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GAME FORM REPRESENTATION FOR JUDGEMENT AND

ARROVIAN AGGREGATION

DANIEL SCHOCH

Abstract. Judgement aggregation theory provides us by a dilemma since it
is plagued by impossibility results. For a certain class of logically interlinked

agendas, full independence for all issues leads to Arrovian dictatorship. Since
independence restricts the possibility of strategic voting, it is nevertheless a

desirable property even if only partially fulfilled.
We explore a “Goldilock” zone of issue-wise sequential aggregation rules

which offers just enough independence not to constrain the winning coalitions

among different issues, but restrict the possibilities of strategic manipulation.

Perfect Independence, as we call the associated axiom, characterises a game-
form like representation of the aggregation function by a binary tree, where
each non-terminal node is associated with an issue on which all voters make
simultaneous decisions.

Our result is universal insofar as any aggregation rule satisfying indepen-

dence for sufficiently many issues has a game-form representation. One corol-
lary of the game form representation theorem implies that dictatorial aggre-

gation rules have game-form representations, which can be “democratised” by

simply altering the winning coalitions at every node.

1. Introduction

Sequential aggregation rules have been proposed for the field of judgement ag-
gregation [List (2004), Dietrich (2014)] as well as for the field of Arrovian social
choice [Larsson and Svensson (2006), Battaglini (2003)] as an alternative to simul-
taneous decisions on independent issues for agendas where alternatives are logically
connected in a way that aggregation function satisfying Independence of Irrelevant
Alternatives (IIA) can only be dictatorial. In judgement aggregation, they belong
to the class of premise-based procedures, which have found more efficient in aggre-
gating information than outcome-based procedures [de Clippe and Eliaz (2015)].

The goal of this paper lies in providing representations for “less than fully inde-
pendent” aggregation rules in a game form of a binary tree. An axiomatic charac-
terisation of this class of rules is provided, and a new possibility theorem is proven.
By weakening Propositionwise Independence (the equivalent axiom to IIA in judge-
ment aggregation), the classical impossibility theorems are not only avoided. The
interesting point is that the only axiom involved (besides a very weak unanimity
condition) does not “contagiously” constrain winning coalitions for different issues.
Thus the type of voting rule - dictatorial, majority, etc. - is not determined by the
tree form.

Strategy-proofness has been identified as the predominant motivation behind in-
dependence [List and Polak (2010), Ch 4.3]. It holds locally for certain outcomes,
which can easily be identified without recurring to winning coalitions. This makes
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tree-form sequential rules are an alternative to dropping completeness, which leads
to full strategy-proofness, but requires oligarchic agreements [Dokow und Holzman (2010),
Dietrich and List (2008)].

Sequential judgement aggregation rules follow Lindenbaum’s procedure in propo-
sitional logic for extending a consistent set of proposition to a maximally consistent
and therefore complete set. Sequential rules aggregate judgements proposition- or
issue-wise, with some given priority, depending on former decisions. At each point of
the decision sequence, it is first checked if the accumulated aggregated judgements
are logically consistent with the possible outcome of a decision on a proposition p
(to either accept or reject p) or on an issue {p,¬p} (choosing between p or ¬p). If
the outcome is already logically implied by the outcomes of past choices, then the
implication is added to the outcome, otherwise a decision is being performed on
the basis of the individual judgements to determine the outcome.

In our approach we adopt a harmless modification to the sequential procedure.
We defer logical completion to the end of the aggregation of all proper decisions.
Since logical dependence of a proposition on a set B does not change when propo-
sitions derivable from B are added to the set, or propositions p ∈ B derivable from
B \ {p} are removed, postponing logical closure will not change the final outcome.
Our procedures will perform all decision among logically independent alternatives
and skip those whose outcome is already logically determined by the constraints of
the agenda and the past decisions. This will yield an outcome, which might not be
complete, but is almost complete in the sense it posesses a unique completion which
can be generated by performing deductive closure relative to the agenda. However,
for the sake of simplicity, and to guarantee almost complete outcomes we will adopt
decisions on issues instead of deciding over a proposition and its negation at dif-
ferent time points, herewith deviating more significantly from the aforementioned
literature.

In this paper we consider judgement aggregation rules which can be represented
by a binary decision tree analogous to an extensive game form. We shall develop
this analogy by adopting a connotation inspired by game theory. At every node
of the tree, all players move simultaneously by submitting their opinion or vote
on an issue {p,¬p}. The tree then branches according to the aggregated outcome.
At every node, a local form of independence on its issue relative to the past is
imposed, which guarantees the existence of a set of winning coalitions for p and ¬p,
respectively, determining a unique outcome.

Since there are no private nodes, rules for information are different compared
to ordinary games. The outcome of each decision is either revealed to all players,
thus common knowledge at that point, or withheld. Nodes with the same issue can
appear at different places, but only nodes which assign the same winning coalitions
to the same propositions can be merged in an information set. At final nodes, the
deductive closure of the collected aggregated outcomes on its path is formed into
the final outcome. If at all decision nodes, no player has an incentive to deviate,
the outcome is strategy-proof. Strategy-proof outcomes are the analogon to Nash
equilibria.

Example 1. As a simple example consider a sequential game form Arrovian ag-
gregation rule over the profile of the Condorcet paradoxon. In terms of judgement
aggregation, this corresponds to an agenda of three propositions and their negations
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under the strict order axioms

X = {x ≻ y,¬ (x ≻ y) , y ≻ z,¬ (y ≻ z) , z ≻ x,¬ (z ≻ x)}
= {x ≻ y, y ≻ x, y ≻ z, z ≻ y, z ≻ x, x ≻ z} ,(1.1)

while the cyclic profile is given by

Player x ≻ y y ≻ z z ≻ x

1 x ≻ y ≻ z
√ √ ×

2 y ≻ z ≻ x × √ √

3 z ≻ x ≻ y
√ × √

Majority
√ √ √

Consider the sequential aggregation rule given by the following game form tree1On
all five decision nodes (circled), simple majority voting is applied.2

The rule is not strategy proof. The cyclic profile of the Condorcet paradox in
the above table yields the leftmost outcome x ≻ y ≻ z. Voter two has an incentive
to change his vote from y ≻ z to z ≻ y, which yields z ≻ x ≻ y, bringing his
second best alternative to the front instead of his third. However, we can show the
following weaker result.

Consider the four median outcomes inscribed within a box. Their paths are
complete in the sense that they pass through decision nodes for all issues of the
agenda. Given monotonic winning coalitions, we find that if the social outcome is
reached by a complete path, then there is no incentive for any voter to deviate to
reach a social outcome on a complete path. This provides us with estimated upper
bounds for strategic manipulation. If the social outcome is reached by a complete
path, any strategic manipulation could have only come from a truthful profile which
yielded one of the two outer outcomes.3

But this is a priori unlikely: 2 × 40 = 80 out of 3!3 possible profiles, or 37%,
yield one of the outer outcomes. Moreover, only a minority of these profiles are
Condorcet-like and lead to actual incentives to deviate from the path. They are
also less likely to occur in reality than profiles with more similar preferences leading

1This special case of a tree-like game form is actually equivalent to a linear sequential rule
outlined in [List (2004)].

2Technically speaking, the winning coalitions are assigned to the child nodes of a decision node;
for the details see subsection 4.1.

