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FOREWORD

This book is a practical reference guide accompanied with an Excel Workbook. This

book gives an elementary introduction of the weighted standard deviational ellipse.

This book also presents the computational aspects of the weighted exponential distri-

butions as well. For the examples given, calculations are performed using VBA for

Excel. This book makes comparisons (and shows the computations via VBA for Ex-

cel) using the likelihood functions with spatial data of the weighted ellipses. Lastly,

the book covers spherical statistics. Throughout the text, the reader can see how to

perform these difficult calculations and learn to adapt the code for his research.

xxi





PREFACE

Scientific articles exist since the 1960’s for the use of an area frames for collecting

and interpreting survey data in the United States, and in the 1990’s in Europe and

Africa. Cartographers divide units of land from satellite imagery into enumerable

segments. Statisticians assign the segments to defined strata. Typically, crop esti-

mation is performed using imagery analyzes, field surveys, and mail surveys. The

following list of articles includes both practical results and theoretical results typi-

cally found in the literature on area frame surveys.

[Pratt, Bird, Taylor, and Carter (52)] wrote a paper that covers the topics of plan-

ning and implementing an area frame survey in Nigeria and choosing the estimation

procedures. They were careful to choose their satellite imagery and coordinate it

with the fieldwork. In Europe and Africa, Statisticians use regression to classify

the satellite images from field data collection and from image classification. Image

classification without field data collection does tend to lead to failure due to the fol-

lowing reasons: 1) intercropping practices, 2) fallow/cultivated continuum and 3)

small, irregular field structure. The authors more generally state those reasons as

”spectral confusion.” The authors state that the best time to perform their fieldwork

is shortly after harvest because it would be easiest to distinguish harvested rice fields

from wet, green swamp grasslands. [page 70] calculates the sample size in terms of

segments according to several criteria: 1) the size of the study size area, 2) the need

to maximize the area covered, 3) the speed to cover the area during enumeration, 4)

xxiii
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reduce locational error within the segment during field mapping. The authors ob-

tain a 4.8% sampling fraction by choosing forty-nine segments (500 × 500 meters

with a sampling fraction of 5%) out of 75. Three estimators of the data collected

are presented: 1) direct expansion of the survey data, 2) pixel count, and 3) regres-

sion estimator. The authors recommend the regression estimator, which take into,

account both the irrigation mapped by enumerators on the ground in each segment

and the satellite image classification. This is because it was highly dependent on the

classifier and gave a narrower range of possible classifications. They used a ratio of

the direct expansion variance and the regression model to prove this mathematically.

[Kelly (32), Chhikara and Deng (6), Faulkenberry and Garoui, (15)] discuss area-

frame data collection and estimation in the United States. [Kelly (32)] collects and

summarizes survey data in a production environment. [Chhikara and Deng (6)] con-

sider the problem of using the area frame and rotating segments amongst years. On

page 926, they develop an ANOVA model to capture the stratum means per year and

the segment mean effects for a particular random variable. The author also rotates

and overlaps segments amongst years via a simulation study that shows the optimal

rotation of segments should be 40% to 60%. [Faulkenberry and Garoui, (15)] discuss

the topic of estimating population totals and variances from an area survey frame.

The authors point out that because of the association of a farm with more than one

segment does not lead to cluster sampling. Based on four classifications, the authors

show that the Horvitz-Thompson estimator for totals is probably the best choice of

estimators. It is a good estimator when the probability of selection πk is proportional
with the random variables yks. Depending on the number of farms or the number of
known segments, four classifications arise. The author assigns an estimator to each

class that will work well, and then takes expectations and variances.

Although most of the authors so far do present maps with their articles and their

statistical estimation methods, they lack discussing the latitude and longitude of their

random variables. The remainder of this section will discuss the history of associat-

ing random variables with the latitude and longitude (i.e. the placement on a map).

[Ebdon, (13), Chapter 7, 1985] discusses spatial statistics and several measures.

The author gives interpretations to the concepts of the mean center and standard

deviational ellipse. For instance, the mean center can be thought of the ”center of

gravity” of the distribution of the given points on a map. He defines the standard

deviational ellipse as the ”spread of points” about the mean center. Without using

modern software, the author has an interesting way to draw the ellipse. It involves

plotting the deviation for each point parallel to the rotated axes and fitting the ellipse

[Ebdon, (13), p. 137].

The author Lefever first used the standard deviational ellipse in 1926 to study

the geographic position of social problems [Lefever, (40)]. The author argues that

a uniform distribution will not fit well for location problems of any kind because

ecological and sociological problems occur more frequently on a select area of the

map than other areas. The author shows the correspondence between calculating the

standard deviation between the mean center of the points and each location; and then

showing its geometric relationship on a map. An example is given. In the conclusion,

the author states four characteristics of a unit of locations:
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1. The center of the system determined by the distances from the central point

(versus the extreme unit locations).

2. The direction or trend of the system given by the angle θm of the axis of max-

imum standard deviational variation value. This is the line of best fit for the

entire system of unit locations.

3. The concentration of the system (or dispersion) shown in terms of a standard

deviational ellipse.

4. The relative concentration given by the ratio of observations within the ellipse

compared to the entire population expressed in area units.

The author gives no references in the paper. To summarize, the article presents

the mean and standard deviation of a set of numbers — longitude and latitude. So,

who came up with the idea of weighting the longitude and latitude data?

The weighted standard deviational ellipse appears in the literature in 1971 in

[Yuill, (67)]. The author begins with a discussion of the work by Lefever and the

comments by Furtey in 1927. The paper proceeds to defend using the ellipse for

geographic applications. The author derives the formulas on pages 30-31 for the

weighted standard deviational ellipse. It is on page 32 that the weighted mean center

is introduced (a new notion in the literature). The author weights the latitude and

longitudinal observations using the random variable. The author gives the following

computations for comparing ellipses.

1. The enclosed area within the ellipse.

2. The number of points enclosed within the ellipse (more is better).

3. The shape of the ellipse measured by its eccentricity .

The shape of the ellipse determines the distribution of the points . Points con-

centrated at the pole of the ellipse (or circle) should have a non-uniform distribution

while those scattered from the pole will have a uniform distribution . Finally, the au-

thor applies the concepts to several sets of data. References appear in the footnotes

throughout the paper.

So, where did the weighted mean center originate? Yuill’s paper stated the mean

center, but did not derive it. Books and research articles have methods on the

weighted least squares dating back to the 1970’s. The weight assigned to each longi-

tude and latitude pair is between zero and one; additionally, the weights sum to one.

This is due to the formula, not due to the nature of the application (e.g. ecological

versus sociological problem). Other authors [Magee (42), and Woolson and Clarke

(65)] assign least squares weights according to the sample design. Magee assigns

weights based on sample selection probabilities. Woolson and Clarke assign weights

to compensate for missing data. [Rubin, (55)] models the leverage values as weights

in the regression model. This in turn shows which data points in the data set exert

more influence over the others. [Lee and Wong, (36), pages 38-39] assigns weights
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according to the distribution of the phenomenon. If a city’s population is the ran-

dom variable of interest, then the city’s population is the weight for the latitude and

longitude. We apply weights in the context of [Lee and Wong, (36)] in this book.

Finally, to extend the concepts of the weighted mean center and the standard de-

viational ellipse, at times, we prove that the data has a particular distribution. By

transforming the data and plotting the points [t, F (t)]where F (t) is a known cumu-
lative distribution function , one should obtain a straight regression line [Lee, (35)]

as long as the data has that distribution. The author covers data transformations for

distributions with a location parameter, a scale parameter and a shape parameter.

Knowing the distribution of the data is advantageous. Using maximum likelihood

estimators, we can compare likelihood functions, [Lee (35), page 227]. Generally,

we choose the likelihood function with the largest value.
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CHAPTER 1

INTRODUCTION TO VBA

1.1 The Development Environment

The calculations in this book are difficult at times. Having a programming environ-

ment becomes advantageous. A programming environment provides the flexibility

to calculate statistics and likelihood functions. This textbook uses the Visual Basic

Application (VBA) for Excel. It is a programming environment based on the Visual

Basic programming language. The VBA Development environment does not auto-

matically appear as a menu option in Excel. See Figure 1.1. The user must make this

option visible by following these steps:

1. Click on File | Options | Customize Ribbon. The dialog box

in Figure 1.2 will appear.

2. From the Choose Commands drop-down list, select Main Tabs.

3. Highlight Developer.

4. Click on the Add>> button in the middle of the screen.

Random Variables, Their Properties, and Deviational Ellipses.

By Roger L. Goodwin Copyright c 2015 Roger L. Goodwin
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2 INTRODUCTION TO VBA

Figure 1.1 This figure shows Excel without the Developer menu.

Figure 1.2 This figure showsExcel Options dialog box. Excel uses the dialog box for adding

the Developer menu for VBA programming.
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Figure 1.3 This figure shows Excel with the Developer menu at the top of the screen.

The Developer menu optionwill appear somewhere along the top of the screen.

See Figure 1.3.

1.2 Variables

To declare variables explicitly in VBA for Excel, use the Dim statement. Excel

supports the following basic data types:

Integer numbers — Dim X As Integer The Integer data type holds integer
variables stored as 2-byte whole numbers in the range of -32,768 to 32,767.

Real numbers—DimYAs Double. TheReal data type holds double-precision
floating-pointnumbers as 64-bit numbers in the range of -1.79769313486231E308

to -4.94065645841247E-324 for negative values and 4.94065645841247E-324

to 1.79769313486232E308 for positive values.

String characters — Dim S As String. The String data can include letters,
numbers, spaces, and punctuation. The String data type can store fixed-length
strings ranging in length from 0 to approximately 63,000 characters.

Date — Dim BirthDayAs Date. Excel allows the Date data type to store dates
and times as a real number. Date variables are stored as 64-bit (8-byte) numbers.
The value to the left of the decimal represents a date, and the value to the right

of the decimal represents a time. Excel considers the date expression to be any

expression such as a date, including date literals, numbers that look like dates,

strings that look like dates, and dates returned from functions. A date expression

is limited to numbers or strings, in any combination, that can represent a date

from January 1, 100 to December 31, 9999.
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Dates are stored as part of a real number. Values to the left of the decimal

represent the date; values to the right of the decimal represent the time. Negative

numbers represent dates prior to December 30, 1899.

A date can be any sequence of characters with a valid format surrounded by

number signs (#). Valid formats include the date format specified by the locale

settings for your code or the universal date format. For example, use #12/31/92#

in the VBA editor when explicitly referring to a date.

Currency — Dim Q As Currency. The Currency data type has a range of -
922,337,203,685,477.5808 to 922,337,203,685,477.5807. Use this data type for

calculations involving money and for fixed-point calculations where accuracy

is particularly important. In the VBA Editor, use the ”@” sign when referring

to currency.

Long integer—DimRAs Long. The Long data type is a 4-byte integer ranging
in value from -2,147,483,648 to 2,147,483,647. In the VBA Editor, use the ”&”

symbol when referring to long integers.

Logical — Dim L As Boolean. The Boolean data type has only two possible
values, True (-1) or False (0).

Variables defined inside a subroutine are visible only inside that subroutine. Vari-

ables defined at the module level are visible to the subroutines defined in that module.

1.3 Arrays and Records

We can build on the basic data types listed in Section 1.2. Consider arrays and

records.

One diminisional array — Dim Name List(1 To 10) As String. This array

defines a set of sequentially indexed elements having the data type String. Each
element of the array has a unique identifying index number. Changes made to

one element of an array do not affect the other elements.

Two diminisional array — Dim AList(1 To 5, 1 To 10) As Double. This array
defines a matrix of indexed elements having the numeric data type Double.

A user defined record — Excel allows the definition of the user-defined record

using the TYPE-END-TYPE statement. To define a list of customer address

records, use the following VBA code:
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1




Type Customers

3




First Name, Last NameAs String

AddressAs String

City As String

State As String

Zip CodeAs Integer

PhoneAs Integer

End Type

2

Dim List As Customers

Do not use the Dim inside the TYPE-END-TYPE statement. Use the dot ”.”

notation to reference the items in the record. For example in the VBA Editor, to

reference the customer phone number, use the code:

1

List.Phone = 3223223

1.4 Branching

VBA has an IF-THEN-ELSE statement for conditionally executing code. The syn-
tax is as follow:

1




2


If <condition> Then

VBA statements

3



Else

VBA statements

End If

The IF-THEN-ELSE construct must appear in a subroutine. It cannot appear as

open code in a module. Aside from variable definitions and subroutine declarations,

this is true for the majority of VBA programming. There can only by one ELSE
statement in any IF-END-IF construct. An alternative to the above IF-THEN-ELSE
construct is the IF-ELSE-IF construct.
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1




2


If <condition> Then

VBA statements

3


ElseIf <condition> Then

VBA statements

4


ElseIf <condition> Then

VBA statements

5


Else

VBA statements
End If

If the user has a short, single VBA statement for any of the ELSEIF statements,
it is not advisable to put it on the same line after the THEN. It usually creates a

run-time error even though the syntax looks correct.

1.5 Loops

The two loops covered in this section are the FOR-NEXT loop and the WHILE-
WEND loop. To execute a set of VBA statements a given number of times in a given

sequence, the FOR-NEXT loop has the following syntax:

1



For <counter>= start To end

VBA statements

Next <counter>

As an example, we can generate two digits in a phone number.

1




multiplier = 1

List.phone = 0

2




For i= 1 To 7

List.phone = List.phone + i*multiplier

multiplier = multiplier * 10

Next i

The value of List.phone is 28 because
n(n+1)

2 = 7(8)
2 = 28. The only pur-

pose of the example is to show the syntax of the FOR-NEXT loop.

TheWHILE-WEND loop has the following syntax.

1



While <condition>

VBA statements

Wend
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It is more likely to program infinite loops with the WHILE-WEND loop than

with the FOR-NEXT loop. It is important to initialize the condition variable(s)

before entering the loop and to update the condition variable(s) inside the loop.

1.6 Setting Properties

Both the Excel spreadsheet and the VBA environment allow the user to change the

cell contents properties to bold, italic, underline, strikethrough, and the font size.

Except for the font size, most of these properties are Boolean valued.

Object.Bold— Boolean

Object.Italic — Boolean

Object.Size — Integer

Object.StrikeThrough— Boolean

Object.Underline — Boolean

In our case, the VBA object is a cell in a spreadsheet. We use the following code

to reference the properties of the cell.

1




ActiveSheet.Cells(1, 3).Font.Bold = True

ActiveSheet.Cells(1, 3).Font.Italic = True

ActiveSheet.Cells(1, 3).Font.Size = 25

ActiveSheet.Cells(1, 3).Font.Strikethrough = True

ActiveSheet.Cells(1, 3).Font.Underline = True

Cells(1,3) references row 1, column C in the last spreadsheet viewed before

entering the VBA environment. Alternatively, we could have substituted the Ac-

tiveSheet with a specific spreadsheet name such as Worksheets("Sheet1").

We have hard-coded Sheet1. Sheet1 will always be the spreadsheet refer-

enced.

When updating a set of cells in a spreadsheet, it is convenient to use theWITH-
END-WITH statement. It can save some typing and make the code easier to read.

For example, we can re-write the VBA code for the font updates as follow:

1




With ActiveSheet

.Cells(1, 3).Font.Bold = True

.Cells(1, 3).Font.Italic = True

.Cells(1, 3).Font.Size = 25

.Cells(1, 3).Font.Strikethrough = True

.Cells(1, 3).Font.Underline = True

End With

The WITH-END-WITH statement is convenient to use in complicated calcula-

tions as well.
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1.7 The Excel Examples

The Excel spreadsheet and the Excel VBA environment contain many of the same

functions. Some common syntax and conventions for the worksheet follows.

1. Columns in an Excel worksheet always begin with a letter.

2. Rows in an Excel worksheet always begin with a number.

3. The three default names of the worksheets in an Excel workbook are Sheet1,

Sheet2, and Sheet3. Microsoft Corporation capitalized the ”S” in the

word ”Sheet.” In the VBA for Excel environment, upper and lower case counts.

4. Character and numeric data can ordinarily be copy and pasted into the work-

sheet cells.

5. Precede numeric data with leading zeros with the single quote ” ’ ”to retain

those leading zeros. Entering the single quote in front of the data is a man-

ual operation. Changing the column to the TEXT format usually causes other

problems later on.

6. Formulas begin with an equal sign. Some useful formulas used in this applica-

tion include:

mod(number, divisor) —where the argument number can either

be reference to a cell or a hard coded number such as 180 or 360; and the

argument divisor can either be a cell reference or a hard coded number

such as 180 or 360.

average(range) — where the argument range is a range of cells

such as A2..A91.

sum(range) — where the argument range is a range of cells such as

C2..C39.

In this application, we keep the data and results in the worksheets. We use VBA

to perform the calculations. Some common conventions in VBA for Excel follow.

1. Declare global variables at the top of a module.

2. VBA program code must appear inside a subroutine. Some useful, recurring

VBA statements used in this application include:

Selection.Rows.Count —Visual Basic applies the selection ex-

pression to a range of data in the active spreadsheet. It returns a count of

the number of rows. Since we included the first row, the count n is larger
by one. This application adjusts for this.
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ActiveSheet.Cells(row, col).Value —

The activesheet object references the data in the spreadsheet high-

lighted before entering the VBA editor. This entire statement allows reading

the data.

Worksheets("name").Cells(row, col).Value —

The worksheets object references the spreadsheet named NAME. In the

application name = stats. This entire statement allows writing data to a

spreadsheet other than the active spreadsheet.

For-Next — This is the common looping structure used for calculating

the sums, the areas, the probability distributions, eccentricities, and so on.

While-Wend This application uses this looping inModule 3 in the Secant

algorithms because the termination condition required more knowledge that

the number of observations in the data set.

VBA numeric calculations — The Visual Basic for Excel numeric calcula-

tions are similar in style to those of other programming language statements.

Some useful, recurring VBA functions used in this application include:

log(number) —This function returns the latural logarithm of the given

number. The user must write his own code for other base logarithms.

exp(number) — This function returns the exponential function of the

given number. e is approximately 2.718282.

worksheetfunction.pi() —This function returns the value of π.

3. Modules are a collection of related subroutines and variables.

4. Declare local variables inside a subroutine.

5. Variable names are not case sensitive. For all declared variables, the VBA editor

will change the upper and lower case spelling.

In this application, the results are stored in the spreadsheet called STATS. See

Figure 1.4. The data are stored in the remaining spreadsheets. The first three columns

of the data must be in a particular order. Seel Figure 1.5.

1. Latitude xi.

2. Longitude yi.

3. Random variable of interest wi.

Further, select the data (and only the data) so that the subroutines can identify the

beginning and ending rows. To get into the VBA editor, follow these steps.

1. Click on the Developer ribon.
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Figure 1.4 This figure shows the Excel workbook. A data worksheet at the bottom named

KY 2003 has been circled. The worksheet named STATS has been circled. This application

always saves the results to the STATS worksheet.
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Figure 1.5 This figure shows the Excel spreadsheet with data. For this application to run

properly, the first row can contain any column names the reader wishes. Column 1 must

contain the latitude observations. Column 2 must contain the longitude observations. Column

3 must contain the random variable of interest. It is not advisable to put any observations in

the remaining columns as this application may over-write them.
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2. Click on the Visual Basic button on the left side.

3. For a new module, click on the Insert menu item and select Module.

A blank VBA Editor screen will appear. Just like any other programming language,

either you know the syntax or you do not. VBA for Excel is similar in style to the

programming language Basic. However, the objects tend to be centered around the

Excel workbook— cells, spreadsheets, columns, rows, and so on.



CHAPTER 2

INTRODUCTION TO MAP POINT

Map Point is a software package that maps points on the Earth. The user provides

the latitude and longitude, and Map Point plots the point. The points in this textbook

are either geo-coded observations from Google Earth or calculations such as the

mean center (also called the center of gravity) or the semi-major and semi-minor

axis lengths of an ellipse. It is possible to enter, say a county name into Map Point.

Map Point will identify the county on the Earth. However, it will not give the user

the latitude and longitude coordinates. This is why we must use an alternate software

product.

There are several useful concepts when using Map Point:

1. Plotting the mean center on the Earth.

2. Plotting and graphing the entire survey of points on the Earth.

3. Drawing lines with an exact length in miles (or kilometers).

4. Saving work.

5. Copying and pasting images to other software applications.

Random Variables, Their Properties, and Deviational Ellipses.

By Roger L. Goodwin Copyright c 2015 Roger L. Goodwin
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Figure 2.1 This figure shows the Map Point dialog box for finding a point on the Earth

using the latitude and longitude.

Map Point does allow us to draw ellipses. However, it does not allow us to rotate

them. Because of this, we must draw ellipses outside of Map Point. We use Map

Point to draw the semi-major axis and the semi-minor axes.

2.1 Handling Data

Map Point has two ways to enter data:

1. Manually one data point at a time using Tools | Find | Lat\Long.

2. Import an Excel spreadsheet using Data | Data import wizard.

When the user enters data manually, one data point at a time, Map Point requests

the latitude and the longitude. When the user imports multiple data points via an Ex-

cel spreadsheet, Map Point requires column names with ”latitude” and ”longitude.”

In addition, Map Point expects the user to plot a third variable called a ”data” vari-

able or an analysis variable along with the latitude and longitude. Naming the third

variable is at the user’s discretion. More notes follow on importing data in Section

2.3.

2.2 Plotting the Mean Center

To plot the mean center (a single data point), select Tools | Find. The dialog

box on the left side in Figure 2.1 will appear. Upon selecting the Lat/Long option
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Figure 2.2 This figure shows the Map Point dialog box for browsing Excel files, which have

the coordinates and the random variable.

Figure 2.3 This figure shows the Map Point dialog box that lists the Excel spreadsheets in

the Excel workbook.

at the top of the dialog box, the user types in the coordinates and clicks on the Find

button. Map Point will locate that latitude and longitude on the Earth and identify

those coordinates with a box.

2.3 Visualizing the Survey Data

Sometimes the user may want to visualize the survey data (i.e. many data points) and

the ellipse together (i.e. drawing). Alternatively, maybe, the user may want to visu-

alize the plotted points on the Earth with the random measurements (i.e. graphing).

Map Point does provide the software tool to plot or graph an entire data set onto the

Earth.

2.3.0.1 Plotting To plot the data, first prepare an Excel file with the latitude, lon-

gitude, and the random variable of interest. To plot the data set, select Data |

Import data wizard.
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Figure 2.4 This figure shows the Map Point dialog box containing the spreadsheet column

names and the data.

The dialog box in Figure 2.2 allows the user to browse the hard drive and select

the Excel file that contains the survey data.

Map Point displays the dialog box in Figure 2.3 showing the spreadsheet names

in the Excel workbook. Select one of the spreadsheets.

Click the Next button in the Import Data Wizard. The screen in Figure 2.4

appears showing the columns and the data in the spreadsheet.

Click the Finish button.

The Data mapping wizard in Figure 2.5 appears. There are some choices

here. Do we want to use shaded circles, sized circles or pushpins to mark the

points on the Earth? The remaining options pertain to graphing the data. We

will discuss graphing later. Let us choose pushpins since they stand out the best.

Click on the Pushpin button.

Click on the Next button at the bottom of the dialog box. The dialog box

in Figure 2.6 appears. The user can change the color of the pushpins here, if

desired. Map Point automatically recognized the column names latitude

and longitude. This is important because the user would have had to

identify these had this not been the case.

Click on the Finish button at the bottom of the dialog box. Map Point plots

the data in the spreadsheet on the Earth. Plotted data on the Earth are shown

throughout the textbook.

2.3.0.2 Graphing To graph the data, first prepare an Excel file with the survey

data. Save the Excel file to the hard drive. Select Data | Import data wiz-

ard.
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Figure 2.5 This figure shows the Map Point Data mapping wizard.

Figure 2.6 This figure shows the Map Point choices for the pushpin colors.

Figure 2.7 This figure shows the Map Point choice for the column chart.
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Figure 2.8 This figure shows the Map Point choices for scaling the data and change the

label text.

The dialog box in Figure 2.2 allows the user to browse the hard drive and select

the Excel file that contains the data to analyze.

Map Point displays the dialog box in Figure 2.3 showing the spreadsheet names

in the Excel workbook. Select one of the spreadsheets.

Click the Next button in the Import Data Wizard. The screen in Figure 2.4

appears which shows the column names and the data.

Click the Finish button.

The Data mapping wizard in Figure 2.5 appears. There are some choices

here. Do we want our data displayed as a pie chart, sized pie chart, column

chart, or as a series column chart? The remaining options pertain to plotting the

data. We discussed plotting data in the previous section.

Click on the Column chart button.

Click on the Next button at the bottom of the dialog box. The dialog box

in Figure 2.7 appears. Map Point automatically recognized the column names

latitude and longitude. The user must confirm toMap Point to graph

the column name 2008.

Click the check box next to the field 2008 to confirm graphing this field.

Click the Next button. The dialog box in Figure 2.8 appears. This lets the

user scale the data if needed. It also allows the user to change the label text.

Click on the Finish button at the bottom of the dialog box. Map Point dis-

plays a graph on the Earth of the data. Short bars represent small values and tall

bars represent large values. Map Point places the bars on the Earth using the

latitude and longitude coordinates.



DRAWING AXES 19

Figure 2.9 This figure shows the Microsoft Word shapes for drawing an ellipse.

2.4 Drawing Axes

Before drawing an axis, it may be necessary to zoom into the survey area. To draw

an axis for an ellipse which has an exact length measured in miles or kilometers,

select Tools | Measure distance. To toggle between miles and kilo-

meters, select Tools | Options and the dialog box in Figure 3.1 will appear.

The section on Units changes the unit of measure.

Single click on the label box for the mean center. This will anchor the ruler.

Map Point displays the unit of measure and number of measurements at the

right side of the line.

Drag the mouse the length required.

Single click. This will anchor the right end of the line.

Hit the <Esc> key to stop drawing lines.

2.5 Drawing Ellipse Boundaries

Given that we drew the major axis and the minor axis, and we identified the mean

center of the ellipse, it is a simple task to draw the ellipse usingMS Word. The steps

are as follow:

Draw the axes described in Section 2.4 using an imaginary X and Y -axes laid
on top of the Earth.
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Figure 2.10 This figure shows the Microsoft Office dialog box for formatting a shape.

Note the axis of rotation (e.g. X or Y ) from the statistical computations.

Copy and paste the image from Map Point into MS Word. The imaginary X
and Y -axes form 90 angles. Half of 90 is 45, and so on. If the rotation is
from the Y -axis, then begin counting from there.

In MS Word, select Insert | Shapes. The shapes in Figure 2.9 will

appear.

Select the fifth shape from the top, oval. Left click and right click around

the axes lengths. The oval will be dark filled.

Right click the oval. Left click the oval and select Format shape. The

dialog box in Figure 2.10 will appear.

Click on the No fill radio button.

Click on Close.

We drew the ellipse following the steps above. We need to rotate the ellipse.

Suppose we want to rotate the ellipse from the Y -axis 70. Then, follow these steps:

Click on one of the edges of the ellipse to highlight it.

A green circle appears at the top of the ellipse. This is for rotating the ellipse.

Single click on the green circle.
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Drag the mouse to obtain a 70 angle between the Y -axis and the semi-major
axis. Certainly you know where 90 and 45 are at. This is not difficult.

Select File | Save As to save the ellipse.

To avoid the appearance of cross hairs in any published graphs, the user can

alternatively identify the ends of the major and minor axes using pushpins or some

other symbol. When in Map Point, delete any lines drawn when using the ruler.

2.6 Programmer Notes

Microsoft Corporation did not provide Map Point with a development environ-

ment as they did with Excel and MS Word. We need to perform repetitive re-

search manually. The one advantage is that the registered version of Map Point

does accept Excel files for plotting and graphing data.

Not being able to rotate ellipses inMap Point is a draw back. This is just another

reason to leave Map Point for another software product.

Map Point does not geo-code data and return the coordinates to the user for

computational purposes. This is just another reason to leave Map Point for

another software product.





CHAPTER 3

MATHEMATICS REVIEW

3.1 Notation

We discuss some common notation used throughout this book here.

Random Variables, Their Properties, and Deviational Ellipses.
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Notation Meaning

x Subscript denoting latitude.

y Subscript denoting longitude.

t A dummy variable used in integration. Usually denotes the

latitude.

u A dummy variable used in integration. Usually denotes the

longitude.

w Subscript denoting the weight variable.

γx Shape parameter to the Weibull distribution for the latitude.

γy Shape parameter to the Weibull distribution for the longi-

tude.

λx Scale parameter to the Exponential distribution and the

Weibull distribution for the latitude. Generally, there is not

implied equality.

λy Scale parameter to the Exponential distribution and the

Weibull distribution for the longitude. Generally, there is no

implied equality.

k The iteration number in the Secant algorithm.

n Denotes the sample size .

φi Represents the observed values of the latitude in spherical

statistics.

θi Represents the observed values of the longitude in spherical

statistics.

R Called the resultant length in spherical statistics.

l̄0, m̄0, n̄0 Called the mean direction of cosines in spherical statistics.

