

Instability of Equilibria with Imperfect Private Monitoring

Heller, Yuval

University of Oxford

8 August 2015

Online at https://mpra.ub.uni-muenchen.de/64468/MPRA Paper No. 64468, posted 23 Aug 2015 13:36 UTC

Instability of Equilibria with Private Monitoring

Yuval Heller*
Department of Economics and Queen's College, University of Oxford.

August 8, 2015

Abstract

Various papers have presented folk theorem results that yield efficiency in the repeated Prisoner's Dilemma with private monitoring. I present a mild refinement that requires robustness against small perturbations in the behavior of potential opponents, and I show that only defection satisfies this refinement among all the existing equilibria in the literature.

JEL Classification: C73, D82. **Keywords**: Belief-free equilibrium, evolutionary stability, private monitoring, repeated Prisoner's Dilemma, communication.

1 Introduction

The theory of repeated games provides a formal framework to explore the possibility of cooperation in long-term relationships, such as collusion between firms. The various folk theorem results (e.g., Fudenberg and Maskin, 1986; Abreu, Pearce, and Stacchetti, 1990) have established that efficiency can be achieved under fairly general conditions when players observe commonly shared information about past action profiles.

In many real-life situations players privately observe imperfect signals about past actions. For example, each firm in a cartel privately observes its own sales, which contain imperfect information about secret price cuts that its competitors offer to some of their customers. Formal analysis of monitoring began with the pioneering work of Sekiguchi (1997). Since then, several papers have presented various folk theorem results that have shown that efficiency can be achieved also with private monitoring (see Kandori, 2002; Mailath and Samuelson, 2006, for surveys of this literature).

The present paper presents the equilibrium refinement of weak stability, which requires robustness against small perturbations in the behavior of potential opponents, and shows that only defection satisfies this mild refinement in the repeated Prisoner's Dilemma among all the equilibria in the existing literature on private monitoring.¹

Weak Stability One of the leading justifications for using Nash equilibrium to predict behavior is its interpretation as a stable convention in a population of potential players. Suppose that individuals in a large population are repeatedly drawn to play a game, and that initially all individuals play the strategy s^* but occasionally

^{*}Email: yuval.heller@economics.ox.ac.uk. I would like to express our deep gratitude to Mehmet Ekmekci, Peter Eso, Michihiro Kandori, Erik Mohlin, Satoru Takahashi, and Yuichi Yamamoto, for many useful comments.

¹Except equilibria that rely on sufficient correlation between private signals of different players (Mailath and Morris, 2002, 2006; Kandori, 2011), and equilibria that rely on communication between players at each round of the game (Compte, 1998; Kandori and Matsushima, 1998; Obara, 2009), as discussed in Section 1.1.

a small group of agents may experiment with a different strategy s'. If this induces the experimenting agents to gain more than the incumbents, then the population will move away from s^* towards s'. Thus, strategy s^* is evolutionarily stable (Maynard-Smith and Price, 1973) if (1) it is a best reply to itself (i.e., it is a symmetric Nash equilibrium),² and (2) it achieves a strictly higher payoff against any other best-reply strategy s': $u(s^*, s') > u(s', s')$. One example of an evolutionarily stable strategy in the repeated Prisoner's Dilemma is the strategy of always defecting regardless of the history.

Evolutionary stability is arguably too-strong a refinement, as demonstrated in the Rock-paper-scissors game (see Section 2.2) that admits a unique Nash equilibrium, which is not evolutionarily stable, but is a plausible prediction for the long-run average behavior in the population (see, e.g., Benaïm, Hofbauer, and Hopkins, 2009). Motivated by this, I say that a symmetric Nash equilibrium s^* is weakly stable if it achieves a weakly higher payoff against any evolutionarily stable strategy s' that is a best reply against s^* . The definition implies that any symmetric game admits a weakly stable strategy, and that if s^* is not weakly stable, then it is not a plausible prediction of long-run behavior. This is because as soon as a small group of agents experiments with playing s', the population diverges towards s', and it will remain in s' in the long run (due to s' being evolutionarily stable). A typical example of a non-weakly stable equilibrium is the mixed equilibrium in a coordination game, for which every small perturbation takes the population to one of the pure equilibria.

Summary of Results The most commonly used equilibrium in the literature on private monitoring is the belief-free equilibrium in which the continuation strategy of each player is a best reply to his opponent's strategy at every private history. These equilibria are called "belief-free" because a player's belief about his opponent's history is not needed to compute a best reply. Piccione (2002) and Ely and Välimäki (2002) present folk theorem results for the repeated Prisoner's Dilemma using belief-free equilibria under the assumptions that the monitoring technology is almost perfect and the players are sufficiently patient.

The main result of this paper shows that under the mild refinement of weak stability, the repeated Prisoner's Dilemma admits a unique belief-free equilibrium in which everyone defects. The intuition is that in belief-free equilibria players are always indifferent between defection and cooperation, but this implies that always defecting is a best reply, and as soon as a small group of agents starts defecting, the entire population diverges towards defection.