3To see that deviation from “inside the box” to “out of the box” is possible, consider the profile
x ≻ z ≻ y, y ≻ z ≻ x, z ≻ x ≻ y, which yields z ≻ x ≻ y. The first voter has an incentive to
change to x ≻ y ≻ z yielding his new preference, bringing her first choice to the front. Substituting
z → x, x → y, y → z provides an example of a deviation from “outside” to “inside”.
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to non-manipulated outcomes. In the majority of cases, the rule will not yield
manipulated outcomes.

To keep the paper conchise, we assume the reader to be familiar with the con-
cept of judgement aggregation as outlined in the very readable survey by List and
Polak [List and Polak (2010)]. In the sprit of List and Polak we treat Arrovian
social choice as a special case of judgement aggregation. We follow the logic-based
approach to agendas, develop a general notion of consistent sets, and later link
this to other approaches like property spaces to keep compatibility with this other
major framework of generalised Arrovian choice. However, in our setting we allow
agendas to be countably infinite.

2. Settings

2.1. Judgement Spaces. An agenda X is a finite or countable collection of pairs
of propositions {pi,¬pi}i∈I , where each proposition is paired with its negation form-
ing an issue. The propositions are logically constrained by the axioms of the domain,
such as transitivity and antisymmetry in the case of Arrovian social choice. We con-
sider the underlying logic to be classical and identify ¬¬p with p. Propositions are
meant to be understood in the most general sense. They can stem from an underly-
ing language, as in the model-theoretical approach [Herzberger and Eckert (2012)].
Propositions can also be seen as elementary properties, when they form a property
space, which geometrical properties have been extensively studied by Nehring and
Puppe [Nehring and Puppe (2007)]. A subagenda Y ⊆ X is a subset of the agenda
closed under negation (p ∈ Y ⇒ (¬p) ∈ Y ). For any B ⊆ X let ag (B) denote the
smallest subagenda containing B. It is important to note that subagendas form a
complete set algebra.

We introduce two equivalent concepts to account for the constraints among the
propositions. The first is the notion of a consistent subset of the agenda. We
say that the set of all consistent subsets J ⊆ 2X forms a judgement space. Our
domain are profiles J ∈ J̄N from the subset J̄ ⊆ J of complete and consistent
outcomes. The second approach is that of an admissible conditional, a relation |=⊆
2X ×X between a subset of the agenda and a proposition. This logical framework
is popular within the literature, while the our own first approach is more suitable
for the pupose of this paper, which relies on subspace formation on subagendas.
We axiomatise both concepts and find them co-definable.

Definition 1. A judgement space 〈X,J 〉 is an agenda X together with a set of
consistent subsets J ⊆ 2X satisfying

Non-Tautology: For all p ∈ X, {p} ∈ J .
Monotonicity: For B ∈ J and C ⊆ B, C ∈ J .
Weak Consistency: For B ∈ J , p ∈ B implies ¬p /∈ B.
Dilemma: Whenever B ∈ J , either B ∪ {p} ∈ J or B ∪ {¬p} ∈ J .
Compactness: If B ⊆ X and B /∈ J , then there is a finite subset C ⊆ B

with C /∈ J .

Non-tautology means that no proposition or its negation should be self-contradictory.
Monotonicity expresses that each subset of a consistent set is consistent. Weak con-
sistency prohibits a consistent set to both contain a proposition and its negation.
Each consistent set must either be consistent with p or with ¬p or both. Inconsis-
tencies always occur on finite subsets.
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The following definition introduces the conditional compatible with the judge-
ment space. The axioms are satisfied in classical logic.

Definition 2. An admissible conditional on an agenda X is a relation |=⊆ 2X ×X
satisfying

Reflexivity: {p} |= p and {p} 2 ¬p.
Monotonicity: B |= p and B ⊆ C implies C |= p.
Weak Consistency: B |= p and B |= ¬p implies B |= q.
Dilemma: If B ∪ {p} |= q and B ∪ {¬p} |= q then B |= q.
Compactness: If B |= p then there is a finite C ⊆ B with C |= p.

Translation between these concepts is easily achieved via the following result. We
can say that each judgement space has a unique associated admissible conditional,
and each admissible conditional generates a judgement space.

Proposition 3. Let 〈X,J 〉 be a judgement space, then by

B |=J p ⇔ B ∪ {¬p} /∈ J
an admissible conditional is defined. Conversely, let |= be an admissible conditional,
then by

J|= = {B ⊆ X | ∃q ∈ X : B 2 q}
a judgement space

〈

X,J|=

〉

is defined. We find that J|=J
= J and |=J|=

reproduces

|=.

This proposition assures that each judgement space has a unique associated
admissible conditional. This allows us to drop the index whenever no ambiguity
can arise.

Definition 4. A set B ⊆ X is complete if and only if for each issue {p,¬p} ⊆ X
either p ∈ X or ¬p ∈ X. For a given judgement space 〈X,J 〉 we denote by J̄ ⊆ J
the complete consistent sets. A consistent set B ∈ J is almost complete if and only
if there is a unique complete consistent set C ∈ J̄ with B ⊆ C. We denote by J̃
the almost complete sets.

One finds the Lindenbaum extension lemma as an immediate consequence of the
Dilemma and Compactness axioms.

Lemma 5. (Extension) Each consistent set B ∈ J has a completion B̄ ∈ J̄ with
B ⊆ B̄.

2.2. Property Spaces. The following subsection demonstrates the compatibility
of judgement spaces with the concept of property spaces as introduced by Nehring
and Puppe. It can be skipped by those readers not familiar with the corresponding
literature. Property spaces and Judgement spaces are equivalent in the finite case
and can be made equivalent by adding a compactness axiom to the former.

Definition 6. A (compact) property space 〈Y,H〉 with H ⊆ 2Y satisfies

Non-Triviality: ∅ /∈ H.
Negation: If H ∈ H, then Y \H ∈ H.
Separation: For all x, y ∈ Y with x 6= y there is a H ∈ H with x ∈ H and

y /∈ H.
Compactness: If F ⊆ H with

⋂F = ∅ then there is a finite G ⊆ F with
⋂G = ∅.
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Proposition 7. For a given property space 〈Y,H〉 a corresponding judgement space
〈H,JH〉 can be defined with agenda H and

JH =
{

F ⊆ H |
⋂

F 6= ∅
}

.

There is a bijection which maps each x ∈ Y to a Fx ∈ J̄H such that
⋂Fx = {x}.

2.3. Subspaces. Let A ∈ J be a potential outcome of a sequence of decisions. We
want to develop a notion of conditioning the judgement space 〈X,J 〉 on A. As in
probability theory, this is not possible for all sets. Even subagendas Y ⊆ X might
not induce a judgement space, since some elementary propositions in Y could be
constrained causing the Non-Tautology axiom to fail. To keep Non-Tautology, we
impose the following restrictions.

Definition 8. We say that A ⊆ X is free if and only if for any issue {p,¬p} ⊆
X \ ag (A) we find A ∪ {p} , A ∪ {¬p} ∈ J . We denote by Ĵ the collection of free
sets.

We can extend any consistent set to a free set, and there is a smallest among
them.

Lemma 9. For any consistent set A ∈ J there is a smallest free set Â ∈ Ĵ with
A ⊆ Â. It is given by the deductive closure relative to the agenda

Â = cl (A) := {p ∈ X | A �J p} .

Together with the preceeding lemma, the following proposition guarantees the
existence of a largest conditional judgement space for the smallest free set Â con-
taining A ∈ J .

