and excellent). A longer version of the the same set of data was

analyzed by Bartolucci et al. (2014c), who performed a test for the null hypothesis of

time-constant random effects, versus the hypothesis of time-varying random effects, re-

jecting the null hypothesis (for more details about the data characteristics, see also Heiss,

2008; Bartolucci et al., 2014a). For our illustrative example, we reduced the panel length

so as to minimize the impact of possible time-varying random effects.

We consider three time-constant covariates, describing gender, race, and educational

2See http://www.nia.nih.gov/health/publication/growing-older-america-health-and-retirement-study

17



Table 6: HRS data, random intercept global logit model with free cut-points and with

endogeneity of type (7): selection of the number k of latent classes.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Hausman T2 75.483 59.454 19.484 22.274 13.767 9.003 5.994 3.374
Hausman p-value 0.000 0.000 0.000 0.000 0.001 0.011 0.050 0.185
AIC 14879.9 13355.1 12852.8 12636.9 12497.6 12486.4 12457.8 12449.3
BIC 14948.6 13499.2 13072.5 12932.1 12868.3 12932.6 12979.4 13046.4
AIC3 14889.9 13376.1 12884.8 12679.9 12551.6 12551.4 12533.8 12536.3
CAIC 14958.6 13520.2 13104.5 12975.1 12922.3 12997.6 13055.4 13133.4
HTAIC 14880.0 13355.2 12853.2 12637.5 12498.5 12487.7 12459.5 12451.5
AICc 14859.9 13313.2 12789.1 12551.4 12390.4 12357.6 12307.4 12277.4
BIC∗ 14916.8 13432.5 12970.8 12795.4 12696.7 12726.0 12737.9 12770.0
CAI∗ 14926.8 13453.5 13002.8 12838.4 12750.7 12791.0 12813.9 12857.0

level of individuals, and two time-varying covariates, corresponding to age and squared

age. We first formulate the random intercept global logit model (2), having constant

shift in the cut-points, and the global logit model (3) with free cut-points. In both

cases, the proposed Hausman test repeatedly rejects the null hypothesis of correct model

specification, despite most information criteria tend to choose 5 latent classes (outputs

here omitted). Note that also the traditional Hausman test for the assumption of normally

distributed random effects (Tchetgen and Coull, 2006) strongly rejects the model with

T2 = 32.158 and a p-value smaller than 0.001.

A possible problem with the data at issue may be due to the presence of endogeneity,

that is dependence between the random effects and the time-varying covariates. For this

reason, we extend models (2) and (3) to account for a possible effect of age and squared

age on the mixture components weights, as in equation (7). In particular, the model based

on assumptions (3) and (7) is not rejected with k = 7, as the corresponding p-value is

around 5% (see Table 6). On the other hand, BIC and several other information criteria

tend again to choose k = 5 components.

We conclude highlighting that, on one side, the traditional Hausman test recognizes

the misspecification of the model, but does not detect a valid alternative, and, on the

other side, the information criteria lead to select a misspecified model since they rely on

a relative comparison between models.

7 Conclusions

We propose a misspecification test for Generalized Linear Mixed Models (GLMMs) for

clustered binary and ordinal responses, which modifies the traditional Hausman test to

account for the assumption of discrete, instead of normal, random effects. The proposed

approach is easy to implement and may also be used to select the number of latent classes

(or mixture components or support points), characterizing the models at issue.

The proposed Hausman-type test represents an element of novelty in the context of
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model selection for finite-mixture models which is mainly based on information crite-

ria, such as the Bayesian Information Criterion (BIC). With respect to these selection

criteria, our proposal is expected to lead to more parsimonious models when the true

distribution of the random effects is continuous and the dependence between these effects

and the covariates is correctly specified. This is particularly useful in applications, where

information criteria tend to choose a large number of components, especially with large

samples. Moreover, the proposed test may reject all models having a different number

of mixture components, so detecting misspecification problems (e.g., the presence of en-

dogeneity), that are completely ignored by the information criteria. Finally, while these

criteria are only based on relative comparisons among differently specified models, our

proposal allows us to formulate an absolute assessment about the appropriateness of a

given model, relying on the value of the test statistic and the corresponding p-value.