Next I extend the above main result to the set of belief-free review-strategy equilibria (Matsushima, 2004; Hörner and Olszewski, 2006; Yamamoto, 2007; Deb, 2012; Yamamoto, 2012) in which (1) the game is divided into a sequence of review phases in which each player plays a constant action, and (ii) at the beginning of each review phase, a player's continuation strategy is a best reply regardless of the history.

Bhaskar and Obara (2002) present a folk theorem result for the repeated Prisoner's Dilemma that does not rely on belief-free equilibria. These "belief-based" equilibria divide the repeated game into several subgames, such that each player is indifferent in the beginning of each subgame between defecting in the entire subgame and playing a more cooperative strategy. My last result shows that none of these equilibria are weakly stable.

 $^{^2}$ To simplify the analysis we focus only on symmetric equilibria, and we extend the analysis to asymmetric equilibria in Section 5.1.

<sup>5.1.
&</sup>lt;sup>3</sup>The formal definition (see Section 2.2) also allows a two-step movement towards the evolutionarily stable strategy s' (first from s^* to some strategy \tilde{s} , and then from \tilde{s} to s'). To simplify the exposition, I ignore this slight complication in the Introduction. Note, that all the equilibria in the existing literature are destabilized by a single step; the two-step part of the formal definition is only required against other kinds of belief-free equilibria, which may be used in future research.

⁴We assume that these experimentations are sufficiently infrequent such that strategies that are outperformed following the entry of a group of experimenting agents become sufficiently rare before a new group of agents starts experimenting with a different behavior.

The intuition is based on the observation that always defecting is a best reply to these equilibria, and that it implies that a small perturbation would cause the entire population to diverge towards defection.

1.1 Related Literature and Contribution

Belief-Free Equilibria Ely, Hörner, and Olszewski (2005), Miyagawa, Miyahara, and Sekiguchi (2008), and Yamamoto (2009, 2013) extend the folk theorem results that rely on belief-free equilibria for general repeated games and for costly observability. Kandori and Obara (2006) study a setup of imperfect *public* monitoring and show that belief-free private strategies can improve the efficiency relative to the maximal efficiency obtained by public strategies. Takahashi (2010, Section 3.2) adapts the notion of belief-free equilibria to obtain a folk theorem result to a setup in which the players are randomly matched with a new opponent at each round. My main result shows that none of the equilibria in these papers satisfy weak stability in the repeated Prisoner's Dilemma.

Conditionally Correlated Signals A few papers in the literature yield stable cooperation if the private signals are sufficiently correlated conditional on the action profile. Mailath and Morris (2002, 2006) show that when the private signals are almost perfectly correlated conditional on the action profile (i.e., almost public monitoring), then any sequential equilibrium of the nearby public monitoring game with bounded memory remains an equilibrium also with almost public monitoring. Some of these equilibria are evolutionarily stable, and, in particular, cooperation can be the outcome of an evolutionarily stable strategy.

Kandori (2011) presents the notion of weakly belief-free equilibria, in which the strategy of each player is a best reply for any private history of the opponent up to the actions of the previous round. Unlike standard belief-free equilibria, players need to form the correct beliefs about the signal obtained by the opponent in the previous round. Kandori (2011) demonstrates that if there is sufficient correlation between private signals (conditional on the action profile), then the game admits a strict weakly belief-based equilibrium that yields substantial cooperation. The strictness of the equilibrium implies that it satisfies the refinement of evolutionary stability. In the discussion paper version of this paper Kandori (2009) points out that the specific belief-free equilibria in the existing literature, against which any strategy is a best reply, are not evolutionarily stable. The present paper substantially strengthens Kandori's observation in two ways: first, it shows a stronger notion of instability (violating weak stability rather than violating evolutionary stability), and second it shows the instability of a much larger set of equilibria; namely, all belief-free equilibria (some of which have a strict subset of best-reply strategies), review-strategy belief-free equilibria, and belief-based equilibria à la Bhaskar and Obara, 2002.

The present paper shows that all the mechanisms in the existing literature can yield only defection as the outcome of a weakly stable equilibrium in the repeated Prisoner's Dilemma with conditionally independent imperfect monitoring. I leave for future research the question whether any new mechanism may yield cooperation as a stable outcome with conditionally independent private monitoring. One promising direction toward the solution of this question might rely on the methods developed in Heller and Mohlin (2015) for the related setup of random matching and partial observation of the partner's past behavior. In that setup, Heller and Mohlin (2015) characterize conditions under which only defection is stable, and construct novel mechanisms to sustain stable cooperative equilibria whenever these conditions are not satisfied.

