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Abstract This paper employs a duration based approach in order to model the
inter-arrival times of bank failures in the US banking system for the period 1934
- 2014. Conditional duration models that allow duration between bank failures to
depend linearly or nonlinearly on its past history are estimated and evaluated. We
find evidence of strong persistence along with non-monotonic hazard rates which
imply a financial contagion pattern according to which, a high frequency of bank
failures generates turbulence which shortly after leads to additional fails, whereas
prolonged periods without abnormal events signify the absence of contagious de-
pendence which increases the relative periods between bank failure appearance.
In addition, we find that mean duration levels of tranquility spells or equivalently
the bank fail events intensity is subject to long run shifts. Further, we obtain
statistical significant results when we allow duration to depend linearly on past
information variables that capture systemic bank crisis factors along with stock
and bond market effects.

Keywords Autoregressive Conditional Duration · Bank Failures · Financial
Contagion · Structural breaks
JEL-Classification · C22 · C41 · G01 · G12 · G14

1 Introduction

A bank failure is an event which disturbs the economic environment of a society to
a great extend. The depositors are starting to concern themselves about the safety
of their savings, the economic policy of a government is set under serious doubt
by the public, business lines are cut off, the business activity faces a slowdown
and generally the economic environment is destabilized. Throughout economic
history, economic crises which were accompanied from a number of bank failures
are recorded from the 17th century and the Tulip crisis till the present times.

Atticabank SA (Siakoulis.Vasilios@atticabank.gr). I would also like to acknowledge the con-
tribution of Dr. Venetis Ioannis, professor of econometrics in University of Patras, concerning
the understanding and implementation of the methodologies employed in the current work.
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The purpose of this study is to propose a new time series approach for the
prediction of bank probability of default, which takes into account the existence
of contagious dependence, and through that to explore the reasons of a bank
failure and examine whether the probability of bank failure may be predicted
or not. We adopt the frequently used definition of contagion in the literature
as a largely unpredictable, higher correlation after a major distress event (see
Pesaran and Pick, 2004). In the domain of bank failures contagion means that
there are fluctuations in the rate of fails that cannot be explained by common
factors. Focardi and Fabozzi (2005) expressed contagious defaults behaving in
this way as point processes whose intensity is conditional upon previous intervals
between defaults through a self-exciting ACD point process. In this framework, a
high frequency of bank failures generates turbulence in the banking sector which
shortly after leads to additional fails, whereas prolonged periods without abnormal
events signify the absence of contagious dependence which increases the relative
periods between bank failure appearance.

As such, we construct a duration series that measures the inter-arrival times of
bank failures in the USA. Strictly speaking a bank is considered to fail when the
regulatory authorities decide that it must stop its operation due to its inability to
respond in the demand of deposits from its depositors. Therefore the failure of a
bank is a legal and not an economic event since a bank fails when supervisors say
and not when it has presented severe financial problems. This policy may change
the timing of bank failures relatively to economic events. If supervisors close banks
only after they had a chance to work out their problems then there will be a lag
between economic crises and banking crises (Nuxoll, 2003). In order to resolve this
issue we also classify as failed the banks which are found in need of government
assistance.

The generated distress events are irregularly spaced in time and the inter-
arrival times of bank failures exhibit clustering behavior and autoregressive dy-
namics similar to that of GARCH models (Engle, 1982 and Bollerslev, 1986). Since
we are dealing with a duration series, we employ the Autoregressive Conditional
Duration (ACD) model of Engle and Russel (1998) to model the inter-arrival times
of bank failure events. To the best of our knowledge, such an approach has not
been attempted in the past in the domain of contagious bank failures while it
is one of few applications of autoregressive conditional duration models outside
the high frequency transactions data literature (e.g. Christoffersen and Pelletier
(2004), Fischer and Zurlinden (2004), Hamidieh et al. (2013)).

Also this approach could add to the toolbox relative to corporate probability
of default prediction in line with the propositions of Focardi and Fabozzi (2005).
Giesecke et al. (2010) using an extensive data set spanning the period from 1866 to
2008 showed that corporate bond market has repeatedly suffered clustered default
events. In our case by employing an autoregressive conditional duration frame-
work combined with a set of explanatory variables we depart from the standard
doubly stochastic model of default, under which cross-firm default correlation that
is associated with observable factors determining conditional default probabilities
accounts for all the degree of time clustering of defaults. This doubly-stochastic
assumption is overly restrictive to the extent that default of one firm could have
an important direct influence on the default of another firm (Duffie et al. (2007)).
Motivated by the results of Das et al. (2007) who find that a standard doubly
stochastic model of firm default intensities fails to fully capture the clustering of
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defaults of U.S. industrial firms between 1979 and 2004, Giesecke et al. (2008) pro-
pose a default timing model in which the default intensity evolves through time
according to a self-exciting model. According to them two important effects, frailty
and contagion generate self-exciting phenomena, so that a firm default tends to
increase the likelihood of other firms to fail also. In the first case a default reveals
information about unobservable (frailty) factors and therefore has an influence
on the conditional default rates of any other firms that depend on the same fac-
tors, whereas contagion is based on the propagation of financial distress through
contractual linkages among firms. Duffie et al (2009) find strong evidence for the
presence of unobservable risk factors and they estimate that they have a large im-
pact on fitted conditional mean default rates, above and beyond those predicted
by observable default covariates.