The performance of the proposed approach is evaluated through a Monte Carlo sim-

ulation study that provides satisfactorily results under different scenarios. In particular,

we observe good size properties under the null hypothesis of correct specification of the

number of support points of the random effect distribution. The results of the power

analysis suggest that: (i) when the number of classes is underspecified, rejection rates

are particularly high especially when the random effect distribution is skewed and has a

large variance; (ii) when the random effect distribution is continuous, the Hausman test

tends to select a more parsimonious specification of the number of support points, with

respect to standard selection criteria, especially with many units per cluster; (iii) in the

presence of correlation of the random effects with the regression covariates, rejection rates

are remarkably high even in very small samples and increase for higher correlation values.

The approach is also illustrated by three applications covering different settings, that

is, multilevel data, longitudinal data, item responses. Interestingly, each application

presents a different potentiality of the proposed approach. In fact, in the first appli-

cation we obtain the same results of selection criteria such as BIC in terms of number of

mixture components. In the second application, contrary to the BIC, the proposed test

leads to the conclusion that a latent structure is not necessary, and then to a very parsi-

monious and easily interpretable model. In the third application, the proposed approach

leads to reject all models in which the random effects are assumed to be independent of

the covariates, considering therefore a form of endogeneity.

Regarding the comparison with the available statistical literature, the proposed ap-

proach can be seen as a development of Tchetgen and Coull (2006), whose proposal is

based on the comparison of MML and CML estimates of models with normally distributed

random effects. We acknowledge that the approach of Tchetgen and Coull (2006) has been

criticized by some authors. We refer, in particular, to Alonso et al. (2008) that, to moti-

vate the need of alternative approaches, stated that the approach of Tchetgen and Coull

(2006) can only be applied when there is at least one unit-specific covariate and that

cannot be used for the Rasch model and other IRT models. Moreover, they state that the

test cannot be applied when auto-regressive random effects are present. Regarding the
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first aspect, we do not agree with Alonso et al. (2008) for two reasons: first, in models

for item responses a covariate indeed exists and this is the indicator variable for the item,

making our test easily usable, as we show by an empirical example; second, even if unit-

specific covariates (which vary within the cluster) do not exist, they can be “artificially”

created (e.g., in a longitudinal dataset, interactions of time-constant covariates with time

dummies). Finally, our test is intended to be used when the assumption that the random-

effects are time-constant is realistic. However, if this assumption is questionable, the

proposed test can be used in connection with that proposed by Bartolucci et al. (2014c),

the latter being specifically devoted to test the assumption that the random effects are

time-constant rather than time-varying by comparing differently formulated conditional

maximum likelihood estimators.

We conclude outlining that the applicability of the modified Hausman test is limited

to certain finite-mixture GLLM based on a canonical link function. We also evaluated the

performance of the test through simulation studies in case of linear and Poisson models,

but we did not obtained interesting results. However, other cases to try are represented

by survival data and by zero inflated Poisson models.
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Appendix

The simulation study

In this section, we describe the setting and present the main results of a Monte Carlo study

limited to models for binary responses. We first investigate the finite-sample properties

of the proposed test in finite-mixture models for correct specification of the number of

mixture components. Then, we study the power properties of the proposed test when the

distribution of the random effects is misspecified, namely when the true distribution is

continuous and in presence of correlation between the random effects and the regression

covariates.

The simulation design

The simulation study is based on the random intercept model specified in Section 2 with

a logit link function. We consider two scenarios: one refers to the longitudinal setting and

the other one refers to the IRT setting. In the longitudinal design, the model is specified

as follows

y∗ij = θi + x′

iβ + z′itγ + εij (17)

yij = I(y∗ij > 0) for i = 1, . . . , n j = 1, . . . , J (18)

where the distribution of the random effects αi has k0 = 3 support points
[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. We also consider one observation-

specific covariate zij, with j = 1, . . . , Ji denoting the time occasions and Ji = J for

i = 1, . . . , n, generated as

zi0 ∼ N
(
0, π2/3

)
,

zij = zi,j−1ρ+ uij,

uij ∼ N
(
0,
(
1− ρ2

)
π2/3

)
,

with ρ = 0.5. We also consider a cluster-specific covariate xi following a standard normal

distribution. Besides, the error terms εij are i.i.d. with zero-mean logistic distribution

with variance π2/3, whereas γ and β are both scalars and equal 1. As outlined in Section

4, the Hausman test will compare only the estimators of γ, since the CML approach does

not allow for the identification of cluster-specific effects. The Hausman test statistic will

therefore be asymptotically distributed as a χ2
1.