Robustness Sugaya and Takahashi (2013) show that "generically" only belief-free equilibria are robust to small perturbations in the monitoring structure. Our main result shows that belief-free equilibria (except for defection) are not robust to small perturbations in the behavior of the potential opponents. Taken together, the

two results suggest that defection is the unique equilibrium outcome of the repeated Prisoner's Dilemma that is robust to both kinds of perturbations.⁵

Communication Compte (1998), Kandori and Matsushima (1998), and Obara (2009) present folk theorem results that rely on (noiseless) communication between the players at each stage of the repeated game. The players use this communication to publicly report (possibly with some delay) the private signals they obtain. These equilibria are constructed such that the players have strict incentives while playing, and that they are always indifferent between reporting the truth and lying regardless of the reporting strategy of the opponent. One can show that this property implies that these equilibria are neutrally stable, and hence also weakly stable.⁶

The present paper has important implications for antitrust laws. If one agrees that weak stability is necessary for a collusive equilibrium to be plausible, then it suggests that communication between players is critical to obtain collusive behavior whenever the private imperfect monitoring between the firms is such that the conditional correlation between the private signals is sufficiently low.⁷

Structure The model is described in Section 2. Section 3 presents the main result (instability of belief-free equilibria). Sections 4 shows the instability of the other equilibria in the literature. Section 5 extends the analysis to asymmetric equilibria and to monitoring without full support.

2 Model

2.1 Repeated Prisoner's Dilemma with Imperfect Monitoring

I analyze a symmetric two-player δ -discounted repeated interaction with private monitoring. Table 1 presents the payoff matrix of the stage game: a Prisoner's Dilemma game that depends on two positive parameters g and l. When both players play action C (cooperate) they both get a high payoff (normalized to one), and when they both play D (defect) they get a low payoff (normalized to zero). When a player defects and the opponent cooperates, the defector gets 1+g, while the opponent gets -l. The players share a common discount factor of $0 \le \delta < 1$.

Let $i \in \{1, 2\}$ be an index denoting one of the players, and let -i denote the other player. We use $\Delta(W)$ to represent the set of probability distributions over a finite set W. Let Σ_i be a finite set of signals (or messages)

⁵Matsushima (1991) presents a related result by showing that defection is the unique *pure* equilibrium in the repeated Prisoner's Dilemma in which signals are conditionally independent and Nash equilibria are restricted to being independent of payoff-irrelevant private histories. As demonstrated by the "belief-based" equilibria of Bhaskar and Obara (2002), the uniqueness result does not hold for *mixed* equilibria (the mixed "belief-based" equilibria achieve cooperation even though the behavior of the players is independent of payoff-irrelevant private histories, and signals may be conditionally independent).

⁶The argument for neutral stability is sketched as follows. Having strict incentives while playing implies that any best-reply strategy must induce the same play on the equilibrium path, and differ from the incumbent strategy only by sending false reports. The fact that players are always indifferent between reporting the truth and lying implies that any such best-reply strategy yields the same payoff as the incumbents (both when the opponent is an incumbent as well as when he is a mutant that follows a best-reply strategy).

⁷This empirical prediction can be tested experimentally by comparing how subjects play the repeated Prisoner's Dilemma with private monitoring and conditionally independent signals with and without the ability to communicate by exchanging "cheap-talk" messages. Matsushima, Tanaka, and Toyama (2013) experimentally study this setup without communication, and their findings suggest that the subjects' behavior is substantially different than the predictions of the belief-free equilibria (in particular, subjects retaliate more severely when monitoring is more accurate). I am not aware of any experiment that studies this setup with communication.

⁸See also the recent related result of Awaya and Krishna (2015), which deals with sequential equilibria of oligopolies under some plausible private monitoring structures, and shows that cheap-talk communication allows to achieve a higher level of collusion relative to the maximal level that can be achieved without communication.

Table 1: Payoff Matrix of a Prisoner's Dilemma Game (g, l > 0)

	C	D
C	1	-l $1+g$
D	1+g $-l$	0 0

for each player. For each possible action profile $a \in \{C, D\}^2$, the monitoring distribution $m(\cdot|a)$ specifies a symmetric joint probability distribution over the finite set of signal profiles $\Sigma := \Sigma_1 \times \Sigma_2$. When action profile a is played and signal profile σ is realized, each player i privately observes his corresponding signal σ_i .

Let $m_i(\cdot|a)$ denote the marginal distribution over the signals of player i. To simplify the analysis, we assume that the monitoring structure has full support, i.e., that each signal profile is observed with positive probability after each action profile. Formally:

Assumption 1. The monitoring structure has full support: $m(\sigma|a) > 0$ for each action profile $a \in \{C, D\}^2$ and each signal $\sigma \in \Sigma$.

One example of a monitoring structure with full support is the conditionally independent ϵ -perfect monitoring in which each player privately observes his opponent's last action with probability $1-\epsilon$ and observes the opposite action with the remaining probability ϵ . In Section 5.2 we show that our results are essentially the same also without Assumption 1.

A t-length (private) history for player i is a sequence that includes the action played by the player and the observed signal in each of the previous t rounds of the game. Let $H_i^t := (\{C, D\} \times \Sigma_i)^t$ denote the set of all such histories for player i. Each player's initial history is the null history, denoted by ϕ . A pair of t-length histories (called simply a history) is denoted by h^t . Let H^t denote the set of all t-length histories, $H = \bigcup_t H^t$ the set of all histories, and $H_i = \bigcup_t H^t_i$ the set of all private histories for i.

A repeated-game (behavior) strategy for player i is a mapping $s: H_i \to \Delta(A_i)$. Let s_D be the strategy to always defect $(s_D(\cdot) = D)$.

