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Abstract 

 

This paper analyzes the effect of the recent market crash on the international diversification 

of equity portfolios from the perspective of dependence structure. We use the generalized 

Pareto distribution to fit the left and the right tail of each return distribution in order to 

evaluate the upside and the downside risk measures separately after removing both 

autocorrelation and heteroscedasticity in the historical returns. We thereafter build a 

multivariate generalized Pareto distribution and draw one million simulated returns for each 

time series using three Archimedean copulas – Gumbel, Clayton and Frank. Using the data 

from emerging and developed countries; we find that the Clayton copula exhibits strong left 

tail dependence structure with higher Sharpe ratio and relatively weak right tail dependence 

after the subprime crisis. We also find that the Clayton copula is ultimately useful in 

modelling the left tail dependence structure in bear markets only. In addition; our empirical 

results show that both the Gumbel and Frank copulas produce the same magnitude of Sharpe 

ratio in bull and bear markets. The Frank copula is found to be useful in modelling returns 

with strong positive or negative dependence; while the Gumbel copula is found to be useful 

in modelling the upper tail of the return distribution in bull markets only.  

 

Keywords: Archimedean copula, Gumbel, Frank, Clayton copulas, dependence structures, 

international diversification 

JEL: G01, G11, G15, C15, C02 
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1. INTRODUCTION 

 

This paper analyzes the effect of the subprime crisis on portfolio allocation from the 

perspective of dependence structure. Empirical evidence has proved that the multivariate 

normal distribution is inadequate to model portfolio asset return distribution - firstly because 

the empirical marginal distributions of asset returns are skewed and fat tailed; and secondly 

because it does not consider the possibility of extreme joint co-movement of asset returns 

(Fama and French, 1993; Richardson and Smith, 1993; Géczy, 1998; Longin and Solnik, 

2001; Mashal and Zeevi, 2002). This paper employs Archimedean copulas to capture both the 

dependence structure and the asymmetry of asset returns in the tails of the empirical 

distributions. 

 

We fit both the left and right tails in order to evaluate upside and downside risk separately. 

Hence, each return distribution is segmented into the left tail and the right tail in order to 

capture the potential distributions associated with the empirical data in each segment of the 

distribution more accurately. To fit the left and right tails of the distribution, the Extreme 

Value Theory (EVT) is used. We assume that the marginals follow the Generalised Pareto 

Distribution (GPD) due to the ease with which it can be adapted to modelling financial 

returns.  

 

The standard mean-variance framework introduced by Markowitz (1952) uses correlation as 

a measure of dependence between different assets. The theory is based on an assumption of 

multivariate normally distributed returns in order to arrive at an optimal portfolio selection. 

However, empirical research in finance shows that the distributions of the real world are non-

normal. As Jondeau and Rockinger (2006) point out, when financial returns are non-normal, 

it is impossible to specify the multivariate distribution of two or more return series. Previous 

research has investigated how the correlation between stock market returns varies over time. 

Longin and Solnik (1995) examine correlations between stock markets over a long time 

period using the constant conditional correlation model proposed by Bollerslev (1990). They 

find that correlations are generally higher during more volatile periods and depend on several 

economic variables, such as the dividend yield and interest rate. Longin and Solnik (2001) 

find that international stock markets are more correlated in bear markets, using extreme value 

theory, and that the multivariate normality of the joint distributions can be rejected in a 

statistical test.  

 

Patton (2004) finds dependence asymmetry of financial returns both in the marginal 

distributions and in the dependence structure. Boyer et al. (1997) reported that correlations 

can provide little information about the underlying dependence structure in the cases of 

asymmetric dependence. Therefore, these studies show that simple correlation analysis can be 

misleading when studying financial market dependence, as also shown by Boyer et al (1997) 

and Embrechts et al (1999).  Costinot et al (2000) suggested that dependence among financial 

markets was better modelled using copulas rather than correlation analysis. In the case of 

extreme returns, they found that the probability of joint exceedance for the Dow Jones and 

the French CAC40 stock market indexes increased dramatically when copulas were used 



4 

 

rather than the bivariate normal distribution. Embrechts et al. (2002) used copulas in risk 

management, showing that standard Pearson correlations can go dangerously wrong as a risk 

measure. They then suggested the copula function as a flexible alternative to correlation, as 

the copula can capture dependence throughout the entire distribution of asset returns. 

Rodriguez (2007) modelled dependence with switching-parameter copulas to study financial 

contagion. Using daily returns from five East Asian stock indices during the Asian crisis, and 

from four Latin American stock indices during the Mexican crisis, he found evidence of 

changing dependence during periods of turmoil. He found that Asian countries were 

characterized by increased tail dependence and asymmetry, while Latin American countries 

were described symmetry and tail independence.  

 

Other studies that have also used copulas for portfolio selection include Fernandez (2008) 

who presented a model to select the optimal hedge ratios of a portfolio composed of an 

arbitrary number of commodities, using copula to account for returns co-movement. Wang et 

al (2010) introduced the GARCH-EVT-Copula model and applied it to study the risk of 

foreign exchange portfolio. Multivariate Copulas, including Gaussian, t-Student and Clayton 

ones, were used to describe a portfolio risk structure, and to extend the analysis from a 

bivariate to an n-dimensional asset allocation problem. They applied this methodology to 

study the returns of a portfolio of four major foreign currencies in China, including USD, 

EUR, JPY and HKD. Their results suggested that the optimal investment allocations are 

similar across different Copulas and confidence levels and that the optimal investment 

concentrates on the USD investment. They found that the t-Student Copula and Clayton 

Copula better portray the correlation structure of multiple assets than Normal Copula. Ning 

(2010) investigated the dependence structure between the equity market and the foreign 

exchange market by using different copulas. The study showed that there exists significant 

symmetric upper and lower tail dependence between the two financial markets, and the 

dependence remains significant but weaker after the launch of the Euro. Harris and 

Küçüközmen (2001) investigated the dynamic behaviour of daily aggregate returns on the 

Istanbul Stock Exchange (ISE) and found that ISE returns exhibit significant linear and 

nonlinear dependence. They found that the nonlinear dependence is primarily due to linear 

dependence in the conditional variance of the returns. 

