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Abstract 

Recently, financial engineering has brought a significant number of interest rate derivative 

products. Amongst the variables used in pricing these derivative products is the short-term 

interest rate. This research article examines various short-term interest rate models in 

continuous time in order to determine which model best fits the South African short-term 

interest rates. Both the linear and nonlinear short-term interest rate models were estimated. 

The methodology adopted in estimating the models was parametric approach using Quasi 

Maximum Likelihood Estimation (QMLE). The findings indicate that nonlinear models seem 

to fit the South African short-term interest rate data better than the linear models 
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1. INTRODUCTION 

 

The bond market has been experiencing a significant progress in recent years. This market 

has started to even overtake the stock market, which used to be the main market for raising 

funds. This was observed by the immense increase in the trading volume of fixed income 

securities and derivatives, Fan (2005). The market has also begun to play a more prominent 

role in the South African market. Aling and Hassan (2012) concurred and argued that the 

South African bond market has become one of the largest amongst the emerging markets, 

and it has become the world’s sixth most liquid turnover market. Svoboda (2002) further 

adds that growth in this market has brought with it an ever-increasing volume and range of 

interest rate dependent derivative products known as interest rate derivatives.  

Amongst the variables used in pricing the derivative products is the short-term interest rate. 

Short term interest rate is complex to model as it comes with different properties. One of the 

properties being that it follows stochastic process, which present random variable that 

changes overtime. Such processes are then modelled in continuous time, which explains 

why most of the short-term interest rates are set in continuous time framework.  

An amount of work on modelling the short-term interest rate has been performed with the 

intention of understanding its stochastic behaviour. More work was also done in determining 

the model that can capture particular features of observed interest rate movements using 

different datasets. This is because short-term interest rate serves as a more fundamental 

instrument in many financial applications. For instance, Chan, Karolyi, Longstaff and 

Sanders (1992), Longstaff and Schwartz (1992) compared the performance of eight 

parametric short-term interest rate models using US Treasury Bill to determine how they 

capture the stochastic behaviour of the short-term interest rate. Likewise, Sanford and Martin 

(2006) used Australian data to compare alternative single-factor models that can fit the 

Australian data. 

Niizeki (1998) further utilised Japan and United Kingdom (UK) to fit various models, and 

found that Constant Elasticity of Volatility (CEV) model explains the UK short-term interest 

rate better, while Vasicek (1977) model was found to be better in explaining the Japanese 

short-term interest rate. Sun (2003) compared single-factor interest rate models in five 

countries (US, UK, Canada, Germany and Japan) and found different results across 

countries. In addition to that, Gray and Treepongkaruna (2006) made a comparison in 

eleven countries (US, UK, Japan, France, Germany, Italy, Switzerland, Australia, Hong 
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Kong, Singapore and Thailand) and came with the same conclusion as Sun (2003) that 

different markets require different models.  

It is increasingly clear that a majority of the above-mentioned countries are developed 

countries. To the researcher’s knowledge, South Africa is also one of the countries where 

limited research has been conducted on understanding the dynamics of short-term interest 

rates. Owing to the fact that more studies on modelling the short-term interest rates have 

focused on a few lead countries, the interest rate characteristics of those countries are well 

known. For example, it is well known that US interest rate datasets exhibit a mean reversion 

and non-constant volatility. However, it is difficult to confidently state the characteristics for 

most developing countries due to limited studies conducted.  It thus remains essential for 

developing countries to start understanding the dynamics followed by the short-term interest 

rate of their countries so that their statistical features can be known. More precisely, the 

importance for each country to conduct such a study comes from the fact that no country can 

rely on the model that fits other countries, as the dynamics and context of countries differ. 

The rest of the paper will be structured as follows: Section 2 will be devoted to reviewing 

various literatures that have been conducted with almost exclusive focus on linear models. 

Section 3 will introduce the data and methodology of the study. Section 4 will report on the 

results. Finally, Chapter 5 will summarise the key findings.  

2. THEORETICAL BACKGROUND 

 

This section describes the theory behind the short-term interest rate modelling, starting with 

the expression of the continuous time models. Continuous-time models are presented in the 

form of stochastic differential equation (SDE), where SDE is a mathematical equation used 

to model the stochastic process in continuous time. 𝑑𝑋𝑡 =  𝜇(𝑋𝑡, 𝜃)𝑑𝑡 +  𝜎(𝑋𝑡, 𝜃)𝑑𝑊𝑡,                                                                              (1) 

Equation (1) consists of two components; the first being the drift (conditional mean) and the 

second being the diffusion (conditional variance) function. Applying the SDE to the short-

term interest rate requires one to simply put the specifications on the drift and diffusion. The 

drift is typically specified as linear, nonlinear, or constant, while the specification for the 

diffusion is either constant or heteroskedastic. Various models are uncovered through 

applying these different specifications, which is what differentiate these models. A number of 

single-factor models are illustrated in table 1, with more description found in Annexure 1. 
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Table 1: Linear and nonlinear short-term interest rate theoretical models 

Models Models Specifications 

Merton (1973) 𝑑𝑟𝑡 = (𝛼0)𝑑𝑡 +  𝛽2𝑑𝑊𝑡 

CEV1 (1975) 𝑑𝑟𝑡 = (𝛼1𝑟𝑡)𝑑𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡 
Vasicek (1977) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 + 𝛽2𝑑𝑊𝑡 

Dothan (1978) 𝑑𝑟𝑡 =  𝛽2𝑟𝑡𝑑𝑊𝑡  
B & S2 (1980) 

GBM3 (1983) 

𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 +  𝛽2𝑟𝑡𝑑𝑊𝑡 𝑑𝑟𝑡 =  (𝛼1)𝑑𝑡+ 𝛽2𝑟𝑡𝑑𝑊𝑡  
CIR4 (1985) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 + 𝛽2𝑟𝑡1/2𝑑𝑊𝑡 
CKLS5 (1992) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡 
AS6 (1996) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼2𝑟𝑡2 + 𝛼3𝑟𝑡 ) 𝑑𝑡 + 𝛽0+𝛽1𝑟𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡 

CHLS7 (1997) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼2𝑟𝑡2 + 𝛼3𝑟𝑡 ) 𝑑𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡 
AG8 (1999) 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼2𝑟𝑡2)𝑑𝑡 + 𝛽2𝑟𝑡1/2𝑑𝑊𝑡 

 

Short-term interest rate models consist of a number of parameters, and each parameter has 

an intuitive meaning. These parameters are explained by using CKLS as a special case 

model since it has been used widely in the literature. 