Our contribution lies in modeling the correlation structure of inter-arrival times
of bank faiures. Within self-contained autoregressive models, we find significant
evidence of clustering behavior and duration persistence. The duration process ex-
hibits self-exciting behavior, i.e., demonstrates a high degree of persistence, even
when conditioned on variables related to various risk factors. The degree of per-
sistence does not diminishes even when low frequency variation in the conditional
duration mean is encompassed in the form of mean level shifts. Bank crisis ef-
fects along with influences from bond and stock markets are present, affecting
significantly the probability of bank failure occurence.

The rest of the paper is structured as follows. In section 2, we provide an
overview of the alternative ACD specifications used in the paper. Section 3 con-
tains a summary of the methodologies employed for evaluating density forecasts.
Section 4 contains the data description and the empirical application. In section
5, we introduce additional explicative variables in the conditional mean duration
specification. Section 6 tests for the presence of unconditional duration mean level
shifts and investigates their potential effect on estimated persistence. Finally, sec-
tion 7 offers some concluding remarks.

2 Autoregressive Conditional Duration model (ACD)

Let {t0, t1, ...} be a stochastic process of strictly increasing arrival times with
0 = t0 < t1 < ... < tN(t) < ... < tN(T ) = n associated with a counting function
N (t) , the number of events that have occurred up to time t ∈ [0, T ]. A funda-
mental application of the ACD model by Engle and Russel (1998) is its ability to
parametrically measure and forecast the intensity of arrivals or duration between
two events that occur at times ti−1 and ti denoted by xi = ti − ti−1 , i = 1, ..., n.

The ACD model assumes that

xi = E (xi|Ωi−1; θx) εi

where Ωi−1 denotes the information set available at time ti−1 and includes at
least the observed values {x1, x2, ..., xn−1} and εi is non-negative i.i.d with density
f (ε; θε). Setting ψi = E (xi|Ωi−1; θx) the model implies that E (εi) = 1 and all
the temporal dependence of the duration process xi is captured by the conditional
expected duration.
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The benchmark ACD model proposed by Engle and Russel (1998) is built on
two parameterizations. The first assumes a GARCH-like structure for the condi-
tional expected duration

ψi = ω + α1xi−1 + β1ψi−1

while the second attaches the exponential density function with mean 1 to εi.
The multiplicative error structure of the model implies that the log-likelihood

function is given by

lnL (θ) =
n
∑

i=1

lt (θ) =
n
∑

i=1

[

ln f

(

xi
ψi

; θε

)

− ln(ψi)

]

(1)

where θ =
(

θ′x, θ
′

ε

)

′

is the k × 1 vector of all the unknown parameters and in the

case of benchmark ACD model θx = (ω, α1, β1)
′ while θε is empty.

The ACD model, similarly to the GARCH models for conditional heteroskedas-
ticity, is very general and allows a variety of duration conditional mean specifica-
tions and distributions for the multiplicative innovation εi. Hence, the bench-
mark model, where εi is assumed non-negative i.i.d with exponential density
fE (εi; θε) = e−εi , has been extended in the literature in two aspects.

First, the conditional mean specification is parametrically enriched to account
for empirically valid asymmetries to past information. We employ the augmented
ACD (AACD) model of Fernandes and Grammig (2006) that nests most of the
parametric specifications proposed in the literature and is given by

ψλi = ω + α1ψ
λ
i−1 [|εi−1 − b|+ c (εi−1 − b)]v + β1ψ

λ
i−1 (2)

The power transformation of ψi along with the extended parametric introduction
[|εi−1 − b|+ c (εi−1 − b)]v of past standardized durations in the conditional mean,
allows a wide variety of shapes for the shock impact function1. The shift param-
eter b > 0 allows for a kinked impact curve and sign asymmetries with positive
(negative) shock impact when εi−1 > (<)b. The rotation parameter c allows for
clockwise (counter-clockwise) c > (<)0 rotation of |εi−1 − b| implying less (more)
sensitivity to shocks that are εi−1 > b. Parameters λ and v play a similar role, in-
troducing concavity or convexity in the response implying decreasing or increasing
conditional duration sensitivity with respect to shock magnitudes.