S∗ Denotes the spherical variance.

T Denotes the matrix T. The diagonal elements sum to the

sample size n.

B Denotes the matrix B. The diagonal elements sum to 2n.

Generally, the set {x1, x2, ..., xn} represents the observed values of the latitude
. The set {y1, y2, ..., yn} represents the observed values of the longitude . The

set {w1, w2, ..., wn} represents the observed values of the random variable at those

corresponding latitude and longitude. Using these three sets of observed numbers

(wi, xi, yi), we estimate parameters from known distributions.

3.2 Derivatives

Some common derivatives used in this text are given next. Using the same notation

as in most calculus books and the CRC Standard Math Tables, u represents a func-
tion of x, a and n represent fixed real numbers.
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Example 1:

d (a)

dx
= 0.

Example 2:

d loge n

dx
= 0.

Example 3:
d loge u

dx
=

1

u

du

dx
.

Example 4:
d eu

dx
= eu

du

dx
.

Take the derivative of f(w, λ, x) = w 1
λe

− x
λ with respect to x.

dw 1
λe

− x
λ

d x
= −w


1

λ

2

e−
x
λ

Example 5:
d xa

da
= xa logx.

We are not asking for the derivative with respect to x in this example.

3.3 Integrals

Some common integrals used in this text are given in this section.

Example 6:
 x

0

a du = ax.

Example 7:  a

0

lnndx = x lnn


a

0

= a lnn.

Example 8:


1

x
dx = logx

Example 9:

eax = eax/a

In this textbook, sometimes the symbol exp{} represents the exponential function
instead of e.
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3.4 Quadratic Equation

Most of the material in this section appears in CRC’s Standard Math Tables. A

quadratic equation has the form ax2 + bx+ c = 0. Then, the roots are

x =
−b ±

√
b2 − 4ac

2a

If a, b, and c are real, then

1. If b2 − 4ac is positive, then the roots are real and unequal.

2. If b2 − 4ac is zero, then the roots are real and equal.

3. If b2 − 4ac is negative, then the roots are imaginary and unequal.

The roots to the quadratic equation give the equation for the standard deviational

ellipse. Cases (1) and (2) have more practicable importance than (3). We will discuss

the standard deviational ellipse and other ellipses in later Chapters.

3.5 Ellipse Equation

The elliptical formula appears in Equation (3.1).

(x− h)2

a2
+
(y − k)2

b2
= 1, a > b > 0 (3.1)

It may be necessary to complete the quadratic equations in the numerators to

obtain an ellipse.

3.6 Trigonometry Functions and Conversion Factors

In Excel, the Atn() function is used to obtain the argument x from the tangent

function Tan(x). The function takes degrees as input, but returns radians as output.
Given that, it is convenient to know the following conversion factors:

To convert radians to degrees,

1 radian =
180

π
= 57.2957795 degrees.

To convert degrees to radians,

1 degree =
π

180
= 0.0174532925 radians.
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3.7 Modulo Arithmetic

Modulo arithmetic arises when we convert spherical data to directional data. The

spherical data comes from the observed latitude and longitude for a random event.

To apply some statistical techniques, we need to convert the longitude to a circu-

lar reference system, which results in directional data. To accomplish this, we use

modulo arithmetic.

To convert the latitude coordinates xi to the circular reference system xi we use
the general rule:

xi = mod(xi, 180). (3.2)

To convert the summary statistic for the mean latitude x̄ back to the original co-
ordinate system, we use the general rule:

x̄ =


x̄, if x̄ ≤ 90.

−mod(180, x̄), if x̄ > 90.
(3.3)

The reader should not worry about how to calulate x̄ in this Chapter. Realize that
when samples with mixed signs for the latitude and longitude arise, we must have a

mechanism to determine the sign of the summary statistics.

Example 10: The coordinates of Australia are (xi, yi) = (25 16 27.84 South, 133 46

30.49 East). The decimal degree coodinates are (xi, yi) = (−25.47399, 133.775136).
To convert the coordinates to decimal degrees in Map Point or Google Earth:

Select Tools | Options.

If using Map Point, the dialog box in Figure 3.1 will appear. If using Google

Earth, the dialog box in Figure 3.2 will appear.

Click on the radion button Decimal degrees.

Figure 3.1 This figure shows the Options dialog box in Map Point. We use it to convert

the latitude and longitude coordinates to decimal degrees.
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Figure 3.2 This figure shows the Options dialog box in Google Earth. We use it to

convert the latitude and longitude coordinates to decimal degrees.

The latitude is negative. The longitude is positive. We convert the latitude using

modulo arithmetic. The new latitude observation becomes xi = mod(−25.47399, 180) =
154.52601.For computationpurposes, we use the coodinates (xi, yi) = (154.52601, 133.775136).

To convert the longitude coordinates yi to the circular reference system yi we use
the general rule:

yi = mod(yi, 360). (3.4)

To convert the summary statistic for the mean longitude ȳ back to the original
coordinate system, we use the general rule:

ȳ =


ȳ, if ȳ ≤ 180.

−mod(360, ȳ), if ȳ > 180.
(3.5)

Example 11: The coordinates of Canada are (xi, yi) = (55 56 18.59 North, 106

20 48.37 West).The decimal degree coodinates are (xi, yi) = (55.938497, −106.346771).
The longitude is negative. The latitude is positive. We convert the longitude using

modulo arithmetic. The new longitude becomes yi = mod(−106.346771, 360) =
253.653229.For computationpurposes, we use the coodinates (xi, yi) = (55.938497,
253.653229).

3.8 Weighted Data

Most of the chapters deal with weighted data. What is the motivation for weighting

the latitude and longitude observations? Consider the case of un-weighted obser-

vations. For example, the Bureau of Justice Statistics (BJS) conducts a survey to

measure violent crime in the United States. Hypothetically, let us say that the lowest

level of geography reported by the BJS in the survey is at the state level. To find the

center of gravity of violent crime, we take the average of the latitude observations
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and the average of the longitude observations. Averages are un-biased estimators. To

say that each state contributes equally to the center of gravity is misleading. Some

states have a high number of incidents of crime while others have a low number of

incidents of crime. We should reflect this fact in the estimator. The literature on

weighted data typically multiplies the latitude and longitude by a weight. In this

case, the weight is the number of incidents of violent crime divided by the sum of

the number of incidents of violent crime for the entire U.S. This ensures the weights

are between zero and one. It ensures those states with a high number of incidents of

violent crime will have a correspondingly proportional effect on the center of gravity

— those states will draw the mean center of gravity to themselves. Vise-versa, those

states with a low number of incidents of violent crime will have the mean center of

gravity pulled away from them.

Throughout the text book, the examples uses weighted data. Equation (3.6) shows

the weighting scheme for observation i out of n observations.

w
i =

win
i=1wi

(3.6)

1




Sub Set Weights(sum weight)

’this procedure calculates the weights between 0 and 1 in column D

’columns A, B, and C must be highlighed

n = Selection.Rows.Count

sum weight = 0

2




For i = 2 To n

4



With ActiveSheet

sum weight = sum weight + .Cells (i, 3).Value

EndWith

Next

3




For i = 2 To n

5



With ActiveSheet

.Cells (i, 4).Value = .Cells (i, 3).Value / sum weight

EndWith

Next

End Sub

Comments in VBA for Excel begin with a single tick mark ”’”. Loop 2 shows

the code for summing the weight column in an Excel spreadsheet. In this case,

ColumnC (referred to as 3) and rows 2 thrun are being summed. The Excel provided
function Selection.Rows.Count counts the number of rows hightlighted in

the active spreadsheet. It initializes the value of n. Loop 3 shows the code for the
final calculation of the weights. It divides each observation wi by the sum

n
i=1wi

and stores the results in Column D. We do not weight observation i equal to 1 (i.e.

row 1 in the active spreadsheet) because it is a label.
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Upon running this subroutine, column D will always sum to one. The use of the

WITH-END-WITH statement is optional. It is a short-cut to not having to keep typ-

ing in the Excel object — in this case, the spreadsheet last referenced ”Activesheet.”

3.9 Area

Consider the simple formula for calculating the area of an ellipse (or a circle). Let

a be the length of the semi-major axis. Let b be the length of the semi-minor axis.
If a > b, then we have an ellipse. If a = b, then we have a circle. A function to

calculate the area of an ellipse is given next. The parameters to the function are the

semi-major axis length a and the semi-minor axis length b. Equation (3.7) gives the
formula for the area of an ellipse.

f = πab. (3.7)

1




FunctionArea(a, b)

’a= semi-major axis length

’b= semi-minor axis length

2

Area =WorksheetFunction.Pi * a * b

End Function

Line 2 calculates the area of the ellipse using the formula in Equation (3.7). The

value of the calculation is returned via the function name Area.

3.10 Eccentricity

Equation (3.8) gives the eccentricity of an ellipse (or circle) where a is the length of
the semi-major axis and b is the length of the semi-minor axis, a ≥ b.

e =

√
a2 − b2

a
(3.8)

1




Function Eccentricity(a, b)

’a= semi-major axis length

’b= semi-minor axis length

2




If a >= b Then

Eccentricity = Sqr(a ˆ 2 - b ˆ 2) / a ’ eccentricity

Else

Eccentricity = Sqr(b ˆ 2 - a ˆ 2) / b ’eccentricity

End If

End Function
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Some defensive programminghas been incorporated into the Eccentricity()

function. If a is the semi-major axis, then Equation (3.8) works fine. If the user for-
gets the variable definitions, then the function would return an error message if only

one formula was programmed. If a < b, the roles of a and b are switched in Equation
(3.8). The IF-THEN-ELSE statment (2) demonstrates the defensive programming

concept.

3.11 Axes Length

Equation (3.9) gives the formula for the semi-major axis length a. Equation (3.10)
gives the formula for the semi-minor axis length b.

a =

 y

n
+

2(xy)2

n

−(x− y) +


(x− y)2 + 4(xy)2

 (3.9)

b =

x

n
+

2(xy)2

n

−(x − y) +


(x− y)2 + 4(xy)2

 (3.10)

Calculating the values x, y, and xy are complicated sums depending on the proba-
bility distribution. The details on calculating the sums will be covered in later Chap-

ters. For now, assume that the variables x, y, and xy are given.

1




SubAxes Length(m, x, y, xy, a, b)

’m= number of observations

’x= sum of diffs from mean center squared x direction (input)

’y= sum of diffs from mean center squared y direction (input)

’xy= diff sums from mean centers x and y direction (input)

’a= semi-major axis (output)

’b= semi-minor axis (output)

2




If x>= y Then

a = Sqr(y / m + 2 * (xy) ˆ 2 / (m * (-1 * (x - y) + Sqr((x - y) ˆ 2 + 4 * xy ˆ 2))))

b = Sqr(x / m - 2 * (xy) ˆ 2 / (m * (-1 * (x - y) + Sqr((x - y) ˆ 2 + 4 * xy ˆ 2))))

Else

a = Sqr(x / m + 2 * (xy) ˆ 2 / (m * (-1 * (y - x) + Sqr((y - x) ˆ 2 + 4 * xy ˆ 2))))

b = Sqr(y / m - 2 * (xy) ˆ 2 / (m * (-1 * (y - x) + Sqr((y - x) ˆ 2 + 4 * xy ˆ 2))))

End If

End Sub

Given the quantitiesx, y, xy, the subroutineAxes Length() returns the

length of the semi-major axis a and the length of the semi-minor axis b.
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3.12 Rotation

The subroutineAngle of Rotation() calculates the angle of rotation θ in Equa-
tion (5.10). It also gives the axis of rotation. The first FOR-NEXT loop (12) cal-

culates the individual sums in Equation (5.10) and stores the values in the variables

x, y, and xy. The next four VBA statements calculate the angle of rotation

with the plus and minus sign accounted for. The angle of rotation θ is stored in the
variables theta1 and theta2. The IF-THEN-ELSE statement (13) deter-

mines the axis of rotation using the values theta1 and theta2. If theta1

> theta2 then the axis of rotation is the Y-axis because the square root term is

positive. Otherwise, the square root term is negative (or equal) and the axis of rota-

tion is the X-axis. The WITH-END-WITH statement (14) puts the results onto the

spreadsheet called STATS.

1




Sub Angle of Rotation(x, y, xy, note, atheta, itheta)

’calculate the rotation from the axes

’x= sum of diffs from mean center squared x direction (input)

’y= sum of diffs from mean center squared y direction (input)

’xy= diff sums from mean centers x and y direction (input)

’note= states direction of rotation (output)

’atheta= angle of rotation in the x direction (output)

’itheta= angle of rotation in the y direction (output)

tan theta1 = -1 * (x - y) / (2 * xy) + Sqr((x - y) ˆ 2 + 4 * xy ˆ 2) / (2 * xy)

tan theta2 = -1 * (x - y) / (2 * xy) - Sqr((x - y) ˆ 2 + 4 * xy ˆ 2) / (2 * xy)

theta1 = Atn(tan theta1) * 180 /WorksheetFunction.Pi()

theta2 = Atn(tan theta2) * 180 /WorksheetFunction.Pi()

2




If theta1> theta2 Then

note = ”Rotate on Y-Axis”

atheta = theta1

itheta = theta2

Else

note = ”Rotate on X-Axis”

atheta = theta2

itheta = theta1

End If

End Sub
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3.13 Base 10 Logarithm

The VBA logarithm function has a natural exponetial base. VBA for Excel does

not provide a means to change the base of the logarithm. If the programmer wishes

to change the base, then the programmer must write a function for that particular

logarithm with that particular base. The static function Log10(X) returns the log-

arithm of the numberX with the base 10.

1



Static Function Log10(X)

Log10 = Log(X) / Log(10#)

End Function





CHAPTER 4

GEO-CODING

The data used in this book comes from many sources. The majority of the data

resides on government web sites today. It would have been nice if the data were pre-

pared before downloading it. The data provided (free) did have the random variables

of interest. However, the data did not have the latitude and longitude observations.

Thus, the data must be geo-coded before performing any analyzes in this textbook.

Existing textbook authors use either outdated software or expensive software to

calculate their statistics. Outdated software such as FORTRAN 77 and 10 Statement

Fortran has been around since at least the 1960’s. Arc GIS and Map Soft are modern

Geographic Software Information systems that can geo-code data; however, products

such as those are expensive. We can always geo-code the data free on Google Earth

— but this becomes time consuming. Academic software products do exist such as

CrimeStat. It performs many statistical calculations includingweighted calculations.

That one comes with an extensive software manual, too. Map Point, a Microsoft

product, is fairly inexpensive. The user can save work to the hard drive. The user

can copy and paste maps into other Microsoft products to draw the ellipse and to

rotate it. [Hammond (26)] has a thirty-one page printed ”Student Notebook Atlas”

of the world. The atlas has the land masses enclosed in a box with the latitude and

longitude references on the sides of the box. The Hammond Atlas is an inexpensive
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product, too. It may be difficult to get the same precise coordinates that the software

products give.

It is a trade-off among data precision, time, cost, and scope of the research as to

what software one chooses. Data is data — of course, obtain it in the most prestine

condition possible before performing the research.

Do we need the software or data provider to geo-code the data and calculate the

statistics or just geo-code the data? In this case, we just want the data geo-coded.

We will write the code for calculating the statistics for the various ellipses in Visual

Basic for Applications (VBA) in Excel 2010. This application is further accessible

on Andriod tablets and smart phones using Quick Office.

Most of the geo-coding in this textbook was done using Google Earth. Begin

by downloading the software at http://www.google.com/earth/index.html. Google

Earth periodically updates their images of the Earth. This causes slight differences

in latitude and longitude readings. As long as the data is geo-coded under one or

another satellite images, it does not alter the survey data or the statistical techniques

presented in this textbook. Figure 4.1 shows Google Earth. As an example, for the

June Area Survey in Kentucky, the user types-in the county and state in the upper-left

corner of Google Earth. Google Earth returns the decimal degrees of the county and

state in the lower-right corner.

Figure 4.1 This figure shows Google Earth. It shows how to geo-code a county with-in a

state.

Similarly, the user can type in a state name to obtain the geo-coding or the user

can type in a country name such as Canada to obtain the geo-coding. It is important

not to zoom into or out of the Earth when collecting these coordinates. Otherwise,
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the altitude (which is not being collected) will change. This in turn will change the

latitude and longitude observations.

4.1 Kentucky June Area Survey

This is a survey conducted by the USDepartment of Agriculture (USDA). Within the

USDA, the National Agricultural Statistics Service (NASS) supervises and oversees

the data collection and reporting responsibilities for this survey. Plenty of data is

available and downloadable that is ready to use with little or no formatting issues.

Experience says the Area Frame Section at USDA / NASS uses a stratified survey

design to obtain population totals, standard errors, and CVs. The June Area Survey is

conduced every year to measure, among other things, corn acreage, cotton acreage,

soybean acreage, three seasons of wheat acreage, NOL cattle, and the number of

farms in the United States. Each state has a set of land use strata specific to it. Within

each strata, replicates are assigned to sub-strata. A sample of land called a segment is

finally sampled. Since a minimum of two replicates is assigned to the sub-strata, the

minimum number of segments per strata is two (assuming one sub-strata). Segment

sizes range from 1/10th of a square mile to 1 square mile (640 acres per mile). Often,

multiple sub-strata are assigned to each stratum. A complete, comprehensive set of

designs for the United States can be found in the Area Frame Design Books.

[Kelly (32)] describes the June Area Survey conducted by the USDA / National

Agricultural Statistics Service. That paper describes techniques intended to identify

differences in variation, not to visualize them. Given that the spatial data is available

and the computations described so far, it is possible to visualize the variation in

the data. The author draws the sample from a sample of land called a segment.

Segment sizes range from 1/10th of a square mile to 1 square mile (640 acres per

mile). Enumerators completely cover each segment during the survey. Cartographers

and survey researchers know every segments center point coordinates. Instead of

using the simplistic weighted estimators for the total crop acreage where the weights

are simply the total number of segments divided by the number of sampled segments,

the alternative weights will be defined using spatial data . We will define alternative

weights using spatial data, instead of using the simplistic weighted estimators for

the total crop acreage where the weights are simply the total number of segments

divided by the number of sampled segments. From these alternative weights, we can

derive what are called what are called weighted mean centers and weighted standard

deviational ellipses.

We obtain the data in this book by augmenting the NASS data available to the

public with Google Earth1 coordinates for each county. Data consumers can easily

download the crop data. Figure 4.2 shows the data downloaded from the NASS web

site. Regional level observations have arrows identifying them. The yellow arrows

point to the following formatting issues for us.

1The web site is www.earthgoogle.com. Decimal coordinates are preferred since we can more easily

integrate them than degrees, minutes, and seconds.
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A. The arrow points to non-geographical data. For analytical purposes, we delete

non-geographical observations.

B. The arrow points to the sum of a region. For analytical purposes, we delete

regional observations.

Obtaining the latitude and longitude for the counties does take time. Given that,

our sample will be the county-level data in Kentucky for corn for grain. We are not

so much interested in the quantity of acreage of corn grown in June for the state. We

are interested in the location that corresponds to that single quantity for the state.

Hence, we augment the data with latitude and longitude coordinates.

Figure 4.2 This figure shows the Excel spreadsheet of the Kentucky data. The spreadsheet

has not been geo-coded. It still contains the regional data.

The data lacks latitude and longitude observations. These observations are ob-

tainable from Google Earth. Since, the geography attached to the observations from

USDA are at the county level , the most precision we can hope for from Google

Earth is the latitude and longitude of the counties in the reported data for the given

counties.
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4.2 US Crime Statistics

The Department of Justice established the Bureau of Justice Statistics (BJS) on De-

cember 27, 1979, under the Justice Systems Improvement Act of 1979 as an amend-

ment to the Omnibus Crime Control and Safe Streets Act of 1968. According to

the Bureau of Justice Statistic’s website, their mission is to collect, analyze, publish,

and disseminate information on crime, criminal offenders, victims of crime, and the

operation of justice systems at all levels of government.

This data appears on the Fed Stats web site. Figure 4.3 shows the downloaded

data from the Department of Justice. Examining the left column (Column A), some

of the rows are summarized to the regional level . The data provider merged the

headings across the top. The data include Puerto Rico and Hawaii. These states and

islands are disconnected from the US. We are interested in the main-land part of the

United States.

Figure 4.3 This figure shows the Excel spreadsheet of the crime data. The spreadsheet

has not been geo-coded and still contains the regional data, two years of data in the same

spreadsheet, merged columns, and percentages.

To address cleaning the data from this spreadsheet will take more work than that

for the Kentucky spreadsheet. This data contains merged cells, regional data and

two years of data in the same spreadsheet. In addition, we are not interested in the

percentages. We must contend with some of the problems indicated by the yellow

arrows. Obviously, the data provider created this spreadsheet for presentation pur-

poses, not analytical. The yellow arrows point to the following formatting issues for

us.
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A. The arrow points to the sum of the U.S. totals for the U.S. This is the first clue

that other summary data exists in the spreadsheet. We need to delete summary

data.

B. The arrow points to multiple years of data in the same spreadsheet. We need to

separate this into two different spreadsheets for the algorithms in the VBA code

to work properly.

C. The arrow points to a percentage change. Although useful for a presentation,

we do not need the percentage change for any analyzes in this book. We need

to delete percentage change data.

4.3 OECD Countries

The Organization for Economic Cooperation and Development (OECD) has its head-

quarters in Paris, France; the organization produces 250 publications per year. Eu-

rope created OECD as a successor to the Marshall Plan for the reconstruction of Eu-

rope after World War II. OECD countries are committed to democracy and the mar-

ket economy. This data comes from theOrganization for Cooperation and Economic

Development website at www.oecd.org. Obviously, some very large economies are

missing from the data. Non-OPEC countries such as India is missing. Most OPEC

countries (Saudi Arabia, Egypt, Iran, Libya, etc.) are missing. This data does provide

a global aspect for the computations in this textbook. We must perform additional

pre-computations on the latitude and longitude before performing any proposed cal-

culations.

We need knowledge of the bounds on the latitude and longitude before modeling

this data set. In prior data sets, the longitude was consistently negative. We can

simply change the sign to positive, and then carry out certain computations. This is

not the case with the OECD data. It has mixed signs for both the latitude and the

longitude. See Figure 4.4. An understanding of the Prime Meridian and the Equator

measurements helps. Very little formatting is necessary compared to the US Crime

data to use it ”as-is.”

Consider the following mapping for the latitude [−90, 90].
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Figure 4.4 This figure shows the Excel spreadsheet of the Gross Domestic Product data.

The spreadsheet has not been geo-coded.

Latitude mod(xi, 180)

10 10

20 20

30 30

40 40

50 50

60 60

70 70

80 80

90 90

0 0

−10 170

−20 160

−40 140

−50 130

−60 120

−80 100
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For negative values of the latitude, the conversion has unique, positive latitude

values. We can do the same for the longitude using modulo 360. When we interpret

the results, the mean latitude and longitude must be converted back to the original

coordinate system.

Longitude mod(yi, 360)

10 10

40 40

80 80

120 120

160 160

180 180

−10 350

−40 320

−80 280

−120 240

−160 200

4.4 Coordinate Systems

The Cartesian coordinate system is the classical coordinate system taught in most

textbooks. In two dimensions, we have an X-axis and a Y -axis. This is a single
pole coordinate system with (0, 0) at the center. In three dimensions, we have the
additionalZ-axis — still a single pole coordinate system.

We can alternatively define the function r = ix + jy, where i and j are vectors
defined as:

i =


1

0



and

j =


0

1



In the spherical statistics literature, a one-pole coordinate system appears most

often because these coordinate systems have the most practical applications and in-

terpretations. Suppose we are measuring the hands on a clock, a roulette wheel, an

experiment where a person in a room must identify the source of a sound, and so

on. All of these examples have one common theme in that they have one pole. The

center of the clock is the pole. The center of the roulette wheel is the pole. The

person’s head is the pole. [Leong and Carlile (38)] describe the hoop coordinate sys-

tem, which has two dimensions and one pole. They mention that data is restricted

to observations lying on the sphere as opposed to measuring distance (i.e. the sound

experiment).
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Figure 4.5 This figure shows the Earth using Map Point. We identify points on the Earth

using latitude and longitude.

Exact formulas exist for converting from the polar coordinate system to the Carte-

sian coordinate system (and vise-versa). For most problems of practicable impor-

tance from these two coordinate systems, we restrict the space to one-dimension or

two-dimensions so that it becomes a circular coordinate system. Otherwise, inter-

preting the results becomes difficult.

Another set of practicable problems use latitude and longitude coordinates. We

identify points on the Earth using latitude and longitude. See Figure 4.5. We look-

up the latitude and longitude coordinates for our data. This is called geo-coding.

The latitude ranges from (−90, 90). The longitude ranges from (−180, 180).
We can always convert geographic data to circular data. The mean results can be

converted back to the original coordinate system while preserving the sign. We must

interpret the results such as the mean center, which is also called the center of gravity.

Using the calculations from the spherical statistics literature, these calculations strive

to project the data onto an X, Y and Z-axis as opposed to the Earth. Using the

calculations from the geography and statistics literature, the center of gravity will

always be in the survey area. Some careful forethought goes into what you expect

from spherical statistics.

Many times the data in this textbook comes from several sources. The random

variable wi augments with a pair of coordinates called latitude xi and longitude

yi for each observation i. We omit the altitude from the analysis. Using special

software, we plot the random variable on a map using the pair (xi, yi). To make
calculations simple, we measure the latitude and longitude pairs (xi, yi) in degrees,
then decimal minutes and seconds as opposed to degrees, minutes, and seconds.

Having knowledge of the Cartesian coordinate system for plotting points does help

to understand the subtle differences between mapping and plotting.

When drawing an ellipse on a map, knowledge of the polar coordinate system is

most useful. We derive several pieces of information:

The center of the ellipse.

The semi-major and the semi-minor axis lengths.
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The angle of rotation from an imaginaryX or Y -axis.

We have enough information to draw an ellipse and to rotate the ellipse from the

imaginary axis. The imaginary axis (or axes) is simply the X and Y -axes from the

Cartesian coordinate system super-imposed onto a map using specialty software.

Chapter 2 discusses some of the specialty software available.

The software comes with a ruler to draw lines. The software can measure lines

in miles or kilometers. We use the ruler to draw the semi-major and semi-minor

axes.

The user must use another software product to draw and rotate the ellipse.



CHAPTER 5

STANDARD DEVIATIONAL ELLIPSE

Textbooks on geo-statistics cover the weighted mean center and the dispersion of

the data, [Davis, (12), p. 25]. The author defines the weighted mean center used

in Section 5. The author also defines the accompanying standard distance based on

Pythagoras’ theorem for a set of coordinates (xi, yi) as

 1

n

n

i=1

(xi − x̄)2 +
1

n

n

i=1

(yi − ȳ)2. (5.1)

The author objectively compares the standard distance of the dispersion of different

point patterns. to be compared objectively. He gives as an example the number of

clothing shops versus butchers or grocers. The standard distance is a single num-

ber and always results in a circle around the mean center to show the dispersion.

[Gregory (22), and Lee (35)] discuss data transformations and regression estimators.

To derive the estimators for the weighted mean centers, we can use a general lin-

ear means model. [Johnston, (31), p. 130-34] discusses the relationship between

the standard deviational ellipse and the correlation coefficient in linear regression

modeling. The author provides details to graphical representations in lieu of proofs.
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We will introduce an extension to the standard deviational ellipse and use the

above three criteria given in [Yuill, (67)] to compare the results. This book will

consider these two spatial estimators:

1. The weighted mean center — shows the spatial mean of a random variable.

2. The weighted standard deviational ellipse — shows the spatial spread of a set

of point locations for a random variable.

The mean center is simply the usual sample mean found in the statistics literature.

For the weighted mean center found in the geo-statistics literature, the formulas and

their distributional properties are neither too obvious nor intuitive. We will discuss

those concepts next.

5.1 A Weighted Regression Model

Consider the weighted regression model yi = α+ βxi + i where i ∼ N (0, 1√
wi
σ)

where wi represents the weighted observations. [Lee (35), page 236] gives the fol-

lowing estimators.

The parameter estimator for α appears in Equation (5.2).

α = ȳ − βx̄. (5.2)

The parameter estimator for β appears in Equation (5.3).

β =

n
i=1wi(xi − x̄)(yi − ȳ)n

i=1wi(xi − x̄)2
−

n
i=1wixiyi − (


n

i=1
wixi)(


n

i=1
wiyi)

n

i=1
wi

n
i=1wix2i −

(


n

i=1
wixi)

2


n

i=1
wi

(5.3)

where the averages are estimated using Equations (5.4) and (5.5).

x̄ =

n
i=1wixin
i=1wi

(5.4)

ȳ =

n
i=1wiyin
i=1wi

(5.5)

Under the normal distribution, the weighted residual sums of squares for σ2 ap-
pears in Equation (5.6).

n

i=1

2i =
n

i=1

wi(yi − α− βxi)2. (5.6)

Equation (5.7) shows the weighted likelihood function for the regression model.