 

International diversification involves balancing benefits and costs, and this balance is 

determined by the degree of asset dependence. In light of theoretical research linking 

diversification and dependence, Chollete et al (2010) examined international diversification 

using two measures of dependence: correlations and copulas. They found that dependence 

has increased over time and that the regions with maximal dependence or worst 

diversification did not have large returns. Their results suggest international limits to 

diversification, which is also consistent with a possible tradeoff between international 

diversification and systemic risk. 
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2. METHODOLOGY  

 

The theory of copula allows us to study nonlinear dependences between selected assets and to 

build a unified distribution function based on the distribution functions of each asset. 

 

2.1. Markowitz’s Approach to Portfolio Selection 

Markowitz (1952) postulates that an investor should maximize expected portfolio return 

 
ppRE   while minimizing portfolio variance of return 

2

p . Hence the portfolio selection 

problem is summarized as: 

 

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                               (1) 
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                (2) 

 

where 
i  is asset i’s expected return and 

i
 
is the weight of asset i in the portfolio, 2

i is the  

variances of asset I, ij  is the pairwise correlation of the returns of assets i and j and 
 is the 

minimum targeted portfolio risk respectively. Equation (2) shows that the variance which is 

an important input in this optimization problem depends solely on the linear correlation 

structure which is unable to model dependence of asset during financial crisis (Muteba 

Mwamba, 2012).  

 

Dependence Analysis 

 

2.2. Copulas 

 

2.2.1. Definition of Copula 

Copulas are functions that join univariate distribution functions to form multivariate 

distribution functions. They were first introduced in by Sklar (1959). A copula function is 

defined as a multivariate distribution function F  of random variables nXX ,,1  with 

standard uniform marginal distribution functions nFF ,,1   (margins). The joint distribution 

function C  of     nn XFXF ,,11   is then called the copula of the random vector 

 nXX ,,1   or the multivariate distribution F . It follows that: 

 
          

    nn

nnnnn

xFxFC

xFXFxFXFPxxF

,,

,,,,

11

11111







     (3)
 

 

Alternatively, a copula is defined as any function    1,01,0: n
C  that satisfies the following 

properties: 

  nuuC ,,1   is increasing in each component  iii xFu  .  
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     nmmiuallforuuuuC inmm ,,1,;1,00,,,0,,, 111    

     niuallforuuC iii ,,1,1,01,,1,,1,,1   . This property follows from the 

fact that the marginal distributions are uniform. 

 For all      nnn bbaa 1,0,,,,, 11   with 
ii ba  we have  

    0,,1
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1
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1  
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n
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where jj au 1  and jj bu 2  for all nj ,,1
 

For any continuous multivariate distribution Equation (3) holds for a unique copulaC . If 

nFF ,,1  are not all continuous it can still be shown that the joint distribution function can 

always be expressed as in Equation (3), although in this case the copula C  is no longer 

unique and it is referred to it as a possible copula of F  (Schweizer & Sklar, 1983: Chapter 

6). 

 

2.2.2. Types of Copulas: Elliptical and Archimedean Copula Families 

Elliptical Copulas 

Elliptical copulas are simply the copulas of elliptical distributions. The class of elliptical 

distributions provides useful examples of multivariate distributions because they share many 

of the tractable properties of the multivariate normal distribution. Simulation from elliptical 

distributions is easy to perform. Let 
iF  be the distribution function of the i

th
 margin and 

1
iF be its inverse function (quantile function), ni ,,1 . The elliptical copula determined 

by F  is: 

       nnn uFuFFuuC
1

1

1

11 ,,,,  
                      (4) 

 

Differentiating Equation (4) gives the density of an elliptical copula: 
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where f  is the joint probability distribution function of the elliptical distribution and 

nff ,,1  are marginal density functions. 

 

Examples of elliptical copulas are the Gaussian (normal) copula and the t-Student copula, 

specified by the multivariate normal and multivariate t-Student distributions respectively. 

Both copulas have a correlation matrix inherited from the elliptical distributions and t-copula 

has one more parameter, the degrees of freedom (df). Since copulas are invariant to 

monotonic transformation of the margins, the standardized correlation matrix determines the 

dependence structure. It is important to note that the Gaussian and t-copulas are copulas of 

elliptical distributions, but they are not elliptical distributions themselves. 
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Archimedean Copulas 

Embrechts et. al. (2001) show that there many pitfalls to the normality assumption. Empirical 

evidence suggests that the use of the multi-normal distribution is inadequate (Fama and 

French, 1993; Longin and Solnik, 2001). There is clear evidence that financial returns have 

unconditional fat tails. Therefore, extreme events are more probable than anticipated by 

normal distribution, not only in marginals but also in higher dimensions. Elliptical 

distributions capture only linear dependencies and are therefore inadequate in many 

multivariate analyses of data with probability density concentrated on tails (extreme values). 

A class of copulas called Archimedean copulas are used to model nonlinear dependencies.  

 

A copula C  is termed Archimedean if there exists a generator function   such that C  has 

the form: 

       nn uuuuC     1

1

1 ,,
             (6)

 

for all 1,,0 1  nuu  , where     ,01,0:  is continuous and strictly decreasing such 

that   01 
 
and   0  and 1  is the inverse function of the generator. The generator 

satisfies the following conditions: 

   01   

 For all     0',1,0  tt  , i.e.  is decreasing. 

 For all     0",1,0  tt  , i.e.  is convex. 

 

By applying  , both to the joint distribution and the margins, the distributions “become" 

independent. In order for Equation (6) to be a copula, the generator needs to be a complete 

monotonic function (Nelsen, 1999). A generator uniquely determines an Archimedean 

copula. For an Archimedean copula, the distribution and density both depend on the 

generator function and its inverse function. These functions are defined for each 

Archimedean copula. Archimedean generators associated with a particular Archimedean 

copula are not necessarily unique, but they are up to a constant. If   is a generator of an 

Archimedean copula, then a , for some positive constant a , also generates the same 

Archimedean copula. Archimedean copulas are permutational symmetric, i.e. 

   1221 ,, uuCuuC   and associative, i.e.      321321 ,,,, uuCuCuuuCC  . The density of 

Equation (6) can be obtained by differentiation. 