                                                           
1
Constant Elasticity of Variance 

 
2
Brennan and Schwartz 

 
3
 Geometric Brownian Motion 

4
Cox-Ingersoll-Ross 

 
5
Chan, Karolyi, Longstaff and Sanders 

 
6
Ait-Sahalia 

 
7
Conley, Hansen, Luttmer and Scheinkman 

 
8
Ahn and Gao 
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𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 +  𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡                                                                            (2) 

 

CKLS model, as presented in equation (2), is made up of the drift and diffusion.  

Drift parameters are given as follows: 𝛼0= drift −𝛼1 = mean reversion (speed of adjustment) 𝛼0 𝛼1⁄  = long-run mean of the short-term interest  

Mean reverting means that the process tends to revert back to its constant long-run mean. 

More specifically, 
𝛼0 𝛼1⁄ implies that, when 𝛼1 has larger values, the response of the short-

term rate to any deviation from the long run will be quick relative to when the value is small 

(Koedijk et al., 1997). 

Diffusion parameters are given as follows:  𝛽2 = volatility of the short-term rate 𝛽3 = level effect of the short-term rate  

The level effect of the short-term rate allows volatility to depend on the level of interest rate. 

In instances where 𝛽3 > 1, the short rate becomes highly sensitive to the level of interest 

rate and often leads to a non-stationary process. When the level effect is zero, it makes the 

variance component to be constant.  

Finally, the stochastic process is modelled using 𝑑𝑊𝑡, which is a Wiener process used to 

model random movements in financial engineering, where 𝑑𝑊𝑡 =  𝜀(𝑡)𝑑𝑡 and 𝜀(𝑡) is the 

white noise (generalised stochastic process).  

Annexure 2 and 3 illustrate the restrictions imposed on various models. A clear depiction 

made from Annexure 3 and 4 is that the most suitable general linear model is the CKLS, as it  

nests all the linear models. The AS model, on the other hand, is a general model for both the 

linear and nonlinear models, as it nests all the linear and nonlinear models. AS is the 

unrestricted model for all models, while CKLS being an unrestricted model for linear models. 
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2.1 EMPIRICAL LITERATURE ON THE SHORT-TERM INTEREST RATE 

The work of Merton (1973) and Black and Scholes (1973) laid the foundation for the theory 

of pricing derivatives securities using continuous time models. Later on developments of 

short-term interest rate models which were also set in continuous time increased. These 

models were developed with the aim of obtaining better results that can explain the 

behaviour of interest rates. Hong, Li and Zhao (2004) categorised these models into single-

factor models, where the level of interest rate is the only factor allowed to affect the short-

term rate. GARCH models, which model persistence volatility clustering in interest rates. 

Markov Regime-Switching models, which capture the time-varying behaviour of interest 

rates such as business cycle and changes in monetary policy. Finally, the Jump-diffusion 

models, which caters for economic shocks, government interventions and news 

announcements. The GARCH models, Markov Regime-Switching models and the Jump-

diffusion models are extended from the single-factor models.  

Single-factor models were the first arbitrage free factor models to be used in the history of 

short-term interest rate models. Jiang (1998) favoured the single-factor models for the 

reasons that these models offer a stable and consistent model with a parsimonious structure 

for the fundamental behaviour of interest rates and term structure, they are easy to 

implement from a computational point of view and also that they provide sanity checks on 

complex models. Critics came from Hong et al. (2004) who argued that the single-factor 

models are unable to capture the rich behaviour of interest rate volatility. In addition, Jones 

(2003) affirms that single-factor models are unsatisfactory in their description of short-rate 

dynamics, and their implications for other security prices are severe. In addition to the single-

factor model, other models suggested such GARCH models, Markov Regime-Switching 

models Jump models, and non-parametric regression (Muteba Mwamba, 2011) had some 

advantages and also received critics.  

The extended models (GARCH, Markov Regime-Switching and Jump) often containing more 

complex data-generating processes and are complicated to model as compared to single-

factor models. The complexity arising from over-parameterising as they contain more 

parameters than simple models. Hong et al. (2004) stressed that an extensive search for 

more complicated models that are over-parameterised could lead to excessive in-sample 

data snooping, and the resulting model might not work well in an out-sample forecast. The 

question of which models to choose, amongst others, poses a serious concern. Models can 

be selected, but what is vital is to know which model is more appropriate than the other in 

various cases. Chapman and Pearson (2000) also mentioned that determining the 
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appropriateness of the models also comes down in the estimation results of the drift and 

diffusion functions. 

Estimations of the drift and diffusion parameters are the most critical steps in any SDE 

modelling. The most common assumption on the drift is the linear mean reversion property. 

Hull (2009) elaborated that, it is expected for the interest rate to experience a mean 

reversion, as when interest rates goes up or down, this rate will always go back to its long-

run mean reversion through the Central Bank’s intervention.  

However, the mean-reversion characteristic is hardly observed throughout the entire 

distribution. Stanton (1997) and Jiang (1998) evidenced that the short-rate exhibits very little 

mean reversion or behave like a random walk below the 14% level but have an extreme 

mean reversion beyond that. Moreover, Conley, Hansen, Luttmer and Scheinkman (1997) 

found a nonlinear drift, where the drift function was non-zero only for rates below 3% or 

above 11%. Ait-Sahalia (1996) also found a nonlinear drift since the interest rate behaves 

like a random walk over the entire historical range, and then reverts towards the middle of 

this range only when the rates become exceptionally low or exceptionally high.  

Jones (2003) was amongst those who favoured the nonlinearity as he believed nonlinearity 

to be an indispensable and most relevant feature for many economic issues. Furthermore, 

he argued that, nonlinearity can offer a potential improvement in fixed income pricing, as it 

has the potential to explain a number of the outstanding puzzles about the term structure. 

Gray and Treepongkaruna (2006) also concurred with Jones’ (2003) view by stressing that 

models with nonlinearity in both drift and diffusion are needed to fully capture the important 

features of the behaviour of a short-term rate.  