For history h_i^t , let $s|_{h_i^t}$ denote the continuation strategy derived from s following history h_i^t . Specifically, if $h_i\hat{h}_i$ denotes the concatenation of the two histories h_i and \hat{h}_i , then $s|_{h_i^t}$ is the strategy defined by $s|_{h_i^t}\left(\hat{h}_i\right) = s\left(h_i\hat{h}_i\right)$. Given a strategy s', let $B\left(s'\right)$ denote the set of strategies that are best replies to s', and for each t and $h_{-i}^t \in H_{-i}^t$ let $B\left(s'|h_{-i}^t\right)$ denote the set of continuation strategies for i that are best replies to $s'_{|h^t|}$.

Definition 1 (Ely, Hörner, and Olszewski 2005). A strategy profile (s, s') is belief-free if for every h^t , $s|_{h_i^t} \in B\left(s'|h_{-i}^t\right)$ for $i \in \{1, 2\}$.

The condition characterizing a belief-free strategy profile is stronger than that characterizing a sequential equilibrium. In a sequential equilibrium, a player's continuation strategy is the player's best reply given his belief about his opponent's continuation strategy, that is, given a unique probability distribution over the opponent's private histories. In a belief-free strategy profile, a player's continuation strategy is his best reply to his opponent's continuation strategy at every private history. In other words, a sequential equilibrium is a belief-free strategy profile if it has the property that a player's continuation strategy is still the player's best reply when he secretly learns about his opponent's private history.

⁹As common in the literature, we can assume that the numbers in Table 1 describe the expected payoffs of the players, and that each player i observes his own realized payoff, which is determined by his realized signal σ_i .

We will therefore speak directly of belief-free equilibria. We say that a strategy s is a symmetric Nash (belief-free) equilibrium if the profile (s, s) is a Nash (belief-free) equilibrium. One example of a symmetric belief-free equilibrium is the strategy s_D .

2.2 Evolutionary Stability

I present a refinement of a symmetric Nash equilibrium that requires robustness to a small group of agents who experiment with a different behavior (see, Weibull, 1995, for an introductory textbook).

Suppose that individuals in a large population are repeatedly drawn to play a symmetric two-person game, and that there is an underlying dynamic process of social learning in which more successful strategies (which induce higher average payoffs) become more frequent. Suppose that initially all individuals play the equilibrium strategy s^* . Now consider a small group of agents (called, mutants) who play a different strategy s'. If s' is not a best reply to s^* , then if the mutants are sufficiently rare they will be outperformed. If s' is a best reply to s^* , then the relative success of the incumbents and the mutants depends only on the average payoff they achieve when matched against a mutant opponent. If the incumbents achieve a higher payoff when matched against the mutants, then the mutants are outperformed. Otherwise, the mutants outperform the incumbents, and their strategy gradually takes over the population.

The formal definition is as follows. Let U(s, s') denote the expected discounted payoff to a player following strategy s and facing an opponent who plays strategy s'.

Definition 2 (Maynard-Smith and Price, 1973; Maynard-Smith, 1982). A symmetric Nash equilibrium s^* is neutrally (evolutionarily) stable if $U(s^*, s') \ge U(s', s')$ ($U(s^*, s') > U(s', s')$) for each strategy $s^* \ne s' \in B(s^*)$.

Note that any strict symmetric equilibrium, such as the strategy s_D (always defecting), is evolutionarily stable.¹⁰

Neutral stability is arguably "too strong" a refinement because: (1) some games do not admit any neutrally stable strategies, and (2) some equilibria that are not neutrally stable are plausible predictions of the time-average behavior in the game. This is demonstrated in the Rock-paper-scissors game in Table 2 (left side). The unique symmetric equilibrium is $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, which is not neutrally stable (because $R \in B(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and $U((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), R) = -\frac{1}{3} < U(R, R) = 0$. One can show that although $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is not neutrally stable, then under mild assumptions on the dynamics, the time average of the aggregate play converges to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ (Benaïm, Hofbauer, and Hopkins, 2009).

This motivates me to present a weaker stability refinement that focuses only on vulnerability to mutant strategies that are evolutionarily stable. Strategy s^* is vulnerable to strategy s' if strategy s' can take over a population that initially plays s^* . Formally:

Definition 3. Strategy s^* is vulnerable to strategy s' if $s' \in B(s^*)$ and $U(s', s') > U(s^*, s')$.

Remark 1. All the results in this paper remain the same if one weakens the definition of vulnerability à la Swinkels (1992), and requires s' to be an "equilibrium entrant", i.e., a best reply against the post-entry population for any sufficiently small $\epsilon > 0$: $s' \in B((1 - \epsilon) \cdot s^* + \epsilon \cdot s')$.

 $^{^{10}}$ Strategy s_D is a strict equilibrium due to Assumption 1 (the monitoring structure has full support). Moreover, one can show that strategy s_D has a uniform invasion barrier of min $(l,g)\cdot(1-\delta)$, i.e., that any mutant strategy s' is outperformed in any post-entry population that includes a share of at most $\min(l,g)\cdot(1-\delta)$ mutants (this is because cooperation yields an immediate loss of at least $\min(l,g)$ and a future gain of at most $\frac{1}{1-\delta}$ (0) when being matched with a mutant (incumbent)).