It has a chi-square distribution.
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L =
n

i=1


1

2π2
 1

2

exp


−

n

i=1

wi(yi − α− βxi)2
22 .


(5.7)

The natural logarithm of the weighted likelihood function appears in Equation

(5.8).

lnL = ln


n

i=1


1

2π2
 1

2


− 1

2

n

i=1

wi(yi − − βxi)2
2 . (5.8)

Equation (5.8) is based on the Akaike information criterion. The entire equation is

retained for comparison purposes in Section 7.13.

5.2 Mean Latitude and Mean Longitude

Let (wi xi, wi yi) equal to a weighted, paired observation. Letwi equal to the weight

for the sample total of a random variable on observation i. Let xi equal to the latitude
of the ith observation such that 0 ≤ xi ≤ 90. Let yi equal to the longitude of the i

th

observation such that−180 ≤ yi ≤ 180.

(x̄, ȳ) =

n
i=1wixin
i=1wi

,

n
i=1wiyin
i=1wi


. (5.9)

Equation (5.9) is called the center of gravity.
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5.3 VBA

3




Sub SDEmean centers()

’calculate the mean center for the latitude and the longitude

mean latitude = 0

mean longitude = 0

n = Selection.Rows.Count

10




For i = 2 To n

47




With ActiveSheet

mean latitude = mean latitude + .Cells (i, 1).Value * .Cells (i, 3).Value

mean longitude = mean longitude + .Cells (i, 2).Value * .Cells(i, 3).Value

End With

Next

mean latitude = mean latitude / sum weight

mean longitude = mean longitude / sum weight

’user must convert latitude and longitude back from circular coordinates

’put the values in STATS worksheet

End Sub

To calculate the mean center of gravity in Equation (5.9), the weights must be

set on the active spreadsheet first. The subroutine named SDEmean centers()

calculates the weigthed mean center of the standard deviational ellipse. The FOR-

NEXT loop (10) multiplies the latitude and longitude observations by the weights.

It sums the observations and puts the sums into the variables mean latitude

and mean longitude. The WITH-END-WITH statements (11) puts the re-

sults into the output spreadsheet called STATS. The cell reference is always row,

then column. For example, the code .Cell(3,2) refers to row 3 and column 2.

Column 2 refers to column B.

5.4 Standard Deviational Ellipse

To calculate the standard deviational ellipse, one must substitute the latitude and

longitude coordinate pairs as follow.

xi = xi − x̄, yi = yi − ȳ.
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[Yuill (67)] calculates the angle of rotation for the weighted standard deviational

ellipse as

tan θ = −

n
i=1 x

2

i wi −
n

i=1 y
2

i wi



2
n

i=1 x

iy


iwi

± (5.10)

n
i=1 x

2
i wi −

n
i=1 y

2
i wi

2
+ 4 (

n
i=1 x


iy


iwi)

2

2
n

i=1 x

iy

iwi

Observe that Equation (5.10) gives the roots to the quadratic equation where the

constants

a =

n

i=1

xiy

iwi, b =

n

i=1

x2


i wi −
n

i=1

y2


i wi, and c = 1.

The Arctan() function is applied to the right-hand-side of Equation (5.10) to

obtain the angle of rotation θ. The value for θ is substituted into Equations (5.11)
and (5.12) to calculate the standard error terms along the axes. The standard error

terms for the semi-major axis and semi-minor axis are given by Equations (5.11) and

(5.12).

δx =

n
i=1(y


i sin θ − xi cos θ)

2win
i=1wi

(5.11)

δy =

n
i=1(y


i cos θ − xi sin θ)

2win
i=1wi

(5.12)

The advantages of these two estimators are that they allow trends in the data to

be visualized. The mean center is pulled closer together with counties with larger

weights wi using Equation (5.9). Section 5 will show how Equation 5.9 is derived

using a general linear means model and a linear regression model. Section 5.8 will

show how Equation (5.10) can be extended to the exponential model.

5.5 VBA

The subroutine SDEdeltas() calculates the standard error terms along the axes

in Equations (5.11) and (5.12). The first FOR-NEXT loop (15) calculates the sums

and stores the values in variables delta x and delta y. After the FOR-NEXT

loop (15), the two VBA statements divide by the total sum of the weights and take

the square weights of the sums. The final values of the standard error terms along

the axes are stored in the variables delta x and delta y. The WITH-END-

WITH statements (16) save the results to the output spreadsheet called STATS.
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5




Sub SDEdeltas()

’calculate the deltas

n = Selection.Rows.Count

delta x = 0

delta y = 0

15




For i = 2 To n

34




With ActiveSheet

delta x = delta x +

((.Cells (i, 2).Value - mean longitude) * Sin (atheta / (180 /WorksheetFunction.Pi() )) -

(.Cells (i, 1).Value - mean latitude) * Cos (atheta / (180 /WorksheetFunction.Pi() ))) ˆ 2 *

.Cells (i, 3). Value

delta y = delta y +

((.Cells (i, 2).Value - mean longitude) * Cos (itheta / (180 /WorksheetFunction.Pi() )) -

(.Cells (i, 1).Value - mean latitude) * Sin (itheta / (180 /WorksheetFunction.Pi() ))) ˆ 2 *

.Cells (i, 3).Value

End With

Next

delta x = Sqr (delta x / sum weight)

delta y = Sqr (delta y / sum weight)

End Sub

5.5.1 Weighted Mean Center

Although [Yuill, (67)] did provide a derivation for the weighted ellipse, the author

did not provide the derivation for the mean centers. We will cover the derivation

next. Let the variableW represent the random variable of interest. We wish to give

those latitude observations with the largest values of W the most weight, and those

latitude values with the smaller values ofW the lesser weights. Consider the general

linear means model

model xi yi = µx + µy +
x√
wi

+
y√
wi

where wi equals to the weight for the sample total of a random variable on ob-

servation i; xi equals to the latitude of the i
th observation such that 0 ≤ xi ≤ 90;

yi equals to the longitude of the i
th observation such that −180 ≤ yi ≤ 180; µx

represents the weighted mean response of the latitude responses; and µy represents
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the weighted mean response of the longitude responses. The general linear means

model weights the error terms by wi.
Consider the first model (latitude). We wish to minimize the weighted sum of

squares. Our error terms are the difference between the known random values and

the predicted values (i.e. the epsilons).

ex =
√
wi(xi − µx).

We square ex and sum to obtain the weighted sum of squares.

e2x =

n

i=1

wi(xi − µx)
2.

The w
is and x


is are known observations. We estimate µx using the w


is and x


is

observations. We take the derivative of ex with respect to µx; set it to zero; and solve
for µx.

d ex
dµx

= −2
n

i=1

wi(xi − µx) = 0⇒

n

i=1

wixi − µx

n

i=1

wi = 0⇒

n

i=1

wixi = µx

n

i=1

wi ⇒

µx =
n

i=1wixin
i=1wi

= x̄. (5.13)

A similar derivation holds for the longitude ey by substitutingyi for xi and µy for
µx above.

µy =
n

i=1wiyin
i=1wi

= ȳ. (5.14)

The quantities (x̄, ȳ) are the weighted mean center for the random variableW.

5.6 Ellipse Properties

The quantity a1 in Equation (5.15) gives the length of the semi-major axis under the
standard deviational ellipse.

a21 −
1

n

n

i=1

y2i wi = (5.15)
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+
1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 x
2
i wi −

n
i=1 y

2
i wi) +


(
n

i=1 x
2
i wi −

n
i=1 y

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

where xi = xi − x̄, 0 ≤ xi ≤ 90 and yi = yi − ȳ, −180 ≤ yi ≤ 180, wi ≥
0. Both x̄ and ȳ are weighted means. Equation (5.15) is subject to the constraintn

i=1 x
2
i wi >

n
i=1 y

2
i wi.

The quantity b1 in Equation (5.16) gives the formula for the semi-minor axis
length for the weighted standard deviational ellipse.

b21 −
1

n

n

i=1

x2i wi = (5.16)

− 1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 x
2
i wi −

n
i=1 y

2
i wi) +


(
n

i=1 x
2
i wi −

n
i=1 y

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

There are two formulas for the area. We use one formula to check the other.

F = (5.17)

π

n


n

i=1

(xi − x̄)2wi

n

i=1

(yi − ȳ)2wi −
n

i=1

(xi − x̄)(yi − ȳ)wi.

The second formula for the area uses the axes lengths. F = πa1b1 gives the area
where a1 is the semi-major axis length and b1 is the semi-minor axis length.

Most calculus books give the eccentricity for an ellipse (or circle). It is based on

the axes lengths with the major axis a1 being the longest.

e =


a21 − b21
a

(5.18)

0 ≤ e ≤ 1 binds the eccentricity e. It denotes the degree from circularity. When e
is close to 1, it means that the shape of the ellipse is very elliptical and very close to
a straight line. When the eccentricity e is close to 0, it means that the shape of the
ellipse is close to a circle.

The concentration is a count of the number of data points that fall within (or on)

the ellipse. We calculate this quantity as a percentage relative to the total number

data points.

5.7 VBA

We use the function Area() to calculate the area of the standard deviational el-

lipse. It calculates the area using the formual F = πa1b1.We can write special code
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to calculate the area using Equation (5.17). It does need the sums x, y, and xy

from the subroutine Angle of Rotation(). If
n

i=1 x
2

i wi ≥
n

i=1 y
2

i wi,
then the lengths must be calculated using the two equations:

a21 −
1

n

n

i=1

y2i wi =

+
1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 x
2
i wi −

n
i=1 y

2
i wi) +


(
n

i=1 x
2
i wi −

n
i=1 y

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

and

b21 −
1

n

n

i=1

x2i wi =

− 1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 x
2
i wi −

n
i=1 y

2
i wi) +


(
n

i=1 x
2
i wi −

n
i=1 y

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

If
n

i=1 x
2

i wi <
n

i=1 y
2

i wi, then the lengths must be calculated using the two
equations:

a21 −
1

n

n

i=1

x2i wi =

+
1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 y
2
i wi −

n
i=1 x

2
i wi) +


(
n

i=1 y
2
i wi −

n
i=1 x

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

and

b21 −
1

n

n

i=1

y2i wi =

− 1

n

2 (
n

i=1 x

iy


iwi)

2

− (
n

i=1 y
2
i wi −

n
i=1 x

2
i wi) +


(
n

i=1 y
2
i wi −

n
i=1 x

2
i wi)

2
+ 4 (

n
i=1 x


iy

iwi)

2

This ensures we do not take the square root of a negative number in the denominator.

Avoiding taking the square root of a negative number, if a1 > b1, then a1 is the
semi-major axis and b1 is the semi-minor axis. Otherwise, if a1 < b1, then a1 is the
semi-minor axis and b1 is the semi-major axis.
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Figure 5.1 This figure shows the Kentucky data from 2003 and the standard deviational

ellipse. It shows a sketch of the standard deviational ellipse with Ohio County at the center.

The semi-major axis is approximately 184miles long and the semi-minor axis is approximately

52 miles long. We rotated the major axis roughly 70 from the Y-axis in an imaginary

Cartesian coordinate system.

Table 5.1 Results on Corn acreage in Kentucky

2003

Center (37.38297399, -86.8129514)

Axes a = 184.8734659, b = 52.23219209

Area 30,336.30686 sq. mi.

Standard Deviations δx = 1.29151776, δy = 1.625551351

Rotation Y-Axis

Orientation θx = 70.36257022, θy = −19.63742978

Eccentricity 0.959258636

Concentration 55/90

5.8 Kentucky Example

Tables 5.1 and 5.2 summarize the results from the weighted standard deviational

ellipse. Using Equation (5.10), we calculate the angle of rotation as θ = 70.4, the
semi-major axis length as a = 184 miles and the semi-minor axis length as b = 52
miles (using 2003 data as an example). With the semi-major and semi-minor axis
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Table 5.2 Results on Corn acreage in Kentucky

2004

Center (37.40588805, -86.8066601)

Axes a = 184.632769, b = 53.02565716

Area 30,757.05259 sq. mi.

Standard Deviations δx = 1.28529402, δy = 1.613981198

Rotation Y-Axis

Orientation θx = 70.42188382, θy = −19.57811618

Eccentricity 0.957872058

lengths, θ, and the weighted mean centers from Section 5, we can draw the standard

deviational ellipse in Figure 5.1 using the procedure outlined in [Lee andWong (36)].

It shows Ohio County as the center.

Given the summary tables, there is sufficient information to draw the ellipse. The

information needed includes (x̄, ȳ), the angle of rotation from the given axis, and

the lengths of the major and minor axes. The program does not draw the ellipse or

calculate the percentage of concentration.

5.9 Crime Example

The example in this section comes from violent crime in the U.S. for 2007 and 2008.

Tables 5.3 and 5.4 summarize the results for the weighted standard deviational el-

lipse. The data includes the continental U.S.

Table 5.3 Results on Violent Crime in the U.S.

2007

Center (36.8766, -92.1131260)

Axes a = 2, 604.517043, b = 821.0805658

Area 6,718,353.465 sq. mi.

Standard Deviations δx = 4.857083084, δy = 4.857028283

Rotation X-Axis

Orientation θx = 0.045206827, θy = −89.95479317

Eccentricity 0.949007823

Figure 5.2 shows the standard deviational ellipse for the violent crime in the US

for 2007. The ellipse covers most of the United States. We omitted Puerto Rico and

Hawaii from the analysis. A historgram of the data shows the three highest crime

states as California (13.6%), Texas (8.7%), and Florida (9.4%). These three states

streach from the west coast to the east coast and account for almost 32% (one-third)
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Table 5.4 Results on Violent Crime in the U.S.

2008

Center (36.88957333,−92.0322279)

Axes a = 2, 577.512836, b = 809.2827681

Area 6,553,163.484 sq. mi.

Standard Deviations δx = 15.39212752, δy = 15.39222494

Rotation Y-Axis

Orientation θx = 89.89264601, θy = −0.107353986

Eccentricity 0.949430202

Figure 5.2 This figure shows the standard deviational ellipse of violent crime in the US for

the year 2007. It also shows the values of the violent crime using a bar graph. The ellipse is

rather large compared to the area in the survey.

of the violent crime. This could explain why the weighted, standard deviational

ellipse covers so much area.

5.10 GDP Example

This section shows the weighted standard deviational ellipse and the statistics for the

Gross Domestic Product of OECD Countries data set. Since this is a global data set,

the quantities tend to be enormous compared to the other two examples. Tables 5.5

and 5.6 summarize the standard deviational ellipse for the GDP data for 2008 and

2009. We see that the ellipses are highly eccentric. The total area contracted from

2008 to 2009. This is the period where the Great Recession took place. The mean

center changed an entire degree in both the latitude and longitude directions.

The GDP data for 2010gives the center of gravity as (45.94186507,−60.0743298).
The GDP data for 2006 gives the center of gravity as (46.02643851,−48.8800190)
and for 2007 as (45.94290023,−52.4580413).As we can see, the trend shows that
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Figure 5.3 This figure shows the plot of the mean centers of global GDP on a map. As the

years progress, the mean center measurements move closer to the Chinese coastline.

Table 5.5 Results on Gross Domestic Product of OECD Countries

2008

Center (44.95865069, 173.1929)

Axes a = 4, 308.807649, b = 695.7350122

Area 9,417,829.832 sq. mi.

Standard Deviations δx = 20.69202965, δy = 19.93139537

Rotation X-Axis

Orientation θx = 1.307691476, θy = −88.69230852

Eccentricity 0.986877931

the global GDP is moving away from the U.S. and toward the China coastline before

and after the Great Recession.
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Table 5.6 Results on Gross Domestic Product of OECD Countries

2009

Center (45.10440685, 172.9595)

Axes a = 4, 259.806334, b = 700.0081681

Area 9,367,912.709 sq. mi.

Standard Deviations δx = 21.04761702, δy = 20.27737248

Rotation X-Axis

Orientation θx = 1.328357537, θy = −88.67164246

Eccentricity 0.986405646

5.11 Exercises

1. Show that if there are no predictor variables in Table 3.1 and wi =
1
n , then the

total sum of squares equals to the standard distance formula. HINT: xi = x̄ and
y = ȳ.

Solution: If xi = x̄ and yi = ȳ, then the sum of squares due to the model equals

to zero.

n

i=1

(xi − x̄)2 +

n

i=1

(yi − ȳ)2 =

n

i=1

(x̄− x̄)2 +

n

i=1

(ȳ − ȳ)2 = 0

Then, the total sums of squares in Table ?? due to error,

n

i=1

wi(xi − x̄)2 +
n

i=1

wi(yi − ȳ)2 =
1

n

n

i=1

(xi − x̄)2 +
1

n

n

i=1

(yi − ȳ)2.

The standard deviation is the square root of the sums of squares which gives

Equation (5.1).

2. Derive Equation (5.17) using Equations (5.11), (5.12) and F = πab.

3. What are twoways to obtain un-weighted estimates and statistics from the given

Excel spreadsheets? Soluton:

Put 1
n
into column 3.

Copy and paste the VBA code to a new module, modify it to perform un-

weighted calculations.

4. Show that the linear regression least squares sums of squares due to error does

not equal to the standard deviational ellipse error.



CHAPTER 6

THE EXPONENTIAL ELLIPSE

Most of the theory in this section follows the text in [Lee, (35)]. [Lee, (35), pages

164-165] demonstrates how to prove that a set of data has a particular distribution

using graph paper. In the absence of graph paper, modern graphing software will

suffice. The technique involves transforming the data to a linear regression model

and plotting the transformed data. This section deviates from the traditional linear

regression literature in that the data are not directly observed, then modeled.

6.1 Mean Latitude

We consider fitting the weighted exponential distribution to the data. If the fit is a

success, then the result is a linear relationship between the random variable and the

cumulative distribution function. If the fit fails to result in a linear relationship, then

we can add a location parameter and a shape parameter to the distribution. Before

we can transform the data, we need to find the maximum likelihood estimator for the

scale parameter of the weighted exponential distribution. We summarize the latitude

data using the maximum likelihood estimator.

The exponential distribution function considered for the latitude is

Random Variables, Their Properties, and Deviational Ellipses.

By Roger L. Goodwin Copyright c 2015 Roger L. Goodwin
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Figure 6.1 This figure shows the probability plot of the weighted latitude transformation.

The exponential distribution fits the weighted latitude data since it shows a straight line.

Figure 6.2 This figure shows the probability plot of the weighted longitude transformation.

The exponential distribution fits the absolute value of the weighted longitude data since it

shows a straight line. It was necessary to take absolute values since longitudinal data is

negative.

fx(wi, xi) = λxwie
−λxxi , 0 ≤ xi ≤ 180, wi ≥ 0, (6.1)

where λx is the scale parameter. We estimate λx using the sample data. Equation
(6.1) is a probability density function only if

n
i=1wi = 1. Why is this? Because

the cumulative distribution function is

Fx(w, x) =

 t

0

f(w, x) dx =

 t

0

λxwe
−λxx dx =

−we−λxx


t

0

= w −we−λxt = Ft(tx).
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1. As t→ 0, Ft → 0.

2. As t→ 180, Ft → w.

3. Ft is right continuous.

Thus, for Ft to be a true cumulative distribution function, w =
n

i=1wi = 1 is a

necessary condition. We let each observation be weighted by wi =
w

i
n

i=1
w

i

where

w
i is the observed value of the random variable with the latitude xi.
The maximum likelihood estimator for the parameter λx occurs at the first deriva-

tive of the likelihood function L =
n

i=1 fx(w, xi) taken with respect to λx.

L =

n

i=1

fx(w, xi) =

n

i=1

λxw exp {−λxxi} = (λxw)
n exp


−λx

n

i=1

xi


,

logL = n log(λxw) − λx

n

i=1

xi, (6.2)

d logL

dλx
=

n

λxw
−

n

i=1

xi = 0⇒

λx =
n

w
n

i=1 xi
. (6.3)

The maximum likelihood estimator appears in Equation (6.3).

As in [Lee, pages 162-164, (35)], we wish to fit a linear relationship by solving

the following equality:

e−λxwtx = 1− Ft(tx),

λxwtx = loge


1

1− Ft(tx)


,

t̄x =
1

λx
loge


1

1− Ft(tx)


w. (6.4)

Using Equation (6.4), we plot our transformed data points [t(x,i), F (tx,i)], to
obtain the graph in Figure 6.1 on page 60. As one can see, it shows a linear relation

that means the weighted latitude is exponentially distributed. We repeat the same

procedure for the longitude.

For the joint distribution, we do not need to prove linearity. We do need the

relationship between the two transformed variables, though.
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6.2 Mean Longitude

A similar set of equations follow for the longitude from the latitude. The parameter

estimator is different from that for the latitude since the data can be negative and the

sample space for exponential distributiononly allows for positive numbers (including

zero). The exponential distribution function considered for the longitude is

fy(wi, yi) = λy wi e
−λyyi , 0 ≤ yi ≤ 360, wi > 0. (6.5)

We derive the cumulative distribution function as follow.

Fy(w, y) =

 u

0

f(w, y) dy =

 u

0

λywe
−λyy dy =

−we−λyy


u

0

= w −we−λyu = Fu(uy).

1. As u→ 0, Fu → 0.

2. As u→ 360, Fu → w.

3. Fu is right continuous.

Thus, for Fu to be a true cumulative distribution function,w =
n

i=1wi = 1 is a

necessary condition. We let each observation be weighted by wi =
w

i
n

i=1
w

i

where

w
i is the observed value of the random variable with the longitude yi.
We obtain the maximum likelihood estimator for λy for the longitude by taking

the derivative of the likelihood function L =
n

i=1 f(w, yi) with respect to λy;
setting it to zero; and solving for λy .

L =

n

i=1

f(w, yi) =

n

i=1

λy w exp {−λyyi} = (λy w)
n exp


−λy

n

i=1

yi



logL = n log(λy w)− λy

n

i=1

yi, (6.6)

d logL

dλy
=

n

λy w
−

n

i=1

yi = 0.

This results in Equation (6.7).

λy =
n

w
n

i=1 yi
. (6.7)

We wish to see if we can obtain a linear relationship using the exponential distri-

bution. We transform the data as follow:
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e−λywuy = 1− Fu(uy),

λywuy = loge


1

1− Fu(uy)


,

ūy =
1

λy
loge


1

1− Fu(uy)


w. (6.8)

Using Equation (6.8), we plot our transformed data points [u(y,i), F (uy,i)], to
obtain the graph in Figure 6.2 on page 60. As one can see, it shows a linear relation

that means the weighted longitude is exponentially distributed.

6.3 Joint Distribution

Finally, the joint distribution between two weighted exponential models needs to be

determined. Given the two probability density functions in Equations (6.1) and (6.5),

the joint likelihood function is

L =

n

i−1
fx(w, xi)fy(w, yi) =

n

i=1

λxw exp {−λxxi} λyw exp {−λyyi} .

Let λx = λy = λxy. Then, the joint likelihood function becomes,

L(w, xi, yi) =

n

i=1

λ2xyw
2 exp {−λxy(xi + yi)} .

Next, we find the maximum likelihood estimator of λxy.

logL(w, xi, yi) = 2n log(λxy w)− λxy

n

i=1

(xi + yi). (6.9)

d logL

dλxy
=

2n

λxyw
−

n

i=1

(xi + yi)⇒

λxy =
2n

w
n

i=1(xi + yi)
. (6.10)

Equation (6.10) gives the maximum likelihood estimator for λxy for the joint

distribution of the latitude and longitude. The joint probability density function of

the latitude and longitude is
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fxy(wi, xi, yi) = λ2xyw
2
i exp {−λxy(xi + yi)} .

We need to find the cumulative distribution function Fxy(wi, xi, yi) for the joint
distribution, next. We need the cumulative distribution function in the exponential

standard deviational ellipse formula.

Fxy(w, x, y) =

 t

0

 u

0

(wλxy)
2 exp {−λxy(x+ y)} dy dx =

 t

0

−w2λxy exp {−λxy(x+ y)}

u

0

dx =

 t

0

−λxyw2 exp {−λxy(x+ u)}+ λxyw
2 exp {−λxyx} dx =

w2 exp {−λxy(x+ u)} −w2 exp {−λxyx}

t

0

=

w2 exp {−λxy(t+ u)} − w2 exp {−λxyt} −w2 exp {−λxyu}+w2 (6.11)

= Ftu(w, t, u)

Is Equation (6.11) a valid cumulative distribution function?

1. As t→ 0, and u→ 0, then Ftu → 0.

2. As t→ 180, and u→ 360, then Ftu → w.

3. Ftu is right continuous.

This is a valid cumulative distribution function only if the weights w sum to 1 as

t→ 180 and u→ 360.We choose the weights

w
i =


win
i=1wi

where wi equals to the observed value of the random variable. Then it is a trivial

fact that

w2 =

n

i=1

w2
i =

n

i=1

win
i=1wi

= 1.
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6.4 Exponential Ellipse

We really do not know how the ellipse in Section 5 got its name. The sums come from

the method of least squares in regression. Both the general linear means model and

the linear regression model assume the random variable has a normal distribution.

The normal distribution has a location parameter typically named the mean µ and a
scale parameter typically named the variance σ2. The term really does not apply to

the exponential distribution since it does not have a location parameter. This Section

will derive the exponentially distributed, weighted, deviational ellipse.

6.4.1 Mean Center

The weighted mean estimates (x̄, ȳ) under the general linear means model in Section
5 and the exponential distribution are exactly the same — except possibly the sign

on the longitude. Equation (6.12) gives the relationship for the exponential mean

center for the latitude. Equation (6.13) gives the relationship for the exponential

mean center for the longitude.

n

λx
= x̄. (6.12)

n

λy
= ȳ. (6.13)

The exponential ellipse uses the following formulas.

tx =

n

i=1

1

λx
loge


1

1− Ft(ti)


wi. (6.14)

uy =

n

i=1

1

λy
loge


1

1− Fu(ui)


wi. (6.15)

txy =

n

i=1

1

λxy
loge


1

1− Ftu(ti, ui)


wi. (6.16)

The two ellipses differ from the sums of squares between the original data (wixi, wiyi)
and the transformed data (t(x,i), u(y,i)). Equation (6.16) gives the mean joint distri-
bution estimate between the weighted latitude and weighted longitude estimates. The

estimators for λx, λy, and λxy appear in Equations (6.3), (6.7) and (6.10).

6.5 VBA

The subroutine EXPparameters() (4) calculates the parameter estimates λx,
λy, and λxy using Equations (6.3), (6.7), and (6.10). It also calculates the mean
latitude and the mean longitude (x̄, ȳ) using Equations (6.12) and (6.13). The FOR-
NEXT loop (13) calculates the sums for the maximum likelihood estimates. The
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VBA statements that follow the FOR-NEXT loop (13) calculate the final values for

the parameter estimates and store them in the variables lambda x for the latitude,

lambda y for the longitude, and lambda xy for the joint distribution. We need

the parameter estimates to calculate the distribution functions.

The WITH-END-WITH statements (14) store the mean latitude and the mean

longitude in the STATS spreadsheet. Descriptive labels accompany the weighted

means. In addition, we insert a heading for the Exponential statistics at the top of

column D of the STATS spreadsheet.

The subroutine EXPdistributions() (5) calculates the exponential distri-

butions for the latitude using Equation (6.1) and the longitude using Equation (6.5).

The subroutine calculates the cumulative joint distribution function in Equation (6.11)

and stores the value in the variable F xy. The FOR-NEXT loop (15) calculates

the sums from Equations (6.14), (6.15), and (6.16) and stores the values in the vari-

ables t x, t y, and t xy, respectively. This FOR-NEXT loop also calculates

the log likelihood functions in Equations (6.2), (6.6), and (6.9). It stores those values

in the variables L x, L y, and L xy, respectively.