In the IRT scenario, model (17) with link a logit function simplifies in a Rasch model,

as follows

log
p(yij = 1|αi, zij)

p(yij = 0|αi, zij)
= αi − z′ijγ.

where j = 2, . . . , Ji with Ji = J for i = 1, . . . , n and γ is a J − 1-dimensional vector of

item difficulty parameters; these parameters are taken as equidistant points in the interval
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[−2, 2]. Therefore, the Hausman test statistic will be asymptotically distributed as a

χ2
J−1. We repeat the experiment on the two models with different discrete distributions

for αi: we consider a shift in the original distribution, αi ∈
[
1−

√
3/2, 1, 1 +

√
3/2

]
with

probabilities 0.25, 0.50, and 0.25, and a strongly asymmetric distribution, αi ∈ [−5, 0, 25]

with probabilities 0.33, 0.50, and 0.17 respectively.

In each scenario, we compare the performance of the proposed test with that of stan-

dard selection criteria by estimating finite-mixture models under the assumption of k

number of support points for α, with k = 1, . . . , 6. More in detail, apart from AIC and

BIC (see Section 4.2), we consider the following information criteria: Consistent AIC

(CAIC; Bozdogan, 1987), AIC3 (Bozdogan, 1993), HT-AIC (Hurvich and Tsai, 1989),

AICc (Hurvich and Tsai, 1993), the adjusted CAIC (CAIC∗; Yang and Yang, 2007), and

adjusted BIC (BIC∗; Sclove, 1987). Overall, they are based on the following indices:

AIC = −2 ℓ̂M + 2#par,

BIC = −2 ℓ̂M +#par log(n),

AIC3 = −2 ℓ̂M + 3#par,

CAIC = −2 ℓ̂M +#par(log(n) + 1),

HT-AIC = −2 ℓ̂M + 2#par +
2(#par + 1)(#par + 2)

n−#par− 2
,

AICc = −2 ℓ̂M + 2
#par(#par− 1)

n−#par− 1
,

BIC∗ = −2 ℓ̂M +#par log
n+ 2

24
,

CAIC∗ = −2 ℓ̂M +#par

(
log

n+ 2

24
+ 1

)

with ℓ̂M denoting the maximum of log-likelihood and #par is the number of free param-

eters. As all these criteria consist in penalized versions of the maximum log-likelihood,

the optimal number of latent classes is that corresponding to the minimum value of the

corresponding index. In practice, we fit a given discrete GLMM for increasing values of k

until the index does not start to increase. Then, we select the previous k as the optimal

number of latent states, which guarantees the best compromise between goodness-of-fit

and model parsimony.

The second part of our simulation study deals with possible misspecification of the

random effect distribution. First, we analyze a case where the true distribution of αi is

continuous: the data are generated as above with the exception of the random effects which

are now αi ∼ N(0, 3). Secondly, the analysis considers a case where the random effects

are correlated with the regression covariates. In this scenario, αi is generated starting

from a Gaussian copula: we generate continuous random effects as α∗
i = τ z̄i+wi

√
1− τ 2,

where z̄i = (1/Ji)
∑Ji

j=1 zij and wi ∼ N(0, 1). We then obtain the discrete random effects

αi from α∗
i so that αi has k0 = 3 support points

[
−
√

3/2, 0,
√

3/2
]
with probabilities
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0.25, 0.50, and 0.25 respectively. The parameter τ controls the correlation between αi

and zij and we analyze the situations where τ = 0, 0.5, 0.8.