In South Africa, studies conducted thus far include Aling and Hassan (2012), who compared 

selected single-factor linear drift models to determine which of these models fit the South 

African interest rate data. In addition, Svoboda (2002) investigated various interest rate 

models and their calibration in the South African market, with special focus on the 

development of interest rate models. It should be noted that these few studies conducted in 

South Africa focused only on comparing the single-factor short-term interest rate linear 

models and none on nonlinear models. Nonlinearity is one of the fundamental issues that 

came out often in the literature and majority of the studies mostly assume linear 

specifications and left out nonlinearity. This paper then aims to extend part of the work that 

has been conducted, more in particular by fitting the nonlinear models which are yet to be 

widely explored in developing countries. Thus, it will provide the first comprehensive 

empirical analysis in this research area in South Africa. 
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This study will thus answer the following questions: 

 Whether linear or nonlinear short-term interest rate models fit the South African 

interest rate data. 

 Which short-term interest rates models performs better between the linear and 

nonlinear models?  

 What are the key drift and diffusion features that capture the South African interest 

rate data? 

3. DATA AND METHODOLOGY  

 

3.1 Data Analysis 

The study is conducted using three types of South African interest rate time series, namely 

three months Treasury Bill (TBR3), Repurchase rate (REPO), and the Johannesburg 

Interbank Agreed Rate (JIBAR). These are the commonly used interest rates in South Africa, 

with the TBR3 being used as a proxy for the short-term risk-free rate in South Africa. All the 

data series were sourced from I-Net Bridge9. The frequency used in all interest rates was 

weekly, with the sample period covering from the third week of March 1998 to the second 

week of April 2013.  

The time series trends are also plotted to visualise how interest rates evolve with time.   

 

Figure 1: Short-term Interest Rates Evolution 

                                                           
9
 I-Net Bridge is a South African Financial Service company, with the core business of providing economic data, 

financial market data, and corporate market intelligence in South Africa, (en.wikipedia.org) 
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Note: The time series evolution covers three interest rates. For all the interest rates, the data 

starts from March 1998 to April 2013. 

As illustrated in Figure 1, interest rates moved together in the same direction even though 

there was a slight timing difference in their movements. These three interest rates series 

reached their respective historical high levels during mid-1998, mid-2001 and mid-2008. The 

trend in mid-1998 and mid-2001 corresponds to the rand crises that took place in South 

Africa. Since it was the same crisis that occurs in different periods, they were thereafter 

named the first and second episode of the rand crises.  

-3
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0
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Figure 2: Differenced Short-term Interest Rates Evolution 

 

Note: The data of the original time series was transformed to assess the change from period 

to period. Transforming entails taking the difference of current and previous period data.  

 

Figure 2 represents the short-term interest rates after transforming the data using the first 

difference. As compared to Figure 1, the persistence of autocorrelation disappears after 

taking the first difference. High interest rates are suddenly followed by low interest rates in all 
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cases. From a monetary policy perspective, it is known that when interest rates reach their 

historical heights, there is less demand. To further stimulate the economy, central banks 

intervene by taking dramatic measures of controlling inflation. The bank does so by indirectly 

reducing the interest rates – the opposite also applies. Such a concept explains why short-

term interest rates often fall after reaching their highest levels.  

The unit root and autocorrelation tests were run on the data using Augmented Dickey-Fuller 

(ADF) and Phillips and Perron (PP) tests, (Annexure 4). The ADF and PP test shows that the 

null hypopaper of unit root was rejected which implied that the interest rates are stationary. 

After taking the first difference, all the rates which were non-stationary became stationary. 

Meanwhile, Autocorrelations were assessed using the Autocorrelation function (ACF). The p-

values from the Autocorrelation were all less than 0.05, which means that the null hypopaper 

of stationary was rejected, and concluded that the data was non-stationary. 

3.2 Descriptive Statistics 

A descriptive statistics for the three months Treasury Bill (TBR3), Repo rate (REPO) and 

Johannesburg Interbank Agreed Rate (JIBAR) together with their graphs in levels and 

differences is outlined in (Annexure 5). All the interest rates demonstrate positive skewness, 

which confirmed that the interest rates were not normal. Moreover, the p-values of the 

Jarque-Bera were also less than 0.05, which confirmed that the null hypopaper of normality 

distribution should be rejected. The non-normality distributions were also supported by the 

higher statistic moments such as positive skewness and leptokurtic behaviour.  

3.3 Methodology 

In this study, eight short-term interest rate linear models together with three nonlinear 

models are assessed (table 1). Selected short-term interest rate linear models estimated 

were Merton (1973), Vasicek (1977), CIR (1985) and CKLS, (1992), GBM (1983), B & S 

(1980), CEV (1975) and Dothan (1978). In addition to these linear models, the well-known 

nonlinear models estimated were AS (1996), CHLS (1997), and AG (1999).  

Interest rate models have traditionally been expressed and modelled in continuous time, as 

in table 1. However, most financial data are available in discrete time. Since it is impossible 

to model continuous time equations practically, as a first step, the continuous time models 

were discretised using Euler-Maruyama method to approximate the continuous time models. 

Discretisation is the processes used to convert a continuous time equation into a form that 

can be used to obtain numerical solutions. The discretised models are represented in table 

2.  
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Table 2: Discretised short-term interest rate model equations 

Models Discretised Equations 

Merton (1973) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡√∆𝑡𝜀𝑡+1 

CEV (1977) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼1𝑟𝑡)∆𝑡 +  𝛽2(𝑡+1)𝑟𝑡𝛽3√∆𝑡𝜀𝑡+1 

Vasicek (1977) 𝑟𝑡+1 −  𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)∆𝑡 + 𝛽2(𝑡+1)√∆𝑡𝜀𝑡+1 

Dothan (1978) 𝑟𝑡+1 − 𝑟𝑡 =  𝛽2(𝑡+1)𝑟𝑡√∆𝑡𝜀𝑡+1 

GBM  𝑟𝑡+1 −  𝑟𝑡 = (𝛼1𝑟𝑡)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡√∆𝑡𝜀𝑡+1 

B & S (1980) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡√∆𝑡𝜀𝑡+1 

CIR (1985) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡12√∆𝑡𝜀𝑡+1 

CKLS (1992) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡𝛽3√∆𝑡𝜀𝑡+1 

AS (1996) 𝑟𝑡+1 −  𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼0𝑟𝑡2 + 𝛼3𝑟𝑡 ) ∆𝑡+ 𝛽0+𝛽1𝑟𝑡 + 𝛽2(𝑡+1)𝑟𝑡𝛽3√∆𝑡𝜀𝑡+1 

CHLS (1997) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼2𝑟𝑡2 + 𝛼3𝑟𝑡 ) ∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡𝛽3√∆𝑡𝜀𝑡+1 

AG (1999) 𝑟𝑡+1 − 𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡 + 𝛼2𝑟𝑡2)∆𝑡 + 𝛽2(𝑡+1)𝑟𝑡1/2√∆𝑡𝜀𝑡+1 

 

Note: The continuous time short-term interest rate equations were discretised so that 

numerical solutions of the parameters can be obtained. 𝜀𝑡 is the error term and assumed to 

be IID  ̴ N(0,1), while ∆t is the time between each interval. The approximation will be more 

accurate if ∆t is small. 