Second, more flexible error distributions are adopted that generalize the bench-
mark exponential distribution for random variables with positive support. Gram-
mig and Maurer (2000) show that quasi maximum likelihood estimation of θ based
on (1) can be biased in finite samples that can be as large as 15,000 observations.
A direct consequence of biased estimates is the reduced predictive performance
of the ACD models. Moreover, the exponential distribution implies a flat hazard
rate function that measures the transition rate from a duration spell of a certain
length given that the spell lasted until that moment, assigning equal probability
to long and short durations. Such an assumption can be empirically invalid.

Engle and Russel (1998) extend the flat hazard rate case to monotonic increas-
ing or decreasing hazard rate functions by assuming that εi are i.i.d following the

1 The curve that traces the impact of a shock εi−1 on the conditional mean duration ψi for
a given value of ψi−1 and the remaining parameters.
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Weibull distribution with parameter γ, thus θε = γ. If γ = 1, then the Weibull
ACD model reduces to the benchmark exponential ACD model. The Weibull den-
sity function is given by

fW (εi; θε) = γ

(

Γ

(

1 +
1

γ

))γ

εγ−1
i exp

{

−
(

Γ

(

1 +
1

γ

)

εi

)γ}

with hazard rate function2 admitting the form

hW (εi; θε) = γεγ−1
i

If γ > 1 (γ < 1) the hazard rate function is increasing (decreasing), that is long
durations will be more (less) likely.

Still, monotonicity can be restrictive in empirical applications. Grammig and
Maurer (2000) proposed the use of the Burr distribution with density function

fB (εi; θε) =
κµκεκ−1

i
(

1 + γµκεκi
)1+ 1

γ

where θε = (κ, γ) , κ > γ > 0 with κ > mγ ensuring that the mth moment exists
while

µ =
Γ
(

1 + 1
κ

)

Γ
(

1
γ − 1

κ

)

γ1+
1
κ Γ

(

1 + 1
γ

)

The cumulative distribution function is given by

FB (εi; θε) = 1− (1 + γµκεκi )
−

1
γ

and the hazard function by

hB (εi; θε) =
κµκεκ−1

i

1 + γµκεκi

The Burr distribution3 nests both the Weibull distribution as γ → 0, and the ex-
ponential distribution as γ → 0, κ→ 1 as well as the log-logistic distribution when
γ → 1. The Burr distribution allows for general non-monotonic hazard functions
under suitable parameter restrictions, for example empirically valid U-shape or
inverted U-shape hazard functions where short and long durations, in terms of
large deviations of xi from its conditional mean, are progressively less likely to
occur.

Finally, Allen et al. (2008), Allen et al. (2009) and Sun et al. (2008) propose
the use of the log-normal distribution with density function

fLN (εi; θε) =
1

σ
√
2πεi

exp











−

(

ln εi +
σ2

2

)2

2σ2











(3)

2 The hazard rate function of the multiplicative error term is named baseline hazard.
3 Lunde (1999) and other authors consider the generalized gamma distribution which is also a

two shape parameter distribution than can deliver rich non-monotonic hazard function shapes.
The generalized gamma distribution also contains the exponential and Weibull distributions
as special cases.
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that corresponds to the density of the exponent of a normally distributed random

variable with variance σ2 and mean −σ2

2 . The value of the mean is chosen in order
to guarantee that the log-normal terms εi have expected value one. The hazard
function is given by

hLN (εi; θε) =
fLN (εi; θε)

1− Φ

(

ln εi+
σ2

2
σ

)

where Φ is the cumulative density function of a standard normal random variable.
The log-normal density (3) also produces various hazard function shapes, however,
it has only one free parameter compared to the two free parameters of the Burr
distribution (and other similar distributions), hence, it might well be the preferred
choice for empirical applications.

The estimation of all ACD models is performed by maximum likelihood using
the BFGS algorithm and suitable initial conditions. Asymptotic standard errors
are based on the outer-product-of-the-gradient (OPG) estimator of the informa-
tion matrix since the augmented model nonlinearities render Hessian-based (and
sandwich form) estimates difficult to compute due to numerical problems.

3 Evaluating the ACD model

Model evaluation is based on conditional mean specification and on the distri-
bution assumption regarding standardized durations. To compare for in-sample
overparameterization we compute the AIC and BIC criteria (BIC penalizes more
heavily parameter addition). In addition, Ljung-Box statistics are calculated for
the standardized ε̂i =

xi

ψ̂i

and squared standardized ε̂2i durations as preliminary de-

scriptives on remaining linear autocorrelation. Detailed model specification will be
based on a general to specific modeling approach given the parametric structure of
the models considered and the discussion in Fernandes and Grammig (2006, p.16)
that if one fails to start from a sufficiently general specification may be directed
to misleading outcomes since there are various parameter combinations that can
work interchangeably.