4




Sub EXPparameters()

n = Selection.Rows.Count

wx = 0

wy = 0

13




For i = 2 To n

26




With ActiveSheet

wx = wx + .Cells(i, 1).Value * .Cells(i, 4).Value

wy = wy + .Cells(i, 5).Value * .Cells(i, 4).Value

End With

Next

lambda x = (n - 1) / wx

lambda y = (n - 1) / wy

lambda xy = 2 * (n - 1) / (wx + wy)

End Sub
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5




Sub EXPdistributions()

’calculate the cumulative distribution functions for the latitude, longitude, and the joint distribution

’calculate the values t x, t y, and t xy, txˆ2, t yˆ2, and t xyˆ2

n = Selection.Rows.Count

t x = 0

t y = 0

t xy = 0

t xsqr = 0

t ysqr = 0

t xysqr = 0

L x = 0 ’used for the log L calculation

L y = 0 ’used for the log L calculation

L xy = 0 ’used for the log L calculation

15




For i = 2 To n

27




With ActiveSheet

f x = .Cells(i, 4).Value - .Cells(i, 4).Value * EXP(-1 * lambda x * .Cells(i, 1).Value)

F y = .Cells(i, 4).Value - .Cells(i, 4).Value * EXP(-1 * lambda y * .Cells(i, 5).Value)



F xy = .Cells(i, 4).Value * EXP(-1 * lambda xy * (.Cells(i, 1).Value + .Cells(i, 5).Value)) -

.Cells(i, 4).Value * EXP(-1 * lambda xy * .Cells(i, 1)) -

.Cells(i, 4).Value * EXP(-1 * lambda xy * .Cells(i, 5)) + .Cells(i, 4).Value

t x = t x + 1 / lambda x * Log(1 / (1 - f x)) / .Cells(i, 4).Value

t y = t y + 1 / lambda y * Log(1 / (1 - F y)) / .Cells(i, 4).Value

t xy = t xy + 1 / lambda xy * Log(1 / (1 - F xy)) / .Cells(i, 4).Value

t xsqr = t xsqr + ((n - 1) / lambda x * Log(1 / (1 - f x)) / .Cells(i, 4).Value) ˆ 2

t ysqr = t ysqr + ((n - 1) / lambda y * Log(1 / (1 - F y)) / .Cells(i, 4).Value) ˆ 2

t xysqr = t xysqr + ((n - 1) / lambda xy * Log(1 / (1 - F xy)) / .Cells(i, 4).Value) ˆ 2

L x = L x + (n - 1) * Log(lambda x * .Cells(i, 4).Value) - lambda x * .Cells(i, 1).Value

L y = L y + (n - 1) * Log(lambda y * .Cells(i, 4).Value) - lambda y * .Cells(i, 5).Value
L xy = L xy + 2 * (n - 1) * Log(lambda xy * .Cells(i, 4).Value ) - lambda xy *

(.Cells(i, 1).Value + .Cells(i, 5).Value)

End With

Next

End Sub
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6.5.1 Ellipse

Equation (7) in [Yuill, (67)] is general enough to obtain a weighted, exponential

standard deviational ellipse. We need to substitute the original sums of squares with

the new sums of squares and re-calculate the major and minor axes. These axes

lengthswill determine the total area fromwhich we can compare the area and number

of weighted points inside the ellipse. Additionally, we can compare the standard

deviations and the eccentricity of the ellipses.

Using equations (6.14), (6.15), and (6.16), we obtain our exponentially distributed,

weighted, deviational ellipse in Equation (6.17).

tan θ = −
n

i=1 t
2
x,i −

n
i=1 u

2
y,i



2
n

i=1 tx,y,i
± (6.17)

n
i=1 t

2
x,i −

n
i=1 u

2
y,i

2
+ 4 (

n
i=1 tx,y,i)

2

2
n

i=1 tx,y,i

6.6 Axis Rotation VBA Code

The subroutineEXPthetas() (6) calculates the angle of rotation θ for the weighted
exponential ellipse. This subroutine uses sums calculated previously in the EX-

Pdistributions() subroutine. Equation (6.17) can have two values, depend-

ing on the plus or minus sign. The EXPthetas() subroutine calculates both val-

ues of θ and stores them in the variables theta1 and theta2. We use the VBA

function Atn to obtain arctan(θ).
The IF-THEN-ELSE statement (16) determines if the rotation is about the Y-

axis or the X-axis. The two values of θ from Equation (6.17) determine the axis of

rotation. If the sum
n

i=1 t
2
x,i <

n
i=1 u

2
y,i, then the axis of rotation is about the

Y-axis. Otherwise, if
n

i=1 t
2
x,i ≥

n
i=1 u

2
y,i, then the rotation is about the X-axis.

The WITH-END-WITH statements (17) put the results onto the output spread-

sheet STATS. We write descriptive labels in column D (column 4) and the actual

statistics in column E (column 5).

6.7 Ellipse Properties

Equation (6.18) gives the formula for calculating the deviations along theX axis.

δx =
n

i=1

(uy,i sin θa − tx,i cos θa)
2wi (6.18)

where the subscript a denotes the major axis for the angle of rotation θ. Equation
(6.19) gives the formula for calculating the deviations along the Y axis.



ELLIPSE PROPERTIES 69

δy =

n

i=1

(uy,i cos θb − tx,i sin θb)
2wi (6.19)

where the subscript b denotes the minor axis for the angle of rotation θ.
Equation (6.20) gives the formula for calculating the major axis.

a2 −
n

i=1 u
2
y,i

n
= (6.20)

+
2 (
n

i=1 tx,y,i)
2

n(−(n
i=1 t

2
x,i −

n
i=1 u

2
y,i) +


(
n

i=1 t
2
x,i −

n
i=1 u

2
y,i)

2 + 4 (
n

i=1 tx,y,i)
2
)

subject to
n

i=1

t2x,i ≤
n

i=1

u2y,i.

Equation (6.21) gives the formula for calculating the minor axis.

b2 −
n

i=1 u
2
y,i

n
= (6.21)

− 2 (
n

i=1 tx,y,i)
2

n(−(
n

i=1 t
2
x,i −

n
i=1 u

2
y,i) +


(
n

i=1 t
2
x,i −

n
i=1 u

2
y,i)

2 + 4 (
n

i=1 tx,y,i)
2
)

subject to
n

i=1

t2x,i ≥
n

i=1

u2y,i.

The difference between Equations (6.20) and (6.21) is the positive and negative

sign after the first term. Since square roots are involved in the formulae, one must

ensure that the conditions are true.

Equation (6.22) gives the formula for calculating the area.

F =
π

n


n

i=1

t2x,i

n

i=1

u2y,i −


n

i=1

tx,y,i

2

(6.22)

It can be verified thatF = πab. The last equation is for the eccentricity of the ellipse.
Equation (6.23) gives the formula for the eccentricity.

e =

√
a2 − b2

a
(6.23)

where Equation (6.20) gives the major axis length a and Equation (6.21) gives the
minor axis length b.



70 THE EXPONENTIAL ELLIPSE

6.8 VBA

The subroutine EXPdeviations() (7) calculates the deviations on the X-axis

and the Y-axis. The FOR-NEXT loop (18) calculates the values tx and uy using
Equations (6.14) and (6.15), respectively. In addition to tx and uy, using the two
values for θ we previous obtained using the plus and minus sign, we can calculate
the sums for the deviations on the X-axis and Y-axis using Equations (6.18) and

(6.19). We store the final values in the variables delta x and delta y. The

source code after the FOR-NEXT loop calculates the standard errors on the X-axis

and Y-axis. We simply divide by the sum of the weights and then take the square

root of the quantity. The final values for the standard errors in Equations (6.18) and

(6.19) reside in the variables error x and error y.

The WITH-END-WITH statement (19) saves the standard errors to the STATS

spreadsheet in column E (column 5). We put descriptive labels with the output in

column D (column 4).

The EXPstats() subroutine calculates the major and minor axes lengths, the

area, and the eccentricity. One of the first VBA statements calculates the area of the

exponential ellipse before the IF-THEN-ELSE statement using Equation (6.22)

and saves the value in the variable f . The IF-THEN-ELSE statement (20) calcu-

lates the semi-major axis length a in Equation (6.20) and the semi-minor axis length
b in Equation (6.21). Should the value

n
i=1 t

2
x,i <

n
i=1 u

2
y,i, then we reverse the

roles of the sums to calculate the lengths of the semi-major and semi-minor axes.

This approach avoids the square root of a negative number in the denominator.

The second IF-THEN-ELSE statement (21) calculates the eccentricity. If the

axis lengths a ≥ b, then a is the semi-major axis. The code uses Equation (6.23) to
calculate the eccentricity. If b > a, then b is assumed to be the semi-major axis and
Equation (6.23) is applied appropriately.

The WITH-END-WITH statement (2) saves the remaining exponential statistics

to the STATS spreadsheet in column E (column 5). We add appropriate labels in

column D (column 4).
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Table 6.1 Results for the Exponential Model for Kentucky

2003

Center (37.38297399,−86.8129514)

Axes a = 273.2320657, b = 37.38920285

Area 32,094.2879 sq. mi.

Standard Deviations δx = 3.050790055, δy = 3.050809397

Rotation Y-Axis

Orientation θx = 89.99867285, θy = −0.001327443

Eccentricity 0.990593099

Concentration 27/90

7




Sub EXPdeviations()

’calculate the deviations on the axes

n = Selection.Rows.Count

delta x = 0

delta y = 0

18




For i = 2 To n

28




With ActiveSheet

f x = .Cells(i, 4).Value - .Cells(i, 4).Value * EXP(-1 * lambda x * .Cells(i, 1).Value)

F y = .Cells(i, 4).Value - .Cells(i, 4).Value * EXP(-1 * lambda y * .Cells(i, 5).Value)

t x = 1 / lambda x * Log(1 / (1 - f x)) / .Cells(i, 4).Value

t y = 1 / lambda y * Log(1 / (1 - F y)) / .Cells(i, 4).Value

delta x = delta x + (t y * Sin(atheta / 57.2957795) - t x * Cos(atheta / 57.2957795)) ˆ 2 * .Cells(i, 3).Value

delta y = delta y + (t y * Cos(itheta / 57.2957795) - t x * Sin(itheta / 57.2957795)) ˆ 2 * .Cells(i, 3).Value

End With

Next

error x = Sqr(delta x / sum weight) ’standard errors on the x axis

error y = Sqr(delta y / sum weight) ’standard errors on the y axis

End Sub
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Table 6.2 Results for the Exponential Model for Kentucky

2004

Center (37.40588805,−86.8066601)

Axes a = 273.2391008, b = 37.4120928

Area 32,114.76312 sq. mi.

Standard Deviations δx = 2.987069658, δy = 2.987088203

Rotation Y-Axis

Orientation θx = 89.99870116, θy = −0.001299137

Eccentricity 0.99058201

Figure 6.3 This figure shows sketches of both the standard deviational ellipse and the

exponential deviational ellipse from the Kentucky data for the year 2003. The exponential

ellipse is the smaller of the two ellipses. It coversone-third the areaof the standarddeviational

ellipse, yet one-half of the same points.
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Figure 6.4 This figure shows a raised bar graph of the weights in their respective counties

for the Kentucky data for the year 2003. The majority of the weighted data comes from the

lower-left corner of the state of Kentucky. The majority of the un-weighted data comes from

the center of the state and the right-hand side.

6.9 Kentucky Example

We compare the weighted, standard deviational ellipse Tables 5.1 on page 54 to the

exponential ellipse Tables 6.1 and 6.2. It shows that the area of the ellipses have

been significantly reduced (within years). It shows that the exponential ellipse is

contained inside the standard deviational ellipse.

Figure 6.3 on page 72 shows both the standard deviational ellipse and the expo-

nential deviational ellipse using 2003 Kentucky data as an example. The gain in

knowing the distribution of the data is in the reduction of the standard deviations

and the reduction of area. What did the two exponential ellipses identify that the

standard deviational ellipse did not? The bar graph in Figure 6.4 shows the weighted

data in Kentucky. Looking at Figure 6.4, it found those land segments with the largest

weights that are closest to those with smaller weights.

6.10 Crime Example

The example in this section comes from violent crime data in the U.S. for 2007

and 2008. Tables 6.3 and 6.3 summarize the results for the weighted exponential

deviational ellipse for violent crime in the U.S. for 2007 and 2008. The data includes

the continental U.S.

Figure 6.5 on page 74 shows the exponential ellipse inside of the standard devia-

tional ellipse. The center of gravity is the same as that for the standard deviational
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Figure 6.5 This figure shows both the exponential deviational ellipse and the standard

deviational ellipse for the violent crime data in the US for 2007. Both have the same center of

gravity. The exponential ellipse is much smaller than the standard deviational ellipse.

Table 6.3 Results for the Exponential Model on Violent Crime in the U.S.

2007

Center (36.8766, -92.1131260)

Axes a = 268.0294408, b = 36.89621172

Area 31,068.06111 sq. mi.

Standard Deviations δx = 5.511172335, δy = 5.511237311

Rotation Y-Axis

Orientation θx = 89.99754656, θy = −0.002453737

Eccentricity 0.990479917

Table 6.4 Results for the Exponential Model on Violent Crime in the U.S.

2008

Center (36.88957333,−92.0322279)

Axes a = 268.1090262, b = 36.90903466

Area 31,088.08671 sq. mi.

Standard Deviations δx = 5.51140013, δy = 5.511465094

Rotation Y-Axis

Orientation θx = 89.99754726, θy = −0.002453032

Eccentricity 0.990478949
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Table 6.5 Results for the Exponential Model on Gross Domestic Product

2008

Center (44.95865069, 173.19287)

Axes a = 162.1154426, b = 45.08062313

Area 22,959.59217 sq. mi.

Standard Deviations δx = 5.203392563, δy = 5.203732811

Rotation Y-Axis

Orientation θx = 89.99301352, θy = −0.006986772

Eccentricity 0.960558702

Table 6.6 Results for the Exponential Model on Gross Domestic Product

2009

Center (45.10440685, 172.9595353)

Axes a = 161.9197005, b = 45.22752649

Area 23,006.59785 sq. mi.

Standard Deviations δx = 5.198792719, δy = 5.199135181

Rotation Y-Axis

Orientation θx = 89.99299395, θy = −0.007006348

Eccentricity 0.960197864

ellipse (36.89957, −92.03222). There is a tremendous difference in the size of the
two different ellipses.

6.11 GDP Example

. This section shows the weighted exponential ellipse and the statistics for the Gross

Domestic Product of OECD Countries data set. Since this is a global data set, the

quantities tend to be enormous compared to the other two examples. Tables 6.5 and

6.5 summarize the standard deviational ellipse for the 2008 and 2009 GDP data. We

see that the ellipses are highly eccentric. The total area contracted from 2008 to

2009. This is the period where the Great Recession took place. The mean center

changed an entire degree in both the latitude and longitude directions. Where are

the mean centers located? In 2008, the center of gravity for the OECD countries

was in the Pacific Ocean between the United States and China. In 2009, the center

of gravity moved away from the United States coastline and closer to the Chinese

coastline. See Figure 5.3.
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6.12 Comparison to SDE

We will derive proof that shows the weighted deviational ellipse always has a smaller

area than the standard deviational ellipse. We base the proof on showing that both

the semi-major axis and the semi-minor axis are shorter than those of the standard

deviational ellipse are.

Semi-major Axes Length Equation (6.24) gives the length of the semi-major axis

under the standard deviational ellipse by the quantity a1.

a21 −
1

n
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2 (
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2

where xi = xi − x̄, 0 ≤ xi ≤ 90 and yi = yi − ȳ, −180 ≤ yi ≤ 180, wi ≥
0. Both x̄ and ȳ are weighted means. Equation (6.24) is subject to the constraintn

i=1 x
2
i wi >

n
i=1 y

2
i wi. Equation (6.25) gives the length of the semi-major axis

under the weighted, exponential deviational ellipse.
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where
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λxy =
2nn

i=1w

ixi +w

iyi
, w

i =
win
i=1wi

,

0 ≤ xi ≤ 180, 0 ≤ yi ≤ 360.

Under both models, −90 ≤ x̄ ≤ 90 and −180 ≤ ȳ ≤ 180. Now that the lengths

of the semi-major axes have been defined under the weighted standard deviational

ellipse and the weighted exponential deviational ellipse, it will be shown that the

sums of squares for the latitude, longitude, and jointly are smaller for the exponential

ellipse. If that is proven, then na22 ≤ na21.
Using substitution, the sum from the standard deviational ellipse

n

n

i=1

x2i wi = n

n

i=1

(xi − x̄)2wi

where x̄ is a weighted mean is positive definite. Using the relationship between λx
and x̄ in Equation (6.12), we can rewrite the sum from the exponential ellipse as
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We make two observations.

1. In the standard ellipse, the sum
n

i=1(xi − x̄)2 is positive definite.

2. In the exponential ellipse, an approximate formula for the loge is loge = (x −
1)− (x−1)2

2
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3
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4
+ · · · , 0 < x ≤ 2.
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1
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Hence, we can conclude that the sums n
n

i=1 x
2
i wi > nt2x,i. There are twomore

sets of sums to prove are smaller — those associated with the weighted longitude

and the weighted joint distribution. The sums associated with the weighted longi-

tude follow the same argument as above. Simply replace x with y for the standard
deviational ellipse and replace x with y for the exponential ellipse. Then it follows
that n
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We can make similar observations as before. The bounds on loge are 0 <
1

(1−Ftu(ti,ui))
−

1 ≤ 2 and the sums (
n

i=1 x

iy


iwi)

2 and (tx,y)
2 are positive definite.

We have shown that the three sums t2x,i u
2
y,i and t

2
x,y are smaller than their re-

spective sums in the standard deviational ellipse
n

i=1 x2i wi,
n

i=1 y2i wi, and

(
n

i=1 x

iy

iwi)

2
. From this, we can conclude that the semi-major axis length of

the exponential ellipse a2 is smaller than that of the standard deviational ellipse a1.
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Semi-Minor Axes Length The sums of squares in this section are the same as those

in the previous section. The formulas for the semi-minor axes are slightly different

than those for the semi-major axes. The quantity b1 in Equation (6.26) gives the
formula for the semi-minor axis length for the weighted standard deviational ellipse.
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Equation (6.27) gives the length b2 of the semi-minor axis under the weighted,
exponential deviational ellipse.
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Given the arguments in the previous Section, the following three inequalities of

the sums hold true.

1. n
n

i=1 x
2
i wi > nt2x,i.

2. n
n

i=1 y
2
i wi > nu2y,i.

3. (
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i=1 x

iy

iwi)

2 > t2x,y.

We can conclude that the semi-minor axis length of the exponential ellipse b2 is
smaller than that of the standard deviational ellipse b1, b2 < b1.

Axes Summary We showed that both the semi-major axis length and semi-minor

axis length of the exponential ellipse are smaller than those of the standard devia-

tional ellipse. Given this, the area of the exponential ellipse is always smaller.

Given that both share the same mean center, then next obvious question is that,

does the weighted standard deviational ellipse always encompass the weighted ex-

ponential deviational ellipse? Obviously, in the numeric example given, the an-

swer is yes. Under what conditions do the standard deviational ellipses encompass

the weighted exponential deviational ellipses? If the axes relationship holds true,

a1 ≤ b2, then the standard deviational ellipse encompasses the exponential ellipse
regardless of the angle of rotation θ. Let θ1 be the expression for the angle of rotation
for the standard deviational ellipse given in Equation (6.28).
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−1 ≤ tan θ1 ≤ 1. Let θ2 be the angle of rotation for the exponential ellipse given in
Equation (6.29).
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−1 ≤ tan θ2 ≤ 1. Tables 6.7 and 6.8 summarize the relationship between θ1 and θ2
for different values of the plus/minus sign in the middle of θ1 and θ2.

Table 6.7 Relationship of angles of rotation for large xis.

Bounds Plus/Minus tan() Angle Inferencen

i=1
x2i wi >

n

i=1
y2i wi + Positive θ1 > 0 0 < θ1 < 90n

i=1
t2x,i >

n

i=1
u2y,i + Positive θ2 > 0 0 < θ2 < θ1 < 90n

i=1
x2i wi >

n

i=1
y2i wi − Negative θ1 < 0 0 < θ1 < 90n

i=1
t2x,i >

n

i=1
u2y,i − Negative θ2 < 0 0 < θ1 < θ2 < 90

Table 6.8 Relationship of angles of rotation for small xis.

Bounds Plus/Minus tan() Angle Inferencen

i=1
x2i wi <

n

i=1
y2i wi + Positive θ1 > 0 0 < θ1 < 90n

i=1
t2x,i <

n

i=1
u2y,i + Positive θ2 > 0 0 < θ2 < θ1 < 90n

i=1
x2i wi <

n

i=1
y2i wi − Negative θ1 < 0 0 < θ1 < 90n

i=1
t2x,i <

n

i=1
u2y,i − Negative θ2 < 0 0 < θ1 < θ2 < 90

Upon examining Tables 6.7 and 6.8, we would expect that for extreme values of

θ1 that the exponential ellipse would fall inside the standard deviational ellipse.

6.13 Exercises

1. Consider the pdf f(y) = λe−λyy/w.
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(a) Derive the mle for λy.

(b) Find the cdf. Show that it is a true cdf for
n

i=1wi = 1. Solution:

f(y) = λe−λy/w ⇒

F (y) =

 u

0

λe−λy/wdy = we−λwy

u

0

= w − we−λu/w

As u→∞, F (y)→ w. So, for F (y) to be a cdf, w =
n

i=1wi = 1.

2. Consider the pdf f = λe−λywy.

(a) Derive the mle for λy.

(b) Find the cdf. Show that it is not necessarily a cdf for
n

i=1wi = 1.

3. Programming Exercise. Verify the cdfs F (x), F (y), and F (x, y) sum to 1. This

should take no more than three or four lines of additional VBA code.

4. Explicitly show that

n

i=1

win
i=1wi

= 1.

Solution: Let w =
n

i=1wi, wi ≥ 0, ∀i. Then,
n

i=1

win
i=1wi

=
1

w

n

i=1

wi =
w

w
= 1.

5. Show that
n

λx
= x̄ in Chapter 5.

Solution: Let w = wi
n

i=1
wi

, wi ≥ 0, ∀i. Then,

λx =
n

w
n

i=1 xi
=

nn
i=1

wixi
n

i=1
wi

 ⇒

n

λx
=

n

i=1

wixin
i=1wi

= x̄, 0 ≤ xi ≤ 180, −90 ≤ x̄ ≤ 90.

6. Show that

n

λy
= ȳ in Chapter 5.
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Solution: This is very similar to Question 2, but the bounds are different. Let

w = wi
n

i=1
wi

, wi ≥ 0, ∀i. Then,

λy =
n

w
n

i=1 yi
=

nn
i=1

wiyi
n

i=1
wi

 ⇒

n

λy
=

n

i=1

wiyin
i=1wi

= ȳ,

0 ≤ yi ≤ 360, −180 ≤ ȳ ≤ 180.

7. Derive Equation (6.22) using Equations (6.18), (6.19) and F = πab.



CHAPTER 7

THE WEIBULL ELLIPSE

7.1 Latitude Mean Center

Equation (7.1) gives the weighted probability density function for the latitude.

fx(wi, xi) = γx (wiλx)
γx (xi)

γx−1 exp {− (λxxi)
γx} , (7.1)

0 ≤ xi ≤ 180, λx > 0, γx > 0.

We need the cumulative distribution function Fx(w, xi). Therefore, we integrate
the probability density function fx(w, xi).

Fx(w, xi) =

 t

0

f(w, x) dx =

 t

0

γx (wλx)
γx (xi)

γx−1 exp {− (λxxi)
γx} dx =

−wγx exp {− (λxx)
γx}


t

0

= wγx − wγx exp {− (λxt)
γx} =

Random Variables, Their Properties, and Deviational Ellipses.

By Roger L. Goodwin Copyright c 2015 Roger L. Goodwin
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Ft(w, t).

The properties of this cummulative distribution function are:

1. As t→ 0, Ft → 0.

2. As t→ 180, Ft → wγx .

3. Ft is right continuous.

As t→ 180, Ft → wγx ⇒ wγx must sum to 1. We choose

w
i =


win
i=1wi

1/γy

where wi is the observed value of the random variable for the latitude.

The parameter estimation for the exponential ellipse was straightforward because

there was only one. The Weibull ellipse has two parameters and we have to solve for

these parameters simultaneously. The procedure is similar. The maximum likelihood

estimator for λx occurs at the first derivative of L =
n

i=1 fx(w, xi) taken with re-
spect with λx. The maximum likelihood estimator for γx occurs at the first derivative
of L taken with respect with γx. x1, x2, ..., xn is the random sample. Equation (7.2)

gives the likelihood function.

L(w, xi) = γnx (wλx)
nγx


n

i=1

xi

γx−1

exp


−λγxx

n

i=1

xγxi


(7.2)

(x1, x2, ..., xn) is the minimum set of sufficient statistics. Equation (7.3) gives the

logarithm of the likelihood function.

logL = n logγx + nγx log(wλx) +
n

i=1

(γx − 1) logxi− (7.3)

λγxx

n

i=1

xγxi .

Taking the usual derivatives with respect to the parameters, d logL
d λx

= 0, and
d logL
d γx

= 0 yields the following two equations.

d logL

dλx
= 0⇒

nγx
wλx

− γxλ
γx−1
x

n

i=1

xγxi = 0

nγx − wγxλ
γx
x

n

i=1

xγxi = 0
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n− wλγxx

n

i=1

xγxi = 0 (7.4)

and
d logL

d γx
= 0⇒

n

γx
+ n log(wλx) +

n

i=1

logxi− (7.5)

λγxx

n

i=1

xγxi (logλx + logxi) = 0 = L(w, xi).

Solving Equation (7.4) for λx yields

λx =


n

w


xγxi

 1

γx

. (7.6)

Wemust solve for γx using numerical algorithmswhich use Equations (7.3), (7.5),
(7.6). Using [Lee 35, Appendix A], we apply the Newton-Raphson method. Instead

of workingwith the Jacobian matrix of derivatives, we substitute Equation (7.6) into

Equation (7.5).

Then we wish to iterate through the following expression using the variable k.

γ(x,k+1) = γ(x,k) −
L(w, xi)

L(w, xi)
.

An alternative to using the Newton-Raphsonmethod is to apply the Secant method.

This only involves using Equation (7.3). We apply it as follow:

γ(k+1) = (7.7)

γ(k) − L

λ(k), γ(k)



 γ(k) − γ(k−1)

L

λ(k), γ(k)


− L


λ(k−1), γ(k−1)






We need to add an additional subscript x to denote the latitude to identify it from
the longitude y. So, the equation for the Secant method becomes:

γ(x,k+1) = γ(x,k)− (7.8)

L

λ(x,k), γ(x,k)



 γ(x,k) − γ(x,k−1)

L

λ(x,k), γ(x,k)


− L


λ(x,k−1), γ(x,k−1)






where k denotes the iteration.
With the Secant method, we must choose two initial values for γx instead of one.

The reader will find that working with either method is difficult to work with for
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finding the value of λx. Knowledge of the functions L, logL, and the derivatives
are paramount. The Secant method is the easiest way out of these derivations and

initialization. However, more initial values are required on the reader’s part for the

Secant method.

The relationship of the parameter estimate λx in Equations (7.6) and (7.8) to the
weighted mean center is

x̄ =
n

λx
(7.9)

Notice that it depends on the range of λx. This textbook provides Excel 2010 Visual
Basic for Applications (VBA) code to calculate the weighted means based these

derivations. Wemust state the initial values of γx in addition to the maximum number

of iterations. Some trial and error is required to obtain valid results. Other authors’

recommendations include setting the two initial values of γx fairly far apart to obtain
convergence. Both values must be greater than one. If the reader is in doubt about

the number of iterations, then try 1; then 2; then 3; and so on. It only took seven

tries to obtain valid results in the Kentucky example.

7.2 Longitude Mean Center

The longitude data can range from−180 to 180. The Weibull distributiondoes not
allow negative numbers. However, if all of the longitude observations are negative,

then it is simple to change the sign to positive to perform parameter estimation.

Afterwards, we can change the sign on the mean center. If this is not the case, some

data are negative, and some are positive, then convert the observations to circular

coordinate system where all of the observations are positive.

Equation (7.10) gives the weighted probability density function for the longitude.

fy(wi, yi) = γy (wiλy)
γy (yi)

γy−1 exp {− (λyyi)
γy} (7.10)

0 ≤ yi ≤ 360, λy > 0, γy > 0.

We need the cumulative distribution function Fy(w, yi). Therefore, we integrate
the probability density function fy(w, yi).

Fy(w, y) =

 u

0

f(w, y) dy =

 u

0

γy (wλy)
γy (yi)

γy−1 exp {− (λyyi)
γy} dy =

−wγy exp {− (λyy)
γy}


u

0

= wγy − wγy exp {− (λyu)
γy} =

Fu(w, u).

The properties of this cummulative distribution function are:
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1. As u→ 0, Fu → 0.

2. As u→ 360, Fu → wγy .

3. Fu is right continuous.

As u→ 360, Fu → wγy ⇒ wγy must sum to 1. We choose

w
i =


win
i=1wi

1/γy

where wi is the observed value of the random variable for the longitude.

The parameter estimation for the exponential ellipse was straightforward because

there was only one. The Weibull ellipse has two parameters and we have to solve for

the parameters simultaneously. The procedure is similar. The maximum likelihood

estimator for λy occurs at the first derivative of L =
n

i=1 fy(w, yi) taken with re-
spect with λy . The maximum likelihood estimator for γy occurs at the first derivative
of L taken with respect with γy . y1, y2, ..., yn is the random sample. Equation (7.11)

gives the likelihood function.

L(w, yi) = γny (wλy)
nγy


n

i=1

yi

γy−1

exp


−λγyy

n

i=1

y
γy
i


(7.11)

(y1, y2, ..., yn) is the minimum set of sufficient statistics.

Equation (7.12) gives the logarithm of the likelihood function.

logL = n logγy + nγy log(wλy) +

n

i=1

(γy − 1) log yi − λγyy

n

i=1

y
γy
i . (7.12)

Taking the usual derivatives with respect to the parameters, d logL
d λy

= 0, and d logL
dγy

=

0 yields the following two equations.

d logL

dλy
= 0⇒

nγy
wλy

− γyλ
γy−1
y

n

i=1

y
γy
i = 0

nγy −wγyλ
γy
y

n

i=1

y
γy
i = 0

n−wλγyy

n

i=1

y
γy
i = 0 (7.13)
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and
d logL

d γy
= 0⇒

n

γy
+ n log(wλy) +

n

i=1

log yi− (7.14)

λγyy

n

i=1

y
γy
i (logλy + logyi) = 0 = L(w, yi).