Once the continuous time equations were discretised, the Quasi Maximum Likelihood 

Estimation (QMLE) technique was employed to obtain the parameters which were estimated 

using R10 programme.  Unlike the maximum likelihood, which should strictly be based on the 

                                                           
10

 R programme is a language and environment for statistical computing and graphics. It  provides a wide 

variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, 

classification, clustering) and graphical techniques, and is highly extensible (http://www.r-project.org) 
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correct distribution, this technique allows a departure from the true distribution. The method 

itself entails finding the most likely value for the parameter based on the dataset available.  

Other tests conducted were the Likelihood Ratio Test (LRT) and Akaike Information Criterion 

(AIC) and Schwartz Bayesian Information Criterion (SBIC). LRT was used to test the 

parameter restrictions reported. This test is a convenient way of checking whether certain 

parameter restrictions are supported by the data through comparing the restricted and 

unrestricted models. LRT was conducted separately on the linear models, and thereafter on 

linear models combined with nonlinear models in order to understand their statistical 

significance and the effect of adding more parameters on the models.  LRT makes use of the 

estimated maximum log-likelihood values from the models, as illustrated in equation 3.1. For 

each test, the log-likelihood values for the unrestricted and restricted models were used. The 

LRT equation is defined as follows: 

𝐿𝑅𝑇 =  −2 𝑙𝑜𝑔 (𝐿𝑅𝐿𝑢) =  2[𝑙𝑜𝑔(𝐿𝑢) − 𝑙𝑜𝑔(𝐿𝑅)]~𝜒𝑚2                                                        (3)  

where  

m is the number of restrictions imposed 𝐿𝑅 is the log-likelihood for restricted model  𝐿𝑢 is the log-likelihood model for unrestricted model  

 

The hypopaper test was checking whether restrictions imposed were valid. The null 

hypopaper being that restrictions are valid, while the alternative being that restrictions are 

not valid and are statistically significantly different from the imposed restriction. The decision 

of whether to reject or not to reject the null hypopaper was based on the chi-square values 

and their critical values.  

Meanwhile, two of the information criteria used were AIC and SBIC. These methods also rely 

on the estimated log likelihood and the number of parameters. It is known that a model with 

more parameters is more likely to fit the in-sample data better than the restricted model; 

these methods perform the same task of penalising models with more parameters. Unlike 

the AIC, the SBIC imposes a larger penalty on additional parameters than AIC. SBIC was 

also used as an additional criterion to overcome such problems as the models used in this 

paper, which have different numbers of parameters.  𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔 (𝐿)                                                                                               (4)                     𝑆𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔𝐿                                                                                        (5) 
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where  

n is the number of observations 

k is the number of free parameters 

 

Models with the smallest AIC and SBIC are preferred. With AIC, the lowest model to be 

selected implies that it is closer to the true estimates. Meanwhile, SBIC, which is a Bayesian 

measure, implies that the lowest model to be chosen is more likely to be true.  

4. RESULTS 

The results cover parameter estimations for three interest rates for various models, the 

likelihood ratio test, and the AIC and BIC results.  

 

Table 3: TBR3 Parameter estimates for the short-term interest rate models 

 𝛼0 𝛼1 𝛼2 𝛼3 𝛽0 𝛽1 𝛽2 𝛽3 Log-

likelihood 

Merto

n 

-0.01 

(-1.37) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.21 

(39.4)*** 

- 

- 

-779.24 

CEV - 

- 

-0.001 

(-1.42) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.01 

(-30.)*** 

1.500 

(97.98)**

* 

-838.78 

Vasic 0.01 

(0.37) 

-0.002 

(-0.8) 

- 

- 

- 

- 

- 

- 

- 

- 

0.24 

(31.6)*** 

- 

- 

-225.25 

CIR 0.006 

(0.28) 

-0.002 

(-0.69) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.07 

(-30.)*** 

- 

- 

-523.61 

Doth - 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-0.02 

(-47)*** 

- 

- 

-776.44 

GBM - 

- 

-0.001 

(-1.41) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.02 

(-35)*** 

- 

- 

-737.92 

B & S 0.004 

(0.22) 

-0.001 

(-0.61) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.02 

(32.9)*** 

- 

- 

-721.29 

CKLS 0.005 

(0.26) 

-0.002 

(-0.63) 

- 

- 

- 

- 

- 

- 

- 

- 

0.01 

(47.1)*** 

1.39 

(68.5)*** 

-802.92 

CHLS -0.00 

(0.00) 

-0.00 

(-0.00) 

-0.00 

(-0.01) 

-0.00 

(-0.00) 

- 

- 

- 

- 

0.018 

(0.00) 

1.81 

(25.30)**

1223.48 
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* 

A & G -0.000 

(-0.00) 

-0.000 

(-0.01) 

-0.00 

(-0.02) 

- 

- 

- 

- 

- 

- 

-0.034 

(0.00) 

- 

- 

1239.06 

AS -0.000 

(-0.00) 

-0.000 

(-0.00) 

-0.00 

(-0.01) 

-0.001 

(-0.00) 

-0.64 

(0.00) 

0.18 

(0.0) 

-2.73 

(0.00) 

-5.00 

(-345)*** 

1234.57 

 

 

Table 4: REPO Parameter estimates for the short-term interest rate models 

 𝛼0 𝛼1 𝛼2 𝛼3 𝛽0 𝛽1 𝛽2 𝛽3 Log 

likelihood 

Merton -0.013 

(-1.4) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.258 

(39.)*** 

- 

- 

-424.66 

CEV - 

- 

-0.001 

(-1.5) 