Another way to test both the conditional mean and distributional assump-
tion of the models is to evaluate the density forecasts of alternative models both
in-sample and out-of sample. For this purpose, we use the method developed by
Diebold et al. (1998) to test the forecasting performance of nested and non-nested
general dynamic models. Bauwens et al. (2004) used extensively the method to
compare different ACD specifications. The method consists in computing the se-

quence of empirical probability integral transforms (PIT), zi = F
(

ε̂i; θ̂ε
)

, i =

1, ..., n, that is, the cumulative probability of the observed standardized durations
ε̂i under the assumed forecast distribution. If the underlying model specification
is accurate, then zi will be i.i.d uniformly distributed U(0, 1) and will have no-
autocorrelation left neither in level nor when raised to integer powers. In order to
assess how close the distribution of zi is to a uniform distribution, Diebold et al.
(1998) propose the use of intuitive graphical methods and also a simple inspection
of the correlograms for the series (zi − z̄)p, p = 1, ..., 4 to examine for autocorrela-
tion and potentially more sophisticated nonlinear forms of dependence. Hence, we
visually compare the estimated density of zi to that of a U(0, 1) using a histogram
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plot and approximate bin height confidence intervals under the null hypothesis of
i.i.d. U(0, 1). In addition, we visually inspect quantile-quantile (QQ) plots where
the closer the plot is to the 45 degrees line the closer the distribution of zi is to
the uniform distribution. All correlograms are examined on the basis of the usual
Bartlett confidence intervals.

The Diebold et al. (1998) graphical inspection methods are informative with
respect to the correct conditional calibration of density forecasts. However, it is
difficult to test for uniformity in small samples. We complement the model evalua-
tion procedures by using the Berkowitz (2001) likelihood ratio (LR) tests that are
based on the transformed variable ui = Φ−1 (zi) where Φ−1 is the inverse of the
standard normal distribution. Under the null hypothesis of accurate model speci-
fication, the transformed variables ui are distributed as i.i.d N (0, 1) which allows
maximum likelihood estimation and facilitates the construction of LR tests with
good finite sample properties. In particular, an unrestricted AR(1) specification
for ui is estimated and a group of likelihood ratio statistics are calculated for the

null hypothesis, H
(1)
0 : µ = 0 , H

(2)
0 : σ2 = 1 , H

(3)
0 : ρ = 0 , H

(4)
0 : µ = 0 , σ2 = 1

, H
(5)
0 : µ = 0, σ2 = 1, ρ = 0. These test statistics are termed LR(1), LR(2), LR(3),

LR(4), LR(5) respectively and are distributed as χ2 random variables with degrees
of freedom equal to the number of restrictions. Given that we test for mean, vari-
ance and autocorrelation deviations from the null, the LR test has power against
general alternatives that accommodate misspecification in the conditional mean,
variance and dynamics of the model in use.

4 Empirical Application

Our dataset comprises of the dates in which US banks failed, or were found in need
of government assistance, provided from the Federal Deposit Insurance Coorpo-
ration (FDIC)4, spanning the period from 2/4/1934 to 25/2/2014. Next, we con-
struct a binary distress event variable that takes the value of 1 at the days where
at least one US bank failed or found in need of assistance as shown in Fig. 1 top
panel. Those days denote the ti, i = 1, ..., n arrival times sequence. Finally, we
construct the dependent duration variable xi = ti− ti−1 as the number of days be-
tween two distress events. The duration variable is shown in Fig. 1 bottom panel,
with n = 1466 available sample observations.

Fig. 1 here

Note that this duration variable does not take zero values since when bank fail-
ures occur for two or more consecutive days in a row, the next period is considered
to start from the last crisis day.

The autoregressive form of ACD-type models allow us to capture duration clus-
tering, that is, long (short) durations followed by long (short) durations between
failure events. A long duration, namely the time elapsed between two bank fails,
marks tranquil periods whereas a sequence of short durations marks periods of
financial turbulence where banks tend to collapse one after the other either due
to economic factors or contagious banks crises.

4 https://www.fdic.gov/bank/individual/failed/banklist.html
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Flexible distribution forms for the standardized durations εi allow various haz-
ard function shapes. In our application, the hazard rate h(ε; θε), where ε is excess
duration (observed over conditional mean duration), measures the instantaneous
rate of change from a tranquil state to a state where a bank failure occurs given that
no bank failures have occurred to date. Alternatively, it measures the ”probabil-
ity”5 of bank default. For example the value h(1; θε) would measure the probability
of bank default given that no bank defaults have appeared for a period equal to
the conditional mean of the series, whereas h(2; θε) would measure the probability
of exit from a longer tranquility period of two times the conditional mean given
that no bank defaults have appeared during that period.