Proposition 10. For a free set A ∈ Ĵ and a subagenda Y ⊆ X with A ∩ Y = ∅,
a conditional judgement space 〈Y,JA〉 is defined by

JA = {B \A ⊆ Y | B ∈ J and A ⊆ B}
The associated conditional is given by

B |=A p ⇔ A ∪B |= p.

Example 1 continued. (from introduction). Consider the subagenda Y = {y ≻ z, z ≻ y}.
There are four possible consistent sets Ai, i = 1, 2, 3, 4, which could yield Y as their
conditional judgement space by proposition 10,XAi

= Y , namely

A1 = {x ≻ y, x ≻ z} ,
A2 = {x ≻ y, z ≻ x} ,
A3 = {y ≻ x, x ≻ z} ,
A4 = {y ≻ x, z ≻ x} .

Not all are suitable. A2 is z ≻ x ≻ y, which implies z ≻ y, which settles agenda
Y . Likewise, A3 is y ≻ x ≻ z, which implies y ≻ z, leaving no choice in Y . Both
A2 and A3 are not free, and their closure is complete, so they can not induce a
non-empty conditional subspace. However, A1 and A4 are compatible with both
y ≻ z and z ≻ y and theirefore free, and yield Y as a conditional subspace.
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3. Independence

3.1. Conditional Independence.

Definition 11. Let 〈X,J 〉 be a judgement space. A (judgement) aggregation
function F : J̄N → J̄ maps profiles of complete and consistent sets to a complete
and consistent set. It is totally unanimous if and only if for each profile J ∈ J̄N

with Ji = J for all i, we have F (J) = J .

Total unanimity is a very weak Pareto principle: Only if everyone agrees on
everything, then the uniform common opinion is the social outcome. The analo-
gon to the Arrovian Pareto principle, Propositionwise Unanimity, has been chal-
langed alongside propositionwise independence in sequential judgement aggregation
[Dietrich (2014), Ch 5]. Indeed, neither principle can hold for proposition p in the
following example.

Example 2. Consider an agenda spanned by the four propositions p, q, r, s with
condition q ∧ r ∧ s → ¬p. The example could represent a parlamentary decision on
three different and unrelated public goods q, r, s and a budget constraint p which
allows the realization of only two of these goods. Consider an aggregation function
defined by propositionwise majority on q, r, and s independently in an arbitrary
order, followed by a conditional majority decision on p whenever consistent with the
previous outcome. The profile {p,¬q, r, s}, {p, q,¬r, s}, {p, q, r,¬s} yields q, r, s by
majority decisions, and ¬p by the condition, although p is common opinion. Thus
both unanimity and independence for p lead to a contradiction.

The central idea behind our representation theorem is the concept of conditional
independence extended to subagendas containing more than one issue and relative
to some previous decisions.

Definition 12. An aggregation function F : J̄N → J̄ is called Y -independent
given A for a subagenda Y ⊆ X and A ∈ J if and only if for all profiles J, J ′ ∈ J̄N

with A ⊆ F (J) ∩ F
(

J ′
)

and Ji ∩ Y = J ′
i ∩ Y for all i ∈ N , then

F (J) ∩ Y = F (J ′) ∩ Y.

If A = ∅ we simply speak of Y -independence. The aggregation function satisfies
Propositionwise Independence if and only if it is Y -independent for any issue Y =
{p,¬p} ⊆ X.

Conditional independence has some notable properties. Case (i) allows for the
strengthenings of conditions. Case (ii) shows that issue-wise independence implies
independence for all other sets. Case (iii) allows the subagenda to stretch over the
agenda of the condition.

Lemma 13. Let F : J̄N → J̄ be an aggregation function on 〈X,J 〉 and Y a
subagenda.

(i) If F is Y -independent given A and A ⊆ A′, then F is Y -independent given
A′.

(ii) If F is Yi-independent given A for all i ∈ I, then F is
⋃

i∈I Yi-independent
given A.

(iii) If F is Y -independent given A and Y ′ is a subagenda of X with

Y ⊆ Y ′ ⊆ Y ∪ ag (cl (A)) ,

then F is Y ’-independent given A.
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Example 1 continued. (from subsection 2.3). All paths whose outcome contains
A1 goes through the leftmost node, which decides issue Y = {y ≻ z, z ≻ y}. Thus
F is Y1-independent given A1. Similarly, all paths with oucome containing A4 go
through the rightmost node, likewise deciding issue Y , rendering F Y -independent
given A4.

Proposition 14. Let F : J̄N → J̄ be an aggregation function on 〈X,J 〉. Let

A ∈ Ĵ be a free set, Y a subagenda with A ∩ Y = ∅, and F being Y -independent
given A. Let 〈Y,JA〉 be the conditional subspace. For all profiles JA ∈ J̄N

A and
J ∈ J̄N with A ⊆ F (J), and JA

i = Ji ∩ Y by

FA

(

JA
)

= F (J) ∩ Y,

an aggregation function on the conditional subspace is defined.

3.2. Perfect Independence. The idea behind the concept of perfect indepen-
dence is that of a general sequential aggregation rule. Assume that several deci-
sions have already been made, and the outcome is A. Without loss of generality,
we assume that all derivable propositions of the agenda are already included in A.
In other words, A is free. To make the next step in the decision, we require that
there is at least one issue disjoint from A, for which F is independent given the
current state of affairs A. This implies that at the beginning, we require uncon-
ditional independence only for one issue. All other requirements for independence
are conditional on previous outcomes. This is a very weak requirement compared
to full Propositionwise Independence.

Definition 15. An aggregation function F : J̄N → J̄ satisfies Perfect Indepen-
dence if and only if for every free set A which is not complete there an issue
Y = {p,¬p}, Y ∩ ag (A) = ∅, such that F is Y -independent given A.

Example 1 continued. (from subsection 3.1). We demonstrate Perfect Indepen-
dence for the Condorcet example. The non-complete free sets of the Condorcet
example are ∅, the single propositions of the agenda, the sets A1 and A4 defined
above, and the sets

A5 = {x ≻ y, z ≻ y} ,
A6 = {y ≻ x, y ≻ z} .

The uppermost node proves {x ≻ y, y ≻ x}-independence of F , which also holds
given any proposition from the agenda (lemma 13 (i)). This settles the case for the
empty set and for any single proposition except x ≻ y and y ≻ x. The leftmost
and rightmost node both decide issue Y = {y ≻ z, z ≻ y}, which shows that F is
Y -independence given {x ≻ y} and given {y ≻ x}. Sets A1 and A4 are extensions of
these two set and disjoint from Y , thus by lemma 13, F is also Y -independent given
A1 and given A4. The sets A5 and A6 both lead to the lowermost nodes, which
determines the issue Y ′ = {x ≻ z, z ≻ x} disjoint from both sets. It follows that
F is Y ′-independent given A5 and given A6. Since all other free sets are complete,
we have shown that F is perfectly independent.

Perfect Independence is a much weaker condition than Propositionwise Indepen-
dence. Indeed, lemma 13 (i) immedeately implies

Fact 16. Propositionwise Independence implies Perfect Independence.
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4. Judgement Aggregation Game Forms

4.1. Game Forms. There are two possible ways to link decision nodes over an
issue {p,¬p} to a set of winning coalitions. We could either single out one of the
propositions and attaching the winning coalitions only for that proposition to the
decision node, then label the child nodes as “accept” or “reject”, but this would
destroy the symmetry of the construction and add an unecessary bias. A different
path has been layed out by Nehring and Puppe, which assign winning coalitions to
a proposition and its nogation and constrain them through (4.1) to obtain a well-
defined decision outcome [Nehring and Puppe (2007)]. Following this approach,
we assign winning coalitions to the child nodes of a decision node. This has to be
respected when defining information sets, which include parent nodes, but constrain
their child nodes.