- 

- 

- 

- 

- 

- 

- 

- 

0.0081 

(73.)*** 

1.459 

(88)*** 

-507.64 

Vasice

k 

0.013 

(0.45) 

-0.003 

(-1.0) 

- 

- 

- 

- 

- 

- 

- 

- 

0.288 

(33)*** 

- 

- 

-115.55 

CIR 0.008 

(0.315) 

-0.002 

(-0.8) 

- 

- 

- 

- 

- 

- 

- 

- 

0.0801 

(32.)*** 

- 

- 

-180.57 

Dothan - 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-0.020 

(-46)*** 

- 

- 

-422.01 

GBM - 

- 

-0.001 

(-1.45) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.023 

(-36.)*** 

- 

- 

-399.11 

B & S 0.005 

(0.239) 

-0.001 

(-0.7) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.024 

(34.)*** 

- 

- 

-389.24 

CKLS 0.004 

(0.202) 

-0.002 

(-0.63) 

- 

- 

- 

- 

- 

- 

- 

- 

0.009 

(49.)*** 

1.426 

(77)*** 

-487.45 

CHLS -0.000 

(-0.00) 

-0.000 

(-0.00) 

-0.000 

(-0.01) 

-0.000 

(-0.00) 

- 

- 

- 

- 

0.017 

(0.000) 

1.826 

(29)*** 

1424.81 

A & G -0.003 

(-0.01) 

-0.000 

(-0.00) 

-0.000 

(-0.03) 

- 

- 

- 

- 

- 

- 

-0.035 

(0.000) 

- 

- 

1444.83 

AS -0.000 

(-0.00) 

-0.001 

(-0.00) 

-0.000 

(-0.00) 

-0.000 

(-0.00) 

-4.609 

(-0.00) 

0.330 

(-0.00) 

6.337 

0.000 

-0.407 

-830*** 

1424.41 
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Table 5: JIBAR Parameter estimates for the short-term interest rate models 

 𝛼0 𝛼1 𝛼2 𝛼3 𝛽0 𝛽1 𝛽2 𝛽3 Log- 

likelihood 

Merton -0.010 

(-1.54) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.189 

(39.4)*** 

- 

- 

-864.31 

CEV - 

- 

-0.001 

(-1.6) 

- 

- 

- 

- 

- 

- 

- 

- 

0.009 

(40.7)*** 

1.326 

(64)*** 

-864.99 

Vasice 0.004 

(0.169) 

-0.002 

(-0.63) 

- 

- 

- 

- 

- 

- 

- 

- 

0.222 

(29.9)*** 

- 

- 

-357.80 

CIR 0.002 

(0.110) 

-0.001 

(-0.58) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.065 

(-29)*** 

- 

- 

-624.89 

Doth - 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-0.015 

(-50)*** 

- 

- 

-860.22 

GBM - 

- 

-0.001 

(-1.57) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.019 

(-34.)*** 

- 

- 

-810.55 

B & S 0.002 

(0.099) 

-0.001 

(-0.56) 

- 

- 

- 

- 

- 

- 

- 

- 

-0.020 

(-31.)*** 

- 

- 

-790.57 

CKLS 0.002 

(0.134) 

-0.001 

(0.58) 

- 

- 

- 

- 

- 

- 

- 

- 

0.011 

(27.9)*** 

1.291 

(51.2)*** 

-837.73 

CHLS 0.009 

(0.004) 

-0.003 

(0.01) 

0.000 

(0.58) 

0.006 

(-0.01) 

- 

- 

- 

- 

0.017 

(0.000) 

1.814 

(23.6)*** 

1267.58 

A & G -0.000 

(0.002) 

-0.001 

(-0.01 

-

0.000 

(0.01) 

- 

- 

- 

- 

- 

- 

-0.034 

(0.00) 

- 

- 

1296.17 

AS 0.007  

(0.00)     

-0.003 

(-0.01) 

  

0.000 

 (0.01) 

0.005 

(0.00) 

-

5.000 

(0.00) 

0.31

8 

(0.0) 

6.322 

(0.000) 

-0.326 

(-99)*** 

1277.01 

 

Note: Tables 3 to 5 report the parameter estimation of single-factor models, which includes 

the linear and nonlinear models. The estimated parameters represent the parameters of the 

drift and diffusion. These parameters were estimated using the Quasi Maximum Likelihood 

Estimation method. Numbers in parentheses are t-statistics. (***) represent significance level 

at 1%. 

Tables 3 to 5 report parameter estimates from the discretised short-term interest rate 

models. The main elements to capture from these results are the mean reversion, the 
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volatility performance and the impact of level effect on volatility. The estimates of mean 

reversion across the linear and nonlinear models represented by 𝛼0, 𝛼1 and 𝛼2 are all found 

to be statistically insignificantly different from zero. As expected, the  𝛼1 parameters in all 

models have negative values. Sun (2003) mentioned that the negative values ensure that 

the parameter is consistent with the interpretation that it represents the mean-reverting 

coefficient. Even though the sign is consistent with the theory, these coefficients still remain 

insignificant. This was also the case for nonlinear models, where their individual drift 

parameters all came out to be insignificant. These findings are similar to that of Chan et al. 

(1992), who concluded that there was a weak evidence of mean reversion in all the short-

term interest rate models, implying that the drift component might not be as relevant as 

expected. 

The diffusion (𝛽2) parameter results, on the other hand, are found to be highly significant,  

with their t-statistics ranging from 30 to 90 for all the linear models across different interest 

rates. With nonlinear models, different results are observed. Their diffusion parameters are 

all highly insignificant and even zero in some cases.  These results might be attributed to 

over-parameterisation which has been shown to affect the significance of the estimates. 

Thus adding more parameter on the diffusion has lessened the significance of parameters. 

When reviewing models separately in order to determine where the diffusion parameters are 

more significant, tables 4.1, 4.2 and 4.3 reveal that models such as CKLS and CEV, which 

allow volatility to be a function of the level effect, have the highest volatilities.  