 

The three Archimedean copulas that are going to be used in this study are the Frank, Gumbel 

and Clayton copulas. The Clayton and Gumbel copulas model only positive dependence, 

while Frank covers the whole range. The Frank copula is generated by: 

  











1

1
log 




e

e
u

u

                (7) 

for 1
 
but has the independence copula as a limiting case when 1 . The Gumbel 

copula has generator: 

    
1

loguu 
                 (8) 
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for some 1 and is therefore useful for describing positive dependencies. The Clayton 

copula is constructed based on the generator: 

  



 1




u
u

        (9)
 

for 0 . 

 

For an Archimedean copula, Kendall’s tau can be evaluated directly from the generator of the 

copula as follows: 

 
 
 

1

0
'

41 dt
t

t




        (10)

 

Parameter Estimation 

The method of maximum likelihood method is used to estimate the parameter of these 

copulas. Let f  be the density of the joint distribution F : 

         



n

i

iinnn xfxFxFcxxf
1

111 ,,,, 
    (11)

 

where 
if  is the univariate density of the marginal distribution 

iF  and c  is the density of the 

copula given by the following expression: 

    
n

n

n
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uuC
uuc





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1

1

1 
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       (12) 

We suppose to have a set of T empirical data of n
 

financial asset log-returns, 

  T

t

t

n

t
xx

11 ,,   . Let  α,,,1 n   be the parameter vector to estimate, where 

nii ,,1,  is the vector of parameters of the marginal distribution iF
 
and α   is the vector 

of the copula parameters. The log-likelihood function is the following: 

          
  


T

t

T

t

n

i

i

t

iin

t

nn

t
xfxFxFcl

1 1 1

111 ;ln;;,,;ln  α
   (13) 

The ML estimator ̂  of the parameter vector   is the one which maximize the above 

equation, i.e.: 

   lmaxargˆ 
        (14) 

 

Constructing Multivariate Distributions Using Copulas and Marginals: The 

Sklar’s Theorem 

The existence of the copula function C  is established by Sklar’s theorem. The first step in 

constructing multivariate distributions using copulas is to transform the data into uniformly 

distributed ones. Let T be a transformation that maps the univariate marginals iX  onto 

uniformly distributed random variables on  n1,0 . For the univariate marginals niX i ,,1,  , 

let 
iXF  denote the univariate distribution function of the i

th
 margin. Define the transformation 

 nn
RT 1,0:   with    nn zzxxT ,,,, 11    via 
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   
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 (15) 

 

Then the random variables,   niXTZ ii ,,1,  , are independent and the random vector 

 nZZ ,,1 Z  is uniformly distributed on  n1,0 . Things can now be formulated in terms of 

copulas. 

 

Using probability integral transform, each continuous marginal  iii xFu   has a uniform 

distribution on  1,0I  where  ii xF is the cumulative integral of  ii xf  for the random 

variable 
iX , where 

iX  assume values on the extended real line   , . The n-dimensional 

probability distribution function F  has a unique copula representation: 

 

          
    

 n
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nnnnn
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   (16) 

 

The corresponding density function is: 

 
          


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n
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iinn xfxFxFxFcxf
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2211 ,,, 
    (17) 

where  ii xf is the density of the marginal  ii xF  and  uc  is the density of the copula  uC  

   
n

n

n
uu

uuC
uuc





,,

,,
,,

1

1

1 


       (18) 

This result is useful for estimating the parameters of both the copula function and the 

marginal distribution using parameter estimation methods such as the maximum likelihood 

technique. 

 

Equation (15) above shows that the joint distribution function F , can be described by the 

margins nFF ,,1  and the copula C , which captures the dependency structure among 

nXX ,,1  . 

2.3. Simulating from Multivariate Distributions 

The considered copulas - Gumbel, Clayton and Frank copulas - fall into the class of so-called 

Laplace transform Archimedean copulas (or LT-Archimedean copulas). For this class, the 

inverse of the generator   has a nice representation as a Laplace transform of some function 

G . The simulation algorithm uses that such pseudo random variables may be generated 

easily. To consider this approach in more detail, consider a cumulative distribution function 

G  and denote its Laplace transform by: 
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     0,:ˆ
0

 



txdGetG

tx

       (19)
 

 

We set   0:ˆ G and realize that Ĝ  is a continuous and strictly decreasing function, thus 

may serve well as a candidate for 1 . Indeed, generate a pseudo random variable V  with 

cumulative distribution function G  and i.i.d. standard uniform pseudo random variables 

nXX ,,1   (also independent of V ).  

Set  

 







V

X
GU i

i

lnˆ:
        (20)

 

 

then the vector U  has the desired Archimedean copula dependence structure with generator 
1ˆ  G . A proof is given in McNeil et al. (2005). 

 

Portfolio Optimisation Using Copula Distributions 

Before building a joint distribution using copulas, we need to find a proper specification for 

marginal distributions of individual series, as misspecified marginal distributions will lead to 

a misspecified joint distribution. First, we test the marginal distributions for normality using 

the Jarque Bera test. If the i.i.d. hypopaper is rejected, we fit a time series model to each 

margin and work on the residuals. When dealing with financial log-returns, time series are 

usually filtered with ARCH/GARCH process to remove long-term serial dependence in the 

variance. We then use the Generalised Pareto Distribution (GDP) to model the marginal 

distributions and we use various copulas (Frank, Gumbel and Clayton) to build the 

multivariate distribution using Sklar (1952)’s theorem.  

 

We assume an AR(1) process for conditional mean and a GARCH(1,1) setup for conditional 

variance as in Muteba Mwamba (2012). This is a standard model for financial returns 

introduced by Bollerslev (1987), and which is widely used in the literature (Patton, 2002, 

2006); Jondeau & Rockinger (2006) and Hu (2006)). Let tiX , be the return of index i at time 

t, and the model of marginal distributions is given by the following: 

  itititititi tdiitforXX  ...~;2 ,,,1,,      (21) 

where R
 
and 1 . The conditional heteroscedasticity is specified by:

 

 
2 2 2

, ,0 ,1 , 1 ,2 , 1 2i t i i i t i i t for t         
                           (22) 

         

Where 00, i  and 0, 2,1, ii 
 
and ti ,  is conditional standard deviation and random error 

ti, is i.i.d. Equation (20) is a necessary condition for stationarity. 