The main results

Tables 7- 12 summarize the values of the empirical size of test for binary responses mod-

els with longitudinal data and for IRT models considering the three different discrete

distributions for αi described in the previous section. Each experiment is repeated for

n = 500, 1000 and J = 5, 10. The Hausman test compares γ̂M , obtained by estimating a

finite-mixture model for k = 1, . . . , 6, with γ̂C obtained by CML. For each experiment,

the tables also report the number of times (out of 1000 replications) the Hausman test

does not reject the null hypothesis at k and compare these results with the number of

times information criteria are minimized in k.

The results of our simulation study suggest that the proposed Hausman-type test

behaves quite nicely as a test of correct specification in finite-mixture models. Tables 7-

12 show that the empirical size of the proposed test reaches its nominal value with k = 3

for all the values of n and J considered. When the finite-mixture model is estimated

under the assumption of k = 1, the proposed test exhibits high rejection rates increasing

in both n and J . However, when symmetric discrete distributions for αi are considered,

the rejection rate for k = 2 is rather low and slowly increasing in n and J (Tables 7-10).

Nevertheless, the standard selection criteria also seem to favor specifications with k = 2

support points. In contrast, Tables 11 and 12 show that the rejection rate with k = 1, 2

is almost 100% in every scenario, while the empirical size attains its nominal value when

k = 3.

Tables 13 and 14 report the simulation results for a different misspecification of αi,

namely when the random effects are continuous. Table 13 shows that, with n = 500,

J = 5, and k = 2, the Hausman test does not reject the null hypothesis in a considerable

number of replications from 415 for the nominal size 10% to 841 for 1% and for most of

the remaining replications it selects k = 3. With the exception of AICc, selection criteria

tend instead to select a model with k = 3. Notice that BIC and the Hausman test at

1% present almost the opposite behavior. A similar situation occurs when n = 1000 and

J = 5, while with n = 500, 1000 and J = 10 the proposed test tends to select k = 3, while

the information criteria lean towards k = 4. In the case of the IRT parametrization, the

same pattern is even clearer: with n = 500 and J = 5 the Hausman test selects a model

with k = 2 in the majority of cases, while selection criteria tend to select models with a

higher k (Table 14). For greater values of n and J selection criteria, with exception of

BIC, select 4 or even 5 support points, while the proposed test favors a more parsimonious

specification of the number of classes.

The major implication of these results is that, when the random effects are a con-

tinuous random variable, a situation that is likely to occur with real data, the Hausman

test selects a model that produces a consistent estimator of γ regardless of the misspec-
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Figure 1: Hausman-type specification test for endogeneity: longitudinal data scenario
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ification in the distribution of the random effects. In addition, compared to standard

model selection criteria, the proposed test chooses a more parsimonious specification of

the number of support points especially for large values of J , which usually leads to a

clearer interpretation of the results, especially when the aim is data classification or when

the interest in on the regression parameters.

The last part of our Monte Carlo study investigates the power properties of the test

when the hypothesis of independence between the random effects and the regression co-

variates is violated. The correlation is controlled by means of the parameter τ which

varies between 0 and 0.8 (Section 7). The simulation results are displayed in Figure 1 for

finite-mixture models for longitudinal binary data and in Figure 2 for the Rasch model.

In both cases, we limit the analyses to sample sizes of n = 100, 200. With τ = 0, the pro-

posed test maintains its size properties in both models. The power of the test increases

with the correlation τ and in the sample size, while increasing number of occasions J