Definition 17. An extensive game form G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

for an agenda
X consists of

(i) a finite or countable set of players N ,
(ii) a finite or countable binary tree T with root r ∈ T such that every non-

terminal node has exactly two child nodes,
(iii) a surjective mapping ϕ : T \ {r} → X assigning a proposition to each non-

root node such if x and y are the two child nodes of a common parent node, they
are mapped to complementary propositions (ϕ (x) = ¬ϕ (y)),

(iv) a collection of winning coalitions {Wx}x∈T assigning a set Wx ⊆ 2N to every

node x ∈ T (with the dummy Wr = 2N ) such that whenever x and y are the two
child nodes of a common parent node,

(4.1) W ∈ Wx ⇔ N \W /∈ Wy,

(v) an “information set” partition I of T with {r} ∈ I such that for all w, z ∈
I ∈ I and all child nodes x of w there is a child node y of z with ϕ (x) = ϕ (y) and
Wx = Wy.

Some more notation. The game form is monotonic if and only if each set of
winning coalitions is closed under supersets. It is called weakly neutral iff for all
nodes x, y ∈ T \ {r}, ϕ (x) = ϕ (y) implies Wx = Wy.

A set P ⊆ T is called a path if with any node it contains each of its predecessors
and for any two nodes x, y ∈ P either x is a predecessor of y or y is a predecessor
of x (or x = y). A maximal path is maximal with respect to set inclusion. If the
path has a terminal node x, then it is unique and denoted P (x). We define the
outcome of a path by

ϕ [P ] = {ϕ (x) | x ∈ P} .
We call a path P complete if and only if its outcome is complete, ϕ [P ] ∈ J̄ . Simi-
larly, P is almost complete if and only if the outcome is almost complete, cl (ϕ [P ]) ∈
J̄ . Clearly, an almost complete path is necessarily maximal, but the converse does
not hold. We say that an extensive game form G =

〈

N,T, ϕ, {Wx}x∈T , I
〉

for an
agenda X is adapted to the judgement space 〈X,J 〉 if and only if each maximal path
is almost complete. The following proposition states that adaption only depends
on the tree and not on the winning coalitions attached to the tree.

Proposition 18. Assume the game form G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

is adapted
to the judgement space 〈X,J 〉, and {W ′

x}x∈T is another set of winning coalitions
for the same tree T satisfying (4.1). Then there is a class of information sets I ′
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such that by G′ =
〈

N,T, ϕ, {W ′
x}x∈T , I ′

〉

another game form is defined, which is
adapted to 〈X,J 〉.

Given an extensive game form, for each profile J ∈ J̄N a solution path P (J) is
recursively defined as follows: r ∈ P (J), and for any z ∈ P (J) and child node x of
z we have

(4.2) x ∈ P (J) ⇔ {i ∈ N | ϕ (x) ∈ Ji} ∈ Wx.

Equation (4.1) and the completeness of each Ji guarantee that for every node
exactly one child node is contained in the solution path. Thus each solution path
is maximal. We have just shown the first assertion of the following

Proposition 19. If the game form G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

is adapted to the
judgement space 〈X,J 〉, then by

FG (J) := cl (ϕ [P (J)])

an aggregation function FG : J̄N → J̄ is defined, which is totally unanimous
whenever N ∈ Wx for all x ∈ T . For each non-terminal node x ∈ T there is an
issue Y = {p,¬p} such that the two child nodes have p and ¬p assigned to them.
and FG is Y -independent given ϕ [P (x)] (and thus given cl (ϕ [P (x)])).

4.2. Representation Theorem. The following theorem guarantees the existence
of at least one game form representation. For the case of infinite agendas we intro-
duce a weak technical condition, which is void in the finite case since aggregation
functions are trivially X-independent on their agenda X (given ∅).
Definition 20. An aggregation function on a judgement space 〈X,J 〉 is piecewise
independent if and only if every finite subagenda Y ⊆ X is contained in a finite
subagenda X ′ ⊆ X such that the aggreagtion function is X ′-independent.

Theorem 21. A totally unanimous piecewise independent aggregation function
F : J̄N → J̄ on a judgement space 〈X,J 〉 satisfies Perfect Independence if and
only if there is an extensive game form G =

〈

N,T, ϕ, {Wx}x∈T , I
〉

for X adapted
to 〈X,J 〉 such that

F (J) = FG (J)

for all profiles J ∈ J̄N .

As it can be easily seen, the game form representation is not unique. In example
1 we could have chosen to decide the issue {y ≻ z, z ≻ y} at the root node, followed
by the issue {x ≻ y, y ≻ x} on both of its child nodes. The topology of the tree
remains the same, and the profiles are matched to maximal paths withe the same
outcomes. Therefore, independence must hold for both issues, no matter in which
sequence they are. Conditions for unique representations would be harsh. For
example, one could have unconditional independence exactly for one issue. Unique-
ness of a game form reporesentation would be an undesired feature, since we are
trying to maximise independence without falling into the trap of dictatorship. Good
aggregation functions have multiple game form representations.

As a corollary from this theorem and proposition 18 we obtain the following pos-
sibility theorem. It guarantees the existence of a large class of perfectly independent
aggregation functions on a given judgement space, if only one such function exists.
These function can have arbitrary combinations of winning coalitions as long as
condition (4.1) is satisfied. In particular, for each dictatorial aggregation function,
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since it is perfectly independent and totally unanimous, there are myriads of al-
ternative aggregation functions on the same judgement spaces for each of its tree
representation, among them fair sequential rules performing simple majority deci-
sions at each non-terminal node in the tree. The interesting lesson to learn is that
once decisions have been institutionalised in a consistent sequential form, dictator-
ship can be removed and replaced by democracy without altering the sequence of
decisions.

Corollary 22. If F is a totally unanimous aggregation function on a judgement
space satifying Perfect Independence, then for each winning coalition {W ′

x}x∈T at-
tached to the tree of its game form representation satisfying (4.1) there is a parti-
tion of the tree into information sets such that the game form with the new winning
coalitions and information sets define another aggregation function F ′ on the same
judgement space, which satisfies Total Unanimity and Perfect Independence.

4.3. Strategy-Proofness. The formal theory on strategy-proofness for judgement
aggregation rule has been developed in [Dietrich and List (2007a)]. Since we are
lacking preference orders in the judgement aggregation setting, the first problem
was to find a concept which could serve as a substitute for the equilibrium condition
in the case of Arrovian aggregation. For a profile J ∈ J̄N and a set J ′

i ∈ J̄ we write
J−iJ

′
i for the profile which coincides with Jj for all j 6= i and with J ′

i for j = i.
We say that an aggregation function is non-manipulable on an issue Y = {p,¬p} if
and only if for each profile J ∈ J̄N , i ∈ N , and each set J ′

i ∈ J̄ ,

Ji ∩ Y = F
(

J−iJ
′
i

)

∩ Y ⇒ Ji ∩ Y = F (J) ∩ Y.

In other words, whenever a person i agrees with the social outcome on an issue,
then the social outcome should still agree when he submits his “truthful” opinions.