In addition, the level effect (𝛽3), which measures the sensitivity of interest rate volatility with 

respect to the interest rate, was also intensely analysed. The level effect is represented in 

two situations. First, there are models that restrict the level effect to a particular value (CIR, 

Dothan and GBM). Secondly, there are models in which the level effect is estimated directly 

from the data (CKLS, CEV, AS and CHLS). The analysis of the level effect is mainly to check 

the dependence of volatility on the level effect.  

An obvious observation across these models is that models tend to improve in the presence 

of level effect, regardless of whether the level effect is restricted by some values or it is 

estimated within the model. The CEV, CKLS, AS and CHLS are models that required the 

level effect parameter to be estimated by the data. Interestingly, they all reported values 

greater than one, with nonlinear models even higher than two. These values are higher as 

compared to the restricted level effect values on other models. Often, larger values of level 

effect imply non-stationary volatility. Comparison of the overall level effect models points that 

those with level effect less than one tend to be highly significant as compared to those with 

level effect of less and equals to one. Even when level effect is restricted to be less and 
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equals to one, like in other models, the performance of these models are better than when 

the level effect is zero. This suggests that level effect is essential in modelling the interest 

rate dynamics in South Africa. Another interesting observation across the three interest rates 

is that REPO tends to differ significantly to the TBR3 and JIBAR. Values of REPO, in all 

cases, were found to differ highly with those of TBR3 and JIBAR.  

In terms of the maximum log-likelihood values, as models becomes more complex, that is, 

moving from linear to nonlinear models, their log-likelihood values improve. Nonlinear 

models seem to have larger log-likelihood values as compared to the linear models. 

According to Das (2002), larger and positive values of log-likelihood are due to variance of 

conditional changes in interest rate which is of order ∆t, and less than 1. These higher 

values suggest that nonlinear models provide better fit than linear models.  

4.2 Likelihood Ratio Test  

This test was conducted to test whether restrictions imposed by various models were 

statistically significantly different from their assumed parameter restrictions. The test makes 

use of the log-likelihood values as reported in tables 3 to 5.  In conducting this test, the LRT 

for only the linear models was firstly considered in isolation in order to determine the validity 

of their parameter restriction with the CKLS model. Secondly, LRT was conducted across 

the linear and nonlinear models as linear models were found to be special cases of the 

nonlinear models.  

Table 6: Likelihood Ratio Test for linear short-term interest rate models 

  TBR3 REPO JIBAR    

Model LRT P-value LRT P-value LRT P-value d.o.f Crit-value 

Merton 47.37*** 0.00045 125.58*** 0.00006 53.15*** 0.00035 2 5.99 

CEV 71.72** 0.00019 40.37** 0.00061 54.52*** 0.00034 1 3.84 

Vasicek 1155.34*** 0.00000 1206.00*** 0.00000 959.86*** 0.00000 1 3.84 

CIR 558.61*** 0.00000 613.76*** 0.00000 425.76*** 0.00001 1 3.84 

Dothan 52.95*** 0.00036 130.88*** 0.00006 44.97*** 0.00049 3 7.81 

GBM 130.00*** 0.00006 176.68*** 0.00003 54.32*** 0.00034 2 5.99 
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B & S 163.25*** 0.00004 196.42*** 0.00003 94.32*** 0.00011 1 3.84 

Note: LRT was calculated using the following equation: 𝐿𝑅𝑇 =  −2 log (𝐿𝑅𝐿𝑢) =  2[log(𝐿𝑢) −log(𝐿𝑅)]~𝜒𝑚2 . These results are based on restriction table 3.2 in Chapter 3. (*),(**) and  (***) 

represent significance level at 10%, 5% and 1% respectively.  

 

Table 6 reports the critical values of the chi-squared at different significance levels. These 

values are way below the calculated chi-squared values. Based on the decision rule, a large 

value of the chi-squared value indicates that the alternative hypopaper should be favoured 

over the null hypopaper. In this case, the null hypotheses are rejected at 1% significance 

level since the computed chi-squared are greater than their corresponding critical values. 

The rejection of the null hypopaper implies that the restrictions for all models are statistically 

significantly different from zero. This implies that the restrictions imposed by the restricted 

model were not valid; thus, the test favours the CKLS unrestricted modelling of other linear 

models, i.e. with the joint test, there is still no evidence of linear mean reversion in Vasicek, 

B & S and CIR models. 

 

Table 7: Likelihood Ratio Test for linear and nonlinear short-term interest rate models 

  TBR3  REPO JIBAR     

  LRT P-value LRT P-value LRT P-value d.o.f Crit-values 

Merton 4027.7*** 0.0000 3698.2*** 0.0000 4282.62*** 0.0000 6 12.6 

CEV 4146.7*** 0.0000 3864*** 0.0000 4283.9*** 0.0000 5 11.1 

Vasicek 2919.7*** 0.0000 2618*** 0.0000 3269.6*** 0.0000 5 11.1 

CIR 3516*** 0.0000 3210*** 0.0000 3803.72*** 0.0000 5 11.1 

Dothan 4022.1*** 0.0000 3692.0*** 0.0000 4274.4*** 0.0000 7 14.1 

GBM 3945.0*** 0.0000 3647.1*** 0.0000 4175.2*** 0.0000 6 12.6 

B & S 3911.8*** 0.0000 3627.3*** 0.0000 4135.2*** 0.0000 5 11.1 

CKLS 4075.0*** 0.0000 3823.7*** 0.0000 4229.5*** 0.0000 4 9.5 
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CHLS 22.2*** 0.0000 0.79 0.4564 18.8*** 0.0000 2 5.9 

A & G 8.9*** 0.0001 40.8*** 0.0000 38.3*** 0.0001 4 9.5 

Note: LRT was calculated using the following equation: 𝐿𝑅𝑇 =  −2 log (𝐿𝑅𝐿𝑢) =  2[log(𝐿𝑢) −log(𝐿𝑅)]~𝜒𝑚2 . These results are based on restriction table 3.3 in Chapter 3. (*),(**) and  (***) 

represent significance level at 10%, 5% and 1% respectively. CHLS and A & G are nonlinear 

models. 