seems to only slightly affect the rejection rates.
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Table 7: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 symmetric zero mean, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 298 0.631 445 0.511 748 0.233 0 70 1 113 0 0 1 10
2 574 0.100 484 0.052 229 0.013 901 927 953 885 905 379 958 974
3 22 0.103 10 0.057 4 0.018 99 3 46 2 95 510 41 16
4 4 0.104 7 0.059 3 0.020 0 0 0 0 0 71 0 0
5 20 0.105 10 0.059 4 0.020 0 0 0 0 0 29 0 0
6 52 0.107 32 0.059 9 0.021 0 0 0 0 0 11 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 1 0.991 9 0.978 77 0.916 0 0 0 0 0 0 0 0
2 809 0.123 900 0.055 899 0.013 541 952 699 974 552 45 703 823
3 76 0.101 38 0.049 8 0.012 456 48 299 26 445 744 295 177
4 10 0.101 3 0.049 4 0.012 3 0 2 0 3 143 2 0
5 13 0.108 11 0.052 5 0.016 0 0 0 0 0 50 0 0
6 51 0.114 25 0.055 3 0.017 0 0 0 0 0 18 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 42 0.908 138 0.822 379 0.603 0 0 0 0 0 0 0 0
2 821 0.108 787 0.060 596 0.012 812 997 902 998 817 250 953 979
3 37 0.097 14 0.060 6 0.018 187 3 98 2 182 598 47 21
4 2 0.100 1 0.061 1 0.019 1 0 0 0 1 69 0 0
5 12 0.099 7 0.062 9 0.020 0 0 0 0 0 48 0 0
6 49 0.104 35 0.064 6 0.023 0 0 0 0 0 35 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 754 0.181 876 0.096 961 0.024 286 873 444 914 290 9 559 692
3 135 0.099 68 0.052 24 0.011 706 127 554 86 702 688 441 308
4 9 0.101 4 0.052 3 0.013 8 0 2 0 8 202 0 0
5 8 0.106 2 0.054 1 0.014 0 0 0 0 0 64 0 0
6 50 0.110 24 0.054 10 0.016 0 0 0 0 0 37 0 0

The random effects αi ∈

[

−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. The test

statistic T2

d→ χ2

1
. The number of replications is 1000.

30



Table 8: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 symmetric zero mean, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 565 0.392 727 0.241 926 0.049 8 193 29 281 9 0 30 65
2 315 0.094 204 0.045 43 0.013 929 806 943 719 936 491 943 925
3 4 0.111 5 0.060 3 0.026 63 1 28 0 55 404 27 10
4 2 0.114 4 0.063 2 0.028 0 0 0 0 0 63 0 0
5 19 0.119 14 0.066 13 0.031 0 0 0 0 0 27 0 0
6 25 0.120 18 0.065 7 0.031 0 0 0 0 0 15 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 147 0.839 290 0.700 597 0.396 0 0 0 0 0 0 0 0
2 735 0.083 649 0.038 391 0.003 668 986 815 994 692 164 818 913
3 11 0.100 10 0.047 2 0.009 331 14 184 6 307 667 181 86
4 3 0.105 2 0.049 2 0.010 1 0 1 0 1 113 1 1
5 12 0.105 7 0.051 3 0.010 0 0 0 0 0 42 0 0
6 25 0.109 16 0.054 3 0.012 0 0 0 0 0 14 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 185 0.799 312 0.667 627 0.356 0 7 1 14 0 0 1 5
2 691 0.099 615 0.051 352 0.012 851 990 931 986 856 315 958 975
3 16 0.105 12 0.058 1 0.019 146 3 68 0 142 509 41 20
4 1 0.108 2 0.059 0 0.020 3 0 0 0 2 104 0 0
5 5 0.110 7 0.063 8 0.021 0 0 0 0 0 46 0 0
6 23 0.114 19 0.068 4 0.026 0 0 0 0 0 26 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 1 0.999 1 0.998 21 0.978 0 0 0 0 0 0 0 0
2 887 0.086 935 0.038 960 0.010 422 947 613 965 435 41 710 807
3 18 0.090 11 0.046 2 0.012 568 53 385 35 555 695 290 193
4 3 0.092 4 0.050 3 0.015 10 0 2 0 10 192 0 0
5 3 0.095 4 0.053 1 0.018 0 0 0 0 0 53 0 0
6 17 0.093 17 0.053 5 0.017 0 0 0 0 0 19 0 0