Table 2: Auxiliary Games to Demonstrate Notions of Stability

	R	P	S
R	0 0	-2 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
P	1 -2	0 0	-2 1
S	-2 1	1 -2	0 0

Rock-	Paner	-Scissors	

	a		b	
a	1	1	0	0
b	0	0	1	1

Coordination Game

A symmetric Nash equilibrium is weakly stable if (1) it is not vulnerable to any evolutionarily stable strategy, and (2) it is not "two-step" vulnerable to an evolutionarily stable strategy, i.e., it is not vulnerable to any strategy that is vulnerable to an evolutionarily stable strategy. Formally:

Definition 4. A symmetric Nash equilibrium s^* is weakly stable if

- 1. there does not exist s' such that s^* is vulnerable to s', and s' is evolutionarily stable; and
- 2. there do not exist \tilde{s} , s' such that s^* is vulnerable to \tilde{s} , strategy \tilde{s} is vulnerable to s', and strategy s' is evolutionarily stable.

Observe that if s^* is not weakly stable, then it is not a plausible prediction of long-run behavior in the population. Even if the population initially plays s^* , then as soon as a small group of agents experiments with playing \tilde{s} , the population diverges towards \tilde{s} . If this is followed by another small group of agents who play s', then the population will converge to s', and will remain there in the long run. Note that our argument relies on the assumption that these experimentations are infrequent enough that strategies that are outperformed following the entry of a group of experimenting agents become sufficiently rare before a new group of agents starts experimenting with a different behavior.

Observe that (1) any neutrally stable strategy is weakly stable,¹¹ and (2) any game admits a weakly stable strategy.

3 Instability of Belief-Free Equilibria

Piccione (2002) and Ely and Välimäki (2002) present folk theorem results for the repeated Prisoner's Dilemma using belief-free equilibria. In particular, they show that any payoff between zero and one is a symmetric belief-free equilibrium payoff if the monitoring technology is almost perfect and the players are sufficiently patient. Our main result shows that under the mild refinement of weak stability, the game admits a unique symmetric belief-free equilibrium in which everyone defects. In Section 5.1 we extend this result to asymmetric equilibria.

The sketch of the proof is as follows. As observed by Ely, Hörner, and Olszewski (2005, Section 2.1), the set of optimal actions at each round in a belief-free equilibrium is independent of the private history. This implies that the belief-free equilibrium is vulnerable to a deterministic strategy to always defect except in rounds in which cooperation is the unique optimal action. This deterministic strategy is vulnerable to the evolutionarily stable strategy in which everyone defects.

¹¹This implies that any strategy that is an element of an evolutionarily stable set (Thomas, 1985) is weakly stable.

Proposition 1. Strategy s_D is the unique weakly stable belief free symmetric equilibrium of the repeated Prisoner's Dilemma game.

Proof. Let s^* be a symmetric belief-free equilibrium. A continuation strategy z_i is a belief-free sequential best-reply to s^* beginning from period t if

$$z_i|h_i^{\tilde{t}} \in B_i(s^*|h_{-i}^{\tilde{t}}) \, \forall \tilde{t} \ge t \text{ and } h^{\tilde{t}} \in H^{\tilde{t}};$$

the set of belief-free sequential best-replies beginning from period t is denoted by $B_i^t(s)$. Let

$$\mathcal{A}_{i}^{t} = \left\{ a \in \{C, D\} \mid \exists z_{i} \in B_{i}^{t}(s), \exists h_{i}^{t} \text{ such that } z_{i}\left(h_{i}^{t}\right)\left(a_{i}\right) > 0 \right\};$$

denote the set of actions in the support of some belief-free sequential best reply beginning from period t. As noted by Ely, Hörner, and Olszewski (2005, Section 2.1), $\exists h_i^t$ can be replaced with $\forall h_i^t$, because if z_i is a belief-free sequential best reply to s_{-i} and every continuation strategy $z_i|h_i^t$ gets replaced with the strategy $z_i|\tilde{h}_i^t$ for a given \tilde{h}_i^t , then the strategy z_i so obtained is also a belief-free sequential best reply to s_{-i} . Note that the symmetry of the profile (s^*, s^*) implies that $\mathcal{A}^t := \mathcal{A}_i^t = \mathcal{A}_j^t$.