The results in table 7 have been estimated using the same approach as in table 6, but 

adding the nonlinear models. When adding the nonlinear models, the unrestricted model 

becomes the AS model, while the rest of the models are restricted models. The significant 

difference between the linear and nonlinear models is identified in table 8. This is evident 

from large LRT values on linear models and small LRT values on nonlinear models. Similar 

to table 6, the null hypotheses for all the models were rejected at 1% level with the exception 

of CHLS model. CHLS model, which capture the nonlinear mean reversion ( 𝛼2 and 𝛼3) 

indicates that, the nonlinear mean reversion, are both individually and jointly statistically 

insignificant for the REPO. However, there is evidence of nonlinear mean reversion in other 

nonlinear models, and all the linear models are rejected. When focusing on volatility, LRT 

also reveals that volatility parameters jointly are also statistically different from zero. Overall, 

the rejection of the null hypopaper implies that the restrictions are not valid, and therefore 

nonlinear models perform better than linear models.   

Table 8: AIC and SBIC for short-term interest rate models 

    AIC SBIC (n=787) 

  Parameters TBR  REPO JIBAR TBR REPO JIBAR 

Merton 2 1562.48 853.33 1732.61 1564.27 855.12 1734.40 

CEV 3 1683.56 1021.27 1735.99 1686.25 1023.96 1738.67 

Vasicek 3 456.51 237.11 721.61 459.19 -222.41 724.29 

CIR 3 1053.23 367.14 1255.71 1055.92 369.83 1258.39 

Dothan 1 1554.89 846.02 1722.43 1555.78 846.92 1723.33 

GBM 2 1479.84 802.22 1625.15 1481.63 804.01 1626.94 
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B&S 3 1448.59 784.49 1587.14 1451.28 787.17 1589.83 

CKLS 4 1613.84 982.90 1683.47 1617.43 986.49 1687.05 

CHLS 6 -2434.95 -2837.62 -2523.17 -2429.58 -2832.25 -2517.79 

A & G 7 -2464.12 -2875.66 -2578.34 -2457.85 -2869.39 -2572.07 

AS 8 -2453.17 -2453.17 -2538.01 -2446.00 -2825.66 -2530.84 

Note: AIC and SBIC were calculated using the following equations: 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔 (𝐿), and      𝑆𝐵𝐼𝐶 = 𝑘𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔𝐿, where  n is the number of observations, k, is the number of free 

parameters and logl is log-likelihood. CHLS, A & G and AS represent nonlinear models. 

 

Table 8 reports the values of AIC and SBIC. Models with the smallest AIC and SBIC are 

considered to be the best fitting models according to these criteria. When analysing linear 

models individually, it came out that Vasicek was the best performing model in all the 

interest rates as it had the lowest AIC and SBIC. Meanwhile, the worst performing model 

was CEV as it has the highest values in both the AIC and SBIC. However, when 

incorporating the nonlinear models, they all reported the lowest AIC and SBIC as compared 

to the linear models, with A & G leading them all. Even though SBIC tends to put more 

penalties on over-parameterised models than AIC, the choices of the models were 

consistent. Nonetheless, when ranking the models, nonlinear models came on top of the list, 

suggesting that South African data is explained better by the nonlinear models.  

5. CONCLUSION 

 

The aim of this study was to determine the best model that can fit the South African short-

term interest rates. This is of crucial importance as the short-term interest rate is the main 

input in pricing a number of derivatives. Results of the parameters showed that the diffusion 

component was more important than the drift component in modelling South African data. 

Furthermore, models which assumed volatility to be a function of the level of interest rate 

were found to perform better than models which assumed constant volatility. In addition, 

models with level effect values of greater than one were better than those that restrict the 

level effect to be less than one. That being the case, the level effect was also considered to 

be the key feature that should not be left out when modelling South African interest rate 

data.  The overall comparison of the linear and nonlinear models revealed that the nonlinear 

models seem to explain the stochastic process of the South African interest rate data better 
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than the linear models. Therefore, it will be more appropriate to use nonlinear models when 

modelling the short-term interest rate model in South Africa.  

The present study relies on a set of assumptions such as normality and constant volatility 

which are not always realistic. The study was limited to these assumptions so that the basic 

single-factor models can be understood before considering extended models. Volatility and 

level effect came out to be important features in modelling the stochastic short-term interest 

rate data. It was also observed that estimated level effect becomes so high that it might lead 

to stochastic volatility. For that reason, future studies should consider modelling stochastic 

volatility. The data analysis also showed that the data had leptokurtic behaviour. This kind of 

behaviour is often modelled using Jump models. On that account, Jump models should be 

used to capture these stylised facts. Other features of the financial variables such as 

regimes switching could have been modelled as South African is mainly affected by 

structural changes and announcements.  
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Appendix 1: 

Models Description  

Model 
Specification 𝜇(𝑟) Specification 𝜎(𝑟) Restrictions Advantages Limitations 

Merton 

(1973) 
𝛼0 𝛽2 𝛼1 = 𝛽3 = 0 

 

 

 

 

 

1. Constant 

drift and 

diffusion 

parameters. 

2. The model 

allows 

negative 

interest rates. 

Cox and 

Ross 

(1975) 

𝛼1𝑟𝑡 𝛽2𝑟𝑡𝛽3 𝛼0 = 0 

Does not place 

parameter 

restrictions on 

the level of 

interest rate 

sensitivity 

 

Vasicek 

(1977) 
𝛼0  + 𝛼1𝑟𝑡 𝛽2 𝛽3 = 0 

Have mean-

reverting 

characteristics 

1. Constant 

diffusion 

parameter. 

2. The model 

allows the 

interest rate 

to be 

negative. 

Dothan 

(1978) 
0 𝛽2𝑟 

𝛼0𝛼1 = 0, 𝛽3 = 1 

Interest rate 

can never be 

negative 

1. The model 

is driftless.  

2. The model 

is inadequate 

to represent 

the long-term 
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behaviour of 

interest rate. 

B & S11 

(1980) 𝛼0  + 𝛼1𝑟𝑡 𝛽2𝑟 𝛽3 = 1 

Have mean-

reverting 

characteristics 

The 

distribution of 

r(t) is 

unknown 

CIR12 

(1985) 
𝛼0  + 𝛼1𝑟𝑡 𝛽2𝑟𝑡1/2

 𝛽3 = 1/2 

1. Have a 

mean 

reversion, and 

volatility is 

heteroske-

dastic. 

2. Does not 

allow negative 

interest rates. 

Restrict the 

level effect to 

1/2 

CKLS13 

(1992) 
𝛼0  + 𝛼1𝑟𝑡 𝛽2𝑟𝑡𝑦 0 

Have mean 

reversion, and 

volatility is 

heteroske-

dastic. 