The relation to strategy-proofness is the following. For J, J1, J2 ∈ J̄ we say that
J1 is closer to J than J2 if and only if J1 and J have as least a much in common
than J2 and J . Symbolically,

J1 DJ J2 ⇔ J ∩ J2 ⊆ J1.

Non-manipulability on all issues is equivalent to

F (J) DJi
F
(

J−iJ
′
i

)

.

for all profiles J ∈ J̄N and a sets J ′
i ∈ J̄ . For any preference order on J̄ with an

optimal choice J which includes DJ , the classical equilibrium condition for strategy
proofness is equivalent to the latter (loc cit. Th 4).

It turns out (loc. cit. Th 1) that non-manipulability of a judgement aggregation
function is equivalent to Propositionwise Independence and Monotonicity of the
winning coalitions. Under the same conditions as in the case of the generalised
Arrow’s theorem, impossibility results can be shown (loc cit. Th 2,3). Therefore,
non-manipulability or strategy-proofness is not to be expected to hold in general for
sequential aggregation rules (see also [Dietrich and List (2007b), Ch 5]). However,
we obtain the following weaker result.

Theorem 23. Let FG be the judgement aggregation form induced by a monotonic
and weakly neutral game form G adapted to the judgement space 〈X,J 〉. Let J ∈
J̄N be some profile, i ∈ N and J ′

i ∈ J̄ . If the solution paths P (J) and P
(

J−iJ
′
i

)

are complete, then
FG (J) DJi

FG

(

J−iJ
′
i

)

.
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The theorem demonstrates theat opportunities for strategic manipulations are
mainly determined by the form of the tree. The winning coalitions can only influ-
ence the probability with which a certain solution path is taken. In the extreme
case, a certain path or even all but one paths can be made unreachable by assigning
an empty set of winning coalitions to one of its nodes. However, playing a complete
path guarantees the absense of incentives to deviate from the results independently
of the winning coalitions.

5. Conclusions

We have axiomatically characterised a class of sequential aggregation rules,
thereby generalising the linear rules of [List (2004)] to tree-form rules. They are
partially overlapping with the class defined by [Dietrich (2014)], however in the lat-
ter approach there is only one set of winning coalitions for each proposition, while
in our settings winning coalitions depend on nodes and can differ among different
paths. Tree-form rules have the practical advantage over other sequential rules that
talleying the ballots is done directly at every node, without the necessity to check
whether a certain issue is already decided by logically following from previous deci-
sions. These checks are built into the tree structure. Running such a rule one just
has to follow the tree.

The concluding remarks of List and Polak’s survey call for two remaining chal-
lenges, one of it “characterizations of compelling non-independent aggregation rules”
[List and Polak (2010), Ch 6]. We hope that this paper is a further step in this di-
rection. We think that the tree-representable aggregation rules explored here are
interesting, because they demonstrate the difference between two types of indepen-
dence conditions. The first type are those which adapt to the logical structure of
the agenda and lead to representations by sequential decisions. They are compati-
ble with an almost unlimited choice of local decisions on independent issues in the
form of winning coalitions. The second type does not respect logical constraints
and “cuts into the flesh” by constraining the winning coalitions, in the worst case
up to Arrovian dictatorship.

In sections 2.2 and 2.3 we have developed a richer framework than our main
representation theorem requires. We have done this in the intention to provide an
analytical framework for further research. Section 2.2 allows for an easy translation
between the two major frameworks of judgement aggregation, the logical approach
and the geometrical convexity approach by Nehring and Puppe. Section 2.3 might
be useful to explore impossibility theorems on subspaces of the aggregation function.

Appendix: Proofs

Proof. (Proposition 3) Let 〈X,J 〉 be a judgement space and define

B |=J p ⇔ B ∪ {¬p} /∈ J .

Reflexivity: Weak Consistency assures that {p,¬p} /∈ J , thus {p} |=J p. By Non-
Tautology, {p} ∈ J . If {p} |=J ¬p, then {p} ∪ {¬¬p} = {p} /∈ J , a contradiction.

Monotonicity: Let B ⊆ C and assume that C 2J p. Then C ∪ {¬p} ∈ J , and
by Monotonicity of consistent sets also B ∪ {¬p} ∈ J , or B 2J p.

Weak Consistency: Assume that B |=J p and B |=J ¬p. Then both B ∪ {¬p}
and B ∪ {p} are not in J , and by the Dilemma axiom of consistent sets, also B is
not in J . By Monotonicity, B ∪ {¬q} /∈ J , thus B |=J q.
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Dilemma: Assume B ∪ {p} |=J q and B ∪ {¬p} |=J q, thus B ∪ {p} ∪ {¬q} , B ∪
{¬p} ∪ {¬q} /∈ J . By the Dilemma axiom for consistent sets, B ∪ {¬q} /∈ J . We
obtain B |=J q.

Compactness: Assume B |=J p, or B∪{¬p} /∈ J . By Compactness for consistent
sets there is a finite set C ⊆ B∪{¬p} with C /∈ J . By Monotonicty, C∪{¬p} /∈ J ,
thus C |=J p.

Conversely, let |= be an admissible conditional on the agenda X, and define

J|= = {B ⊆ X | ∃q ∈ X : B 2 q} .

Non-Tautology: From Reflexivity we obtain {p} 2 ¬p, thus {p} ∈ J|=.
Monotonicity: Assume B ∈ J|=, or B 2 q for some q ∈ X. For C ⊆ B,

Monotonicity of consistent sets requires C 2 q. Therefore C ∈ J|=.
Weak Consistency: Assume B ∈ J|= and p ∈ B. Reflexivity and Monotonicity

ensures B |= p, and Weak Consistency for conditionals entails B 2 ¬p, for which
the same argument as before leads to ¬p /∈ B.

Dilemma: Assume both B∪{¬p} and B∪{p} are not in J|=. Then for all q ∈ X,
B ∪ {¬p} |= q and B ∪ {p} |= q . With the Dilemma axiom for conditionals we
arrive at B |= q for an arbitrary q ∈ X. Therefore, B /∈ J|=.

Compactness: Assume B /∈ J|=, or B |= q for all q ∈ X. In particular, B |= p
and B |= ¬p for a given p. By Compactness of the conditional there are finite sets
Cp ⊆ B and C¬p ⊆ B with Cp |= p and C¬p |= ¬p. Putting C = Cp ∪ C¬p ⊆ B,
Monotonicity yields C |= p and C |= ¬p, from which by Weak Consistency we
obtain B |= q for all q ∈ X. We have found a finite set C ⊆ B with C /∈ J|=.

To show that J|=J
= J , consider that B ∈ J|=J

if and only if B 2J q for some
q ∈ X, or B ∪ {¬q} ∈ J . First assume B ∈ J|=J

, or B ∪ {¬q} ∈ J . Monotonicity
implies B ∈ J , which gives us the “⊆” direction. For the converse direction, assume
B ∈ J . If B = ∅, then by reflexivity B ∪ {¬q} ∈ J , and B ∈ J|=J

. Otherwise,
there is some q ∈ B, and B 2J ¬q by Weak Consistency, which in turn implies
B ∈ J|=J

. To show that |=J|=
coincides with |=, consider that B |=J|=

p if and only

if B∪{¬p} /∈ J|=, which holds if and only if B∪{¬p} |= q for all q ∈ X. Assume first
B |=J|=

p, then in particular B ∪ {¬p} |= p. By Reflexivity and Monotonicity we

find also B∪{p} |= p, which by the Dilemma rule leads to B |= p. Now assume that
B |= p, then by Monotonicity B ∪{¬p} |= p. But we also find that B ∪{¬p} |= ¬p.
With Weak Consistency we arrive at B ∪ {¬p} |= q for all q ∈ X, or B |=J|=

p. �

One more logical lemma for technical purposes.