 

The Extreme Value Theory (EVT) provides a framework for modelling only the tails of the 

return distribution. There are two approaches to EVT-based modelling. The block maxima 
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method, leading to a generalized extreme value distribution (GEV), divides the data into 

consecutive blocks and focuses on the series of the maxima (minima) in these blocks. The 

peaks-over-threshold (POT), leading to a generalized Pareto distribution (GPD), models those 

events in the data that exceed a high threshold, which in a financial context, means losses 

larger than a given high level. The distributional model for exceedances over thresholds is 

GPD given by 

 

   





















 





0,exp1

011

1




 

x

x

xF       (23)
 

where 0
 
and 0x  when 0  and 

 x0  when 0 . The parameters   and   

are the shape and the scale parameter respectively. When 0 , then F  is the distribution of 

a Pareto distribution which has a power tail decay. 

 

By using parameters estimated from the empirical return series, we simulate a return series 

for each index. Using the simulated marginal distributions for each index return, we simulate 

a multivariate Gumbel Copula, Frank Copula and Clayton copula for the dependence 

structure of the index returns.  

 

Once the estimate procedures are done, the optimal portfolio of assets can be found by 

maximising the return and minimising the variance in the following optimization problem: 

 

 
t

2
1t

p μωRMaximise 
      (24)
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Where  is the risk aversion coefficient. 

 

We find the optimal portfolio weights by maximizing the expected utility of investors using 

simulated returns. 

 

3. EMPIRICAL RESULTS AND DISCUSSION 

Data  

The study is based on eight sets of data consisting of four emerging market stock indices – 

South Africa’s JSE/FTSE All Share Index (ALSI), Brazil’s Bovespa Index (Bovespa), 
Mexico’s Indice de Precios y Cotizaciones (IPC) index and China’s Shanghai Composite 
Index (SCI) – and four developed market indices – the United States’ S&P500, the United 
Kingdom’s FTSE100, Germany’s DAX and France’s CAC40. These emerging markets were 

chosen for their diversity and economic growth prospects. China and Brazil are amongst the 

largest emerging economies in the world. South Africa is the largest economy on the African 

continent.  Mexico was included because of its recent solid economic growth. 
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All the data were collected and sampled at a daily frequency from 1 January 2005 to 31 

December 2010. This time period was chosen in order to capture the dependence structure of 

the indices 3 years before the subprime crisis (from 1 January 2005 to 31 December 2007) 

and 3 years after the subprime crisis (from 1 January 2008 to 31 December 2010). To 

eliminate spurious correlation generated by holidays, those observations when a holiday 

occurred at least for one country were eliminated from the database. Note that such an 

observation would not affect the dependency between stock markets during extreme events. 

All the modelling is done using the R software package. 

 

The descriptive statistics for all the time series is shown in Table 1 below. 

 

Table 1: Descriptive Statistics 

S&P500 FTSE100 DAX CAC40 ALSI BOVESPA SCI IPC

Mean 0.0000 0.0001 0.0003 0.0001 0.0008 0.0007 0.0004 0.0008

Standard Error 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004

Standard Deviation 0.0147 0.0136 0.0145 0.0153 0.0145 0.0198 0.0193 0.0149

Sample Variance 0.0002 0.0002 0.0002 0.0002 0.0002 0.0004 0.0004 0.0002

Kurtosis 10.0516 8.3458 8.3945 8.0510 3.2483 5.7477 2.8749 5.3450

Skewness -0.2514 -0.0623 0.2413 0.2149 -0.1471 0.0835 -0.3925 0.1789

Descriptive Statistics

 
 

This table shows that The S&P500, FTSE100, ALSI and SCI have negative skewness, and 

the DAX, CAC40, Bovespa and IPC have positive skewness. Moreover, all the time series 

exhibit excess kurtosis except for the ALSI and SCI. This indicates that most of the series 

display fatter tails than the Gaussian distribution; this finding is similar to the one obtained by 

Muteba Mwamba (2011) when modelling stock price behaviour. The Jarque-Bera’s test 
(Cromwell et al. 1994), a joint statistic using skewness and kurtosis coefficients, is also used 

to reject the null hypothesis of normality for these time series. 

 

But relying on numerical summaries alone for checking the distribution of the sampled means 

can be misleading. Therefore, we also rely on a powerful graphical technique known as a 

quantile-quantile plot or QQ-plot which helped us assess whether a data set is consistent with 

a known distribution. The quantile function Q  is the generalized inverse function of the 

cumulative distribution function F : 

 

     1,0 
pforpFpQ

 
 

where the generalized inverse function 1
F  is defined as 

 

      10,:inf1 
ppxFxpF R  
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The quantity 
1 Fx p defines the pth quantile of the distribution function F . Suppose that 

our data set consists of the points 
nxxx ,,, 21  . Let      nxxx  21  denote our data 

sorted in increasing order. We also use the convention that  ix is the 
n

ipi
5.0 quantile. 

To check if the distribution of our empirical data is consistent with the distribution function 

F  we plot the points     ii xpQ , ; that is, the quantiles of F  against the quantiles of our data 

set. If the empirical distribution is a good approximation of the theoretical distribution, then 

all the points would lie very close to the line xy  ; departures from this line give us 

information on how the empirical distribution differs from the theoretical distribution. Figure 

1 below shows the QQ-plot for the ALSI. 
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Figure 1: QQ-Plot for ALSI 

 

Figure 1 shows clearly that the distribution of the maximum does not follow a normal 

distribution. If it did the data would fall approximately on a straight line. Rather the points 

form a concave line. At the upper right-hand corner the data are below the straight line. This 

implies that the distribution of the maximum is thicker tailed than the normal distribution. 

The same graphical method was used for all the data sets, and showed that none of the data 

sets converged to a normal distribution.
 

 

For each time series, the data was split into two periods – from 1 January 2005 to 31 

December 2007 (before the subprime crisis) and from 1 January 2008 to 31 December 2010 

(after the subprime crisis). This was done in order to determine the impact of the subprime 

crisis on the tails of return distributions for stock indices. 

 

Empirical Results and Discussion 

 

However, most financial return series exhibit some degree of autocorrelation and, more 

importantly, heteroskedasticity. To produce a series of independent and identically 

distributed (i.i.d.) observations, we fit a first order autoregressive model to the conditional 

mean of the returns of each equity index and a GARCH model to the conditional variance. 