In Table 1, we report the coefficient estimates6, together with the correspond-
ing p-values of the ACD models described in Section 2 and in-sample model fit
measures described in section 3.

table 1 here

In terms of the log-likelihood value and the AIC and BIC criteria, the aug-
mented specification (2) outperforms marginaly the benchmark ACD model. In
turn, the flexible distribution approach that uses the Burr or lognormal distribu-
tions outperforms the exponential and Weibull models.

The Ljung-Box statistics on the standardized durations and the squared stan-
dardized durations do not show any signs of remaining autocorrelation. Also the
Berkowitz (2001) LR tests confirm the superiority of the Burr and lognormal dis-
tributions.

Fig. 2 contains the zi histograms with 20 bins for all estimated models. There
is discernible difference in the histogram shape for models under alternative er-
ror distributions. Deviations from uniformity are evident for the exponential and
Weibull-ACD that find difficult to account for the durations at the lower bound
of the distribution. It seems that they systematically produce biased in-sample
fits for very small durations. The z-histograms show clearly the superiority of the
Burr model. The AACD Burr specification produces empirical integral transforms
that match the implied theoretical density very well and tends to give accurate
in-sample fits over the whole range of observed values although a spike is vis-
ible for small durations (third bin). Also, the AACD Burr histogram is visibly
smoother than its ACD counterpart. Given that the exponential and Weibull dis-
tribution models will not further considered as the data do not support either flat
or monotonic increasing/decreasing hazard rate functions.

Fig. 2 here

In the ACD case the sum of the coefficients a1 + β1, that expresses the au-
toregressive part in the ARMA representation of the duration series, is greater
than 0.95 in the majority of models indicating a very high degree of persistence.
In the AACD case, the autoregressive parameter β1 is smaller than 1, a feature

5 Notice that the hazard rate is not necessarily bounded from above by one.
6 All empirical work, including the figures, was conducted in R 2.14.0. Maximum likelihood

routines were based on package maxLik while structural break tests were based on package
strucchange. We have also employed packages sandwich and portres.
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that guarantees stationarity of the process at least in the Box-Cox version7 of the
models that fits the data best, as it will become apparent.

The Burr parameter estimates k̂ and γ̂ are quite robust regardless of the con-
ditional mean specification. The ratio k̂/γ̂ = 4.126 with (delta approximation)
standard error 0.5296 so that the upper bound of the approximate 95% confidence
interval for k/γ is 5.16.

The coefficient estimates in table 1 further reveal the necessity of the double
Box–Cox transformation λ ̸= v in the AACD models. There is strong evidence sup-
porting convergence of λ to zero (i.e. support for the log-transformation), whereas
v is bounded away from 0 in both the Burr and lognormal specifications. The fact
that the estimated a1 in the AACD specifications is statistically insignificant is
explained by the close to zero values of λ̂.

In light of λ → 0 and v = 0.623 it is not surprising that the shift and rotation
parameter estimates b, c are insignificant. Fernandes and Grammig (2006) show
that letting λ free to vary and accounting for asymmetric effects seem to operate as
substitute to the introduction of asymmetric responses in specifications with fixed
λ. Thus, the preferred in-sample model reduces to the Boc-Cox ACD specification
with the Burr density being the most successful distribution candidate.

The maximum likelihood estimates of the preferred model are shown below

lnψi = −0.170
(0.052)

+ 0.204
(0.054)

ε
0.623
(0.137)

i−1 + 0.992
(0.004)

lnψi−1 , κ̂ = 1.563
(0.060)

, γ̂ = 0.378
(0.063)

(4)

ln L̂ = −4681.42 , AIC = 6.395 , BIC = 6.416 , Q(4) = 0.6140

Under the logarithmic transformation II and when v = 1 8, although durations
have a linear effect on the log conditional mean, the news impact curve is not linear
but convex, so that the sensitivity of ψi to shocks in εi−1 is lower if εi−1 is small
and higher if εi−1 is large. But in our case where v = 0.623. the adjustment process
of the conditional mean to recent durations follows an almost linear pattern as it
can be seen from a plot of the empirical shock impact curve

SICi = exp
{

−0.170 + 0.204ε0.623 + 0.992 ln
(

ψ̂
)}

for shock sizes ε = {0.05, 0.1, ..., 14} which is given in the top panel of Fig. 3.

fig. 3 here

A plot of the parametric estimate for the baseline9 hazard function is given in
Fig. 3 bottom panel. It shows a non-monotonic inverted and asymetric U shape
indicating the distress event arrival asymmetries, hence, the distress event arrival
intensity is low for very short and very long durations. The rate at which very
low (ε << 1) and very long (ε >> 1), relative to the conditional mean, tranquility

7 See Fernades and Gramming (2006) for detailed analysis. The Box-Cox version of AACD
model (2) is obtained when λ→ 0. and b = c = 0.