The random effects αi ∈

[

−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. The test

statistic T2

d→ χ2

J−1
. The number of replications is 1000.
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Table 9: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 symmetric unit mean, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 304 0.625 483 0.489 793 0.203 2 76 6 113 2 0 6 18
2 587 0.071 470 0.036 196 0.008 900 923 955 886 909 401 956 968
3 14 0.090 9 0.036 1 0.009 95 1 38 1 87 494 37 14
4 6 0.094 2 0.038 1 0.009 3 0 1 0 2 65 1 0
5 30 0.096 7 0.040 1 0.011 0 0 0 0 0 28 0 0
6 36 0.095 19 0.038 4 0.009 0 0 0 0 0 12 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 3 0.991 12 0.977 102 0.890 0 0 0 0 0 0 0 0
2 808 0.127 882 0.076 878 0.009 570 965 748 983 579 74 755 869
3 77 0.106 50 0.054 9 0.009 429 35 251 17 420 721 244 130
4 6 0.107 3 0.054 2 0.010 1 0 1 0 1 147 1 1
5 6 0.108 5 0.054 7 0.010 0 0 0 0 0 42 0 0
6 53 0.112 27 0.057 1 0.013 0 0 0 0 0 16 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 53 0.893 150 0.814 421 0.564 0 0 0 0 0 0 0 0
2 819 0.102 779 0.054 560 0.010 840 999 913 1000 841 240 958 979
3 21 0.106 16 0.053 5 0.014 160 1 87 0 159 585 42 21
4 4 0.103 3 0.054 0 0.014 0 0 0 0 0 80 0 0
5 17 0.103 14 0.051 5 0.016 0 0 0 0 0 52 0 0
6 45 0.105 22 0.056 8 0.018 0 0 0 0 0 43 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 0.999 0 0 0 0 0 0 0 0
2 802 0.145 887 0.079 973 0.017 284 876 450 922 288 13 554 700
3 101 0.090 61 0.047 14 0.010 698 124 547 78 697 664 444 300
4 5 0.092 3 0.049 0 0.012 18 0 3 0 15 222 2 0
5 7 0.093 5 0.050 4 0.014 0 0 0 0 0 65 0 0
6 45 0.092 28 0.049 6 0.013 0 0 0 0 0 36 0 0

The random effects αi ∈

[

1−
√

3/2, 1, 1 +
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. The

test statistic T2

d→ χ2

1
. The number of replications is 1000.
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Table 10: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 symmetric unit mean, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 572 0.391 743 0.229 942 0.039 7 202 26 307 7 0 28 70
2 322 0.081 196 0.049 36 0.010 924 796 940 693 934 483 939 915
3 1 0.100 5 0.053 2 0.019 69 2 34 0 59 420 33 15
4 2 0.104 4 0.055 1 0.020 0 0 0 0 0 58 0 0
5 22 0.106 7 0.057 9 0.022 0 0 0 0 0 25 0 0
6 16 0.106 17 0.056 7 0.022 0 0 0 0 0 14 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 73 0.921 155 0.839 436 0.560 0 0 0 0 0 0 0 0
2 821 0.078 796 0.031 551 0.004 645 967 789 988 674 127 794 892
3 8 0.089 2 0.043 3 0.007 352 33 210 12 324 718 205 108
4 4 0.093 3 0.045 2 0.010 3 0 1 0 2 119 1 0
5 9 0.097 6 0.046 2 0.011 0 0 0 0 0 27 0 0
6 22 0.095 12 0.045 4 0.011 0 0 0 0 0 9 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 132 0.852 255 0.729 563 0.427 0 6 0 8 0 0 0 1
2 756 0.083 688 0.041 419 0.007 862 992 929 991 866 309 958 981
3 7 0.101 6 0.049 1 0.015 137 2 71 1 134 517 42 18
4 1 0.104 1 0.050 2 0.017 1 0 0 0 0 99 0 0
5 9 0.105 9 0.050 4 0.017 0 0 0 0 0 54 0 0
6 28 0.106 13 0.053 6 0.020 0 0 0 0 0 21 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 1 0.998 8 0.992 0 0 0 0 0 0 0 0
2 876 0.092 928 0.043 971 0.009 382 929 556 959 398 25 686 789
3 34 0.085 15 0.050 8 0.008 609 71 442 41 593 690 314 211
4 5 0.088 5 0.053 5 0.010 8 0 2 0 8 214 0 0
5 2 0.088 2 0.053 0 0.012 1 0 0 0 1 54 0 0
6 20 0.092 20 0.058 2 0.017 0 0 0 0 0 17 0 0