Solving Equation (7.13) for λy yields

λy =


n

w


y
γy
i

 1

γy

. (7.15)

γy must be solved numerically using Equations (7.12), (7.14), (7.15). Using [Lee 35,
Appendix A], we apply the Newton-Raphson method. Instead of working with the

Jacobian matrix of derivatives, we substitute Equation (7.15) into Equation (7.14).

Then we wish to iterate through the following expression using the variable k.

γ(y,k+1) = γ(y,k) −
L(w, yi)

L(w, yi)
.

An alternative to using the Newton-Raphsonmethod is to apply the Secant method.

This only involves using Equation (7.12). We apply it as follow:

γ(k+1) = γ(k) − logL

λ(k), γ(k)


(7.16)


 γ(k) − γ(k−1)

logL

λ(k), γ(k)


− logL


λ(k−1), γ(k−1)






We need to add an additional subscript y to denote the longitude to identify it
from the latitude y. So, the equation for the Secant method becomes:

γ(y,k+1) = γ(y,k) − logL

λ(y,k), γ(y,k)


(7.17)


 γ(y,k) − γ(y,k−1)

logL

λ(y,k), γ(y,k)


− logL


λ(y,k−1), γ(y,k−1)






where k denotes the iteration.
With the Secant method, we must choose two initial values for γy instead of one.

The reader will find that working with either method is difficult to work with for

finding the value of λy. Knowledge of the functions L, logL, and the derivatives
are paramount. The Secant method is the easiest way out of these derivations and

initialization. However, more initial values are required on the reader’s part for the

Secant method.
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Equations (7.15) and (7.8) give the relationship of the parameter estimate λy to
the weighted mean center.

ȳ =
n

λy
(7.18)

Notice that the relationship depends on the range of λy if we do not use circular
coordinates. If we use circular coordinates, then we can remove the absolute value

operator on the mean center ȳ.

7.3 VBA

The secant1() subroutine (2) calculates the γx and γy estimates for the latitude
and longitude using Equations (7.8) and (7.17). The WHILE-WEND loop (12) has

two termination conditions:

1. The loop can terminate when it reaches a specified number of iterations. The

user sets this condition with a parameter to the subroutine.

2. The loop can terminate when the parameter estimate for the latitude γx con-

verges on two consecutive iterations to within 10−6. The same concept applies
to the parameter estimate for the longitude γy. The user can not set this condi-
tion with a parameter to the subroutine.

The first FOR-NEXT loop (31) calculates the sum of the weights. In the Weibull

model, the weights are dependent on the parameter estimates γx, γy, and γxy. The
second FOR-NEXT loop (32) initializes the observationweights on the active spread-

sheet. The final values of the observation weights cannot be determined yet because

we do not have the final values for γx and γy.
The FOR-NEXT loop (33) calculates the sums needed for the parameter esti-

mates λx and λy. The VBA statements following this loop calculate the parameter

estimate λx or λy and store the result in the variable lambda2 and lambda1.

This reflects the two iterations, not that the subroutine simultaneously solves for

both the latitude and the longitude.

The remaining VBA statements implement Equation (7.8) for the latitude and

Equation (7.17) for the longitude. More specifically, the WHILE-END loop termi-

nates when dx = |Lxk − Lxk−1| ≤ 10−6|Lxk |.
The WITH-END-WITH statement (13) saves the parameter estimates γx, or γy

to the spreadsheet STATS. It saves the parameter estimate λx or λy . Additionally,
the subroutine saves the variables dx and condition for debugging purposes.

2




Sub secant1(iterations, variable, Gamma1, gamma2)

j = 1

dx = 1 ’trivial value

condition = 0 ’trivial value
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2




12




While (j <= iterations) And (dx > condition)

25




With ActiveSheet

’set the weights

n = Selection.Rows.Count

sum weight1 = 0

sum weight2 = 0

31




For i = 2 To n

sum weight1 = sum weight1 + (.Cells(i, 3).Value)

sum weight2 = sum weight2 + (.Cells(i, 3).Value)

Next

.Cells(1, 4).Value = ”Lambda 1 Weights”

.Cells(1, 6).Value = ”Lambda 2 Weights”

32




For i = 2 To n

.Cells(i, 4).Value = ((.Cells(i, 3).Value) / sum weight1) ˆ (1 / Gamma1) ’previous iteration

.Cells(i, 6).Value = ((.Cells(i, 3).Value) / sum weight2) ˆ (1 / gamma2) ’next iteration

Next

’end of setting the weights

sumw x2 = 0

sumw x1 = 0

sum x2 = 0

sum x1 = 0

sum logx = 0

33




For i = 2 To n

sumw x2 = sumw x2 + (.Cells(i, 6) ˆ gamma2 * .Cells(i, variable).Value) ˆ gamma2 ’weighted

sumw x1 = sumw x1 + (.Cells(i, 4) ˆ Gamma1 * .Cells(i, variable).Value) ˆ Gamma1 ’weighted

sum x2 = sum x2 + .Cells(i, variable).Value ˆ gamma2 ’unweighted

sum x1 = sum x1 + .Cells(i, variable).Value ˆ Gamma1 ’unweighted

sum logx = sum logx + Log(Abs(.Cells(i, variable).Value)) ’unweighted

Next

lambda2 = ((n - 1) / sumw x2) ˆ (1 / gamma2) ’weighted

lambda1 = ((n - 1) / sumw x1) ˆ (1 / Gamma1) ’weighted

L x = 0

L X Minus = 0
L x = L x + (n - 1) * Log(gamma2) + (n - 1) * gamma2 * Log(sum weight2 * lambda2) +

(gamma2 - 1) * sum logx - lambda2 ˆ gamma2 * sum x2
L X Minus = L X Minus + (n - 1) * Log(Gamma1) + (n - 1) * Gamma1 * Log(sum weight1 * lambda1) +

(Gamma1 - 1) * sum logx - lambda1 ˆ Gamma1 * sum x1

gamma3 = gamma2 - L x * (gamma2 - Gamma1) / (L x - L X Minus)

Gamma1 = gamma2 ’correct assignment

gamma2 = Abs(gamma3) ’correct assignment, must be positive

dx = Abs(L x - L X Minus)

condition = 10 ˆ (-6) * Abs(L x)

j = j + 1

End With

Wend

End Sub
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7.4 Joint Distribution

The joint distributionbetween two weighted Weibull models need to be determined.

Equations (7.1) and (7.10) gives the two probability density functions for the joint

likelihood function L.

L =

n

i−1
fx(w, xi)fy(w, yi) =

n

i=1

γx (wλx)
γx (xi)

γx−1 exp {− (λxxi)
γx}

γy (wλy)
γy (yi)

γy−1 exp {− (λyyi)
γy} .

Let λx = λy = λxy, and let γx = γy = γxy. Then, the joint likelihood function
becomes,

L(w, xi, yi) =

n

i=1

γxy (wλxy)
γxy (xi)

γxy−1 exp {− (λxyxi)
γxy}

γxy (wλxy)
γxy (yi)

γxy−1 exp {− (λxyyi)
γxy} =

n

i=1

γ2xy (wλxy)
2γxy (xiyi)

γxy−1 exp {− (λxyxi)
γxy − (λxyyi)

γxy} ,

λxy > 0, γxy > 0.

Next, we find the maximum likelihood estimator of λxy.

logL(w, xi, yi) =

2

n

i=1

logγxy + 2nγxy log(wλxy) + (γxy − 1)

n

i=1

logxiyi− (7.19)

n

i=1

(λxyxi)
γxy −

n

i=1

(λxyyi)
γxy .

d logL

dλxy
= 0 +

2nγxy
wλxy

+ 0 + 0−

γxy

n

i=1

(λxyxi)
γxy−1 − γxy

n

i=1

(λxyyi)
γxy−1 = 0,
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2nγxy −wλγxyxy γxy

n

i=1

(xi)
γxy − wλγxyxy γxy

n

i=1

(yi)
γxy = 0

Solving for λxy yields the following expressions.

−wγxyλγxyxy

n

i=1

x
γxy
i −wγxyλ

γxy
xy

n

i=1

y
γxy
i = −2nγxy =

λγxyxy


w


n

i=1

x
γxy
i +

n

i=1

y
γxy
i


= 2n

λxy = 2n


w


n

i=1

x
γxy
i +

n

i=1

y
γxy
i

1/(γxy)
. (7.20)

Equation (7.20) gives the maximum likelihood estimator for λxy for the joint

distribution of the latitude and longitude. Using the Secant algorithm, we find

the maximum likelihood estimates for λxy and γxy as before. We apply the Secant
algorithm to Equation (7.21) to find γxy.

γ(xy,k+1) = γ(xy,k) − logL

λ(xy,k), γ(xy,k)


(7.21)


 γ(xy,k) − γ(xy,k−1)

logL

λ(xy,k), γ(xy,k)


− logL


λ(xy,k−1), γ(xy,k−1)






where k denotes the iteration, Equation (7.19) gives logL, and Equation (7.20) gives
λxy.
The joint probability density function of the latitude and longitude is

fxy(wi, xi, yi) =

(γxy)
2 (wiλxy)

2γxy (xiyi)
γxy−1 exp {− (λxyxi)

γxy − (λxyyi)
γxy} .

We need to find the cumulative distribution function Fxy(wi, xi, yi) for the joint
distribution, next. We need the joint distribution function so that we can derive the

Weibull standard deviational ellipse.

Fxy(w, x, y) =

 t

0

 u

0

(γxy)
2 (wλxy)

2γxy (xy)
γxy−1×

exp {− (λxyx)
γxy − (λxyy)

γxy} dy dx =
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 t

0

−(γxy) (wλxy)γxy (x)γxy−1×

exp {− (λxyx)
γxy − (λxyy)

γxy}

u

0

dx =

 t

0

(γxy) (wλxy)
γxy (x)

γxy−1 exp {− (λxyx)
γxy − (λxyu)

γxy}−

(γxy) (wλxy)
γxy (x)γxy−1 exp {− (λxyx)

γxy} dx =

wγxy exp {− (λxyx)
γxy − (λxyu)

γxy}−

wγxy exp {− (λxyx)
γxy}


t

0

=

wγxy exp {− (λxyt)
γxy − (λxyu)

γxy}− (7.22)

wγxy exp {− (λxyt)
γxy} − wγxy exp {− (λxyu)

γxy}+wγxy

= Ftu(w, t, u)

Is Equation (7.22) a valid cumulative distribution function?

1. As t→ 0 and u→ 0, Ftu → 0.

2. As t→ 180 and u→ 360, Ftu → wγxy .

3. Ftu is right continuous.

This is a valid cumulative distribution function only if the weights wγxy sum to 1

as t→ 180 and u→ 360.We choose the weights

w
i =


win
i=1wi

1/γxy

wherewi is the observed value of the random variable. It does not change for latitude

and longitude. Then it is a trivial fact that

wγxy =

n

i=1

wγxy
i =

n

i=1

win
i=1wi

= 1.
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7.5 VBA

The secant2() subroutine (3) calculates the γxy estimate for the joint distribu-
tion between the latitude and longitude using Equation (7.21). The looping structures

are similar to the secant1() subroutine. The WHILE-WEND loop (14) has two

termination conditions:

1. The loop can terminate when it reaches a specified number of iterations. The

user sets this condition with a parameter to the subroutine.

2. The loop can terminate when the parameter estimate for the joint distribution

between the latitude and longitude, γxy, converges on two consecutive iterations
to within 10−6. The user can not set this condition with a parameter to the

subroutine.

The first FOR-NEXT loop (34) calculates the sum of the weights. The weights

are dependent on the parameter estimate γxy. The second FOR-NEXT loop (35)

initializes the observation weights on the active spreadsheet. The final values of the

observation weights cannot be determined yet because we do not have the final value

for γxy.
The FOR-NEXT loop (35) calculates the initial values of the weights and saves

them in the active spreadsheet in column D and column F.

The next two FOR-NEXT loops (36, 37) calculate sums required to find λxy and
γxy. The two VBA statements between the FOR-NEXT loops (36, 37) calculate the

mean for the joint distribution for two iterations and save the values in the variables

lambda2 and lambda1.

The FOR-NEXT loop (38) calculates the sums for two iterations of the likelihood

functionL. The VBA statements following this loop actually calculate the value γxy.
The WHILE-END loop terminates when dx = |Lxyk − Lxyk−1

| ≤ 10−6|Lxyk |.
The WITH-END-WITH statement (15) saves the parameter estimates γxy and

λxy to the spreadsheet STATS. The subroutine saves the variables dx and con-

dition for debugging purposes.
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3




Sub secant2(iterations, Gamma1, gamma2)

j = 1

dx = 1 ’trivial value

condition = 0 ’trivial value

14




While (j <= iterations) And (dx > condition)

26




With ActiveSheet

’set the weights

n = Selection.Rows.Count

sum weight1 = 0

sum weight2 = 0

34




For i = 2 To n

sum weight1 = sum weight1 + (.Cells(i, 3).Value)

sum weight2 = sum weight2 + (.Cells(i, 3).Value)

Next

.Cells(1, 4).Value = ”Lambda 1 Weights”

.Cells(1, 6).Value = ”Lambda 2 Weights”

35




For i = 2 To n

.Cells(i, 4).Value = ((.Cells(i, 3).Value) / sum weight1) ˆ (1 / Gamma1) ’previous iteration

.Cells(i, 6).Value = ((.Cells(i, 3).Value) / sum weight2) ˆ (1 / gamma2) ’next iteration

Next

’end of setting the weights

sumw x2 = 0

sumw y2 = 0

sum x1 = 0

sum y1 = 0

log gamma1 = 0

log gamma2 = 0

log xy1 = 0

log xy2 = 0

sum lambdax2 = 0

sum lambdax1 = 0

sum lambday2 = 0

sum lambday1 = 0

sumw lambda2 = 0

sumw lambda1 = 0
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3




14




26




’calculate the sums used in the Secant Method

36




For i = 2 To n

sumw x2 = sumw x2 + (.Cells(i, 6).Value ˆ gamma2 * .Cells(i, 1).Value) ˆ gamma2 ’weighted

sumw y2 = sumw y2 + (.Cells(i, 6).Value ˆ gamma2 * Abs(.Cells(i, 2).Value)) ˆ gamma2 ’weighted

sumw x1 = sumw x1 + (.Cells(i, 4).Value ˆ Gamma1 * .Cells(i, 1).Value) ˆ Gamma1 ’weighted

sumw y1 = sumw y1 + (.Cells(i, 4).Value ˆ Gamma1 * Abs(.Cells(i, 2).Value)) ˆ Gamma1 ’weighted

log gamma2 = log gamma2 + 2 * Log(gamma2)

log gamma1 = log gamma1 + 2 * Log(Gamma1)

log xy2 = log xy2 + (gamma2 - 1) * Log(.Cells(i, 1).Value * Abs(.Cells(i, 2).Value))

log xy1 = log xy1 + (Gamma1 - 1) * Log(.Cells(i, 1).Value * Abs(.Cells(i, 2).Value))

Next

lambda2 = (2 * (n - 1) / (sumw x2 + sumw y2)) ˆ (1 / gamma2) ’weighted

lambda1 = (2 * (n - 1) / (sumw x1 + sumw y1)) ˆ (1 / Gamma1) ’weighted

’calculate the sums invloving lambda

37




For i = 2 To n

sum lambdax2 = sum lambdax2 + (lambda2 * .Cells(i, 1).Value) ˆ gamma2

sum lambdax1 = sum lambdax1 + (lambda1 * .Cells(i, 1).Value) ˆ Gamma1

sum lambday2 = sum lambday2 + (lambda2 * Abs(.Cells(i, 2).Value)) ˆ gamma2

sum lambday1 = sum lambday1 + (lambda1 * Abs(.Cells(i, 2).Value )) ˆ Gamma1

sumw lambda2 = sumw lambda2 + 2 * (n - 1) * gamma2 * Log(.Cells(i, 6).Value * lambda2)

sumw lambda1 = sumw lambda1 + 2 * (n - 1) * Gamma1 * Log(.Cells(i, 4).Value * lambda1)

Next

’estimate gamma using the Secant Method

L x = 0

L X Minus = 0

38




For i = 2 To n

L x = L x + log gamma2 + sumw lambda2 + log xy2 - sum lambdax2 - sum lambday2

L X Minus = L X Minus + log gamma1 + sumw lambda1 + log xy1 - sum lambdax1 - sum lambday1

Next

gamma3 = gamma2 - L x * (gamma2 - Gamma1) / (L x - L X Minus)

Gamma1 = gamma2 ’correct assignment

gamma2 = Abs(gamma3) ’correct assignment, must be positive

dx = Abs(L x - L X Minus)

condition = 10 ˆ (-6) * Abs(L x)

j = j + 1

End With

Wend

End Sub
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7.6 Weibull Ellipse

This Section will derive the Weibull distributed, weighted, deviational ellipse. The

weighted mean estimates (x̄, ȳ) under the general linear means model in Section 5
and the Weibull distribution are exactly the same — except possibly the sign on

the longitude only if γx and γy both equal to 1. Generally, this is not the case.
The weighted mean estimates (x̄, ȳ) under the general linear means model and the
Weibull distribution do not equal each other.

Graphically, if the data has a straight line with the following transformation, then

it comes from a Weibull distribution.

log t = log(1/λ) + (1/γ) log


loge


1

1− F



[Lee (35), p 167] shows a sheet of graph paper for estimating the parameters for

the Weibull distribution. It is possible to Xerox that page, whiteout her example,

and plot your data. That is what this author did in graduate school. For small data

sets, this may seem plausible at first. It is best to run the VBA code to estimate the

parameters.

The Weibull ellipse uses the following formulas.

log tx =

n

i=1

log


1

λx


+


1

γx


log


loge


1

1− Ft(ti)


. (7.23)

loguy =

n

i=1

log


1

λy


+


1

γy


log


loge


1

1− Fu(ui)


. (7.24)

log txy =
n

i=1

log


1

λxy


+


1

γxy


log


loge


1

1− Ftu(ti, ui)


. (7.25)

The two ellipses differ (Exponential and Weibull) differ between the sums of

squares of the original data (wixi, wiyi) and the transformed data (log t(x,i), logu(y,i)).
Equation (7.25) gives the mean joint distribution estimate between the weighted lat-

itude and weighted longitude estimates. The estimators for γx, γy , and γxy appear in
Equations (7.8), (7.17) and (7.21). We had to perform Secant iterations to find these.

The λs are already weighted. Therefore, the term wi is absent from the formulas.

The estimators for λx, λy, and λxy appear in Equations (7.6), (7.15), and (7.20).
These estimators had closed forms given their respective values for gamma. Thus,

we did not need to perform additional Secant iterations for these values.

7.6.1 Ellipse Angle

Equation (7) in [Yuill, (67)] is general enough to obtain a weighted, Weibull standard

deviational ellipse. We need to substitute the original sums of squares with the new
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sums of squares and re-calculate the major and minor axes. These axes lengths will

determine the total area fromwhichwe can compare the area and number of weighted

points inside the ellipse. Additionally, we can compare the standard deviations and

the eccentricity of the ellipses.

Using equations (7.23), (7.24), and (7.25), we get ourWeibull distributed, weighted,

deviational ellipse in Equation (7.26).

tan θ = −
n

i=1 log t
2
x,i −

n
i=1 logu

2
y,i



2
n

i=1 log tx,y,i
± (7.26)

n
i=1 log t

2
x,i −

n
i=1 logu

2
y,i

2
+ 4 (

n
i=1 log tx,y,i)

2

2
n

i=1 log tx,y,i

This textbook provides an Excel 2010 Visual Basic for Applications (VBA) pro-

gram that calculates the weighted, Weibull ellipse. In addition to the angles of rota-

tion, it calculates the mean center, the area, the standard deviations, and the eccen-

tricity.

7.7 Ellipse Properties

Equation (7.27) gives the formula for the deviations on theX axis.

δx =

n

i=1

[loge(uy,i) sin θa − loge(tx,i) cos θa]
2
wγx
i (7.27)

where the subscript a denotes the angle of rotation θ about the major axis. Equation
(7.28) gives the formula for the deviations on the Y axis.

δy =

n

i=1

[loge(uy,i) cos θb − loge(tx,i) sin θb]
2
w
γy
i (7.28)

where the subscript b denotes the angle of rotation θ about the minor axis. Equation
(7.27) raises the weights wi to the power γx. Thus, the weights in Equation (7.28)
differ from those in Equation (7.27) because Equation (7.28) raises the weights to

the power of γy .
Equation (7.29) gives the formula for calculating the semi-major axis length a.

a2 −
n

i=1 logu
2
y,i

n
= (7.29)

2 (
n

i=1 log tx,y,i)
2

n[−1(n
i=1 log t

2
x,i −

n
i=1 logu

2
y,i) +


(
n

i=1 log t
2
x,i −

n
i=1 logu

2
y,i)

2 + 4 (
n

i=1 log tx,y,i)
2
]

Equation (7.30) gives the formula for calculating the semi-minor axis length b.
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b2 −
n

i=1 logu
2
y,i

n
= (7.30)

− 2 (
n

i=1 log tx,y,i)
2

n[−1(n
i=1 log t

2
x,i −

n
i=1 logu

2
y,i) +


(
n

i=1 log t
2
x,i −

n
i=1 logu

2
y,i)

2 + 4 (
n

i=1 log tx,y,i)
2
]

subject to the condition
n

i=1

log t2x,i ≥
n

i=1

logu2y,i.

Equation (7.31) gives the formula for calculating the area F.

F =
π

n




n

i=1

log t2x,i


n

i=1

logu2y,i


−


n

i=1

log tx,y,i

2

(7.31)

We can always use the area can always use the formula F = πab to check the area.
Finally, Equation (7.32) gives the eccentricity e.

e =

√
a2 − b2

a
(7.32)

where Equation (7.29) gives the semi-major axis length a and Equation (7.30) gives
the semi-minor axis length b.

7.8 VBA

The function Log10(X) (4) calculates and returns the logarithm with the base 10

of the variable X. By default, VBA calculates natural logarithms. The programmer

must write his own function for non-natural logarithms.

The Weibull() subroutine (5) calculates the remainingmeasures for theWeibull

ellipse. The first two FOR-NEXT loops (16, 18) calculate the weights and save

them to columns D, F, and G in the active spreadsheet. The source code that

estimates λx, λy, λxy, γx, γy, and γxy need these values initialized. The subrou-
tines secant1() and secant2() only needed two iterations of a single weight

initialized.

The FOR-NEXT loop (19) calculates the sums used in Equation (7.26), the axes

lengths, the area, and the eccentricity.

The IF-THEN-ELSE statement (20) determines which axis to rotate the ellipse.

Since θ from Equation (7.26) contains a plus and minus sign, both values are calcu-

lated. If
n

i=1 log t
2
x,i >

n
i=1 logu

2
y,i, then rotate the ellipse about the Y-axis.

Otherwise, rotate the ellipse about the X-axis.
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The FOR-NEXT loop (21) calculates the sums used for the standard errors and

the area. We use Equation (7.27) to calculate the sums for the standard error for

the X-axis. We use Equation (7.28) to calculate the sums for the standard error for

the Y-axis. The VBA statements following the FOR-NEXT loop finish the calcula-

tions and save the results in the variables error x and error y. Finally, the

program calculates the area, F, in Equation (7.31) and saves it in the variable f.
The IF-THEN-ELSE statement (22) determines the major and minor axis lengths.

If
n

i=1 log t
2
x,i ≥

n
i=1 logu

2
y,i, then we can calculate the semi-major axis length

directly with Equation (7.29) and the semi-minor axis length with Equation (7.30).

Otherwise, we must reverse the roles of the sums in the two equations.

We calculate the eccentricity inside the IF-THEN statement (23). If the axis

length a ≥ b, then the formula in Equation (7.32) can be used directly used. Oth-
erwise, we reverse the roles of a and b so that we do not take the square root of a
negative number.

The set of VBA statements inside the WITH-END-WITH (24) save the results to

the spreadsheet called STATS in column L (column 12). We write appropriate text

documentation to column K (column 11).
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5




SubWeibull(gamma x, gamma y, gamma xy, lambda x, lambda y, lambda xy)

’set the weights

n = Selection.Rows.Count

m = n - 1

sum weight1 = 0

sum weight2 = 0

sum weight3 = 0

16




For i = 2 To n

27




With ActiveSheet

sum weight1 = sum weight1 + (.Cells(i, 3).Value) ’single x

sum weight2 = sum weight2 + (.Cells(i, 3).Value) ’single y

sum weight3 = sum weight3 + (.Cells(i, 3).Value) ’joint xy

End With

Next

17




With ActiveSheet

.Cells(1, 4).Value = ”Lambda X Weights”

.Cells(1, 6).Value = ”Lambda Y Weights”

.Cells(1, 7).Value = ”Lambda XY Weights”

End With

18




For i = 2 To n

28




With ActiveSheet

.Cells(i, 4).Value = ((.Cells(i, 3).Value) / sum weight1) ˆ (1 / gamma x) ’lambda x

.Cells(i, 6).Value = ((.Cells(i, 3).Value) / sum weight2) ˆ (1 / gamma y) ’lambda y

.Cells(i, 7).Value = ((.Cells(i, 3).Value) / sum weight3) ˆ (1 / gamma xy) ’lambda xy

End With

Next

’end of setting the weights

f x = 0

F y = 0

F xy = 0

L xy = 0 ’used for the log L calculation

logt x = 0

logt y = 0

logt xy = 0

logt xsqr = 0

logt ysqr = 0

logt xysqr = 0
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5




19




For i = 2 To n

29




With ActiveSheet
f x = .Cells(i, 4).Value ˆ gamma x - .Cells(i, 4).Value ˆ gamma x *

EXP(-1 * lambda x * (.Cells(i, 1).Value) ˆ gamma x)
F y = .Cells(i, 6).Value ˆ gamma y - .Cells(i, 6).Value *

EXP(-1 * lambda y * Abs(.Cells(i, 2).Value) ˆ gamma y)



F xy = .Cells(i, 7).Value ˆ gamma xy * EXP(-1 * lambda xy * .Cells(i, 1).Value ˆ

gamma xy - lambda xy * Abs(.Cells(i, 2).Value) ˆ gamma xy) -

.Cells(i, 7).Value ˆ gamma xy * EXP(-1 * lambda xy * .Cells(i, 1).Value ˆ gamma xy) -

.Cells(i, 7).Value ˆ gamma xy * EXP(-1 * lambda xy * Abs(.Cells(i, 1).Value) ˆ gamma xy) +

.Cells(i, 7).Value ˆ gamma xy
logt x = logt x + (Log10(1 / lambda x) + (1 / gamma x) *

Log10(Log(1 / (1 - f x)))) * .Cells(i, 4).Value ˆ gamma x
logt y = logt y + (Log10(1 / lambda y) + (1 / gamma y) *

Log10(Log(1 / (1 - F y)))) * .Cells(i, 6).Value ˆ gamma y
logt xy = logt xy + (Log10(1 / lambda xy) + (1 / gamma xy) *

Log10(Log(1 / (1 - F xy)))) * .Cells(i, 7).Value ˆ gamma xy
logt xsqr = logt xsqr + ((m * (Log10(1 / lambda x) + (1 / gamma x) *

Log10(Log(1 / (1 - f x)))) * .Cells(i, 4).Value ˆ gamma x)) ˆ 2
logt ysqr = logt ysqr + ((m * (Log10(1 / lambda y) + (1 / gamma y) *

Log10(Log(1 / (1 - F y)))) * .Cells(i, 6).Value ˆ gamma y)) ˆ 2
logt xysqr = logt xysqr + ((m * (Log10(1 / lambda xy) + (1 / gamma xy) *

Log10(Log(1 / (1 - F xy)))) * .Cells(i, 7).Value ˆ gamma xy)) ˆ 2



L xy = L xy + 2 * Log(gamma xy) + 2 * (n - 1) * gamma xy * Log(lambda xy *

.Cells(i, 4).Value) + (gamma xy - 1) * (Log(.Cells(i, 1).Value * .Cells(i, 2).Value )) -

(lambda xy * .Cells(i, 1).Value) ˆ (gamma xy) - (lambda xy * .Cells(i, 2).Value) ˆ (gamma xy)

End With

Next

’Calculate angles of rotation

Call Angle of Rotation(logt xsqr, logt ysqr, logt xy, note, atheta, itheta)
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5




’calculate the deltas

delta x = 0

delta y = 0

eF x = 0

eF y = 0

21




For i = 2 To n

30




With ActiveSheet
eF x = .Cells(i, 4).Value ˆ gamma x - .Cells(i, 4).Value ˆ gamma x *

EXP(-1 * lambda x * (.Cells(i, 1).Value))
eF y = .Cells(i, 6).Value ˆ gamma y - .Cells(i, 6).Value ˆ gamma y *

EXP(-1 * lambda y * Abs(.Cells(i, 2).Value))

elogt x = Log10(1 / lambda x) + (1 / gamma x) * Log10(Log(1 / (1 - eF x)))

elogt y = Log10(1 / lambda y) + (1 / gamma y) * Log10(Log(1 / (1 - eF y)))
delta x = delta x + (elogt y * Sin(atheta / 57.2957795) - elogt x *

Cos(atheta / 57.2957795)) ˆ 2 * .Cells(i, 4).Value ˆ gamma x
delta y = delta y + (elogt y * Cos(itheta / 57.2957795) - elogt x *

Sin(itheta / 57.2957795)) ˆ 2 * .Cells(i, 6).Value ˆ gamma y

End With

Next

error x = Sqr(delta x)

error y = Sqr(delta y)

’calculate the area, eccentricity, and axes lengths

f = Area(m, logt xsqr, logt ysqr, logt xy)

CallAxes Length(m, logt xsqr, logt ysqr, logt xy, a, b)

e = Eccentricity(a, b)

Area2 = Area Check(a, b)

End Sub

7.9 Kentucky Example

This textbook provides two Secant programs because the likelihood functions for the

joint distribution and the individual distributions are different. The code for the two

individual distributions is general enough so that it will work on both the latitude and

longitude data.