Lemma 24. If B ∪ C |= p and B |= q for all q ∈ C, then B |= p.

Proof. Assume B ∪ C |= p and B |= q for all q ∈ C. By the Compactness axiom,
C can be assumed finite without loss of generalisation. Choose q ∈ C and set
C ′ = C \ {q}. Then B ∪ C ′ ∪ {q} ∪ {¬p} /∈ J , and B ∪ C ′ ∪ {¬q} /∈ J , thus
by Monotonicity also B ∪ C ′ ∪ {¬q} ∪ {¬p} /∈ J . The Dilemma axiom yields
B ∪ C ′ ∪ {¬p} /∈ J , or B ∪ C ′ |= p. Repeating the last step for C ′ in place of C
will after finitely many steps yield B |= p, what has to be shown. �

The extension lemma is standard.
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Proof. (Extension lemma 5) Let A ∈ J and {pi,¬pi}i∈K the collection of all issues
disjoint from A. Set A0 = A. define

Ai+1 =

{

Ai ∪ {pi} , if Ai ∪ {pi} ∈ J ,
Ai ∪ {¬pi, } else.

By the Dilemma axiom, either Ai∪{pi} ∈ J or Ai∪{¬pi, } ∈ J , therefore Ai+1 ∈ J
whenever Ai ∈ J . By compactness, also Ā =

⋃

i∈K Ai ∈ J . We conclude that Ā
is both consistent and complete. �

We now show that property spaces can transformed into judgement spaces.

Proof. (Proposition 7) Let 〈Y,H〉 be a property space. We define a corresponding
judgement space 〈H,JH〉 with agenda H and

JH =
{

F ⊆ H |
⋂

F 6= ∅
}

.

Non-Tautology: For H ∈ H trivially
⋂ {H} = H 6= ∅, thus {H} ∈ JH.

Monotoniccity: Let B ∈ JH and C ⊆ B. Since
⋂ C ⊇ ⋂B 6= ∅, C ∈ JH.

Weak Consistency: Let B ∈ JH and H ∈ B, if Y \ H ∈ B, then
⋂B = ∅, a

contradiction to B ∈ JH. Therefore Y \H /∈ B.
Dilemma: Let B ∈ JH and H ∈ H. Assume B ∪ {H} /∈ JH, then

⋂B ∩H = ∅
and further ∅ 6= ⋂B ⊆ Y \H, and thus B ∪ {Y \H} ∈ JH.

Compactness: Assume B ⊆ H and B /∈ JH, or
⋂B = ∅. There is a finite C ⊆ B

with
⋂ C = ∅, or C /∈ JH

It remains to be shown that there is a bijection which maps each x ∈ Y to a
Fx ∈ J̄H such that

⋂Fx = {x}. For x ∈ Y denote

Fx = {H ∈ H | x ∈ H} .
Since x ∈ ⋂Fx, Fx ∈ JH. We have to show that Fx is complete. Indeed, for any
issue {H,Y \H} ⊆ H we have either x ∈ H or x ∈ Y \ H, an therefore either
H ∈ Fx or Y \H ∈ Fx. This demonstrates Fx ∈ J̄H. Furthermore,

⋂Fx = {x}:
By the Separation axiom, for any y ∈ Y , x 6= y there is a H ∈ H with x ∈ H and
y /∈ H. Thus y /∈ Fx for all y 6= x, or

⋂Fx = {x}.
We have to show that the mapping Y → J̄H, x 7→ Fx is bijective. From Fx = Fy

we conclude {x} =
⋂Fx =

⋂Fy = {y}, or x = y. This gets us injectivity. For
surjectivity, assume F ∈ J̄H, or

⋂F 6= ∅. Let x ∈ ⋂F and y ∈ Y \ {x}. Then we
have to prove F = Fx. For H ∈ F clearly x ∈ H. Conversely, if x ∈ H ∈ H, then,
since F is complete, we must have either H ∈ F or Y \H ∈ F . Since x ∈ ⋂F we
can not have Y \H ∈ F , therefore H ∈ F . This completes the proof of F = Fx. �

We now show the existence of a smallest free set containing a given consistent
set.

Proof. (Lemma 9) Let A ∈ J and define

Â = cl (A) := {p ∈ X | A � p} .

We show that Â is free. Let {p,¬p} ⊆ X \ag
(

Â
)

an issue disjoint from Â. If either

Â ∪ {p} /∈ J or Â ∪ {¬p} /∈ J , then Â |= ¬p or Â |= p, respectively. By lemma 24

this implies A |= ¬p or A |= p, respectively, a contradiction to {p,¬p} ∩ Â = ∅.
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It remains to show that Â is the smallest free set containing A. Let A ⊆ B  Â,
so there is a p ∈ Â \ B. Since A |= p and therefore, by Monotonicty, also B |= p,
we find B ∪ {¬p} /∈ J . Thus by definition, B is not a free set. �

The next step is to show that free sets induce well-defined conditional judgement
spaces.

Proof. (Proposition 10) Assume A ∈ Ĵ is free and Y is a subagenda with Y ∩A = ∅.
We have to show that by

JA = {B \A ⊆ Y | B ∈ J and A ⊆ B}
a conditional judgement space 〈Y,JA〉 is defined.

Non-Tautology: For p ∈ Y we have by aasumption A∪{p} ∈ J and p /∈ A, thus
{p} ∈ JA.

Monotonicity: Let B ∈ JA and C ⊆ B. Then B ⊆ Y , A∪B ∈ J and A∩B = ∅.
By Monotonicity, A ∪ C ∈ J . Since C ∩A = ∅ and C ⊆ Y , C ∈ JA.

Weak Consistency: Let B ∈ JA and p ∈ B. Thus p ∈ A ∪ B ∈ J . By Weak
Consistency, ¬p /∈ A ∪B, thus ¬p /∈ B.

Dilemma: Let B ∈ JA and {p,¬p} ⊆ Y . Then A ∪ B ∈ J , B ⊆ Y , and by the
Dilemma axiom, either A ∪ B ∪ {p} ∈ J or A ∪ B ∪ {¬p} ∈ J . Since A ∩ B = ∅
and {p,¬p} ⊆ Y , either B ∪ {p} ∈ JA or B ∪ {¬p} ∈ JA.

Compactness. Let B ⊆ Y and B /∈ JA . Then A∪B /∈ J , and, by Compactness
there is a finite ser C ⊆ A∪B with C /∈ J . It follows that C \A ⊆ Y is a finite set
contained in B with C \A /∈ JA.

For the second assertion it is sufficient to show that

B |=A p ⇔ B |=JA
p

with B |=A p ⇔ A∪B |= p. Then by proposition 3, |=A is the associated conditional
to the subagenda.

Assume B ⊆ Y and B |=A p with p ∈ Y . Then A∪B |= p, or A∪B ∪{¬p} /∈ J
. Since B ∩ A = ∅ and ¬p /∈ A we find (A ∪B ∪ {¬p}) \ A = B ∪ {¬p}. In other
words, there can not be a set J ∈ J with J \ A = B ∪ {¬p} ⊆ Y and A ⊆ J .
Consequently B ∪ {¬p} /∈ JA, or B |=JA

p.
Conversely, assume B |=JA

p, or Y ⊇ B ∪ {¬p} /∈ JA. Then for all J ⊆ X with
A ⊆ J and J \ A = B ∪ {¬p} ⊆ Y , J /∈ J . In particular, A ∪ B ∪ {¬p} /∈ J , and
thus A ∪B |= p, or B |=A p �

The following lemma on conditional independence is neededl for the impossiblity
theorem as well as the representation theorem.