8 This model is referred to Fernandez and Grammig (2006) as Logarithmic ACD Type II
9 Often, the conditional hazard function

h (xi|Ωi−1) = h (εi)
1

ψi

is cited. The results where not quantitatively or qualitatively different.



10 Siakoulis G. Vasileios

spells will be completed, given that they last until that moment, is small which
is intuitively consistent with duration clustering. The hazard function achieves a
maximum at around ε = 1.31. Given that the average sample conditional mean
duration is approximately 17 days, the maximum hazard is attained for 22.3 days
long tranquility spells.

Finally, for purposes of comparison, Fig. 4 contains the histogram for the zi
sequence, QQ-plots and correlograms for the zi and ui sequences implied by the
preferred model.

fig. 4 here

The third bin spike persists despite the parsimonious and better fit of the
model implying that small (but not very small) durations are over-represented.
The correlogram for both the PIT and Berkowitz transformations does not reveal
remaining linear dependence. However, the correlograms for the squared processes,
not reported for brevity, present some spikes over the confidence intervals suggest-
ing some heteroskedasticity or nonlinear features that remain hidden.

We complete the univariate time series specification of the duration series by
executing a forecasting experiment. Bauwens and Hautsch, (2009, p.964) propose
out-of-sample evaluations of alternative ACD specifications, in order to avoid the
problem of potential over-fitting. Dufour and Engle (2000) find that ACD mod-
els perform better than autoregressions in durations or log durations, however,
the forecasts are generally not very good although they offer improvements in
out-of-sample results. In addition, they find that the distribution choice does not
significantly affect the short-run conditional mean forecasts but it has measurable
effects on density forecasts. Similar conclusions were reached by Bauwens et al.
(2004) where simple model approaches were found to perform as well as more
complex model specifications.

Our out-of-sample experiment is based on truncating the sample endpoint at
n1 < n, estimating sequentially the conditional duration models using subsamples
of size n1, n1+1, ..., n−1 and forecasting one step ahead. The results, for n1 = 1200
are summarized in table 2.

table 2 here

We adopt a number of forecasting measures as in Dufour and Engle (2000).
Table 2 reveals that the gains between alternative models are not impressive when
forecasting out-of-sampling the conditional mean, as with previously mentioned
studies.

5 Enhancing the past information set

The preceding time series analysis is self-contained. One may wish to include
additional predictive variables to enhance the forecasting power of the model or
to test theory related hypotheses by including predetermined variables related to
bond yield determination. See, Engle and Russell (1998), Bauwens and Giot (2000,
2003) and Zhang et al. (2001), among others, for the inclusion of predetermined
variables in market microstructure related ACD models.
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Hautsch (2012) presents two types of additive introduction of a g× 1 vector of
explanatory variables zi = (z1,i, ..., zg,i)

′ in an ACD model. These are, the dynamic
type

lnψi = ω + α1ε
v
i−1 + β1 lnψi−1 + λ′zi−1 (5)

and the static type
(

lnψi − λ′zi−1

)

= ω + α1ε
v
i−1 + β1

(

lnψi−1 − λ′zi−2

)

⇒ (6)

lnψi = ω + α1ε
v
i−1 + β1 lnψi−1 + λ′zi−1 + λ∗′zi−2

written here in terms of the best univariate model specification chosen in the
previous section. In (5), the effects of zi−1 carry over to ψi according to an infinite
lag structure and |β1| < 1 guarantees the exponential decay of the effects on distant
future durations. In (6), the 1 × g parameter vector λ∗′ satisfies the restrictions
λ∗′ = β1λ

′. The effects are static with zi−1 affecting only ψi through λ and this
type of model is more suitable whenever the regressors are connected to certain
time periods, for example dummy variables that would capture one-off history
events. Further explanatory variables can also be introduced multiplicatively as
a scaling function, however such an assumption is used predominately to ”de-
seasonalize” in-day trade durations and is not applicable in our model. In addition,
the multiplicative introduction of the regressors would imply that the conditional
mean parameters are varying with zi, an assumption not readily justified.

Concerning the selection of explanatory variables we receive guidance from the
studies of Allen and Gale (1998) which pointed the effects of financial contagion
in the banking sector along with Mishkin and White (2002) which noted the re-
silience of banking sector with financial markets. In the last case stock market
effects affect the health of the banking system due to adverse selection problems
in credit markets, moral hazard issues and depositors panic. Also turbulent pe-
riods in debt markets may also provoke phenomena of bank panic as in the case
of sub-prime crisis where banks and depositors couldn’t determine the amount of
exposure to MBS (Mortgage Bank Securities) of their counterparties leading to
lack of confidence and drying-off liquidity in the interbank markets (Demyanyk
and Hasan, 2010). In this framework we examine the hypotheses that bank crisis
effects along with influences from stock and bond markets affect significantly the
probability of bank failure occurence.