The input parameters to the Secant algorithm are as follow.

Call secant1(variable=1, iterations = 10, gamma1=1,

gamma2=5)
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Table 7.1 Results for the Weibull Model for Kentucky

2003

Center (37.38297005,−86.81297917)

Axes a = 3.749083127, b = 2.34002055

Area 27.56097734 sq. mi.

Standard Deviations δx = 1.774503013, δy = 1.783855806

Rotation X-Axis

Orientation θx = 89.89609928, θy = −0.103900704

Eccentricity 0.781298076

Table 7.2 Results for the Weibull Model for Kentucky

2004

Center (37.40588282,−86.80669635)

Axes a = 3.842076104, b = 2.392385246

Area 28.87665946 sq. mi.

Standard Deviations δx = 1.78033221, δy = 1.789024565

Rotation X-Axis

Orientation θx = 89.90357593, θy = −0.096424046

Eccentricity 0.782476324

VARIABLE — either the column number to the latitude or the longitude. Be

sure to use circular coordinates.

ITERATIONS — the maximum number of iterations to perform.

GAMMA1 — the first guess for γx or γy . Be consistent when working with
latitude and longitude.

GAMMA2— the second guess for γx or γy.Again, be consistent when working
with latitude and longitude.

The input parameters to the Secant algorithm for the joint distribution are very

similar to those for the individual distributions.

Call secant2(latitude =1, longitude =5,

iterations = 4, gamma1=1, gamma2=5);

The input parameters to the Weibull program are as follow.

This textbook contains the VBA code for the likelihood functions in Section ??.
The Secant programs will return the values for λx, λy, and λxy. They will also give
the difference between the last two iterations for convergence analysis.
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Figure 7.1 This figure shows both the Weibull deviational ellipse for the Kentucky data for

the year 2003. The zoom level is 200 miles above the earth. The standard deviational ellipse

and the exponential deviational ellipse were too large to fit on the map. It has the same center

of gravity as the other ellipses. The Weibull ellipse is much smaller than the other two.

It took much trial and error to find the number of iterations and to set the initial

parameter estimates for the Secant method. Figure 7.1 shows a map of the Weibull

deviational ellipse for the Kentucky data for the year 2003. Tables 7.1 and 7.2 show

the Weibull ellipe statistics for the Kentucky example for the years 2003 and 2004.

Here are some tips on whether the Secant algorithm found credible parameter

estimates.

1. The literature states to halt the Secant algorithm when two iterations of the

algorithm results in a parameter difference of | logL(λ, γ, k) − logL(λ, γ, k −
1)| ≤ | logL(λ, γ, k)|.Arbitrarily choose  = 10−6.

2. Choose two initial values for γ that are not too close to each other.

3. The weighted mean values (x̄, ȳ) for the latitude and longitude are functions of

the parameter estimates λx and λy. The values (x̄, ȳ) should be within the range
of the sample data. This is a hard, must have rule.

4. When running the Secant programs, begin the iterations slowly, working up to

more interations until convergence occurs. According to the literature, perform-

ing too many iterations may indeed cause the two functions logL(λ, γ, k) and
logL(λ, γ, k − 1) to converge to division by zero.

Should the reader get an error message while running the VBA code, a number of

reasons can cause this.

1. Mouse over the variables L X and L X Minus. Check if the two values are

the same. If so, set the number of iterations to a lower number.
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Table 7.3 Results for the Weibull Model on Violent Crime in the U.S.

2007

Center (36.87659982, -92.11312648)

Axes a = 2.684221693, b = 1.421680712

Area 11.98865122 sq. mi.

Standard Deviations δx = 1.305334214, δy = 1.320237824

Rotation X-Axis

Orientation θx = 89.79107974, θy = −0.208920244

Eccentricity 0.848220318

Table 7.4 Results for the Weibull Model on Violent Crime in the U.S.

2008

Center (36.88957315,−92.03222761)

Axes a = 2.653413305, b = 1.407222952

Area 11.73053137 sq. mi.

Standard Deviations δx = 1.306416749, δy = 1.322062007

Rotation X-Axis

Orientation θx = 89.78095302, θy = −0.219046959

Eccentricity 0.847782278

2. We must highlight the cells with the data in the spreadsheet before going into

the VBA Editor.

7.10 Crime Example

The example in this section comes from violent crime in the U.S. for 2007 and 2008.

Tables 7.3 and 7.4 summarize the results for the weighted standard deviational el-

lipse for violent crime in the U.S. for the years 2007 and 2008. The data includes

the continental U.S. Figure 7.2 shows a graph of both the Weibull ellipse and the

exponential ellipse for the Violent Crime data in the U.S. for the year 2007.

7.11 GDP Example

Tables 7.5 and 7.6 summarize the Weibull ellipse for the GDP data for 2008 and

2009. We notice that the mean center is not exactly the same for the exponential

ellipse and the standard deviational ellipse. This is because the values for the pa-

rameters γx and γy did not equal to exactly 1. Therefore, we can find some variation
there.



GDP EXAMPLE 107

Figure 7.2 This figure shows both the Weibull deviational ellipse for the Crime data for the

year 2007. The zoom level is 550 miles above the earth. The standard deviational ellipse was

too large to fit on the map. It has the same center of gravity as the other ellipses. The Weibull

ellipse is much smaller than the other two.

Table 7.5 Results for the Weibull Model on Gross Domestic Product

2008

Center (44.95865049, 173.1927484)

Axes a = 1.876920973, b = 1.48828381

Area 8.777 sq. mi.

Standard Deviations δx = 1.5549, δy = 1.5947

Rotation X-Axis

Orientation θx = 89.28, θy = −0.72

Eccentricity 0.61

Table 7.6 Results for the Weibull Model on Gross Domestic Product

2009

Center (45.10440668, 172.959405)

Axes a = 1.872381589, b = 1.493600132

Area 8.786 sq. mi.

Standard Deviations δx = 1.5588, δy = 1.5997

Rotation X-Axis

Orientation θx = 89.26, θy = −0.74

Eccentricity 0.60
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7.12 Axes Length Comparison

To compare the lengths of the axes to those of the exponential ellipse, we use the

relationships of the mean centers. When the parameters γx = 1 and γy = 1, then the
mean center (x̄, ȳ) are the same for both ellipses. The sums of squares are exactly
the same also.

1. 0 < γx < 1 (Powers): The exponential ellipse is smaller.

2. γx > 1 (Roots): The Weibull ellipse is smaller.

7.13 Sample Distribution Fitting

Three underlying distributions have been presented, the normal distribution (the

weighted standard deviational ellipse), the exponential distribution (the weighted ex-

ponential deviational ellipse), and the Weibull distribution (the weighted Weibull

deviational ellipse). We presented three data sets usually over multiple years, the

USDA Kentucky corn example, the Department of Justice violent crime example,

and OECD gross domestic product example. The examples expand from a local to

a global perspective. We can use graphs to show the distribution of the data. What

happens when all of the graphs show a straight line? What is the distribution of the

sample?

We can continue to use the likelihood functions derived in previous sections.

Since we already calculated the parameters for the samples, it is an easy task to

calculate the likelihood function. Using the maximum likelihood theory, the distri-

bution with the maximum value of the likelihood functionL (and logL) is the better
fit.
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Example Model 2k − 2 lnL(w,x,y) Comment

KY 2003 Corn Acres SDE -11,436.74 Min AIC

KY 2003 Corn Acres Exp 222,911.00

KY 2003 Corn Acres Weibull 274,909.42

KY 2004 Corn Acres SDE -2,110.16 Min AIC

KY 2004 Corn Acres Exp 235,242.64

KY 2004 Corn Acres Weibull 291,173.28

US Crime 2007 SDE 5,697.60 Min AIC

US Crime 2007 Exp 64,790.55

US Crime 2007 Weibull 78,359.93

US Crime 2008 SDE 5,707.33 Min AIC

US Crime 2008 Exp 64,623.60

US Crime 2008 Weibull 78,111.50

Global GDP 2008 SDE 4,976.84 Min AIC

Global GDP 2008 Exp 39,282.18

Global GDP 2008 Weibull 47,388.74

Global GDP 2009 SDE 4,906.12 Min AIC

Global GDP 2009 Exp 39,391.99

Global GDP 2009 Weibull 47,560.40

Given the following summary tables, for each of the data sets, the standard devi-

ational distribution usually fits the sample data best.

When comparing the two probability models, the exponential model consistently

outperforms the Weibull model. Adding the shape parameter using the Weibull dis-

tribution did not help in this particular analysis.
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Example Parameter Esimates (Rounded)

KY 2003 Corn Acres α = −1147830.91, β = 1087263.36

KY 2004 Corn Acres α = −1030547.49, β = 1020882.76

KY 2003 Corn Acres λx = 2.40751, λy = 0.32944, λxy = 0.57958

KY 2004 Corn Acres λx = 2.45951, λy = 0.33676, λxy = 0.59240

KY 2003 Corn Acres λx = 2.40751, λy = 0.32944, λxy = 0.57958

γx = 0.76857, γy = 0.76237, γxy = 1.00000

KY 2004 Corn Acres λx = 2.45951, λy = 0.33675, λxy = 0.59240

γx = 0.76640, γy = 0.76018, γxy = 1.00000

US Crime 2007 α = 42344.54, β = 35730.76

US Crime 2008 α = 41952.14, β = 35152.29

US Crime 2007 λx = 1.32875, λy = 0.18291, λxy = 0.32156

US Crime 2008 λx = 1.38289, λy = 0.18286, λxy = 0.32146

US Crime 2007 λx = 1.32876, λy = 0.18291, λxy = 0.32156

γx = 0.765003, γy = 0.74781, γxy = 1.00000

US Crime 2008 λx = 1.32829, λy = 0.18286, λxy = 0.32146

γx = 0.765406, γy = 0.75763, γxy = 1.00000

Global GDP 2008 α = 44620.24, β = 13643.50

Global GDP 2009 α = 44258.72, β = 13570.98

Global GDP 2008 λx = 0.84687, λy = 0.25678, λxy = 0.39406

Global GDP 2009 λx = 0.84915, λy = 0.25969, λxy = 0.39774

Global GDP 2008 λx = 0.84687, λy = 0.25677, λxy = 0.39405

γx = 0.77847, γy = 0.76382, γxy = 1.00000

Global GDP 2009 λx = 0.84915, λy = 0.25969, λxy = 0.39773

γx = 0.77787, γy = 0.76407, γxy = 1.00000

A word of caution about interpreting the parameters in the above table. For ex-

ample, the parameters under the SDE models for the Violent Crime data survey and

the Global GDP data survey have approximately the same north-south parameter

estimate α, but a vastly different east-west parameter estimate β. Does this mean
that the United States capital (money) went east-ward, while the crime stayed in the

U.S? No, because the two data surveys intentionally represent two different levels of

geography to illustration the calculations.
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7.14 VBA

7




Sub SDE Likelihood()

Dim sum latitude, sum longitude As Double ’ZˆTw

Dim alpha, betaAs Double ’parameter estimates

’calculate the mean center for the latitude and the longitude

mean latitude = 0

mean longitude = 0

n = Selection.Rows.Count

20




For i = 2 To n

35




With ActiveSheet

mean latitude = mean latitude + .Cells(i, 1).Value * .Cells(i, 3).Value

mean longitude = mean longitude + .Cells(i, 2).Value * .Cells(i, 3).Value

End With

Next

mean latitude = mean latitude / sum weight

mean longitude = mean longitude / sum weight

’calculate ZˆTZ and store it in the active spreadsheet

21




For j = 1 To 2

36




For i = 2 To n

48




With ActiveSheet

49




If j = 1 Then

.Cells(j, j + 20).Value = .Cells(j, j + 20).Value +

(.Cells(i, j).Value - mean latitude) * (.Cells (i, j).Value - mean latitude)

Else

.Cells(j, j + 20).Value = .Cells(j, j + 20).Value +

(.Cells(i, j).Value - mean longitude) * (.Cells(i, j).Value - mean longitude)

End If

End With

Next ’i

Next ’j
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7




22




For i = 2 To n

37




With ActiveSheet

.Cells(2, 21).Value = .Cells(2, 21).Value + (.Cells(i, 1).Value - mean latitude) *

(.Cells(i, 2).Value - mean longitude)

End With

Next ’ off diagonals

23




With ActiveSheet

.Cells(1, 22).Value = .Cells(2, 21).Value

’keep a copy for checks

.Cells(9, 21).Value = .Cells(1, 21).Value

.Cells(10, 21).Value = .Cells(2, 21).Value

.Cells(9, 22).Value = .Cells(1, 22).Value

.Cells(10, 22).Value = .Cells(2, 22).Value

’initialize the identity matrix

.Cells(1, 23).Value= 1

.Cells(2, 24).Value= 1

.Cells(1, 24).Value= 0

.Cells(2, 23).Value= 0

End With

’perform guassian elimination to find the inverse of ZˆTZ

24




m = 24

DoWhile m >= 21

38




With ActiveSheet

.Cells(1, m).Value = .Cells(1, m).Value / .Cells(1, 21).Value

.Cells(2, m).Value = .Cells(2, m).Value / .Cells(2, 21).Value

m = m - 1

End With

Loop
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7




’r1 - r2 ---> r2

25




m = 24

DoWhile m >= 21

39




With ActiveSheet

.Cells(2, m).Value = .Cells(1, m).Value - .Cells(2, m).Value

m = m - 1

End With

Loop

’r2 / a 22 ---> r2

26




m = 24

DoWhile m >= 21

40




With ActiveSheet

.Cells(2, m).Value= .Cells(2, m).Value / .Cells(2, 22).Value

m = m - 1

End With

Loop

’a 12 r2 - r1 ----> r1

27




m = 24

DoWhile m >= 21

41




With ActiveSheet

.Cells(1, m).Value = .Cells(1, 22).Value * .Cells(2, m).Value - .Cells(1, m).Value

m = m - 1

End With

Loop

’-1*r1 ----> r1

28




m = 24

DoWhile m >= 21

42




With ActiveSheet

.Cells(1, m).Value = -1 * .Cells(1, m).Value

m = m - 1

End With

Loop
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7




’end of gaussian elimination. (ZˆTZ)ˆ-1 resides in (23,1), (24,1), (23,2), (24,2)

’(ZˆTZ) resides in (21,9), (22,9), (21,10), (22,10)

’calculate ZˆTw

sum latitude = 0

sum longitude = 0

n = Selection.Rows.Count

29




For i = 2 To n

43




With ActiveSheet

sum latitude = sum latitude + .Cells(i, 1).Value* .Cells(i, 3).Value ’w i

sum longitude = sum longitude + .Cells(i, 2).Value* .Cells(i, 3).Value ’w i

End With

Next

’calculate alpha and beta

30




With ActiveSheet

alpha = .Cells(1, 23).Value * sum latitude + .Cells(1, 24).Value * sum longitude

beta = .Cells(2, 23).Value * sum latitude + .Cells(2, 24).Value * sum longitude

End With

’calculate log L

L reg = 0

n = Selection.Rows.Count

31




For i = To n

44




With ActiveSheet

L reg = L reg + (.Cells(i, 3).Value - alpha * (.Cells(i, 1).Value - mean latitude) -

beta * (.Cells(i, 2).Value - mean longitude))

End With

Next

32




WithWorksheets(”STATS”)

.Cells(14, 1).Value = ”Likelihood L(x,y)”

.Cells(14, 2).Value = L reg

End With

End Sub
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7.15 Exercises

1. Show that
n

i=1w
γy
i = 1 where

wi =


w
in

i=1w

i

1/γy

= 1

Solution: Let
n

i=1w

i = w. Then,

wi =


w
in

i=1w

i

1/γy

=


w
i

w

1/γy

⇒
n

i=1

w
γy
i =

n

i=1

w
i

w
=
w

w
= 1.

2. Show that

n

λx
= x̄ in Chapter 5.

Solution:

λ =


n

w
n

i=1 x
γx
i

1/γx

, 0 ≤ xi ≤ 180.

Let w = wi
n

i=1
wi

.

λ =




n

n
i=1


wix

γx
i

n

i=1
wi






1/γx

3. Show that

n

λy
= ȳ in Chapter 5.

4. For what value of γx and γy in the Weibull ellipse makes it equal to the expo-
nential ellipse [special case]? Show this algebraically.





CHAPTER 8

SPHERICAL STATISTICS

8.1 Introduction

So far, we have used the latitude and longitude coordinate system found in most

geography literature. The statistical estimates gave meaningful results (e.g., the mean

center landed in the survey area, the expected standard errors followed a known

distribution, and two methods for calculating the area matched). In this Chapter, we

introduce the concept of spherical statistics. For these analyses to work, we must

convert the data from latitude and longitude coordinates to the Cartesian coordinate

system (i.e. having anX, Y, and Z-axes each extending to infinitywith a single pole
at the point (0, 0, 0)).

This Chapter gives another view of the approach to spatial analysis. The spherical

statistics may not match the other Chapter statistics, exactly. These are presently

because they give additional information such as the ”shape” of the data. The deriva-

tions and calculations of the spherical mean centers and standard deviations may not

align well with previous Chapters. We follow mathematical and statistical theory

carefully.

These calculations are unweighted, whichmeans that we are analyzing the latitude

and longitude observations in the absense of the random variable. Given this, muliple

Random Variables, Their Properties, and Deviational Ellipses.

By Roger L. Goodwin Copyright c 2015 Roger L. Goodwin
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year survey statistics give the same results since the latitudes and longitudes have

been augmented to the data sets. New information not atainable before, will be

presented.

This Section covers the multiple ellipses from a single population. The data shows

more than one value with a high a frequency (probability) occurring in the survey.

In directional statistics, we define the mode as the maximum a value of a given

distribution and we define the anti-mode as the minimum of the distribution. For

example, if we construct a histogram of a distribution for categorical ranges of the

sample data and count the number of observations that fall into each category, then

the category with the largest number of observations is the mode. The category with

the smallest number of observations is the anti-mode.

The literature on multi-modal ellipses divides the techniques for measuring the

ellipses into several broad categories:

Multiple variable statistics.

Multivariate statistics.

Multi-modal statistics.

Multiple variable statistics includes such techniques as linear regression with

one random variable and multiple explanatory variables [B. L. Bowerman and R.

T. O’Connell, (2)]. We estimate the parameters using least squares. On the other

hand, multivariate statistics linear regression with two or more random variables and

can include one or more explanatory variables for each random variable [R. Khattree

and D. N. Naik, (33)]. There may be correlation among the random variables. [R.

G. Petersen (50); E. T. Lee, (35)] discuss more general analysis of variance models

(ANOVA models) and specifically the distributions discussed in preceding Chapters

for the univariate cases. [R. Khattree and D. N. Naik, (33)] give analogous multi-

variate analysis of variance models (MANOVA models).

Multimodal statistics is a property of a particular distribution albeit a univariate

distribution or a multivariate distribution. [L. Cobb, P. Koppstein, and N. H. Chen

(7)] contains a discussion on multimodal distributions for the exponential distribu-

tion, the normal distribution, and the beta distribution. The paper also contains a test

for multimodality [(7, page 128]. Although the paper seems relevant, after some cor-

respondence with L. Cobb, the paper does not discuss random variables or random

distributions. [Mardia, (45)] contains extensive discussions on univariate and mul-

tivariate sampled distributions. Of interest in this text is [Mardia, (45), page 221],

which shows how to calculate the mean center of gravity, using sins and cosines. The

author has a simple test for multimodality [Mardia (45), page 209]. The author gives

other, advanced tests also.

[D. J. Steffensmeier, E. A. Allan, M. D. Harer, and C. Streifel, (59)] provide an

in-depth example of crime data linking crime type and age. This article discusses

two distinct issues.

Committing crime as a person ages (supported by Sociological studies).
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Shift in the age distribution by the type of crime (supported by the data).

The authors rely on percentages and quantiles throughout the paper for statistical

comparisons. To show multimodality, the authors show the shift in the age dis-

tribution using quantiles of committing a specific type of crime over a period from

1940 to 1980. They also provide the usual skewness and kurtosis calculations for the

shape of the distributions as well as chi-square tests.

8.2 Concepts

Directional statistics models probability densities and angles. In prior chapters, our

data came in the triplet (xi, yi, wi) for the latitude, the longitude, and the random
variable and mapped onto the Earth’s surface. In this chapter, the data comes from

the sample of size n of points on a sphere P (φi, θi). The latitude φi is the verti-
cal line running north and south parallel of the Prime Meridian and has the range

[−90, 90]. The longitude θi is the horizontal line running east and west parallel
of the Equator and has the range [−180, 180]. We define the Equator as having
latitude of 0.We define the Prime Meridian as having longitude of 0.We will need
to convert decimal degrees into radians often in this Chapter because the calcula-

tions rely heavily on trigonometry functions. [Shelby (57), pages 389-392] gives an

excellent discussion of projecting coordinates from the Earth onto a circle.

How do we convert our latitude and longitude data to directional data? The Equa-

tor divides the Earth in half into the Northern and Southern Hemispheres each having

the same mass. The latitude of the Equator is φ = 0.

Figure 8.1 This figure shows a map of the U.S. relative to the Equator (represented by the

black line).

To obtain a scatter diagram in two dimensions on the surface of a sphere, use a

projection on the sphere. Consider the polar coordinates (ρ, ψ) where ρ is the polar
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distance and ψ is the polar angle. [Mardia, (45)] defines the stereographic equal-

angle projection as ρ = tan

θ
2


, and ψ = φ where 0 < ρ < 1 and 0 < ψ <

2π. [Mardia, (45)] calls the plot a Wulff-net or stereographic-net. It is an ”area

preserving” plot compared to other plots.

Steps to mimic the previous chapters:

1. Convert the spatial data to circular data.

2. Calculate the quantities (l̄0, m̄0, n̄0). These calculations result in radians when
using Excel 2010 spreadsheets.

3. Convert the results back to degrees from radians.

4. Convert the mean latitude and mean longitude back to spatial coordinates.

8.3 X-Axis Mean Center and Resultant Length

To find the mean direction North-South using directional statistics, we first calculate

the cosines in Equation (8.1).

n0 =

n

i=1

ni =

n

i=1

cosφi. (8.1)

where P (φi, θi) is a point on the Earth; φi equals to the latitude and θi equals to the
longitude for observation i. To find the average of n0, we divide by the quantity R
to obtain

X̄ = n̄o =
1

n
no (8.2)

where we define R next.

R̄ =



1

n

n

i=1

li

2

+


1

n

n

i=1

mi

2

+


1

n

n

i=1

ni

2

, 0 < R̄ ≤ 1 (8.3)

where n is the sample size and li, mi, and ni are defined in this Section and the next.
For now it suffices to say that R is between 0 and 1.

The diagram in Figure 8.2 shows the triangle with the longitude θ. It has a right
angle (90), the angle θ identified, the hypotenuse R and the two sides n0 and m0.
We will define m0 in Section 8.4.

Equation (8.4) gives the weighted cosines and average latitude using the random

variableW.

X̄w = n̄w0
=

n

i=1

winin
i=1wi

=

n

i=1

wi cosφin
i=1wi

. (8.4)

Accordingly, Equation (8.5) gives the weighted resultant length R̄.
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R̄w =




n

i=1

wilin
i=1wi

2

+


n

i=1

wimin
i=1wi

2

+


n

i=1

winin
i=1wi

2

, 0 < R̄w ≤ 1

(8.5)

8.4 Y and Z-Axis Mean Centers

To find the means in the Y and Z-axis directions using directional statistics, we need
both the latitude (φi) and the longitude (θi) observations for the points P (φi, θi) on
the Earth. We calculate the sums for the Y -axis in Equation (8.6) and the sums for
the Z-axis in Equation (8.7).

l0 =

n

i=1

li =

n

i=1

sinφi cos θi, (8.6)

m0 =

n

i=1

mi =

n

i=1

sinφi sin θi. (8.7)

P (φi, θi) is a point on the Earth. φi is called the latitude and θi is called the
longitude for observation i. To find the average of l0 and m0, we need the mean
resultant lengthR, which was difined in Section 8.3. For now, it suffices to say that,
Equations (8.8) and (8.9) gives the means for l0 andm0.

Ȳ = l̄0 =
1

n
l0. (8.8)

Z̄ = m̄0 =
1

n
m0. (8.9)

Equations (8.10) and (8.11) give the weighted averages for the Y and Z axes.

Ȳw = l̄w0
=

n

i=1

wi sinφi cos θin
i=1wi

. (8.10)

Z̄w = m̄w0
=

n

i=1

wi sinφi sin θin
i=1wi

. (8.11)

8.4.1 Spherical Variance

[Mardia and Jupp, (46)] give two definitions for the sample spherical variance. The

first sample spherical variance is defined in Equation (8.12). This definition mini-

mizes a matrix of the arithmetic mean of the Euclidean distances.

S∗ = 2(1− R̄), 0 < S∗ < 1 (8.12)
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where R is the resultant length. For small S∗, the data is uniform. There is no

preferred direction. For large S∗, the data is directional and may be clustered or may
not be clustered. When R̄ ≈ 1, the data are heavily concentrated. R̄ measures

clustering around the mean direction.

A second measure of the sample spherical variance is given in Equation (8.13).

This definition is an analogue from a derivation of the matrix T. The matrix T will

be used later.

S∗ = 1− R̄2, 0 < S∗ < 1. (8.13)

8.5 VBA

Figure 8.3 shows the VBAprogramming environment for Module 4 and the driver

subroutine modal stats().

Module 4 contains the following subroutines:

SinCosS() —This subroutine calculates the sines and cosines of the latitude

and longitude. It also calculates the observations li, mi, and ni. The subroutine
stores the values in the active worksheet in columns F thru K. The number of

rows depends on the length of the input data set.

The WITH-END-WITH statement (4) writes headings across the columns of

the active spreadsheet.

The second FOR-NEXT loop (6) converts the latitude and longitude obser-

vations from degrees to radians. The FOR-NEXT loop calculates the sines

and cosines of the latitude and longitude observations and stores those values

in columns F, G, and H. The FOR-NEXT loop calculates the observation

values li, mi, and ni, i = 1, 2, ..., n and stores them in columns I, J, and

K.

Calculate B() —This subroutine calculates the matrix B. The upper left
corner of the matrix is stored in cell O13. The lower right corner of the

matrix is stored in cell Q15.

modal stats() — This subroutine calls the SinCosS() subroutine. It

calculates the matrix T and the spherical statistics.

The FOR-NEXT loop (9) calculates the sums l0, m0, and n0 using Equations
(8.6), (8.7), and (8.1).

The VBA statement immediately following the FOR-NEXT loop calculates

the resultant length R in Equation (8.3) and saves the value in the variable

R length. Following this VBA statement, we calculate the spherical vari-

ance S∗ using Equation (8.12) and we save the value in the variable S.
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Figure 8.2 This figure shows the diagram of a triangle with the quantities for the longitude

θ, n0, and the resultant lengthR.

Figure 8.3 This figure shows the VBA environment for Module 4. It also highlights the

driver subroutine modal stats().
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Figure 8.4 This figure shows the STATS spreadsheet with the output from the subroutines

main Modal() and modal stats().

Following the calculation of the spherical variance, we calculate the means X̄,
Ȳ , and Z̄ using Equations (8.2), (8.8), and (8.9). We save the results to the vari-

ables l sum, m sum, and n sum. Finally, we apply the arcsin or arccos
function to the sums and we convert the results back to degrees from radians.

The WITH-END-WITH statement (10) writes the statistical results to column

O and the descriptive labels to column N. The upper-left corner of matrix T
is cell O19. The lower-right corner of matrix T is cell Q17.

The spherical statistics calculated by the subroutine modal stats() include

the following:

Mean in theX-axis direction X̄.

Mean in the Y -axis direction Ȳ .

Mean in the Z-axis direction Z̄.

l0 — one of three measures for the mean direction of cosines.

m0 —one of three measures for the mean direction of cosines.

n0 — one of three measures for the mean direction of cosines.