The random effects αi ∈

[

1−
√

3/2, 1, 1 +
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. The

test statistic T2

d→ χ2

J−1
. The number of replications is 1000.
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Table 11: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 asymmetric, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 2 0.993 4 0.992 9 0.987 0 0 0 0 0 0 0 0
3 731 0.094 792 0.047 839 0.013 958 1000 984 1000 961 458 985 993
4 144 0.144 131 0.103 121 0.071 39 0 15 0 36 111 14 6
5 42 0.153 30 0.108 18 0.072 3 0 1 0 3 205 1 1
6 20 0.146 9 0.100 2 0.055 0 0 0 0 0 226 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 1 0.999 1 0.999 0 0 0 0 0 0 0 0
3 719 0.120 793 0.049 847 0.011 972 999 995 1000 976 451 995 998
4 137 0.150 129 0.098 131 0.061 22 1 5 0 18 113 5 2
5 43 0.169 29 0.110 9 0.060 6 0 0 0 6 224 0 0
6 17 0.171 14 0.108 4 0.061 0 0 0 0 0 212 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 1 0.998 4 0.996 11 0.987 0 0 0 0 0 0 0 0
3 769 0.096 826 0.057 886 0.014 979 1000 992 1000 980 413 998 1000
4 86 0.145 97 0.087 80 0.044 21 0 8 0 20 111 2 0
5 36 0.159 17 0.099 7 0.048 0 0 0 0 0 212 0 0
6 33 0.158 11 0.101 3 0.051 0 0 0 0 0 264 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 728 0.106 786 0.061 851 0.011 970 1000 994 1000 973 365 998 1000
4 144 0.163 137 0.112 133 0.059 23 0 5 0 21 100 2 0
5 22 0.161 14 0.117 4 0.059 5 0 1 0 4 271 0 0
6 29 0.153 19 0.108 5 0.055 2 0 0 0 2 264 0 0

The random effects αi ∈ [−5, 0, 25] with probabilities 0.33, 0.50, and 0.17 respectively. The test statistic

T2

d→ χ2

1
. The number of replications is 1000.
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Table 12: Hausman-type specification test: number of selections of k classes and empirical

size, k0 = 3 asymmetric, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 1 0.999 10 0.982 0 0 0 0 0 0 0 0
3 593 0.102 636 0.066 673 0.018 959 999 984 1000 963 579 984 991
4 258 0.184 266 0.149 263 0.107 35 1 16 0 34 145 16 9
5 48 0.201 36 0.149 37 0.106 5 0 0 0 3 134 0 0
6 10 0.261 4 0.214 7 0.175 1 0 0 0 0 142 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 703 0.108 752 0.063 795 0.020 975 1000 992 1000 979 585 992 999
4 158 0.180 165 0.132 169 0.091 24 0 8 0 21 151 8 1
5 20 0.183 15 0.130 12 0.087 1 0 0 0 0 115 0 0
6 12 0.191 6 0.136 4 0.087 0 0 0 0 0 149 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 662 0.114 711 0.058 754 0.016 979 1000 991 1000 980 520 996 997
4 196 0.179 201 0.126 208 0.086 20 0 9 0 19 131 4 3
5 25 0.169 27 0.118 17 0.076 1 0 0 0 1 144 0 0
6 13 0.239 7 0.190 6 0.142 0 0 0 0 0 205 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 756 0.103 797 0.052 846 0.018 974 1000 990 1000 975 525 998 999
4 120 0.159 124 0.110 125 0.072 24 0 10 0 23 150 2 1
5 13 0.160 19 0.118 11 0.067 2 0 0 0 2 118 0 0
6 12 0.156 10 0.112 0 0.062 0 0 0 0 0 207 0 0

The random effects αi ∈ [−5, 0, 25] with probabilities 0.33, 0.50, and 0.17 respectively. The test statistic

T2

d→ χ2

J−1
. The number of replications is 1000.