The first order autoregressive model compensates for autocorrelation, while the GARCH 
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model compensates for heteroskedasticity. When dealing with financial log-returns, 

GARCH models are a frequent choice for attempting to remove serial dependence in the 

component time series, as discussed in Muteba Mwamba (2012) and Giacomini et al. 

(2009). Following Muteba Mwamba (2012), we fit a GARCH model to each of the marginal 

daily log-returns series and work on the residuals. 

 

We fit both the left and right tails in order to evaluate upside and downside risk separately. 

Hence, each return distribution is segmented into the left tail and the right tail in order to 

capture the potential distributions associated with the empirical data in each segment of the 

distribution more accurately. To fit the left and right tails of the distribution, the Extreme 

Value Theory (EVT) is used. We assume that the marginals follow the Generalised Pareto 

Distribution (GPD) due to the ease with which it can be adapted to modelling financial 

returns. We isolate the tails on both sides by specifying lower and upper thresholds.  

 

The Pickands, Balkema & de Haan theorem (Embrechts et al., 2005: 277) show that if we 

pick a high enough threshold, our data should behave like data that comes from the 

generalized Pareto distribution. A graphical test to establish the behaviour of the tail can be 

performed based on the form of the distribution of mean excess (Davison & Smith, 1990). 

Fat-tailed distributions yield a mean excess function that tends towards infinity for high-

thresholds, i.e. linear shape with positive slope (refer to Appendix A). It is possible to choose 

the threshold where an approximation by the GPD is reasonable by detecting an area with a 

linear shape on the graph. Figure 2 shows the empirical mean excess plot for Mexico’s IPC.  
Mean excess plots for the other indices are in Appendix A.  
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Figure 2: Mean Excess Plot for IPC 

Since the mean excess function for the IPC is a straight line with positive slope, we are 

looking for the threshold point from which the mean excess (ME) plot follows a straight line. 

The choice of threshold is guided by the ME plot such that the plot is roughly linear above 

this threshold. According to the estimate we get from the POT model, u=0.0169, we can see 

that this is a good estimate because the ME plot becomes linear after u=0.0169. Linearity of 

the ME plot indicates there is no evidence against the hypothesis that the GPD model is a 

good fit for the threshol data. 
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The threshold is then used to estimate the parameters for the GPD. The slope of the plot is 

given by 


1
 and the y-intercept is given by 


1 . The GPD parameters for each index 

is given in the tables below. 

 

Table 2: GPD Parameters before subprime 

ξ μ σ ξ μ σ
ALSI -0.1970 0.0100 0.0087 ALSI 0.2094 0.0056 0.0067

BOVESPA -0.4894 0.0143 0.0109 BOVESPA -0.0646 0.0079 0.0093

SCI 0.1865 0.0093 0.0131 SCI 0.0543 0.0096 0.0107

IPC -0.2347 0.0102 0.0091 IPC 0.0735 0.0068 0.0078

S&P 500 -0.1154 0.0062 0.0058 S&P 500 0.0198 0.0048 0.0051

FTSE 100 -0.0760 0.0068 0.0063 FTSE 100 -0.0779 0.0066 0.0054

DAX -0.2994 0.0072 0.0066 DAX -0.2373 0.0052 0.0055

CAC 40 -0.2902 0.0087 0.0066 CAC 40 -0.1694 0.0054 0.0054

 Before Subprime (Upper Tail) Before Subprime (Lower Tail)

 

 

Table 3: GPD Parameters after subprime 

ξ μ σ ξ μ σ
ALSI -0.0844 0.0116 0.0115 ALSI -0.0701 0.0138 0.0120

BOVESPA -0.0310 0.0157 0.0166 BOVESPA 0.2916 0.0138 0.0175

SCI -0.2679 0.0197 0.0160 SCI 0.0479 0.0141 0.0140

IPC -0.0835 0.0130 0.0121 IPC 0.2641 0.0111 0.0131

S&P 500 0.0056 0.0151 0.0150 S&P 500 0.1376 0.0133 0.0140

FTSE 100 0.0150 0.0123 0.0126 FTSE 100 0.3854 0.0084 0.0126

DAX 0.1024 0.0116 0.0133 DAX 0.3266 0.0090 0.0135

CAC 40 0.0074 0.0126 0.0136 CAC 40 0.4933 0.0083 0.0146

After Subprime (Lower Tail) After Subprime (Upper Tail)

 
 

After getting the GPD parameters for indices, we can build a multivariate generalized Pareto 

distribution and draw simulated returns for each index. Simulations play an important role in 

finance. They are used to replicate the efficient frontiers, to price options, and so on. 

However, the resulting risk measures computed and the conclusions drawn from the 

simulations depend upon the assumed model and on the quality of the data-generating 

algorithms.  

 

Using the R package codes
1
, 2000 simulations were performed for a multivariate generalized 

Pareto distribution with eight marginals representing each one of eight stock market indices. 

Using the concept of copulas, it is relatively easy to construct and simulate from multivariate 

distributions of any dimension based on almost any choice of marginals and any type of 

dependence structure. Three Archimedean copulas – Gumbel, Clayton and Frank – were used 

to fit the simulated marginals to the different copulas for each sub-period and for both tails of 

                                              
1
 Available on www.analyticsresearch.net 
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the distributions. Figure 3, 4 and 5 below, show the plots for the Gumbel, Clayton and Frank 

copulas with negative returns (downside risk) before the subprime crisis. 

 

 

Figure 3: Gumbel Copula Before Subprime – Lower Tail 

 

 
Figure 4: Clayton Copula Before Subprime – Lower Tail 

 

 
Figure 5: Frank Copula Before Subprime – Lower Tail 

 

The scatter plots of the three copulas before the subprime crisis in the upper tail are shown in 

Appendix B. Appendix C and D show the scatter plots of the three copulas after the subprime 

crisis in the lower and upper tails, respectively. 
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It can be seen from these figures that, in the Clayton copula, the lower tail dependence is 

much stronger than in the Frank copula, where there is no tail dependence. However, as 

simulations illustrate, dependence in the tails of the Frank copula tends to be relatively weak 

compared to the Gumbel and Clayton copulas, and the strongest dependence is centred in the 

middle of the distribution, which suggests that the Frank copula is most appropriate for data 

that exhibit weak tail dependence. Similar to the Clayton copula, Gumbel does not allow 

negative dependence, but in contrast to Clayton, Gumbel exhibits strong right tail dependence 

and relatively weak left tail dependence. This can be seen by the clustering of the data points 

in the top right corner of the plot. 