We complete the proof by dealing with two (exclusive and exhaustive) cases:

1. There exists time t such that: (I) both actions are best replies ($\mathcal{A}^t = \{C, D\}$), and (II) there is a history after which one of the players cooperates with positive probability, i.e., $\exists h_i^t$ s.t. $s_i^*(h_i^t)(C) > 0$. Let \tilde{s} be the deterministic strategy that plays D at all periods except in those in which C is the unique best reply to s^* :

$$\tilde{s}\left(h_{i}^{t}\right) = \begin{cases} C & \mathcal{A}_{i}^{t} = \{C\}\\ D & \text{otherwise.} \end{cases}$$

The definition of \tilde{s} implies that \tilde{s} is a best reply to s^* . The fact that \tilde{s} induces a deterministic play that is independent of the observed signals implies that defection is the unique best reply to \tilde{s} in all rounds (and after any history), i.e., $\{s_D\} = B_i^t(\tilde{s})$. Observe that strategy \tilde{s} defects with a strictly higher probability than s^* , which implies that $U(s^*, \tilde{s}) < U(\tilde{s}, \tilde{s})$. Moreover, if $\tilde{s} \neq s_D$, then $U(\tilde{s}, s_D) < U(s_D, s_D)$. As s_D is evolutionarily stable, it implies that s^* is not weakly stable.

2. At any time t in which both actions are best replies, each player defects after each history, i.e., $s_i^*(h_i^t)(D) = 1$ $\forall h_i^t \text{ s.t. } \mathcal{A}^t = \{C, D\}$. Observe that in this case s^* induces a deterministic play that is independent of the observed signals. This implies that defection is the unique best reply to s^* at all rounds (and after any history), i.e., $\{s_D\} = B_i^t(s^*)$, and we get a contradiction unless $s^* = s_D$.

Remark 2. Note that in all the belief-free equilibria presented in the existing literature the set of belief-free sequential best replies always includes the action D (i.e., $D \in \mathcal{A}_i^t$ for each t), which implies that all these equilibria are directly vulnerable to s_D (i.e., $\tilde{s} = s_D$ in the above proof) and the two-step vulnerability is required only against belief-free equilibria in which at some rounds cooperation is the unique best reply. Although, such belief-free equilibria have not been used in the existing literature (to the best of my knowledge), they may still be relevant for future research.

8

4 Instability of Other Equilibria

The previous section shows that the main kind of equilibrium used in the literature on private imperfect monitoring (the belief-based equilibrium) does not satisfy weak stability. In this section we extend this result to the other kinds of equilibria in the literature: belief-free review-strategy equilibria, and belief-based equilibria.

4.1 Instability of Belief-Free Review-Strategy Equilibria.

Matsushima (2004); Hörner and Olszewski (2006); Yamamoto (2007); Deb (2012); Yamamoto (2012) use the notion of belief-free review-strategy equilibrium (also called, block equilibrium) in which (1) the infinite horizon is regarded as a sequence of review phases such that each player chooses a constant action throughout a review phase, and (ii) at the beginning of each review phase, a player's continuation strategy is a best reply regardless of the history. A simple adaptation of the proof of Proposition 1 show that defection is the unique weakly stable symmetric belief-free review-strategy equilibrium.¹²

The adaptation of the proof is done as follows. Let s^* be a symmetric belief-free review-strategy equilibrium. Let $(t_l)_{l=1}^{\infty}$ be the increasing sequence of starting times for the review phases. Let $\mathcal{A}_i^l \subseteq \{C, D\}$ denote the set of actions in the support of some sequential best reply that begins from period t_l and plays the same action up to the end of the l-th review phase. Let \tilde{s} be the deterministic strategy that always defects except in review phases in which $\mathcal{A}_i^l = \{C\}$. An analogous argument to the proof of Proposition 1 shows that s^* is vulnerable to \tilde{s} (and \tilde{s} is vulnerable to s_D).

4.2 Instability of Belief-Based Equilibria

Bhaskar and Obara (2002) (extending Sekiguchi, 1997) present a folk theorem result for the repeated Prisoner's Dilemma that does not rely on belief-free equilibria. Instead, the best reply of each player depends on his belief about the private history of the opponent ("belief-based equilibria"). In what follows, I show that these equilibria are not weakly stable.

Bhaskar and Obara (2002) consider a symmetric signaling structure with two signals $\Sigma_i = \{c, d\}$, where c (resp., d) is more likely when the opponent plays C (resp. D). Given any action profile, there is a probability of $\epsilon > 0$ that exactly one player receives a wrong signal, and a probability of $\xi > 0$ that both players receive wrong signals. Bhaskar and Obara present for each 0 < x < 1 a symmetric sequential equilibrium s_x that yields a payoff of at least x whenever ϵ and ξ are sufficiently small. This construction is the key element in their folk theorem result. In what follows we sketch this equilibrium s_x , and then show that it is not weakly stable.

Let s_T be the trigger strategy: cooperate as long as all observed signals are c-s, and defect in the remaining game if signal d is ever observed. The strategy s_x divides the entire game into disjoint subgames (say, to n subgames, where subgame k includes the rounds that are equal to k modulo n), and the play in each subgame is independent of the other subgames. Each player mixes at the first round of each subgame: he plays s_T (trigger strategy) with probability π and plays s_D (always defect) with the remaining probability. Bhaskar and Obara show that there exists a division into subgames and a mixing probability π such that (1) the expected discounted symmetric payoff of the game is at least x, and (2) strategy s_x is a sequential equilibrium.¹³

¹²Similarly, one can further adapt the proof to show the instability of Sugaya's (2015) equilibria, in which each review phase is divided into several sub-phases, and players may switch their action in the beginning of each sub-phase.