As such, we consider the inclusion of number of failed bank, in the day preced-
ing each tranquil period, as factor indicative of bank crisis pressure and financial
contagion effects. More precisely we distinguish the case where the distress event
occured due to one bank failure only (BANKNUM = 1) and the case where the
event was caused by two or more banks collapsing in the same day (BANKNUM
= 2) indicating a systemic shock effect 10.

In order to capture stock market conditions we construct a binary variable
(FCRISE) taking the value of one in the months where a fall beyond the 5 per
cent quantile of the distribution occured for the monthly returns of the S & P
index 11.

10 The data were found from the Federal Deposit Insurance Coorporation (FDIC)
https://www.fdic.gov/bank/individual/failed/banklist.html
11 The S & P index data span the period from Jan. 1871 till Apr. 2014 and were taken
from the dataset used in Robert J. Shiller’s book, Irrational Exuberance [Princeton University
Press 2000, Broadway Books 2001, 2nd ed., 2005] are available for download available at
http://www.econ.yale.edu/ shiller/data.htm
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Relatively to the bond market distress event indicators we use the difference
between the Moody’s seasoned corporate BAA bond yield and the Moody’s sea-
soned corporate AAA bond yield (CSPREAD). Monthly data for corporate AAA
and BAA bond yields were taken from the FRED database of the Federal Reserve
Bank of Saint Louis 12. As recorded in Rigobon (2002) evidence of money market
turbulence is a flight to quality effect where the spreads over high credit quality
bonds on liquid exposures (Aaa bonds) narrow while at the same time spreads on
Baa bonds substantially widen.

Estimates of model (5) with the predetermined variables are reported in Table
3.

table 3 here

A systemic shock in the banking sector as expressed through the simultaneous
collapse of more that one commercial banks decreases the expected inter-arrival
time and increases the probability of a subsiquent bank collapse. This is evident
from the from the statistically significant (p-value equals 0.0023) and negative co-
efficient estimate of BANKNUM. In line with theory shocks in the bond markets
(CSPREAD) have negative effects reducing the expected inter-arrival time till the
next bank failure which is interpreted as an increase in crisis probability in bank-
ing sector (hazard rate). However, financial shocks in the stock markets are not
significant (p-value equals 0.2329) even though, in line with theory, the coefficient
FCRISE appears negative.

The log likelihood value of (5) shows an improvement over model (4) while
the histogram for the zi sequence, QQ-plots and correlograms for the zi and ui
sequences implied by model (5) mark a marginal improvement.

6 Structural breaks in mean duration levels

A remarkably consistent feature of all estimated models is the high degree of
persistence as captured by the estimated autoregressive coefficient β̂1 or by the sum
α̂1 + β̂1. Even when explanatory variables are introduced, the sum remains above
0.9. In the conditional heteroskedasticity literature, large part of the observed
persistence in high frequency volatility estimates is attributed to structural breaks,
see for example Perron and Qu 2010. Zhang et al. (2001) question how plausible
the stationarity assumption is with transactions duration data and they find strong
evidence of parameter breaks closely aligned with real economic events.

Given the abovementioned, we proceed to test for abrupt shifts (breaks) in
the mean duration level but we do not allow for changing dynamics through time
periods. To estimate the number of breaks and the location of the break points,
we implement an information criteria approach using the BIC criterion that re-
quires searching for the global minimum of the residual sum of squares employing
the efficient search algorithm of Bai and Perron (2003). In order to guard against
under-estimation of the number of breaks when non-monotonic mean shift rever-
sions are present, we use a sequential search method coupled with repartition as in
Bai (1997). The search for breaks is applied on the log duration ln (xi) series. The

12 http://research.stlouisfed.org/fred2/
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log transformation produces series ”closer” to Gaussianity and stabilizes the vari-
ance of the series by reducing the noise levels around potential mean level shifts,
hence, facilitates better statistical results from the breaks search procedure.

We are able to identify three breaks in the mean level of (log) duration at
sample points {ı̂1, ı̂2, ı̂3, } = {246, 465, 1192} that correspond to the following dates
18/9/1940, 14/3/1981 and 2/5/1993. We then split the sample period into 4 sub-
sample regimes and estimate the BC-ACD model

lnψi = ω + α1εi−1 + β1 lnψ
v
i−1 + λ′zi−1 +

3
∑

j=1

δjDj (7)

with dummy variables constructed as Dj = 1
{

i > ı̂j
}

, j = 1, ..., 3. Parameters
δ1, ..., δ3 show the marginal change in mean duration levels between subsequent
regimes. Maximum likelihood estimates of the model with the abovementioned
explanatory covariates and the mean shift dummies are reported in Table 4 while
Fig. 5 shows the observed duration series along with the estimated conditional
duration from model (7).

table 4 here

A number of remarks can be made,

Remark 1 all dummy variable parameter estimates show high statistical signifi-
cance and point to large differences across segments, in particular, a relative in-

crease of 55.5% after 18/9/1940 (since δ̂1
ω̂ = 0.555), a decrease of −67.9% after

14/3/1981 and an increase of 45.6% in the last sub-sample after 2/5/1993.