Proof. (Lemma 13) (i) Let F be an aggregation function which is Y -independent
given A and A ⊆ A′. Let J, J ′ ∈ J̄N with A′ ⊆ F (J)∩F

(

J ′
)

and Ji∩Y = J ′
i∩Y for

all i ∈ N . Then also A ⊆ F (J)∩F
(

J ′
)

, and by assumption, F (J)∩Y = F (J ′)∩Y ,
what had to be shown.

(ii) Let F be Yi-independent given A for all i ∈ I and set Y =
⋃

i∈I Yi. Let

J, J ′ ∈ J̄N with A ⊆ F (J) ∩ F
(

J ′
)

and Jj ∩ Y = J ′
j ∩ Y for all j ∈ N . Then also

Jj ∩Yi = J ′
j ∩Yi for all j ∈ N and i ∈ I, and we obtain F (J)∩Yi = F (J ′)∩Yi for

each i ∈ I, from which F (J) ∩ Y = F (J ′) ∩ Y follows.
(iii) Let F be Y -independent given A and Y ′ a subagenda with

(5.1) Y ⊆ Y ′ ⊆ Y ∪ ag (cl (A)) .
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We have to show that F is Y ′-independent given A. Let J, J ′ ∈ J̄N with A ⊆
F (J)∩ F

(

J ′
)

and Ji ∩ Y ′ = J ′
i ∩ Y ′ for all i ∈ N . Then also Ji ∩ Y = J ′

i ∩ Y , and
by assumption,

F (J) ∩ Y = F
(

J ′
)

∩ Y.

Moreover, since F (J) and F
(

J ′
)

are complete, we also have cl (A) ⊆ F (J)∩F
(

J ′
)

and further

F (J) ∩ ag (cl (A)) = F
(

J ′
)

∩ ag (cl (A)) .

Taken together, the last two equation imply

F (J) ∩ (Y ∪ ag (cl (A))) = F (J ′) ∩ (Y ∪ ag (cl (A))) ,

from which we infer with (5.1) that F (J) ∩ Y ′ = F (J ′) ∩ Y ′, which had to be
shown. �

The following proposition determines conditional aggregation function on condi-
tional subspaces.

Proof. (Proposition 14) Let A ∈ Ĵ be a free set, Y a subagenda with A ∩ Y = ∅,
and F being Y -independent given A. We have to show that on the conditional
judgement space 〈Y,JA〉 by

(5.2) FA

(

JA
)

= F (J) ∩ Y

an aggregation function FA is specified for all profiles JA ∈ J̄N
A and J ∈ J̄N with

A ⊆ F (J), and JA
i = Ji ∩ Y . Indeed, let J, J ′ ∈ J̄N with A ⊆ F (J), A ⊆ F

(

J ′
)

,

JA
i = Ji∩Y and JA

i = J ′
i ∩Y . Then Ji∩Y = J ′

i ∩Y , and by Y -independence given
A, we have F (J)∩Y = F (J ′)∩Y . This shows that FA in (5.2) is well defined. �

First we introduce a short lemma on the monotonicity of path outcomes.

Lemma 25. Let G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

be a game form adapted to 〈X,J 〉,
and P be a path and P ′ a maximal path in it. Then

P ⊆ P ′ ⇔ cl (ϕ [P ]) ⊆ cl (ϕ [P ′]) .

Proof. “⇒”: If P ⊆ P ′, then clearly ϕ [P ] ⊆ ϕ [P ′], and the assertion follows by
monotonicity of deductive closure.

“⇐”: Assume cl (ϕ [P ]) ⊆ cl (ϕ [P ′]). We show inductively that P (x) ⊆ P ′ for
every x ∈ P . This is true for the root node, since every path contains the root node.
Assume that we have already shown that P (y) ⊆ P ′ for some y ∈ P . If y is the
last node in P , then P (y) = P , and we have completed the proof. Otherwise, there
is a child node x of y contained in P . Since ϕ (x) ∈ ϕ [P ], by assumption of the
proof ϕ (x) ∈ cl (ϕ [P ′]). By induction hypothesis, y ∈ P ′. Since P ′ is a maximal
path, at least one of the child nodes of y must lie on P ′. If it is not x, then we
would have ¬ϕ (x) ∈ ϕ [P ′], and by the assumption of the proof, cl (ϕ [P ′]) would
be inconsistent. This contradicts the requirement from adaption to a judgement
space that outcomes of paths are consistent. Therefore, x ∈ P ′. This completes
the inductive proof for P ⊆ P ′. �

We show next that adaption to a judgement space does not depend on the
winning coalitions.
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Proof. (Proposition 18) Let G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

be a game form is adapted
to the judgement space 〈X,J 〉, and {W ′

x}x∈T be a set of winning coalitions for the
same tree T satisfying (4.1). We first define the information set I ′. We say two
nodes x, y ∈ T are equivalent if x has child nodes x1, x2 and y has child nodes y1, y2
with ϕ (xi) = ϕ (yi) and W ′

xi
= W ′

yi
for i = 1, 2. Clearly, this is an equivalence

relation, and the eqivalence classes together with {r} form a partition I ′ of T .
Now let G′ =

〈

N,T, ϕ, {W ′
x}x∈T , I ′

〉

. Obviously, G′ is a game form. We have to
show that the outcome of every maximal path is almost complete. But this follows
directly from the adaption of G to 〈X,J 〉, since the tree remains the same, and so
the oucome of each path. It is therefore clear that G′ is adapted to 〈X,J 〉. �

We now show that every game form adapted to a judgement space defines an
aggregation function, which is Y -independent for each issue associated with the
childnodes of a node, given the node’s history.

Proof. (Proposition 19). Let G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

be a game form adapted
to the judgement space 〈X,J 〉. We first have to show that

FG (J) := cl (ϕ [P (J)])

is an aggregation function. But this follows from the condition that G is adapted
to 〈X,J 〉, which guarantees that all solution paths P (J) are almost complete, and
therefore cl (ϕ [P (J)]) ∈ J̄ .

We show independence at any non-terminal node x ∈ T . By construction there
is an issue Y = {p,¬p} such that the two child nodes xp and x¬p have assigned
p and ¬p to them by ϕ. It is sufficient to show that FG is Y -independent given
ϕ [P (x)], then independence given cl (ϕ [P (x)]) follows from lemma 13 (i). Thus
let A = ϕ [P (x)] and take any profiles J, J ′ ∈ J̄N with Ji ∩ Y = J ′

i ∩ Y and A ⊆
FG (J) ∩ FG

(

J ′
)

. We first show that x ∈ P (J) ∩ P
(

J ′
)

. Since A ⊆ cl (ϕ [P (J)]),
we also have ϕ [P (x)] ⊆ cl (ϕ [P (J)]), and lemma 25 implies x ∈ P (x) ⊆ P (J)
since P (J) is a maximal path. Similarly we find x ∈ P

(

J ′
)

.
For the child nodes we obtain from the construction (4.2)

xp ∈ P (J) ⇔ {i ∈ N | p ∈ Ji} ∈ Wxp
,

x¬p ∈ P (J) ⇔ {i ∈ N | ¬p ∈ Ji} ∈ Wx¬p
.