 

The next and final step is to optimise the portfolios using the simulated data, subject to – no 

short-selling. The tables below show the optimal weights of the assets for the minimum-

variance portfolio and the tangency portfolio for each sub-period and in each tail of the 

distribution. The minimum-variance portfolio is the portfolio where the weights of the 

different assets results in a portfolio with the minimum standard deviation and the tangency 

portfolio is the portfolio – comprised of only risky assets – with the highest Sharpe ratio. 

 

Table 4: Portfolio Weights in Lower Tail Before the Subprime 

Gumbel Clayton Frank Gumbel Clayton Frank

S&P500 7% 25% 7% S&P500 7% 20% 7%

FTSE100 2% 3% 2% FTSE100 4% 4% 4%

DAX 1% 2% 1% DAX 0% 2% 0%

CAC40 38% 6% 38% CAC40 38% 2% 38%

ALSI 18% 29% 18% ALSI 15% 34% 15%

BOVESPA 16% 0% 16% BOVESPA 14% 0% 14%

IPC 14% 8% 14% IPC 13% 10% 13%

SCI 4% 28% 4% SCI 10% 28% 10%

Minimum-Variance Portfolio Weights in Lower Tail Before Subprime Tangency Portfolio Weights in Lower Tail Before Subprime

 
 

In this case, the Gumbel and Frank give same results – the weight of emerging markets is just 

over 50% for both the minimum-variance portfolio and tangency portfolio. In both cases, the 

CAC40 has the highest overall weighting (38%) for the Gumbel and Frank copulas. The 

Clayton shows a portfolio weighting of 64% in emerging markets for minimum-variance 

portfolio and 71% for tangency portfolio, with the ALSI having the highest weighting in both 

cases. 

Table 5: Portfolio Weights in Upper Tail Before the Subprime 

Gumbel Clayton Frank Gumbel Clayton Frank

S&P500 18% 0% 18% S&P500 18% 0% 18%

FTSE100 0% 3% 0% FTSE100 0% 10% 0%

DAX 18% 0% 18% DAX 18% 0% 18%

CAC40 14% 4% 14% CAC40 15% 17% 15%

ALSI 21% 32% 21% ALSI 20% 17% 20%

BOVESPA 8% 0% 8% BOVESPA 8% 4% 8%

IPC 15% 33% 15% IPC 15% 25% 15%

SCI 6% 28% 6% SCI 6% 28% 6%

Minimum-Variance Portfolio Weights in Upper Tail Before Subprime Tangency Portfolio Weights in Upper Tail Before Subprime

 



18 

 

 

Again, in the upper tail the Gumbel and Frank give the same results – 50% weighting in 

emerging markets for both the minimum-variance portfolio and tangency portfolio, with the 

ALSI making up highest asset weighting in both portfolios. The Clayton copula produces a 

minimum-variance portfolio with 93% in emerging markets and 74% in emerging markets for 

tangency portfolio. Interestingly, the Clayton copula gives zero weighting for the S&P500 

and DAX in both portfolios. 

Table 6: Portfolio Weights in Lower Tail After the Subprime 

Gumbel Clayton Frank Gumbel Clayton Frank

S&P500 10% 21% 10% S&P500 5% 15% 5%

FTSE100 8% 21% 8% FTSE100 12% 19% 12%

DAX 7% 3% 7% DAX 5% 9% 5%

CAC40 32% 12% 32% CAC40 31% 13% 31%

ALSI 17% 0% 17% ALSI 13% 0% 13%

BOVESPA 7% 18% 7% BOVESPA 6% 16% 6%

IPC 10% 16% 10% IPC 10% 18% 10%

SCI 10% 9% 10% SCI 19% 9% 19%

Minimum-Variance Portfolio Weights in Lower Tail After Subprime Tangency Portfolio Weights in Lower Tail After Subprime

 
 

The Gumbel and Frank give same results again in this case, with a 44% weight in emerging 

markets for the mean-variance efficient and 47% for tangency portfolio. Just as before the 

subprime crisis, the Gumbel and Frank copulas allocate the highest overall weighting in both 

portfolios to the CAC40 (32%). Unlike before the subprime crisis where the Clayton copula 

gave the ALSI has the highest overall weighting in both portfolios, the ALSI has 0% 

weighting in the both portfolios after the subprime crisis. Also, the weight of emerging 

market indices has been significantly reduced, with only 43% weighting. 

Table 7: Portfolio Weights in Upper Tail After the Subprime 

Gumbel Clayton Frank Gumbel Clayton Frank

S&P500 30% 30% 30% S&P500 27% 27% 27%

FTSE100 0% 0% 0% FTSE100 3% 3% 3%

DAX 0% 0% 0% DAX 0% 0% 0%

CAC40 50% 50% 50% CAC40 48% 48% 48%

ALSI 20% 20% 20% ALSI 19% 19% 19%

BOVESPA 0% 0% 0% BOVESPA 0% 0% 0%

IPC 0% 0% 0% IPC 0% 0% 0%

SCI 0% 0% 0% SCI 4% 4% 4%

Minimum-Variance Portfolio Weights in Upper Tail After Subprime Tangency Portfolio Weights in Upper Tail After Subprime

 
 

All three copulas give the same results in the upper tail after the subprime crisis – 20% in 

emerging markets for minimum-variance portfolio and 22% for tangency portfolio. The 

CAC40 has the highest weighting – 50% in the minimum-variance portfolio and 48% in 

tangency portfolio.  

 

A risk measure which has been widely accepted since the 1990s is value-at-risk (VaR). It was 

approved by regulators as a valid approach for calculation of capital reserves needed to cover 
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market risk. Even though approved by regulators and widely used in practice, VaR has major 

shortcomings. One of the shortcomings is that VaR is non-informative about extreme losses. 