Spherical variance S∗.

Resultant lengthR.

Figure 8.4 shows the output statistics from the subroutine modal stats().
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1




’program name: modal stats()

’author: roger l. goodwin

’purpose: calculate the statistics for the sphere

Dim n As Integer ’number of observations

Dim l 0, m 0, n 0 As Double

Dim l sum, m sum, n sum As Double

Dim R length As Double

Dim bar x, bar y1, bar y2As Double

Dim TempSecSinAs Double

Dim X, Y, Z As Double
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2




Sub SinCosS()

n = Selection.Rows.Count

’title the columns

11




With ActiveSheet

.Cells(1, 4).Value = ”Latitude (Radians)”

.Cells(1, 5).Value = ”Longitude (Radians)”

.Cells(1, 6).Value = ”Sin Longitude”

.Cells(1, 7).Value = ”Cos Longitude”

.Cells(1, 8).Value = ”Sin Latitude”

.Cells(1, 9).Value = ”X i”

.Cells(1, 10).Value = ”Y i”

.Cells(1, 11).Value = ”Z i”

End With

X = 0

Y = 0

Z = 0

’unweighted calculations

12




For i = 2 To n

30




With ActiveSheet

.Cells(i, 4).Value = .Cells(i, 1).Value *WorksheetFunction.Pi()/ 180 ’convert latitude to radians

.Cells(i, 5).Value = .Cells(i, 2).Value *WorksheetFunction.Pi() / 180 ’convert longitude to radians

.Cells(i, 6).Value = Sin(.Cells(i, 5).Value)’sin of longitude in radians

.Cells(i, 7).Value = Cos(.Cells(i, 5).Value)’cos of longitude in radians

.Cells(i, 8).Value = Sin(.Cells(i, 4).Value)’sin of latitude in radians

.Cells(i, 9).Value = Cos(.Cells(i, 4).Value)’X i

.Cells(i, 10).Value = .Cells(i, 8) * .Cells(i, 7) ’Y i

.Cells(i, 11).Value = .Cells(i, 8) * .Cells(i, 6) ’Z i

End With

Next

End Sub
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3




Submodal stats()

Call SinCosS

n = Selection.Rows.Count

l 0 = 0

m 0 = 0

n 0 = 0

R length = 0

13




For i = 2 To n

31




With ActiveSheet

l 0 = l 0 + .Cells(i, 9).Value

m 0 = m 0 + .Cells(i, 10).Value

n 0 = n 0 + .Cells(i, 11).Value

EndWith

Next

l sum = l 0 / (n - 1)

m sum = m 0 / (n - 1)

n sum = n 0 / (n - 1)

R length = Sqr(l sum ˆ 2 + m sum ˆ 2 + n sum ˆ 2)

S = (1 - R length ˆ 2) ’spherical variance

’put the stats in an excel worksheet

’put the stats in an excel worksheet

14




With Worksheets(”STATS”)

.Cells(1, 14).Value = ”Modal Ellipse Statistics”

.Cells(2, 14).Value = ”Mean Latitude”

.Cells(3, 14).Value = ”Mean Longitude 1 (+/-)”

.Cells(4, 14).Value = ”Mean Longitude 2 (+/-)”

.Cells(5, 14).Value = ”l 0 (degrees)”

.Cells(6, 14).Value = ”m 0 (degrees)”

.Cells(7, 14).Value = ”n 0 (degrees)”

.Cells(8, 14).Value = ”Spherical Variance”

.Cells(9, 14).Value = ”Resultant Length (R)”

.Cells(18, 14).Value = ”Matrix T”

.Cells(2, 15).Value = l sum * 180 /WorksheetFunction.Pi()

.Cells(3, 15).Value = m sum * 180 /WorksheetFunction.Pi()

.Cells(4, 15).Value = n sum * 180 /WorksheetFunction.Pi()

.Cells(5, 15).Value = l 0 * 180 /WorksheetFunction.Pi()

.Cells(6, 15).Value = m 0 * 180 /WorksheetFunction.Pi()

.Cells(7, 15).Value = n 0 * 180 /WorksheetFunction.Pi()

.Cells(8, 15).Value = S

.Cells(9, 15).Value = R length

End With

End Sub
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8.6 Test and Characterizations

The spherical distributions can have one of three visual characteristics:

Uniform: The points have a uniformly dispersed pattern and have no ”pre-

ferred” direction.

Bimodal: The points have a clustered pattern about the ends of an axis (e.g.

the north and south poles). The axis joins the two modes as well as the two

anti-modes.

Girdle: The points have a dispersed, elliptic pattern. The mode(s) are on a

plane.

To detect which distributionwe have, define the matrix B as:

B = nI − T = (8.14)


n−n

i=1 l
2
i −n

i=1 limi −n
i=1 lini

−n
i=1 limi n−n

i=1m
2
i −n

i=1mini

−n
i=1 lini −n

i=1mini n−n
i=1 n

2
i






b1

b2

b3




We find the eigenvalues of matrix B to determine the visual shape of the data. We

define the vector b1 as the first row times the vector of unknowns:

b1 =



n−n

i=1 l
2
i −n

i=1 limi −n
i=1 lini

−n
i=1 limi n−n

i=1m
2
i −n

i=1mini

−n
i=1 lini −n

i=1mini n−n
i=1 n

2
i






b1

b2

b3


 =



b1(n −

n
i=1 l

2
i )

−b2
n

i=1 limi

−b3
n

i=1 lini




Vector b2 corresponds to row 2 and vector b3 corresponds to row 3.

8.7 VBA

The Calculate B() subroutine (2) calculates the matrix B in Equation (8.14).

The FOR-NEXT loop (7) uses previously calculated results stored on the active

spreadsheet in columns I, J, and K to calculate the sums in Equation (8.14).

The WITH-END-WITH statement (8) saves the matrix B to the STATS spread-

sheet. The upper-left corner of the matrix is cell O13. The lower-right corner of

the matrix is cell Q15.
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5




Sub Calculate B()

n = Selection.Rows.Count

l 0 = 0

m 0 = 0

n 0 = 0

l0 sqrd = 0

m0 sqrd = 0

n0 sqrd = 0

lm sum = 0

ln sum = 0

mn sum = 0

R length = 0

16




For i = 2 To n

32




With ActiveSheet

l 0 = l 0 + .Cells(i, 9).Value

m 0 = m 0 + .Cells(i, 10).Value

n 0 = n 0 + .Cells(i, 11).Value

’calculate the matrix B

l0 sqrd = l0 sqrd + (.Cells(i, 9).Value) ˆ 2

m0 sqrd = m0 sqrd + (.Cells(i, 10).Value) ˆ 2

n0 sqrd = n0 sqrd + (.Cells(i, 11).Value) ˆ 2

lm sum = lm sum + .Cells(i, 9).Value * .Cells(i, 10).Value

ln sum = ln sum + .Cells(i, 9).Value * .Cells(i, 11).Value

mn sum = mn sum + .Cells(i, 10).Value * .Cells(i, 11).Value

End With

Next

17




With Worksheets(”STATS”)

.Cells(13, 14).Value = ”Matrix B”

.Cells(13, 15).Value = (n - 1) - l0 sqrd

.Cells(13, 16).Value = -1 * lm sum

.Cells(13, 17).Value = -1 * ln sum

.Cells(14, 16).Value = (n - 1) - m0 sqrd

.Cells(14, 15).Value = -1 * lm sum

.Cells(14, 17).Value = -1 * mn sum

.Cells(15, 17).Value = (n - 1) - n0 sqrd

.Cells(15, 15).Value = -1 * ln sum

.Cells(15, 16).Value = -1 * mn sum

End With

End Sub
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Finding the eigenvalues of B involves two steps:

1. Find the roots λ to the determinantDet(B−λI) where the matrix I is the 3×3
identity matrix. There may be at most three unique roots to the determinant.

2. For each eigenvalue λj , solve the system (B − λjI)v = 0.

Equation (8.15) gives the determinant for B − λjI.

Det(B − λjI) = (8.15)


n−

n

i=1

l2i − λj


n−

n

i=1

m2
i − λj


n−

n

i=1

n2i − λj


−

n

i=1

limi

n

i=1

mini

n

i=1

lini −
n

i=1

lini

n

i=1

limi

n

i=1

mini+

n

i=1

lini

n

i=1

lini


n−

n

i=1

m2
i − λj


+

n

i=1

mini

n

i=1

mini


n−

n

i=1

l2i − λj


+

n

i=1

limi

n

i=1

limi


n−

n

i=1

n2i − λj


.

Arrange the eigenvalues λ1, λ2, and λ3 in ascending order such that 0 ≤ λ1 ≤
λ2 ≤ λ3 ≤ n where n is the sample size and

3
i=1 λi = n. The trace of matrix B

sums to 2n.As in [Mardia (45), page 223-224], we interpet the diagonal elements of
B and the eigenvectors.

βi, i = 1, 2, 3 equal to the diagonal elements of B where β1 = b11, β2 = b22,
and β3 = b33.Working with the matrix T, we define the following eigenvalues and
eigenvectors.

λi = n− βi, ti = bi, i = 1, 2, 3 , λ1 + λ2 + λ3 = n.

The terms large and small are subjective. The reader may ask whether there is a

statistical test to differentiate between the values for λi? [Mardia (45), pages 276-
283] shows such a test statistic. Let the null hypothesis be H0 : λ1 = λ2 = λ3 =

n
3 ,

which states that the eigenvalues have equal values. The test statistic is SU

SU =
15

2n

3

i=1


λi −

1

3
n

2

∼ χ2(5). (8.16)

Equation (8.16) is asymptotically a chi-square distribution with five degrees of

freedom. For large n, the chi-square test works best. For sufficiently large sample
sizes, this should not be an issue. SU tests for uniform λis. Other statistical tests test
for girdle and rotational symmetry using the λis.
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Table 8.1 Interpretation of the Eigenvalues

Eigenvalues Condition Distribution Build

λ1 ≈ λ2 ≈ λ3 Uniform Axes having no orientation

Small λ1, λ2. Large λ3 λ1 = λ2 Unimodal for large R. Bimodal

otherwise.

If unimodal, the concentration at end of the

eigenvector t
3
. Otherwise, concentration at

both ends of the eigenvector t
3
.

Small λ1, λ2. Large λ3 λ1 ≈ λ2 Unimodal for large R. Bipolar oth-

erwise.

Rotational symmetry about t
3
.

Small λ1. Large λ2, and λ3. λ2 = λ3 Girdle Girdle plane spanned by the the eigenvectors

t
2
and t

3
.

Small λ1. Large λ2, and λ3. λ2 ≈ λ3 Symmetric girdle Rotational symmetry about the eigenvector

t
1
.

8.7.1 Finding the Eigenvalues

This is a simple Netwon algorithm for finding the eigenvalues λj , j = 1, 2, 3. The
Gaussian elimination algorithmmust be run to find the eigenvectors for each λj . This
subroutine must be run mutiple times. This routine needs to find the three values in

the determinant of the matrix B :



a− λ d e

f b− λ g

h i c− λ


 =



0

0

0




where the constants a, b, c, d, e, f, g, h, and i are given. The cubic equation must be
solved for λ :

(a − λ)(b − λ)(c − λ) + dgh+ efi− (8.17)

he(b− λ)− ig(a − λ) − fd(c − λ).

The derivative of Equation (8.17) with respect to λ is given in Equation (8.18).

−(b − λ)(c − λ)− (a− λ)(c− λ)− (a− λ)(b− λ) + eh+ ig + fd. (8.18)

[Cheney and Kincaid, (5), pages 83-90] give an introduction and an algorithm for

Newton’s method. We wish to apply the method to find the eigenvalue λj, j = 1, 2
or 3. The recursive definition of Netwon’s method is
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λk+1 = λk −
f(λk)

f (λk)

where k = 0, 1, 2, ... represents the iteration (also called the index in the sequence).
We use Equation (8.17) to calculate the function f(λk). We use Equation (8.18) to
calculate the function f (λk).

8.8 VBA

The function fx() (5) calculates the determinant of the matrix T using Equation

(8.14) and (8.17). T = nI − B where I is the 3 × 3 identity matrix. The func-
tion gx() (6) calculates the derivative of the determinant of the matrix T using

Equations (8.14) and (8.18). The subroutine Newton() (7) applies the Newton

algorithm to find the eigenvalue λj, j = 1, 2 or 3.We will discuss the VBA code for

calculating the matrix T in Section 8.8.1.

8




Function fx(Lambda)

’the determinate of the matrix T

Dim a, b, c, d, e, g As Double

’matrix T is symmetrix. not all of it needs to be read in.

26




With Worksheets(”STATS”)

a = .Cells(19, 15).Value ’sum l iˆ2

d = .Cells(19, 16).Value ’sum l i m i

e = .Cells(19, 17).Value ’sum l i n i

b = .Cells(20, 16).Value ’sum m iˆ2

g = .Cells(20, 17).Value ’sum m i n i

c = .Cells(21, 17).Value ’sum n iˆ2

f = d

i = g

h = e

End With

fx = (a - Lambda) * (b - Lambda) * (c - Lambda) + d * g * h + e * f * i -

h * e * (b - Lambda) - i * g * (a - Lambda) - f * d * (c - Lambda)

End Function
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9




Function gx(Lambda)

’the derivative of the determinate of matrix T

Dim a, b, c, d, e, g As Double

27




With Worksheets(”STATS”)

a = .Cells(19, 15).Value ’sum l iˆ2

d = .Cells(19, 16).Value ’sum l i m i

e = .Cells(19, 17).Value ’sum l i n i

b = .Cells(20, 16).Value ’sum m iˆ2

g = .Cells(20, 17).Value ’sum m i n i

c = .Cells(21, 17).Value ’sum n iˆ2

f = d

i = g

h = e

End With

gx = -1 * (b - Lambda) * (c - Lambda) - (a - Lambda) * (c - Lambda) -

(a - Lambda) * (b - Lambda) + e * h + i * g + f * d

End Function
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10




Sub Newton(Lambda)

Dim lambda0As Double ’old value of lambda

Dim diff As Double ’termination condition

Dim i As Integer

diff = 1

i = 1

f x = fx(Lambda)

28




While (diff > 0.0000000001)

lambda0 = Lambda

Lambda = Lambda - f x / gx(Lambda)

f x = fx(Lambda)

diff = Abs(lambda0 - Lambda)

i = i + 1

Wend

29




With Worksheets(”STATS”)

.Cells(23, 14).Value = ”Eigenvalue”

.Cells(24, 14).Value = ”Newton Iterations”

.Cells(23, 15).Value = Lambda

.Cells(24, 15).Value = i

.Cells(20, 20).Value = Lambda

End With

End Sub

8.8.1 Finding the Eigenvectors

This is a Gaussian elimination algorithm that performs row reduction on a 3 × 3
matrix. This subroutine only needs to be run once for each λj , j = 1, 2, 3. There
is no trial and error as there was in finding the eigenvalues. [Grossman, (23), pages

277-281] gives the theory behind eigenvalues and eigenvectors and the strategy for

finding each. Keep in mind that we are only solving a 3 × 3 matrix in Spherical
Statisitics and the code given reflects this simplicity. Setting the initial value for v3 to
back solve the system of equations is the reader’s prerogative as stated in [Grossman,

(23)]. There are an infinite number of solutions to the equations.

8.9 VBA

The statistics associated with the spherical distribution are complicated. They usu-

ally begin with finding the some statistic of a 3 × 3 matrix from either B or T.
This Section describes the VBA code in Module 4 and Module 5. It is best
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Figure 8.5 This figure shows the VBA environment for Module 5. It also highlights the

driver subroutine main Modal().

to start with Module 5. Figure 8.5 shows a screen capture of the VBA environ-

ment for Module 5. The subroutines in Module 5 calculate the matrix T and

find the eigenvalues to matrix T. Since there are an infinite number of eigenvectors,
some interaction and verification on the reader’s part is required when finding the

eigenvectors. Module 5 contains the following six subroutines:

1. main Modal() —This is a driver subroutine.

2. Calculate B() —This subroutine calculates the matrixB from which the

diagonal elements β1, β2 and β3 are determined. We can re-use the subroutine
in Module 5 for calculating this matrix.

3. Calculate T() —This subroutine calculates the matrix T. The upper left-
hand corner of the matrix resides in cell O19 in the STATS spreadsheet and

cell Q21 in the lower-right corner.

The FOR-NEXT loop (10) calculates the matrix T using Equation (8.14) where

T = nI−B. The WITH-END-WITH statement (11) saves the matrix T below

matrixB in the STATS spreadsheet. The upper-left corner is cell O19 and the

lower-right corner is cell Q21. The remaining code writes descriptive labels

to the STATS spreadsheet for the eigenvectors in columns R and V.

4. Gauss(Lambda) — This subroutine performs row elimination on matrix T
given the eigenvalue Lambda. This finds a possible eigenvector and puts

it into cells V19, V20, and V21. The value in cell V21 will always be

equal to 1. This allows the reader to scale the other values in the vector up or

down (usually be a factor of 10).
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The FOR-NEXT loop (12) reads thematrix T into the array T prime. Since

T will always be a 3×3matrix, the code in the Gauss() subroutine performs

row reduction as one would do on paper.

5. fx(Lambda) —This subroutine finds the determinant of matrix T given the

eigenvalue Lambda.

6. gx(Lambda) — This subroutine finds the derivative of the determinant of

matrix T given the eigenvalue Lambda.

7. Newton(Lambda) —This subroutine finds the eigenvalues of matrix T us-

ing the subroutines fx() and gx(). It puts the eigenvalue in cell T20.

When trying to find the eigenvalues and the eigenvectors, the reader only needs to

run the main Modal() subroutine and ensure that it contains the proper calls and

parameters to the Newton() and Gauss() subroutines. Ordering is important.

The subroutines in Module 5, particularly the Netwon() subroutine, must be

run before the Gauss() can be run. The statements in the main Modal() sub-

routine clearly show the ordering of the other subroutine calls.
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6




Sub Calculate T()

n = Selection.Rows.Count

l 0 = 0

m 0 = 0

n 0 = 0

l0 sqrd = 0

m0 sqrd = 0

n0 sqrd = 0

lm sum = 0

ln sum = 0

mn sum = 0

R length = 0

18




For i = 2 To n

33




With ActiveSheet

l 0 = l 0 + .Cells(i, 9).Value

m 0 = m 0 + .Cells(i, 10).Value

n 0 = n 0 + .Cells(i, 11).Value

’calculate the matrix T

l0 sqrd = l0 sqrd + (.Cells(i, 9).Value) ˆ 2

m0 sqrd = m0 sqrd + (.Cells(i, 10).Value) ˆ 2

n0 sqrd = n0 sqrd + (.Cells(i, 11).Value) ˆ 2

lm sum = lm sum + .Cells(i, 9).Value * .Cells(i, 10).Value

ln sum = ln sum + .Cells(i, 9).Value * .Cells(i, 11).Value

mn sum = mn sum + .Cells(i, 10).Value * .Cells(i, 11).Value

End With

Next

19




With Worksheets(”STATS”)

.Cells(19, 15).Value = l0 sqrd

.Cells(19, 16).Value = lm sum

.Cells(19, 17).Value = ln sum

.Cells(20, 16).Value = m0 sqrd

.Cells(20, 15).Value = lm sum

.Cells(20, 17).Value = mn sum

.Cells(21, 17).Value = n0 sqrd

.Cells(21, 15).Value = ln sum

.Cells(21, 16).Value = mn sum

.Cells(19, 18).Value = ”v1”

.Cells(20, 18).Value = ”v2”

.Cells(21, 18).Value = ”v3”

.Cells(20, 19).Value = ”=”

’(20,20) reserved for Lambda

.Cells(19, 21).Value = ”v1”

.Cells(20, 21).Value = ”v2”

.Cells(21, 21).Value = ”v3”

End With

End Sub
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7




Sub Gauss(Lambda)

’this subroutine performs simple row elimination as in Gaussian elimination

Dim T Prime(1 To 3, 1 To 3) As Double

n = 3

’initialize the data structures A and B; the results get saved to X

20




For i = 1 To n

34




With Worksheets(”STATS”)

36




For j = 1 To n

T Prime(i, j) = .Cells(i + 18, j + 14).Value

If i = j Then

T Prime(i, j) = .Cells(i + 18, j + 14).Value - Lambda

End If

Next

End With

Next

’row reduction

T Prime(2, 2) = T Prime(2, 2) / T Prime(2, 1)

T Prime(2, 3) = T Prime(2, 3) / T Prime(2, 1)

T Prime(2, 1) = 1

T Prime(3, 2) = T Prime(3, 2) / T Prime(3, 1)

T Prime(3, 3) = T Prime(3, 3) / T Prime(3, 1)

T Prime(3, 1) = 1

’substract row 1 from rows 2 and 3

21




For i = 1 To 3

T Prime(2, i) = T Prime(2, i) * T Prime(1, 1)

T Prime(3, i) = T Prime(3, i) * T Prime(1, 1)

Next

22




For i = 1 To 3

T Prime(2, i) = T Prime(2, i) - T Prime(1, i)

T Prime(3, i) = T Prime(3, i) - T Prime(1, i)

Next

’end of subtraction

T Prime(2, 3) = T Prime(2, 3) / T Prime(2, 2)

T Prime(3, 3) = T Prime(3, 3) / T Prime(3, 2)

T Prime(2, 2) = 1

T Prime(3, 2) = 1
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7




’subtract row 2 from 3

23



For i = 1 To 3

T Prime(3, i) = T Prime(3, i) - T Prime(2, i)

Next

’reduce row 1

T Prime(1, 1) = T Prime(1, 1) / T Prime(1, 2)

T Prime(1, 3) = T Prime(1, 3) / T Prime(1, 2)

T Prime(1, 2) = 1

’subtract row 2 and row 1 to give row 1

24



For i = 1 To 3

T Prime(1, i) = T Prime(1, i) - T Prime(2, i)

Next

’end of subtraction and row reductions

25




With Worksheets(”STATS”)

.Cells(26, 14).Value = ”T minus Lambda (I) row reduced”

35




For i = 1 To n

37



For j = 1 To n

.Cells(25 + i, 14 + j).Value = T Prime(i, j)

Next ’j

Next ’i

.Cells(30, 15).Value = ”The reader will have to determine the eigenvector from here.”

End With

End Sub

8.10 Kentucky Example

Figure 8.6 shows the histogram for the Kentucky 2003 data. There does not appear

to be any one or two observations with a disproportional weight. This data looks

fairly random. Figure 8.7 shows the Kentucky 2003 converted data. The Yi and Zi
observations have been interchanged in the graph. This is because the Z-axis points
directly at the reader. Had the the data not been interchanged, only one circle would

have been shown. The 91 data markers, shown as circles, would lay on top of each

other since the data is fairly linear.

We run the Newton() subroutine in Excel to calculate the eigenvalues. Since

the equation of the determinant of B is triadic, we expect to find three roots to the

determinant. The Newton() subroutine will find two of the three. The third λ3
can be deduced by the equation λ3 = n − λ1 − λ2 where λ1 and λ2 are known
eigenvalues that have been found using the Newton() subroutine. Using a value

close to n is a good guess for λ3. Here, there is no implied ordering between λ1, λ2,
and λ3. Table 8.2 gives the eigenvalues and eigenvectors for the Kentucky data.
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Figure 8.6 This figure shows the histogram for the Kentucky 2003 data.

Figure 8.7 This figure shows the Kentucky 2003 converted data.
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MatrixB for the 2003 Kentucky data is as follow:

B =




33.58777584 −3.351383372 43.36764038

−3.351383372 89.77014071 2.59054283

43.36764038 2.59054283 56.64208345




The reader can verify that the diagonal elements sum to 2n = 180. Matrix T for the

2003 Kentucky data is as follow:

T =




56.41222416 3.351383372 −43.36764038
3.351383372 0.229859286 −2.59054283
−43.36764038 −2.59054283 33.35791655




Table 8.2 Eigenvalues and Eigenvectors for the 2003 Kentucky Data

Value Eigenvector ti

λ1 0.006629744 (0.734788415, 0.573334304, 1.0)

λ2 0.034874073 (0.944911442, −2.955186475, 1.0)

λ3 89.95849618 (−1.300507805, −0.077445098, 1.0)

The reader can verify that the property TvT = λiv
T where the vector v is the

eigenvector corresponding to the eigenvalue λi for i = 1, 2, 3. Just looking at the
magnitude of the values of λ1, λ2, and λ3 we can conclude that the eigenvalues are
not equal. Hence, at a minimum the data is directional. We will calculate the test

statistic SU for illustrative purposes.

SU =
15

2(90)

3

i=1


λi −

1

3
(90)

2

=

15

180


(0.006629744− 30)2 + (0.034874073− 30)2+

(89.95849618− 30)2

= 449.378.

The cut-off value is χ2(5) = 11.07 at the 95% confidence level and χ2(5) = 15.09
at the 99% confidence level. Since 449 > 15.09, we reject the hypothesis that the
eigenvalues are equally valued. Thus, the data is directional. We need the resultant

length R to determine the visual distribution of the points. This Section covers the

derivation of R.
To obtain the results in Table 8.3, we ran the modal stats() routine. It does

not have any input parameters, but does assume that the first three columns in the

spreadsheet have the following values:

Column 1 contains the latitude values.
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Table 8.3 Results for the Spherical Model for Kentucky

2003

Center (45.35963106, 2.701085798,−34.87836501)

(l0,m0, n0) (4082.366795, 243.0977218, −3139.052851)

Resultant Length R = 0.999769376

Sample Size n = 90

Data Type Directional

Data Shape Bipolar

Spherical Variance S = 0.000461194

Column 2 contains the longitude values.

Column 3 contains the weight values (random variable). This is not used in the

computations.

In Table 8.2, we notice we have two small eigenvalues and one large eigen-

value. According to Table 8.1, these observations have a bipolar distribution be-

cause λ3 is large; λ1 and λ2 are small. The concentration of the spherical data

is at both ends of the vector t3. We knew the data originated from a bipolar co-

ordinate system with a north and south pole. The vector t3 in radians is t3 =
(−1.300507805, −0.077445098, 1.0).

8.11 Crime Example

We look at the histogram in Figure 8.8 and notice three states with approximately the

same mode — California, Texas, and Florida. California accounts for approximately

13.6% of the total violent crime, Texas 8.7%, and Florida 9.4%. These three obser-

vations weigh the calculations dispropotionately. One is on the west coast, one in

the south west, and the other in the south. Figure 8.9 shows a graph of the converted

data. The data is symmetric. One ball is separated from the rest of the data.

We need to determine the visual distribution of the data. To accomplish this, we

first find the eigenvalues of matrix T (uses the 2007 data). The matricies B and T
are as follow:

B =



19.82660121 0.299933647 22.9389611

0.299933647 47.65668036 −0.234303397
22.9389611 −0.234303397 30.51671843




T =




29.17339879 −0.299933647 −22.9389611
−0.299933647 1.343319644 0.234303397

−22.9389611 0.234303397 18.48328157



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Figure 8.8 This figure shows the histogram for the Violent Crime 2008 data. Three possible

modes appear at California, Texas, and Florida.

Figure 8.9 This figure shows the 2008 US Crime converted data.

Table 8.4 gives the eigenvalues and eigenvectors.

We test the hypothesis that the eigenvalues are equal versus they are not equal

using Equation (8.16) using the test statistic SU .

SU =
15

2(49)

3

i=1


λi −

1

3
(49)

2

=

15

98


(0.27486963− 16.33)2+ (1.340181802− 16.33)2+

(47.38494857− 16.33)2

= 221.46.
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Table 8.4 Eigenvalues and Eigenvectors for the 2008 Vilonent Crime Data

Diagonal Value Eigenvector t
i

λ1 0.27486963 (0.793812871, 0.003545129, 1.0)

λ2 1.340181802 (−0.649158203, −136.7206467, 1.0)

λ3 47.38494857 (−1.259802117, 0.013295803, 1.0)

Table 8.5 Results for the Spherical Model for 2008 Crime

2008

Center (44.11484743,−0.535389408,−35.03421925)

(l0,m0, n0) (2161.627524, −26.23408097, −1716.676743)

Resultant Length R = 0.983257676

Sample Size n = 48

Data Type Directional

Data Shape Unimodal

Spherical Variance S = 0.033204342

We reject the null hypothesisH0 : λi =
n
3 , i = 1, 2, 3 since 221.46 > 15.09 at

the 99% confidence level. We also reject the hypothesis that the 2008 crime data is

uniform. The usual statistics for the sphere are given in Table 8.5.

Next, we determine the data shape by examining the λis. Using the λ

is in Table

8.4 and the interpretation in Table 8.1, we most likely have a unimodal distribution

because λ3 is large; λ1 and λ2 are small; R is close to 1. Since this is a unimodal
distribution, the concentration of the data is at one end of the vector t3 where t3 =
(−1.259802117, 0.013295803, 1.0).

8.12 GDP Example

We begin by looking at the histogram of the observations in Figure 8.10. Two bars

appear longer than the rest. These indicate modes in the distribution of the data. The

United States accounts for approximately 25% of the total GDP and China accounts

for approximately 14%. This will influence the shape of the data. Figure 8.11 shows

the converted data. The data is spread out into the eight quandrants of theX, Y, and
Z planes.