 

 

 

 

 

 

 

 

                                                           
11

B & S = Brennan & Schwartz 
12

CIR = Cox-Ingersoll-Ross 
13

CKLS = Chan, Karolyi, Longstaff and Sanders 
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Appendix 2: 

Parameter restrictions imposed by short-term interest rate models on CKLS model 

 𝛼0 𝛼1 𝛽2 𝛽3 Parameter 

Restrictions 

Merton (1973) - 0 - 0 2 

CEV (1975) 0 - - - 1 

Vasicek (1977) - - - 0 1 

Dothan (1978) 0 0 - 1 3 

GBM (1983) 0 - - 1 2 

B & S (1980) - - - 1 1 

CIR (1985) - - - 1/2 4 

CKLS (1992) - - - - 0 

Note: Linear single-factor models of the short-term interest rate nested in CKLS model 𝑑𝑟𝑡 = (𝛼0 + 𝛼1𝑟𝑡)𝑑𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡. CKLS is the unrestricted model, and the remaining models 

are restricted models.  

 

Appendix 3: 

Parameter restrictions imposed by short-term interest rate models on AS model 

 𝛼0 𝛼1 𝛼2 𝛼3 𝛽0 𝛽1 𝛽2 𝛽3 Parameter 

 Restrictions 

Merton (1973) - 0 0 0 0 0 - 0 6 

CEV (1975) 0 - 0 0 0 0 - - 5 

Vasicek (1977) - - 0 0 0 0 - 0 5 

Dothan (1978) 0 0 0 0 0 0 - 1 6 

GBM (1983) 0 - 0 0 0 0 - 1 5 

B & S (1980) - - 0 0 0 0 - 1 4 

CIR (1985) - - 0 0 0 0 - ½ 4 

CKLS (1992) - - 0 0 0 0 - - 4 

AS (1996) - - - - - - - - 0 

CHLS (1997) - - - - 0 0 - - 2 

AG (1999) - - - 0 0 0 - ½ 3 
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Note: Single-factor models of the short-term interest rate nested in AS model 𝑑𝑟𝑡 =(𝛼0 + 𝛼1𝑟𝑡 + 𝛼3𝑟𝑡2 + 𝛼3𝑟𝑡 ) 𝑑𝑡 + 𝛽0+𝛽1𝑟𝑡 + 𝛽2𝑟𝑡𝛽3𝑑𝑊𝑡 .  AS is the unrestricted model; it is for this 

reason that there are no parameter restrictions on AS items. The rest of the models act as 

restricted models; it is for this reason that they contain zeros in their line items.  

Appendix 4: 

ADF and PP unit root tests  

Series Model 

Augmented Dickey Fuller Phillips and 

Perron 

Conclusion 

𝜏𝜏,𝜏𝜇,𝜏 Ф3,Ф1 𝜏𝜏,𝜏𝜇,𝜏  

TBR3 

𝜏𝜏 -4.3162*** 12.7188*** -2.5310 

Non-stationary 𝜏𝜇 -1.2363 37.6954 -1.6760 𝜏 -1.3319 - -1.2700 

DTBR3 

𝜏𝜏 -20.6772*** 213.7747*** -23.1747*** 

Stationary 𝜏𝜇 -20.6905*** 428.0955*** -23.1847*** 𝜏 -20.6677*** - -23.1979*** 

REPO 

𝜏𝜏 -3.4984** 13.3094*** -2.2894 

Non-stationary 𝜏𝜇 -1.0566  -1.4455 𝜏 -1.6702* - -1.4226 

DREPO 

𝜏𝜏 -33.1521*** 549.5320*** -34.6937*** 

Stationary 𝜏𝜇 -33.1721*** 1100.429*** -34.7079*** 𝜏 -5.9358*** - -34.7604*** 

JIBAR 

𝜏𝜏 -3.3370* 18.9915*** -2.4797 

Non-stationary 𝜏𝜇 -2.2556 20.1571** -1.6507 𝜏 -1.2838 - -1.2543 

DJIBAR 

𝜏𝜏 -5.8269*** 54.3491*** -24.1999*** 

Stationary 𝜏𝜇 -5.8314*** 60.4665*** -24.2077*** 𝜏 -5.8046*** - -24.2269*** 

Notes: 𝜏𝜏  represents the trend plus intercept, 𝜏𝜇 the intercept, 𝜏 the constant, Ф3 represent 

F-statistics for trend and intercept, Ф1 the F-statistics for the intercept.  (***) unit means that 

unit root is rejected at 1% level of significance, (**) unit means that unit root is rejected at 5% 

level of significance, (*) unit means that unit root is rejected at 10% level of significance. 
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Appendix 5: 

Summary of the interest rate data 

 TBR3 REPO JIBAR DTBR3 DREPO DJIBAR 

 Mean  9.034719  9.767275  9.236857 -0.009757 -0.011509 -0.009836 

 Median  8.555000  9.000000  8.929500  0.000000  0.000000  0.000000 

 Maximum  22.30000  21.85500  21.68000  2.300000  3.377000  2.390000 

 Minimum  4.900000  5.000000  4.999000 -1.120000 -2.066000 -0.942000 

 Std. Dev.  3.130351  3.716423  3.226320  0.206264  0.255819  0.188113 

 Skewness  1.255846  1.013036  1.131232  3.062179  3.318743  3.224334 

 Kurtosis  5.215961  4.053737  4.721835  44.98157  67.01236  52.03505 

 Jarque-Bera  365.5549  169.9328  263.3861  58648.71  134948.4  79699.52 

 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 Sum  7065.150  7638.009  7223.222 -7.630000 -9.000000 -7.692000 

Sum Sq.   Dev.  7653.096  10787.02  8129.537  33.22765  51.11141  27.63673 

 Observations  782  782  782  781  781  781 

Note: Appendix 4 reports the summary statistics of three datasets, namely, TBR3, REPO 

and JIBAR at levels together with their differences. The frequency used for these rates was 

weekly, starting from 15 March 1998 to 07 April 2013.  The four statistical moments are 

presented as mean, standard deviation, skewness and kurtosis. Skewness is the measure of 

symmetry; kurtosis is a measure of peakness, and Jarque-Bera is the statistical measure of 

normality.  

 

 

 

 

  