A risk measure which is more informative than VaR about extreme losses is conditional 

value-at-risk (CVaR). It is defined as the average VaR beyond the VaR at the corresponding 

confidence level. CVaR measures extreme risk and calculates the risk beyond VaR and is, 

therefore, better suited for risk management in a fat-tailed world. CVaR is a convex function 

of portfolio weights, and is therefore attractive to optimize portfolios (Rockafellar and 

Uryasev, 2002). Table 8 and Table 9 below show the expected excess returns and risk in each 

tail in each sub-period using both the tangency and minimum variance methods. 

 

Table 8: Return and Risk Trade-off using the Tangency Method  

Before Subprime 

Lower tail

Before Subprime 

Upper tail

After Subprime 

Lower tail

After Subprime 

Upper tail

Mean 1.62% 1.35% 2.75% 3.00%

VaR -0.83% -0.64% -1.47% -1.21%

CVaR -0.77% -0.60% -1.39% -1.10%

Mean 1.63% 1.37% 2.73% 3.00%

VaR -0.82% -0.63% -1.49% -1.21%

CVaR -0.76% -0.60% -1.40% -1.10%

Mean 1.62% 1.35% 2.75% 3.00%

VaR -0.83% -0.64% -1.47% -1.21%

CVaR -0.77% -0.60% -1.39% -1.10%

Tangency Method

Gumbel

Clayton

Frank

 
 

Table 9: Return and Risk Trade-off using the Minimum Variance Method 

Before Subprime 

Lower tail

Before Subprime 

Upper tail

After Subprime 

Lower tail

After Subprime 

Upper tail

Mean 1.62% 1.35% 2.75% 2.99%

VaR -0.82% -0.64% -1.48% -1.20%

CVaR -0.77% -0.60% -1.40% -1.09%

Mean 1.63% 1.37% 2.73% 2.99%

VaR -0.82% -0.63% -1.48% -1.20%

CVaR -0.76% -0.60% -1.40% -1.09%

Mean 1.62% 1.35% 2.75% 2.99%

VaR -0.82% -0.64% -1.48% -1.20%

CVaR -0.77% -0.60% -1.40% -1.09%

Clayton

Frank

Minimum Variance Method

Gumbel

 
 

From the two tables above, we can see that returns are higher after the subprime crisis in both 

tails. However, downside risk, as measured by VaR and CVaR at the 95% confidence level, 

has also significantly increased after the subprime crisis. The CVaR measure is always higher 

than the VaR measure because it is a more conservative measure of risk. The downside risk 

in the lower tail of the distribution is higher than in the upper tail in both sub-periods.  

 

The return and risk measures obtained using the tangency and minimum variance methods 

are almost exactly the same. Furthermore, all the copulas give approximately the same return 

and risk measures for both tails in each sub-period. However, when we look at the returns on 

a risk-adjusted basis, we get a different picture. The Sharpe ratio is a measure that calculates 

excess return relative to the total risk of the portfolio, as measured by the standard deviation. 

The higher the Sharpe ratio, the higher the return on a risk-adjusted basis. Therefore, the 

portfolio with the highest Sharpe ratio would be preferred. 
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Table 10: Sharpe Ratio – Tangency Method 

Before Subprime 

Lower tail

Before Subprime 

Upper tail

After Subprime 

Lower tail

After Subprime 

Upper tail

Gumbel 2.25                             1.67                           2.12                         1.09                        

Clayton 2.20                             1.51                           2.20                         1.09                        

Frank 2.25                             1.67                           2.12                         1.09                        

Sharpe Ratio - Tangency Method

 
 

Table 11: Sharpe Ratio – Minimum Variance Method 

Before Subprime 

Lower tail

Before Subprime 

Upper tail

After Subprime 

Lower tail

After Subprime 

Upper tail

Gumbel 2.25                             1.67                           2.12                         1.09                        

Clayton 2.20                             1.51                           2.20                         1.09                        

Frank 2.25                             1.67                           2.12                         1.09                        

Sharpe Ratio - Minimum Variance Method

 
 

The two tables above show that the tangency portfolio and the minimum variance portfolio 

give the same risk-adjusted return for each copula in each tail and each sub-period. Also, the 

Gumbel and Frank copulas give the same Sharpe ratio all the time. However, the Clayton 

copula gives lower Sharpe ratios than the Gumbel and Frank copulas in each tail before the 

subprime crisis. After the subprime crisis, the Clayton copula gives a higher Sharpe ratio than 

both the Gumbel and Frank copulas in the lower tail and all three copulas give the same 

Sharpe ratio in the upper tail after the subprime crisis.  

 

These results show that the Clayton copula is good at modelling left tail dependence in bear 

markets and the Gumbel copula is good at modelling right tail dependence in bull markets.  

 

Figure 6 below shows the efficient frontier generated by the Clayton copula in the lower tail 

before the subprime crisis (see Appendix E and F for the rest of the efficient frontiers before 

and after the subprime crisis). 

 

 

Figure 6: Efficient frontier before subprime: Clayton Copula 



21 

 

The tangency portfolio is the portfolio where the blue line intersects the efficient frontier. 

This portfolio is also the market portfolio. The weights of the assets in this portfolio are 

shown in the figure below (see Appendix G, H, I and J for tangent portfolio and efficient 

frontier weights for Clayton, Frank and Gumbel copulas before and after the subprime crisis). 

 

Figure 7: Weights of tangent portfolio 

 

According to the pie graph above, the ALSI must have the greatest weighting in the market 

portfolio, followed by China’s SCI and then the S&P500 and others. The weights of the 

efficient frontier are shown in the figure below.  

 
Figure 8: Efficient frontier weights 

 

This figure also shows the asset allocation for the efficient frontier in Figure 6. As we move 

to the right, the portfolios become more risky, and the weights of the assets change.  

