Preinerstorfer, David (2014): Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators.
This is the latest version of this item.

PDF
MPRA_paper_64245.pdf Download (814kB)  Preview 
Abstract
We analytically investigate size and power properties of a popular family of procedures for testing linear restrictions on the coefficient vector in a linear regression model with temporally dependent errors. The tests considered are autocorrelationcorrected Ftype tests based on prewhitened nonparametric covariance estimators that possibly incorporate a datadependent bandwidth parameter, e.g., estimators as considered in Andrews and Monahan (1992), Newey and West (1994), or Rho and Shao (2013). For design matrices that are generic in a measure theoretic sense we prove that these tests either suffer from extreme size distortions or from strong power deficiencies. Despite this negative result we demonstrate that a simple adjustment procedure based on artificial regressors can often resolve this problem.
Item Type:  MPRA Paper 

Original Title:  Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators 
Language:  English 
Keywords:  Autocorrelation robustness, HAC test, fixedb test, prewhitening, size distortion, power deficiency, artificial regressors. 
Subjects:  C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C12  Hypothesis Testing: General C  Mathematical and Quantitative Methods > C3  Multiple or Simultaneous Equation Models ; Multiple Variables > C32  TimeSeries Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models 
Item ID:  64245 
Depositing User:  David Preinerstorfer 
Date Deposited:  09 May 2015 14:09 
Last Modified:  28 Sep 2019 08:06 
References:  Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, pp. 817858. Andrews, D. W. K. and Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60, pp. 953966. Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37, 116. den Haan, W. J. and Levin, A. T. (1997). A practitioner's guide to robust covariance matrix estimation. In Robust Inference (G. Maddala and C. Rao, eds.), vol. 15 of Handbook of Statistics. Elsevier, 299  342. Grenander, U. and Rosenblatt, M. (1957). Statistical analysis of stationary time series. John Wiley & Sons, New York. Hannan, E. J. (1957). The variance of the mean of a stationary process. Journal of the Royal Statistical Society. Series B, 19. 282285. Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60, pp. 967972. Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econometric Theory, 18, 14491459. Jansson, M. (2004). The error in rejection probability of simple autocorrelation robust tests. Econometrica, 72, 937946. Jowett, G. H. (1955). The comparison of means of sets of observations from sections of independent stochastic series. Journal of the Royal Statistical Society. Series B, 17, 208227. Kiefer, N. M. and Vogelsang, T. J. (2002). Heteroskedasticityautocorrelation robust testing using bandwidth equal to sample size. Econometric Theory, 18, 13501366. Kiefer, N. M. and Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticity autocorrelation robust tests. Econometric Theory, 21, 11301164. Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68, 695714. Newey, W. K. and West, K. D. (1987). A simple, positive semidefinite, heteroskedasticity and autocor relation consistent covariance matrix. Econometrica, 55, 703708. Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The Review of Economic Studies, 61, pp. 631653. Okamoto, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. The Annals of Statistics, 763765. Preinerstorfer, D. and Pötscher, B. M. (2014a). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory, forthcoming. URL http://arxiv.org/abs/1304.1383. Preinerstorfer, D. and Pötscher, B. M. (2014b). On the power of invariant tests for hypotheses on a covariance matrix. Working Paper, Department of Statistics, University of Vienna. URL http: //arxiv.org/abs/1404.1310. Rho, Y. and Shao, X. (2013). Improving the bandwidthfree inference methods by prewhitening. Journal of Statistical Planning and Inference, 143, 1912  1922. Schwert, G. (2009). Eviews 7 user's guide II. Quantitative Micro Software, LLC, Irvine, California. Sun, Y., Phillips, P. C. B. and Jin, S. (2008). Optimal bandwidth selection in heteroskedasticity autocorrelation robust testing. Econometrica, 76, 175194. Sun, Y., Phillips, P. C. B. and Jin, S. (2011). Power maximization and size control in heteroskedas ticity and autocorrelation robust tests with exponentiated kernels. Econometric Theory, 27, 1320 1368. Velasco, C. and Robinson, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory, 17, 497539. Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11, 117. Zhang, X. and Shao, X. (2013). Fixedsmoothing asymptotics for time series. The Annals of Statistics, 41, 13291349. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/64245 
Available Versions of this Item

Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators. (deposited 06 Sep 2014 10:12)
 Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators. (deposited 09 May 2015 14:09) [Currently Displayed]