The matricies B and T for the GDP 2008 data is

B =




19.35173834 −10.96157833 −2.888240385
−10.96157833 23.90143271 −1.953298019
−2.888240385 −1.953298019 34.74682895



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Figure 8.10 This figure shows the histogram for the GDP 2008 data. The U.S. accounts for

approximately 25% of the total GDP and China accounts for approximately 14%.

Figure 8.11 This figure shows the 2008 Gross Domestic Product converted data.

The diagonal of B sums to 2n = 2× 39 = 78.

T =



19.64826166 10.96157833 2.888240385

10.96157833 15.09856729 1.953298019

2.888240385 1.953298019 4.253171052




The diagonal of T sums to n = 39. We test the hypothesis that the eigenvalues are
equal versus they are not equal using Equation (8.16) using the test statistic SU .
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Table 8.6 Eigenvalues and Eigenvectors for the 2008 Gross Domestic Product

Diagonal Value Eigenvector t
i

λ1 3.728832776 (−0.187814653, 0.00927436, 1.0)

λ2 6.216179462 (5.008334449, −6.400592894, 1.0)

λ3 29.05498776 (5.546422255, 4.496198733, 1.0)

Table 8.7 Results for the Spherical Model for GPD

2008

Center (27.14815799, 24.99879834, 6.46609507)

(l0,m0, n0) (1058.778161, 974.9531353, 252.1777077)

Resultant Length R = 0.653921742

Sample Size n = 39

Data Type Directional

Data Shape Bimodal

Spherical Variance S = 0.572386356

SU =
15

2(39)

3

i=1


λi −

1

3
(39)

2

=

15

78


(3.728832776− 13)2 + (6.216179462− 13)2+

(29.05498776− 13)2

= 74.95.

We reject the null hypothesis H0 : λi =
n
3
, i = 1, 2, 3 since 74.95 > 15.09 at

the 99% confidence level. We also reject the hypothesis that the 2008 crime data is

uniform. The usual statistics for the sphere are given in Table 8.7. Table 8.6 shows

the eigenvalues and eigenvectors for the 2008 GDP example.

Since the eigenvalue λ3 is larger relative to λ2 and λ3, and since R is not close to

1, this may be a bimodal distribution. The concentration is at both ends of the vector

t3 = (5.546422255, 4.496198733, 1.0).



APPENDIX A

SDE VBA DRIVERS

The code for calculating the weighted standard deviational ellipse resides in Module

1 in the Visual Basic Editor . Only highlight the observations themselves using

the <shift> ↓ key combination, not the entire column by clicking on the column
headings. The subroutine Set weights() sets the weights on the spreadsheet

and puts them in the fourth column. It is important that the reader only use columns

1 − 3 for his or her data. The VBA code in Module 1 using the SDE() subroutine

calculates the following statistics.

The weighted mean center (x̄, ȳ).

The area F.

The semi-major a and semi-minor b axes lengths.

The error terms on the axes δx, and δy.

The angle of rotation on the axes θx, and θy.

The eccentricity of the ellipse e.
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FigureA.1 In Excel, double click on Module 1 in the left-hand pane circled in red to display

the VBA code for the Standard Deviational Ellipse. The subroutine called SDE() runs the

programs to calculate the statistics in this chapter.

To run the SDE code, follow these steps. Select and highlight the data.

1. Click in the spreadsheet tab that contains the data you wish to analyze.

2. Ensure that the first three columns of data (and only the data) are highlighted

(selected). If not, follow these steps:

(a) Click on cell A1.

(b) While holding down the <SHIFT> key, arrow over to Column C. The

headings of the data should be highlighted and selected.

(c) While still holding down the <SHIFT> key, hold down the <CRTL>
key.

(d) Touch the down arrow key once. This should take you to the bottom of the

data.

Figure A.2 shows the VBA environment for Module 1. To enter the VBA

environment and run the standard deviational ellipse code:

1. Click on the Developer ribbon.
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Figure A.2 This figure shows the VBA environment for Module 1. It also highlights

the driver subroutine SDE().

2. Click on the Visual Basic button on the left side.

3. Click on Module 1 on the left-side pane.

This module has seven subroutines.

SDE()—This subroutine is the driver that calls the other subroutines.

Set weights()—This subroutine calculates the weights and saves them to

the active data spreadsheet.

SDEmean centers()—This subroutine calculates the mean latitude, x̄, and
the mean longitude, ȳ.

Angle of Rotation()—This subroutine calculates major axis rotation and

minor axis rotation. The sum of the absolute value of both will always sum to

90.

SDEdeltas()—This subroutine calculates the δx for the latitude and the δy
for the longitude.

Area()—This subroutine calculates the major axis length, minor axis length,

the area, and the eccentricity.

SDE Likelihood()—This subroutine calculates the log likelihoodfunction

for the weighted regression model.

The SDE() subroutine (1) drives the standard deviational ellipse subroutines.

The weighted standard deviational ellipse is one of the simplest concepts to imple-

ment, and thus, does not require input from the user. A circular coordinate system
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Figure A.3 This figure shows the STATS worksheet and the results from the SDE()

subroutine.

is not required, either. The SDE() routine will return the same results with either

data set.

To run the SDE() subroutine, make sure you are in the upper-left corner of the

VBA Editor (Line 1, Column 1).

1. Select the menu option Run.

2. Select the sub-menu item Run Sub/UserForm.

The subroutines called in the SDE subroutine run quickly. As stated several times,

the results will appear in the STATS spreadsheet.

Upon clicking on the STATS tab, the SDE() results appear in columns A and

B. See Figure A.3. The SDE statistics and their locations in the STATS spread-

sheet are as follow:
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’program name: standard deviational ellipse.vba

’author: roger l. goodwin

’date: august 13, 2010

’programming language: vba for excel

’purpose: this program calculates the statistics for

’ the weighted standard deviational ellipse.

’ the statistics include: the mean center, the

’ deviations along the axes, the area including an

’ area check, the rotation about the x and y axes,

’ and the eccentricity of the ellipse.

’required columns: column A = latitude

’column B = latitude

’column C = random variable (weight)

’instructions:

’1. row 1 must contain column

’ headings for A, B, and C.

’2. must highlight the data in the

’ columns.

’output:

’1. the output statistics are put

’ in STATS.

’2. do not put your data in STATS.

’programmer notes:

’1. this program code can be copied to any *.xlsm

’ workbook to run.

Dim n As Integer ’sample size

Dim sum weight As Double ’sum of the weights
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’mean latitude and longitude

Dim mean latitude, mean longitude As Double

’axes rotations

Dim atheta, itheta As Double

’intermediate calculations used to calculate

’the area F

Dim X, y, xy As Double

’parameter estimates

Dim lambda x, lambda y, lambda xy As Double

’exponential distribution ellipse variables

Dim t x, t y, t xy, t xsqr, t ysqr, t xysqrAs Double

’ run the routines that calculate the standard

’ deviational ellipse statistics

1




Sub SDE()

Call Set weights

Call SDEmean centers

Call Angle of Rotation

Call SDEdeltas

Call SDEarea

Call SDE Likelihood

End Sub

The weighted mean center from Equation (5.9), (x̄, ȳ), x̄ appears in cell B2,

and ȳ appears in cell B3.

The axis of rotation in Equation (5.10) appears in cell B4.

The major axis angle of rotation θ appears in cell B5.

The minor axis angle of rotation θ appears in cell B6.

The standard error from Equation (5.11) in the latitude direction x appears in
cell B7.

The standard error from Equation (5.12) in the longitude direction y appears in
cell B8.

The area F of the weighted standard deviational ellipse from Equation (5.17)

appears in cell B9.

The semi-major axis length a from Equation (5.15) appears in cell B10.
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The semi-minor axis length b from Equation (5.16) appears in cell B11.

The area check using the formula F = πab appears in cell B12.

The eccentricity e of the standard deviational ellipse from Equation (5.18) ap-

pears in cell B13.

The logarithm of the likelihood function of the regression model from Equation

(??) appears in cell B14.This will be discussed in Section 7.13.

This application does not write in column C. Use column C to transform the

mean center coordinates, if needed using Equation (3.3) or (3.5). See Figure A.3.

Implementation Issue 1: The implementation of the modulo function mod()
differs in the VBA application versus the Excel spreadsheet. The VBA function

returns an integer. The spreadsheet function returns a real number. Because of this

difference, it is the responsibility of the user to convert the latitude and the longitude

observations to circular coordinates on the input data set. This applies to every data

set. It becomes more important for our global GNP data. If in doubt, it is never

wrong to apply the formulas in Section 3.7 to the input coordinates and the output

statistics for the mean center.

Implementation Issue 2: The implementation of the modulo function mod()
differs in the VBA application versus the Excel spreadsheet. The VBA function

returns an integer. The spreadsheet function returns a real number. Because of this

difference, it is the responsibility of the user to convert the mean latitude and the

mean longitude from circular coordinates to the original coordinate system.





APPENDIX B

EXP VBA DRIVERS

It is in Module 2 that this textbook provides an Excel 2010 VBA program to cal-

culate the statistics that accompany the weighted, exponential deviational ellipse.

The VBA code calculates the following statistics.
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’program name: EXPellipse.vba

’author: roger l. goodwin

’define the exponential deviational ellipse routines

Dim wx, wy As Double

Dim lambda x, lambda y, lambda xy As Double ’parameter estimates

Dim t x, t y, t xy, t xsqr, t ysqr, t xysqr As Double ’intermediate calculations

Dim sum weight ’sum of the weights

Dim atheta, itheta As Double ’angles of rotation

Dim L x, L y, L xyAs Double ’log likelihood functions

Dim n As Integer

1




Sub EXPellipse()

Call EXPclean data

Call Set weights

Call EXPparameters

Call EXPdistributions

Call EXPthetas

Call EXPdeviations

Call EXPstats

End Sub

To run the exponential ellipse code, follow these steps.

1. Click in the spreadsheet tab that contains the data you wish to analyze.

2. Select and highlight the data first. Follow these steps to select and highlight the

data.

(a) Click on cell A1.

(b) While holding down the <SHIFT> key, arrow over to column C. The

headings of the data should be highlighted and selected.

(c) While still holding down the <SHIFT> key, hold down the <CRTL>
key.

(d) Touch the down arrow key once. This should take you to the bottom of the

data.

Figure B.1 shows the VBA environment for Module 2. To enter the VBA

environment and run the exponential ellipse code:

1. Click on the Developer ribon.
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Figure B.1 This figure shows the VBA environment for Module 2. It also highlights

the driver subroutine EXPellipse().

2. Click on the Visual Basic button on the left side.

3. Click on Module 2 on the left-side pane.

This module has eight subroutines.

EXPclean data() —Not used.

Set weights() — This subroutine calculates the weights and saves them

to the active data spreadsheet.

EXPparameters() — This subroutine calculates the parameter estimates

widehatλx, widehatλy, and widehatλxy.

EXPdistributions() — This subroutine calculates a variety of sums. It

also calculates the log likelihood function. Other subroutines use these sums.

EXPthetas() — This subroutine calculates major axis rotation and minor

axis rotation. The sum of the absolute value of both will always sum to 90.

EXPdeviations() —This subroutine calculates the δx for the latitude and
the δy for the longitude.

EXPstats() —This subroutine calculates the major axis length, minor axis

length, the area, and the eccentricity. It also writes the log likelihood value to

the STATS spreadsheet.

The EXPellipse() subroutine drives the exponential deviational ellipse sub-

routines. The weighted exponential deviational ellipse is another one of the simplest
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Figure B.2 This figure shows the STATS worksheet and the results from the

EXPellipse() subroutine.

concepts to implement, and thus, does not require input from the user. A circular

coordinate system is required.

To run the EXPellipse() subroutine, make sure you are in the upper-left cor-

ner of the VBA Editor (Line 1, Column 1).

1. Select the menu option Run.

2. Select the sub-menu item Run Sub/UserForm.

The subroutines called in the EXPellipse() subroutine run quickly. As pre-

vious stated, the results will appear in the STATS spreadsheet.

Upon clicking on the STATS tab, the EXPellipse() results appear in columns

D and E. See Figure B.2. The EXPellipse() statistics and their locations in

the STATS spreadsheet are as follow:

For the weighted mean center (x̄, ȳ), x̄ appears in cell E2, and ȳ appears in
cell E3.

The axis of rotation appears in cell E4.

The major axis angle of rotation θ appears in cell E5.

The minor axis angle of rotation θ appears in cell E6.

The standard deviation in the latitude direction x appears in cell E7.
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The standard deviation in the longitude direction y appears in cell E8.

The area F of the weighted standard deviational ellipse appears in cell E9.

The semi-major axis length a appears in cell E10.

The semi-minor axis length b appears in cell E11.

The area check using the formula F = πab appears in cell E12.

The eccentricity e of the standard deviational ellipse appears in cell E13.

The logarithm of the likelihood function of the regression model for the latitude

x appears in cell E14.

The logarithm of the likelihood function of the regression model for the longi-

tude y appears in cell E15.

The logarithm of the likelihood function of the regression model for the joint

distribution of the latitude and longitude (x, y) appears in cell E16.

This application does not write in column F. If either of the mean center coor-

dinates need to be transformed via Equation (3.3) or (3.5), then the reader can use

column F for those calculations. See Figure B.2. Notice that the two values for the

area (with-in the exponential ellipse statistics are equivalent). Also notice that the

mean center for the exponential ellipse and for the standard deviational ellipse are

the same.

The weighted mean center (x̄, ȳ).

The area.

The semi-major a and semi-minor b axes lengths.

The error terms on the axes δx, and δy.

The angle of rotation on the axes θx, and θy.

The eccentricity of the ellipse e.

Should the reader wish to calculate un-weighted exponential deviational ellipses,

set the weight column to 1.0.
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Figure B.3 Double click on Module 2 to display the VBA code for the Exponential

Deviational Ellipse in Excel. The subroutine called EXPellipse() runs the programs

to calculate the statistics in this chapter.



APPENDIX C

WEIBULL VBA DRIVERS

Running the Weibull ellipse takes considerable more interaction and time than that

for the previous two ellipses. The secant algorithm finds three parameters. Two ini-

tial guesses for each parameter must accompany each run. Two secant algorithms

have been programmed — one for the individual, weighted variables (xi, wi) and
(yi, wi) called Secant1() and a second algorithm for the joint distribution of

(xi, yi, wi) called Secant2(). This was necessary because the likelihood func-

tions are different.

Figure C.1 shows the VBA environment for Module 3. This module has five

subroutines.

RunWeibull() — This subroutine is the driver that calls the other subrou-

tines.

Secant1() —This subroutine calculates the point estimates for the latitude
λx and γx. It can also be used to calculate the point estimates for the longitude
λy, and γy .
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Figure C.1 This figure shows the VBA environment for Module 3. It also highlights

the driver subroutine RunWeibull().

Secant2() — This subroutine calculates the point estimates for the joint

distribution λxy and γxy.

Log10(X) — This subroutine calculates the logarithm of the given number

X using base 10.

Weibull() — This subroutine calculates all of the statistics for the Weibull

ellipse. These statistics include the mean center (x̄, ȳ), the axis of rotation, the
rotations θx and θy , the standard deviations on the axes δx and δy, the major and
minor axes lengths a and b, the area F, the eccentricity e, and the log likelihood
function logLxy.

The Secant1() algorithm has the following parameters:

Iterations —This parameter is a termination condition. This is the maxi-

mum number of iterations that the secant algorithm should perform.

Variable — This parameter is the column number of the variable (not the

name in row 1). This will be either column 1 or column 2.

Gamma1 —This parameter is the first initial guess at γx or γy.

Gamma2 — This parameter is the second initial guess at γx or γy. Note that
Gamma1 < Gamma2.

The Secant1() algorithm returns the values γx and λx, or γy and λy, depend-
ing on if Variable = 1 or Variable = 2. All four point estimates have to
be saved or recorded where they will not be over-written.
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Figure C.2 This figure shows the STATS worksheet and the results from the Weibull()

subroutine.

The Secant2() algorithm has the following parameters:

Iterations — This parameter is a termination condition. This is the maximum

number of iterations that the secant algorithm should perform.

Gamma1 — This parameter is the first initial guess at γx or γy .

Gamma2 —This parameter is the second initial guess at γx or γy . Note that
Gamma1 < Gamma2.

Since the Secant2() subroutine returns the values γxy and λxy, there is no need
to specify the latitude or longitude variable. Save the point estimates so that they will

not be over-written.

After finding the six point estimates of the parameters, run the Weibull() sub-

routine.

γx —The point estimate for the latitude for the shape parameter.

γy —The point estimate for the longitude for the shape parameter.

γxy —The point estimate for the joint distribution for the shape parameter.

λx —The point estimate for the latitude for the scale parameter.

λy —The point estimate for the longitude for the scale parameter.

λxy —The point estimate for the joint distribution for the scale parameter.
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Upon clicking on the STATS tab, the Weibull() results appear in columns

K and L. See Figure C.2. The Weibull() statistics and their locations in the

STATS spreadsheet are as follow:

For the weighted mean center (x̄, ȳ), x̄ appears in cell L2, and ȳ appears in
cell L3.

The axis of rotation appears in cell L4.

The major axis angle of rotation θ appears in cell L5.

The minor axis angle of rotation θ appears in cell L6.

The standard deviation in the latitude direction x appears in cell L7.

The standard deviation in the longitude direction y appears in cell L8.

The area F of the weighted standard deviational ellipse appears in cell L9.

The semi-major axis length a appears in cell L10.

The semi-minor axis length b appears in cell L11.

The area check using the formula F = πab appears in cell L12.

The eccentricity e of the standard deviational ellipse appears in cell L13.

The logarithm of the likelihood function of the regression model for the joint

distribution of the latitude and longitude (x, y) appears in cell L14.




’program name: secant1.vba and secant2.vba

’author: roger l. goodwin

’purpose: this program calculates the parameter estimates using

’ the secant method for a distribution with a single variable.

Dim iterations As Integer

Dim Gamma1, gamma2, gamma3As Double

Dim variable As Integer

Dim n, m As Integer

Dim L xy As Double ’likelihood function
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1




Sub RunWeibull()

’documentation:

’secant1(iterations, variable, Gamma1, gamma2)

’secant2(iterations, Gamma1, gamma2)

’Weibull(gamma x, gamma y, gamma xy, lambda x, lambda y, lambda xy)

6




’latitude for 2003 kentucky data

’Call secant1(9, 1, 1, 10)

’longitude for 2003 kentucky data

Call secant1(9, 5, 1, 10)

’joint distribution for 2003 kentucky data

’Call secant2(9, 1, 11)

’new data set

CallWeibull(0.768572408, 0.762370962, 1, 2.407513111, 0.329444607, 0.579579441)

’old data set

’CallWeibull(0.768634929, 0.762451336, 0.999998427, 2.434263513, 0#, 0.586020077)

7




’latitude for 2004 kentucky data

’Call secant1(9, 1, 1, 10)

’longitude for 2004 kentucky data

’Call secant1(12, 5, 1, 12)

’joint distribution for 2004 kentucky data

’Call secant2(14, 1, 13)

’CallWeibull(0.766401461, 0.760180292, 1, 2.459505837, 0.336757843, 0.592403275)

8




’latitude for 2007 crime data

’Call secant1(7, 1, 1, 11)

’longitude for 2007 crime data

’Call secant1(9, 5, 1, 14)

’joint distribution for 2007 crime data

’Call secant2(10, 1, 17)

’CallWeibull(0.765003479, 0.747808984, 1, 1.328755906, 0.182913031, 0.321560844)
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1




9




’latitude for 2008 crime data

’Call secant1(10, 1, 1, 13)

’longitude for 2008 crime data

’Call secant1(15, 5, 1, 17)

’joint distribution for 2008 crime data

’Call secant2(10, 1, 17)

’CallWeibull(0.765405522, 0.757628441, 1, 1.328288608, 0.18285781, 0.321461829)

10




’latitude for 2008 GDP data

’Call secant1(4, 1, 1, 10)

’longitude for 2008 GDP data

’Call secant1(10, 2, 1, 16)

’joint distribution for GDP data

’Call secant2(12, 1, 18)

’Weibull(gamma x, gamma y, gamma xy, lambda x, lambda y, lambda xy)

’CallWeibull(0.778466889, 0.763823411, 1, 0.846866662, 0.256765441, 0.394055395)

11




’latitude for 2009 GDP data

’Call secant1(4, 1, 1, 10)

’longitude for 2008 GDP data

’Call secant1(10, 2, 1, 16)

’joint distribution for GDP data

’Call secant2(12, 1, 18)

’Weibull(gamma x, gamma y, gamma xy, lambda x, lambda y, lambda xy)

’CallWeibull(0.777870853, 0.764074484, 1, 0.849145918, 0.259687836, 0.397738372)

End Sub

To obtain the results in this Section, this textbook provides three VBA programs

for Excel 2010. Two of the programs perform the Secant estimation for the param-

eters γx, γy, and γxy. The other program calculates the usual statistics associated

with an ellipse such as the mean center, the area and so on. The program main in

Module 3 calculates the parameters λx, λy, γx and γy . The program main2 in

Module 3 calculates the parameters λxy and γxy . Note the values from these two

programs. We must input them into the program Weibull in Module 3.
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Figure C.3 Double click on Module 3 to display the VBA code for the Secant code

and the Weibull Deviational Ellipse in Excel. The subroutines called Secant1(),

Secant2(), and RunWeibull() run the programs to calculate the statistics in this

chapter. As the reader may have guessed, calculating the statistics in this chapter is more

complex than those in previous chapters.
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4




’program names: newton(), gauss()

’author: roger l. goodwin

’purpose: calculate the eigenvalues and the matrix T for the sphere

Dim LambdaAs Double ’1 to 3 possible eigenvalues

15




Submain Modal()

’syntax

’Sub Newton(Lambda)

’Sub Gauss(Lambda)

’sub Calculation T()

Call Calculate B

Call Calculate T

’kentucky 2003

’lambda 1

’Call Newton(0)

’Call Gauss(0.006629744)

’lambda 2

’Call Newton(20)

’Call Gauss(0.034874073)

’lambda 3

’Call Newton(90)

’Call Gauss(89.95849618)

’kentucky 2004

’lambda 2

’Call Newton(0)

’Call Gauss(7.53622608147269E-03)

’lambda 1

’Call Newton(2)

’Call Gauss(8.25032435835292E-02)

’final step — round the chosen shape to an integer for interpretation

’Call Gauss(92)
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4




15




’crime 2008

’lambda 1

’Call Newton(1)

’Call Gauss(1.340181802)

’lambda 2

’Call Newton(30)

’Call Gauss(0.27486963)

’lambda 3

’Call Newton(50)

’Call Gauss(47.38494857)

’final step — round the chosen shape to an integer for interpretation

’Call Gauss(100)

’testing

’Call Newton(30)

’Call Gauss(8.58033582016791E-02)

’GDP 2008

’lambda 1

’Call Newton(0)

’Call Gauss(3.728832776)

’lambda 2

’Call Newton(10)

’Call Gauss(6.216179462)

’lambda 3

Call Newton(39)

Call Gauss(29.05498776)

End Sub
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Arctan function, 49

R, 120

Developer, 1

Dim statement, 3

weighted mean center, 37

Active.Cells, 9

altitude, 37

angle of rotation, 44, 49, 54, 68, 69, 79, 98,

147, 159

Angle of Rotation(), 149

anti-mode, 118, 128

approximate formula, 77

Arc GIS, 35

area, xxv, 52, 69, 72, 73, 98, 99, 147, 152,

153, 159, 164

area frame, xxiii

area frame survey, xxiii

area preserving plot, 120

Area(), 149

area, check, 99

area, total, 68

array, 4

arrays, 4

asymptotically, 130

average, 8, 120

averages, 29

axes lengths, 68, 98

axes relationship, 79

axis, 19

axis length, semi-major, 43

axis length, semi-minor, 43

axis of rotation, 20, 152, 158, 164

axis, semi-major, 14

axis, semi-minor, 14

bar graph, 73

bars, 18

beginning row, 9

bimodal, 128

browse, 16, 18

Calculate B(), 122, 135

Calculate T(), 135

Cartesian coordinate system, 42, 43

cell, 7

cell contents, 7

cell, properties, 7

cental point, xxv

center of gravity, xxiv, 29, 43, 47, 73, 74,

105, 107
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center of system, xxv

chi-square distribution, 130

circle, xxv, 45, 52

circular coordinate system, 86, 150

circular coordinates, 89

circular data, 43, 120

closed form, 97

clustered, 122

clustered pattern, 128

column chart, 18

column names, 18

columns, 8

common syntax, 8

concentration, 52

concentration of the system, xxv

condition variable, 7

continental U.S., 73

conventions, 8

convergence, 86, 105

convergence analysis, 104

coordinate pairs, 48

coordinates, 13, 15, 36

copying and pasting, 13

correlation, 118

correlation coefficient, 45

county, 36

county level, 38

county-level, 38

credible parameter estimates, 105

crime data, 73, 74

Crimestat, 35

cross hairs, 21

cubic equation, 131

cumulative distribution function, xxvi, 60, 61,

86, 92, 93

cumulative distribution function, joint, 64

currency, 4

data collection, xxiv

Data mapping wizard, 16, 18

data transformation, xxvi, 45

data types, 4

Data wizard, 16

data, character, 8

data, graph it, 16

data, numeric, 8

data, scale, 18

data, shape, 117, 144

data, transform, 59, 62

data, transforming, 59

date, 3, 4

decimal degrees, 36

default names, 8

degrees, 120

derivatives, 24, 86

determinant, 130, 131, 139

Developer ribbon, 9, 148, 156

development environment, 21

deviation, xxiv

deviations, 68, 98

diagonal elements, 130, 141

direction, xxv

directional data, 119

directional statistics, 118–120

directional, data, 122, 141

dispersed pattern, 128

dispersion, 45

disproportional weight, 139

distance, 42

distribution, 59

distribution of the data, 73

distribution of the points, xxv

distribution, sample, 108

distribution, underlying, 108

double, 3

draw ellipses, 14

drawing lines, 13

Earth, 13, 15, 16, 19, 43

eccentricity, xxv, 52, 68, 69, 98, 147, 153,

159, 164

eigenvalue, 130

eigenvalues, 128, 130, 135, 143, 146

eigenvectors, 130, 135, 143, 146

ellipse, xxv, 52, 68, 69

ellipse, center, 43

ellipse, draw, 19, 44

ellipse, multi-modal, 118

ellipse, rotate, 20, 44

elliptic pattern, 128

elliptical formula, 26

ELSEIF, 6

ending row, 9

Equator, 119

error messages, reasons, 105

error term, 147

error terms, 51, 159

estimates, 162

estimator, 29, 49

Excel, 3

Excel 2010, VBA, 36

Excel workbook, 16

exp, 9

EXPclean data(), 157

EXPdeviations(), 157

EXPdistributions(), 157

EXPellipse(), 158

exponential deviational ellipse, 72–74
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Exponential distribution, 24

exponential distribution, 62, 65

exponential distribution function, 59, 62

exponential ellipse, 65, 72–74, 77–80, 84, 87,

108

exponential ellipse code, 156

exponential mean center, 65

exponential model, 49

exponentially distributed, 61, 63

exponentially distributed, weighted, deviational

ellipse, 65

EXPparameters(), 157

EXPstats(), 157

EXPthetas(), 157

extreme values, 80

first derivative, 84, 87

font, 7

font size, 7

FOR-NEXT, 6, 7

format shape, 20

formulas, 8

FORTRAN, 35

fx(Lambda), 136

Gamma1, 162

Gamma2, 162

Gauss(Lambda), 135

Gaussian elimination, 131, 134

general linear means model, 49, 50, 65

geo-code, 13, 35

geo-coding, 43

geo-statistics, 45

geographic data, 43

girdle, 128, 130

girdle distribution, 142

global variables, 8

Google Earth, 13, 35, 36

graph, 63

graph paper, 59

graphing, 13

graphs, 108

gx(Lambda), 136

histogram, 118, 139, 144

hoop coordinate system, 42

IF-ELSE-IF, 5

IF-THEN-ELSE, 5

image classification, xxiii

imaginary axis, 44

Import data wizard, 15, 16, 18

inital values, 85

initial guess, 163

initial guesses, 161

initial value, 105, 134

initial values, 86, 88

initialization, 86, 88

input parameters, Weibull, 104

integrals, 25

iteger numbers, 3

iteration, 24, 85, 92

Iterations, 162

iterations, 86, 105, 163

iterations, number of, 86

Jacobian matrix, 85, 88

joint density function, 91

joint distribution, 61, 63, 91, 92, 159, 163,

164

joint likelihood function, 63

joint probability density function, 63, 92

June Area Survey, 36, 37

kilometers, 19

kurtosis, 119

label text, 18

land segments, 73

largest weights, 73

latitude, xxiv, 9, 24, 43, 59, 62, 63, 65, 77,

83, 92, 103, 105, 119, 141, 159
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