35



Table 13: Hausman-type specification test: number of selections of k classes and empirical

size, continuous random effects, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 2 0.995 0 0 0 0 0 0 0 0
2 415 0.467 597 0.328 841 0.115 5 152 17 223 5 0 17 45
3 398 0.101 297 0.048 122 0.010 627 815 764 757 635 124 774 831
4 59 0.130 40 0.069 19 0.022 355 33 216 20 347 550 206 124
5 64 0.145 35 0.087 11 0.036 13 0 3 0 13 249 3 0
6 40 0.145 20 0.085 5 0.033 0 0 0 0 0 77 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 4 0.987 18 0.967 143 0.850 0 0 0 0 0 0 0 0
3 572 0.352 703 0.233 772 0.071 21 295 66 391 26 0 67 129
4 298 0.103 219 0.047 75 0.008 593 663 710 582 608 134 713 740
5 70 0.095 36 0.053 7 0.014 360 42 211 27 343 543 207 128
6 25 0.096 13 0.056 0 0.015 26 0 13 0 23 323 13 3

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 156 0.786 292 0.671 603 0.379 0 4 0 11 0 0 0 1
3 636 0.145 603 0.065 362 0.012 257 859 426 896 266 12 550 690
4 106 0.089 51 0.043 22 0.010 687 137 557 93 681 444 442 306
5 56 0.100 32 0.058 9 0.023 53 0 17 0 52 377 8 3
6 22 0.104 10 0.064 2 0.027 3 0 0 0 1 167 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 2 0.998 0 0 0 0 0 0 0 0
3 265 0.673 447 0.527 720 0.269 0 37 1 70 0 0 2 7
4 547 0.154 465 0.072 258 0.018 221 784 378 808 228 23 501 612
5 125 0.091 61 0.039 15 0.007 647 176 563 119 646 415 462 366
6 31 0.100 16 0.041 2 0.012 132 3 58 3 126 562 35 15

The random effects are αi ∼ N(0, 3). The test statistic T2

d→ χ2

1
. The number of replications is 1000.
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Table 14: Hausman-type specification test: number of selections of k classes and empirical

size, continuous random effect, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 9 0.991 0 0 0 0 0 0 0 0
2 730 0.194 831 0.100 931 0.009 33 328 86 420 38 0 87 151
3 137 0.085 81 0.044 26 0.005 699 654 783 570 714 201 788 782
4 22 0.111 19 0.073 10 0.028 260 18 131 10 241 551 125 67
5 31 0.119 26 0.080 19 0.035 7 0 0 0 6 189 0 0
6 33 0.132 24 0.091 5 0.046 1 0 0 0 1 59 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 299 0.677 471 0.511 777 0.215 0 0 0 1 0 0 0 0
3 561 0.091 466 0.037 212 0.004 55 468 124 554 61 2 129 228
4 59 0.068 29 0.031 7 0.004 680 517 734 437 694 221 736 704
5 26 0.087 9 0.040 0 0.010 245 15 140 8 231 547 133 68
6 17 0.092 13 0.044 2 0.011 20 0 2 0 14 230 2 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 460 0.497 635 0.324 875 0.093 1 38 3 61 1 0 5 11
3 407 0.088 292 0.034 92 0.006 449 892 606 891 457 47 714 820
4 32 0.095 17 0.050 13 0.019 523 70 383 48 517 515 277 168
5 23 0.109 25 0.063 15 0.030 26 0 8 0 24 317 4 1
6 25 0.116 15 0.070 4 0.036 1 0 0 0 1 121 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.
1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 6 0.992 20 0.980 120 0.880 0 0 0 0 0 0 0 0
3 756 0.192 846 0.110 848 0.028 0 90 4 146 0 0 14 20
4 142 0.072 80 0.034 26 0.006 408 838 584 810 424 38 684 764
5 34 0.084 20 0.048 2 0.004 532 72 392 44 518 526 292 212
6 20 0.092 8 0.056 0 0.008 60 0 20 0 58 436 10 4

The random effects are αi ∼ N(0, 3). The test statistic T2

d→ χ2

J−1
. The number of replications is 1000.
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Figure 2: Hausman-type specification test for endogeneity: Rasch model scenario
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