Analogous equivalences hold for J ′. Thus we obtain from Ji ∩ Y = J ′
i ∩ Y

xp ∈ P (J) ⇔ xp ∈ P
(

J ′
)

,

x¬p ∈ P (J) ⇔ x¬p ∈ P
(

J ′
)

.

This can be expressed by

p ∈ ϕ [P (J)] ⇔ p ∈ ϕ
[

P
(

J ′
)]

,

¬p ∈ ϕ [P (J)] ⇔ ¬p ∈ ϕ
[

P
(

J ′
)]

.

This in turn proves

FG (J) ∩ {p,¬p} = FG

(

J ′
)

∩ {p,¬p} ,
which completes the proof of Y -independence given A.

Further assume that N ∈ Wx for all x ∈ T . We have to show that FG is totally
unanimous. For any complete J ∈ J̄ define a profile J by letting Ji = J for all
i ∈ N . Thus at all non-root nodes x ∈ P (J), we have a winning majority for ϕ (x)
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with ϕ (x) ∈ J . It follows ϕ [P (J)] ⊆ J , and, since ϕ [P (J)] is almost complete,
FG (J) = cl (ϕ [P (J)]) = J . �

We are now in a position to demonstrate the representation theorem.

Proof. (Theorem 21) We first consider the case of a finite agenda X. Assume
F : J̄N → J̄ is a totally unanimous aggregation function on 〈X,J 〉 satisfying
Perfect Independence. We define a game form G =

〈

N,T, ϕ, {Wx}x∈T , I
〉

for X
adapted to 〈X,J 〉 by recursively constructing a binary tree starting with the root
node T = {r}, Wr = 2N , and an empty function ϕ. For each terminal node x ∈ T ,
let P (x) be its path and set Ax = cl (ϕ [P (x)]). If Ax is complete for all terminal
nodes x, the we are finished.

Otherwise there is a terminal node x ∈ T with free set Ax which is not complete.
By Perfect Independence there an issue Y = {p,¬p}, Y ∩ ag (A) = ∅, such that
F is Y -independent given A. We construct new nodes xp and x¬p and add them
to T , and assign the propositions of the issue to them by setting ϕ (xp) = p and
ϕ (x¬p) = ¬p. We define

Wxp
=

{

{i ∈ N | p ∈ Ji} | p ∈ F (J) , J ∈ J̄N
}

,(5.3)

Wx¬p
=

{

{i ∈ N | ¬p ∈ Ji} | ¬p ∈ F (J) , J ∈ J̄N
}

.(5.4)

From N \ {i ∈ N | p ∈ Ji} = {i ∈ N | ¬p ∈ Ji} it immediately follows that

W ∈ Wxp
⇔ N \W /∈ Wx¬p

.

The construction of the tree will not be completed after finitely many steps if
the agenda is infinite. The tree is complete when all paths associated to terminal
nodes are almost complete. Then also every maximal path is almost complete. We
find that the game form is adapted to the judgement space.

We now define the information set I. We say two nodes x, y ∈ T are equivalent
if x has child nodes x1, x2 and y has child nodes y1, y2 with ϕ (xi) = ϕ (yi) and
Wxi

= Wyi
for i = 1, 2. Clearly, this is an equivalence relation, and the eqivalenc

classes together with {r} form a partition of T .
It remains to show that F (J) = FG (J). We show that the two sets F (J) and

FG (J) agree on all issues. For issues {p,¬p} which are decided on a node lying on
the solution path P (J), this follows from (4.2), (5.3), and (5.4). The outcome of
these decisions are ϕ [P (J)] ⊆ F (J) ∩ FG (J). But since P (J) is almost complete,
F (J) and FG (J) must coincide.

Conversely, assume there is a game form G =
〈

N,T, ϕ, {Wx}x∈T , I
〉

for X
adapted to 〈X,J 〉 with the associated aggregation function FG , and assume that
FG is totally unanimous. Let A be a free set which is not complete. We have to
show that there is an issue Y = {p,¬p} disjoint from the agenda ag (A) such that
FG is Y -independent given A. Let P be the set of all paths P of T with outcome
containing A, precisely A ⊆ cl (ϕ (P )). We first have to show that P 6= ∅. Indeed,
choose a complete set J ∈ J containing A (lemma 5). Define a profile J ∈ J̄N

with Ji = J . By total unanimity we find FG (J) = J , thus there is a path P with
A ⊆ cl (ϕ (P )). Therefore P 6= ∅.

Let P =
⋂P the largest common path. It is nonempty, since every path contains

the root node. Since A is not complete, there is an issue {p,¬p} disjoint from the
agenda ag (A). Since A is free, both A∪{p} and A∪{¬p} are consistent. With the
same argument as in the previous paragraph we define two profiles Jp, J¬p ∈ J̄N
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yielding A ∪ {p} ⊆ FG

(

Jp

)

and A ∪ {¬p} ⊆ FG

(

J¬p

)

. Thus the corresponding

paths P
(

Jp

)

and P
(

J¬p

)

deviate at one node x ∈ T . Since P ⊆ P (x), P is
finite. Thus there is some x ∈ T with P = P (x). By proposition 19 there is an
issue Y = {p,¬p} associated to its child nodes such that FG is Y -independent given
ϕ [P (x)] = ϕ [P ] ⊆ A. By lemma 13 (i), FG is Y -independent given A, what has to
be shown.

For a countably infinite agenda X, the condition of piecewise independence pro-
vides us a sequence X1 ⊆ X2 ⊆ · · · of finite subagenda with

⋃

i Xi = X such
that F is Xi-independent for every i. The construction above provides us with a
sequence of game forms G1,G2, . . . with a sequence of trees T1 ⊆ T2 ⊆ · · · such that
FGi

is the conditional function of F from proposition 14 on subagenda Xi given ∅.
Setting T =

⋃

i Ti , defining ϕ as the extension of all assignments ϕi in Gi, with
the collection {Wx}x∈T we obtain at a new game form, where the information sets
are given by proposition 18. As above we conclude that F (J) = FG (J) for all
J ∈ J̄N . �

The last result is on strategic manipulation.

Proof. (Theorem 23) Let FG be the judgement aggregation form induced by a mono-
tonic and weakly neutral game form G adapted to the judgement space 〈X,J 〉. Let
J ∈ J̄N be some profile and let i ∈ N and J ′

i ∈ J̄ . Assume the solution paths
P (J) and P

(

J−iJ
′
i

)

are complete. We have to show that FG (J) DJi
FG

(

J−iJ
′
i

)

,

or Ji∩FG

(

J−iJ
′
i

)

⊆ FG (J). Let p ∈ Ji∩FG

(

J−iJ
′
i

)

. Since P
(

J−iJ
′
i

)

is complete,

there is a node y ∈ P
(

J−iJ
′
i

)

with ϕ (y) = p. Thus W :=
{

j ∈ N | p ∈
(

J−iJ
′
i

)

j

}

∈
Wy. By monotonicity, W ′ := W∪{i} ∈ Wy. Since P (J) is complete, there is a node
x ∈ P (J) with child notes xp and x¬p, ϕ (xp) = p, and ϕ (x¬p) = ¬p. Weak neu-
trality implies that Wxp

= Wy, therefore W ′ ∈ Wxp
. Since W ′ = {j ∈ N | p ∈ Jj},

we conclude p ∈ FG (J), what had to be shown. �
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