¹³As observed by Bhaskar (2000) and Bhaskar, Mailath, and Morris (2008), these belief-based equilibria can be purified à la Harsanyi (1973) in a simple way (while this is not the case for belief-free equilibria). Nevertheless, we show they still do not satisfy weak stability.

Claim 1. The symmetric sequential equilibrium s_x is not weakly stable.

Sketch of Proof. The fact that s_x mixes between s_D and s_T at the beginning of each subgame, implies that s_D is a best reply against s_x . Recall, that s_D is evolutionarily stable and the unique best reply to itself. These observations immediately imply that s_x is not weakly stable.

5 Extensions

To simplify the presentation of the results, we focused only on symmetric equilibria (for which the definition of evolutionary stability is simpler), when the monitoring has full support. In this section we show that both assumptions can be relaxed.

5.1 Instability of Asymmetric Equilibria

In this section we extend our model to asymmetric monitoring structures and asymmetric equilibria.

Adaptations of the model We relax the assumption that the monitoring structure is symmetric. That is, the alphabet of each player may be different (i.e., $\Sigma_1 \neq \Sigma_2$), and the distribution of signals $m(\cdot|a)$ is not necessarily symmetric. Following Selten (1980), we consider a single population of agents that are randomly matched into pairs to play the repeated Prisoner's Dilemma game (possibly with an asymmetric monitoring structure), and each agent in a pair is randomly assigned to the role of player 1 or player 2.

A complete strategy of an agent $\sigma = (s_1, s_2)$ is a pair describing his strategy in each of the two roles (i.e., for each $i \in \{1, 2\}$ $s_i : H_i \to \Delta(A_i)$ is the strategy he plays when he is player i). Any equilibrium of the underlying game (s_1, s_2) corresponds to a symmetric equilibrium in the population in which all agents play the complete strategy $\sigma_{s_1, s_2} := (s_1, s_2)$. Finally, we say that the Nash equilibrium (s_1, s_2) is weakly stable if the complete strategy σ_{s_1, s_2} is weakly stable.

Adaptations of the proofs Proposition 1 also holds for asymmetric equilibria. Let (s_1^*, s_2^*) be a belief-free equilibrium, and let $\sigma_{s_1^*, s_2^*}$ be the corresponding complete strategy. The proof should be adapted as follows. The sets of best-reply actions in each round, \mathcal{A}_i^t and \mathcal{A}_j^t , remain the same (though, they are not necessarily equal sets in this case). The strategy \tilde{s}_1 (\tilde{s}_2) is defined with respect to \mathcal{A}_2^t (\mathcal{A}_1^t) in an analogous way to the definition of \tilde{s} in the original proof. Using the same arguments as in the original proof we get that the definition implies that the complete strategy $\tilde{\sigma} = (\tilde{s}_1, \tilde{s}_2)$ is a best reply to $\sigma_{s_1^*, s_2^*}$, that $U\left(\sigma_{s_1^*, s_2^*}, \tilde{\sigma}\right) < U\left(\tilde{\sigma}, \tilde{\sigma}\right)$, and that $\sigma_D = (s_D, s_D)$ is the unique best reply against $\tilde{\sigma}$, which implies that $\sigma_{s_1^*, s_2^*}$ is not weakly stable (unless it coincides with σ_D).

Claim 1 can be adapted in a similar manner to show that also all the asymmetric sequential equilibria in Bhaskar and Obara (2002) and Chen (2010) are not weakly stable.

5.2 Instability without Full-Support Monitoring

In this section we extend our model and results to deal with monitoring structures without full support.

We slightly refine Definition 4 of weak stability by allowing the strategy s' to be neutrally stable, rather than evolutionarily stable (because if the monitoring structure does not have full support, then no strategy is evolutionarily stable, and, in particular, the strategy s_D is only neutrally stable). Claim 1 holds for this new definition with minor adaptations of the proof that are implied by the adapted definition of weak stability.

Proposition 1 should be slightly weakened in this setup, to stating that any weakly stable belief-free equilibrium is realization-equivalent to s_D (i.e., the players always defect on the equilibrium path). Case 1 of the proof is adapted by assuming that there a history of length t that is reached with positive probability in which the players cooperate with positive probability and defection is also a best reply. Similarly, case 2 is adapted to assume that at any time in which both actions are best replies, the players defect after each history that is reached with positive probability. All the other arguments in the proof remain essentially the same.