 

 

4. CONCLUSION 

 

The Gumbel, Clayton and Frank copulas have been used to study tail dependence between 

four emerging market and four developed market stock indices.  The Clayton copula exhibits 

strong left tail dependence and relatively weak right tail dependence. This was highlighted in 

our study by the higher Sharpe ratio given by the Clayton copula in the left tail after the 

subprime crisis. However, it may be that the Clayton copula is good at modelling left tail 

dependence in bear markets and not in bull markets.  
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The Gumbel and Frank copulas give the same Sharpe ratio all the time. Our study is in 

agreement with theory because the Frank copula has shown symmetric dependence in both 

tails. Therefore, it can be used to model outcomes with strong positive or negative 

dependence. According to theory, the Gumbel copula is good at modelling the upper tail of 

the distribution. This was evidenced by the fact that the study shows that the Gumbel copula 

gives a higher risk-adjusted return in the upper tail before the subprime crisis. However, 

perhaps the Gumbel copula is only good at modelling the upper tail of the distribution in bull 

markets and not in bear markets. 

 

Our results have also shown that the weight of emerging market stocks should be lower after 

the subprime crisis. This could be consistent with the flight-to-quality tendency of investors 

during difficult times. It also shows a major rebalancing of equity portfolios that is typical 

when there is a change of sentiment in financial markets. Furthermore, returns have increased 

after the subprime crisis, as investors demand higher returns to compensate them for the 

higher risk.  
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APPENDIX A: MEAN EXCESS FUNCTIONS 
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Figure A1: Mean Excess Plot for ALSI 
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Figure A2: Mean Excess Plot for BOVESPA 
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Figure A3: Mean Excess Plot for SCI 

 

APPENDIX B: SCATTER PLOTS IN UPPER TAIL BEFORE THE SUBPRIME 

CRISIS 

 

 

Figure B1: Clayton Copula Before Subprime – Upper Tail 
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Figure B2: Frank Copula Before Subprime – Upper Tail 

 

 

Figure B3: Gumbel Copula Before Subprime – Upper Tail 

 

APPENDIX C: SCATTER PLOTS IN LOWER TAIL AFTER THE SUBPRIME 

CRISIS 

 

 

 

Figure C1: Clayton Copula After Subprime – Lower Tail 
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Figure C2: Frank Copula After Subprime – Lower Tail 

 

Figure C3: Gumbel Copula After Subprime – Lower Tail 

 

APPENDIX D: SCATTER PLOTS IN UPPER TAIL AFTER THE SUBPRIME 

CRISIS 

 

 
Figure D1: Clayton Copula After Subprime – Upper Tail 

 



28 

 

 
Figure D2: Frank Copula After Subprime – Upper Tail 

 

 

Figure D3: Gumbel Copula After Subprime – Upper Tail 

 

 

APPENDIX E: EFFICIENT FRONTIERS BEFORE THE SUBPRIME CRISIS 

 

 
Figure E1: Clayton Copula Efficient Frontier Before Subprime – Upper Tail 
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Figure E2: Frank Copula Efficient Frontier Before Subprime – Lower Tail 

 
Figure E3: Frank Copula Efficient Frontier Before Subprime – Upper Tail 

 

 
Figure E4: Gumbel Copula Efficient Frontier Before Subprime – Lower Tail 
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Figure E5: Gumbel Copula Efficient Frontier Before Subprime – Upper Tail 

APPENDIX F: EFFICIENT FRONTIERS AFTER THE SUBPRIME CRISIS 

 

 
Figure F1: Clayton Copula Efficient Frontier After Subprime – Lower Tail 

 

Figure F2: Clayton Copula Efficient Frontier After Subprime – Upper Tail 
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Figure F3: Frank Copula Efficient Frontier After Subprime – Lower Tail 

 

 

Figure F4: Frank Copula Efficient Frontier After Subprime – Upper Tail 

 
Figure F5: Gumbel Copula Efficient Frontier After Subprime – Lower Tail 

 

 
Figure F6: Gumbel Copula Efficient Frontier After Subprime – Upper Tail 
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APPENDIX G: TANGENT PORTFOLIO WEIGHTS BEFORE THE SUBPRIME 

CRISIS 

 

 

Figure G1: Clayton Copula Efficient Frontier Before Subprime – Upper Tail 

 

 

Figure G2: Frank Copula Efficient Frontier Before Subprime – Lower Tail 

 

Figure G3: Frank Copula Efficient Frontier Before Subprime – Upper Tail 
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Figure G4: Gumbel Copula Efficient Frontier Before Subprime – Lower Tail 

 

Figure G5: Gumbel Copula Efficient Frontier Before Subprime – Upper Tail 

 

APPENDIX H: TANGENT PORTFOLIO WEIGHTS AFTER THE SUBPRIME 

CRISIS 

 

Figure H1: Clayton Copula Efficient Frontier After Subprime – Lower Tail 
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Figure H2: Clayton Copula Efficient Frontier After Subprime – Upper Tail 

 

 

Figure H3: Frank Copula Efficient Frontier After Subprime – Lower Tail 

 

 
Figure H4: Frank Copula Efficient Frontier After Subprime – Upper Tail 
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Figure H5: Gumbel Copula Efficient Frontier After Subprime – Lower Tail 

 

 

Figure H6: Gumbel Copula Efficient Frontier After Subprime – Upper Tail 

APPENDIX I: EFFICIENT FRONTIER WEIGHTS BEFORE THE SUBPRIME 

CRISIS 

 

 

Figure I1: Clayton Copula Efficient Frontier Before Subprime – Lower Tail 
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Figure I2: Clayton Copula Efficient Frontier Before Subprime – Upper Tail 

 
Figure I3: Frank Copula Efficient Frontier Before Subprime – Lower Tail 

 

 

Figure I4: Frank Copula Efficient Frontier Before Subprime – Upper Tail 
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Figure I5: Gumbel Copula Efficient Frontier Before Subprime – Lower Tail 

 

 

Figure I6: Gumbel Copula Efficient Frontier Before Subprime – Upper Tail 

APPENDIX J: EFFICIENT FRONTIER WEIGHTS AFTER THE SUBPRIME 

CRISIS 

 

 

Figure J1: Clayton Copula Efficient Frontier After Subprime – Lower Tail 
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Figure J2: Clayton Copula Efficient Frontier After Subprime – Upper Tail 

 

Figure J3: Frank Copula Efficient Frontier After Subprime – Lower Tail 

 

 
Figure J4: Frank Copula Efficient Frontier After Subprime – Upper Tail 

 

Figure J5: Gumbel Copula Efficient Frontier After Subprime – Lower Tail 
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Figure J6: Gumbel Copula Efficient Frontier After Subprime – Upper Tail 

 