References

- ABREU, D., D. PEARCE, AND E. STACCHETTI (1990): "Toward a theory of discounted repeated games with imperfect monitoring," *Econometrica*, 58(5), 1041–1063.
- AWAYA, Y., AND V. KRISHNA (2015): "On communication and collusion," American E, Forthcoming.
- BENAÏM, M., J. HOFBAUER, AND E. HOPKINS (2009): "Learning in games with unstable equilibria," *Journal of Economic Theory*, 144(4), 1694–1709.
- Bhaskar, V. (2000): "The Robustness of Repeated Game Equilibria to Incomplete Payoff Information," Unversity of Essex.
- BHASKAR, V., G. J. MAILATH, AND S. MORRIS (2008): "Purification in the infinitely-repeated prisoners' dilemma," *Review of Economic Dynamics*, 11(3), 515–528.
- BHASKAR, V., AND I. OBARA (2002): "Belief-based equilibria in the repeated prisoner's dilemma with private monitoring," *Journal of Economic Theory*, 102(1), 40–69.
- Compte, O. (1998): "Communication in repeated games with imperfect private monitoring," *Econometrica*, 66(3), 597–626.
- DEB, J. (2012): "Cooperation and community responsibility: A folk theorem for repeated matching games with names," Available at SSRN 1213102.
- ELY, J. C., J. HÖRNER, AND W. OLSZEWSKI (2005): "Belief-free equilibria in repeated games," *Econometrica*, 73(2), 377–415.
- ELY, J. C., AND J. VÄLIMÄKI (2002): "A robust folk theorem for the prisoner's dilemma," *Journal of Economic Theory*, 102(1), 84–105.
- FUDENBERG, D., AND E. MASKIN (1986): "The folk theorem in repeated games with discounting or with incomplete information," *Econometrica*, pp. 533–554.
- HARSANYI, J. C. (1973): "Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points," *International Journal of Game Theory*, 2(1), 1–23.
- HELLER, Y., AND E. MOHLIN (2015): "Observations on cooperation," Unpublished.
- HÖRNER, J., AND W. OLSZEWSKI (2006): "The folk theorem for games with private almost-perfect monitoring," *Econometrica*, 74(6), 1499–1544.

- KANDORI, M. (2002): "Introduction to repeated games with private monitoring," *Journal of Economic Theory*, 102(1), 1–15.
- ———— (2011): "Weakly belief-free equilibria in repeated games with private monitoring," *Econometrica*, 79(3), 877–892.
- KANDORI, M., AND H. MATSUSHIMA (1998): "Private observation, communication and collusion," *Econometrica*, 66(3), 627–652.
- KANDORI, M., AND I. OBARA (2006): "Efficiency in repeated games revisited: The role of private strategies," Econometrica, 74(2), 499–519.
- Mailath, G. J., and S. Morris (2002): "Repeated games with almost-public monitoring," *Journal of Economic Theory*, 102(1), 189–228.
- ———— (2006): "Coordination failure in repeated games with almost-public monitoring," *Theoretical Economics*, 1(3), 311–340.
- MAILATH, G. J., AND L. SAMUELSON (2006): Repeated Games and Reputations, vol. 2. Oxford University Press.
- MATSUSHIMA, H. (1991): "On the theory of repeated games with private information: Part I: Anti-folk theorem without communication," *Economics Letters*, 35(3), 253–256.
- ——— (2004): "Repeated games with private monitoring: Two players," *Econometrica*, 72(3), 823–852.
- MATSUSHIMA, H., T. TANAKA, AND T. TOYAMA (2013): "Behavioral Approach to Repeated Games with Private Monitoring," CIRJE-F-879, University of Tokyo.
- MAYNARD-SMITH, J. (1982): Evolution and the Theory of Games. Cambridge University Press.
- MAYNARD-SMITH, J., AND G. R. PRICE (1973): "The logic of animal conflict," Nature, 246, 15.
- MIYAGAWA, E., Y. MIYAHARA, AND T. SEKIGUCHI (2008): "The folk theorem for repeated games with observation costs," *Journal of Economic Theory*, 139(1), 192–221.
- OBARA, I. (2009): "Folk theorem with communication," Journal of Economic Theory, 144(1), 120–134.
- PICCIONE, M. (2002): "The repeated prisoner's dilemma with imperfect private monitoring," *Journal of Economic Theory*, 102(1), 70–83.
- Sekiguchi, T. (1997): "Efficiency in repeated prisoner's dilemma with private monitoring," *Journal of Economic Theory*, 76(2), 345–361.
- SUGAYA, T. (2015): "Folk Theorem in Repeated Games with Private Monitoring," Unpublished.
- Sugaya, T., and S. Takahashi (2013): "Coordination failure in repeated games with private monitoring," Journal of Economic Theory, 148(5), 1891–1928.

- SWINKELS, J. M. (1992): "Evolutionary stability with equilibrium entrants," *Journal of Economic Theory*, 57(2), 306–332.
- TAKAHASHI, S. (2010): "Community enforcement when players observe partners' past play," *Journal of Economic Theory*, 145(1), 42–62.
- THOMAS, B. (1985): "On evolutionarily stable sets," Journal of Mathematical. Biology, 22(1), 105–115.
- Weibull, J. W. (1995): Evolutionary Game Theory. The MIT Press.
- YAMAMOTO, Y. (2007): "Efficiency results in N player games with imperfect private monitoring," *Journal of Economic Theory*, 135(1), 382–413.
- ———— (2009): "A limit characterization of belief-free equilibrium payoffs in repeated games," *Journal of Economic Theory*, 144(2), 802–824.
- ———— (2012): "Characterizing belief-free review-strategy equilibrium payoffs under conditional independence," Journal of Economic Theory, 147(5), 1998–2027.