Remark 2 even though structural brakes are introduced in the specification the
persistence remains as measured in the Box-Cox case by the conditional autore-
gressive coefficient β1.

Remark 3 contrary to the model 5, with the introduction of mean shift dummies
the Ljung-Box statistics at 4 lags for levels and squares of the residuals do not
reject the null hypothesis. From this perspective only when we include mean shifts
there is no remaining unexplained structure in the residuals. However few spikes
remain in a few lags when we examine the histogram of the empirical probability
integral transforms zi as well as correlograms for the series (zi − z̄)p, (ui − ū)p,
p = 1, ..., 4. In any case all other specification diagnostics have accomplished well.

Remark 4 when the mean shift dummies are included in the model, the stock
market crisis variable FCRISE is significant with a p-value around 0.10. Thus
the information carried by the variable is significant when long run shifts are
introduced in the inter-arrival times of bank fail event durations.

fig. 5 here

As a robustness test to alternative sample periods and to assess the impact of
the global financial crisis, we restrict the sample to the pre-crisis period ending in
2006 and we re-estimate the models of tables 1, 4 and 5 for the subsample period
April 1934 to December 2006. All results are available from the author. The avail-
able duration observations were reduced to 1277. The autoregressive parameters
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estimates ω̂, β̂1 and distribution parameter estimates k̂ and γ̂ in table 5 remain
virtually unchanged. The parameter λ increases from 0.75 to 1.44, altering the
shape of the empirical shock impact curve from linear to exponential. The struc-
tural break findings are also the same with minor discrepancies relatively to break
date locations. Finally, the impact of the explanatory variables remains qualita-
tively unchanged albeit the exclusion of the relatively small inter-arrival durations
for bank failures events in the financial crisis episode has a decreasing effect on
the parameter estimates BANKNUM and CSPREAD whereas the FCRISE ef-
fect becomes statisticaly insignificant. To sum up, the robustness check reveals
that the main results are unaffected by the exclusion of the financial crisis (and
post-financial crisis) period.

7 Concluding remarks

We have applied autoregressive conditional duration models to a duration series
that measures the inter-arrival times of bank failures in the USA. With respect to
the econometric challenge of modelling the conditional duration series, our results
confirm the findings of Fernandes and Grammig (2006), Bauwens et al. (2004) and
Allen et al. (2009), with the Burr and log-normal distributions offering superior
performance both in-sample and out-of-sample in comparison to the exponential
and Weibull distributions. The Burr distribution is particularly well suited for
the series at hand given its parametric simplicity and its ability to model small
durations. The produced bank fail arrival intensity is low for very short and very
long durations. In addition, evidence is consistent with the self-exciting hypothesis
where the no-failure event duration demonstrates a high degree of persistence
irrespective of the conditioning on predetermined variables or structural breaks
that might affect the time duration of distress events. A systemic bank crisis effect,
an effect from financial markets extreme negative movements and an explicative
variable linked to turbulence in bond markets constitute significant factors for the
duration process.
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8 Appendix

Fig. 1 Top panel: binary distress event variable, bottom panel: duration variable
xi = ti − ti−1 measures the number of days between two distress events
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Fig. 2 The flat lines superimposed on all histograms are approximate 95% confidence intervals
for the individual bin heights under the null hypothesis that the empirical integral transforms
zi of the residuals by each estimated model are distributed as i.i.d.U(0, 1).
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Fig. 3 Empirical shock impact curve (top panel) and baseline hazard function (bottom panel)
derived from model (4) parametric estimates.
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Fig. 4 Graphical methods results for model (4). The flat lines superimposed on all correlo-
grams are Bartlett’s approximate 95% confidence intervals.
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Fig. 5 Sub-sample regimes with distinct mean duration level.
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Table 1 Estimation results for the ACD and augmented ACD (AACD) models under alter-
native error distributions -E: exponential, -W: Weibull, -B: Burr, -L: Lognormal

ACD-E ACD-W ACD-B ACD-L AACD-E AACD-W AACD-B AACD-L BCACD-B
omega 0.0727 0.0364 0.1491 0.3762 0.0051 0.0020 0.0088 0.0294 -0.1702
p-val. 0.186 0.337 0.000 0.000 0.867 0.874 0.706 0.433 0.001

a 0.1559 0.1742 0.1351 0.1434 0.0463 0.0573 0.0179 0.0412 0.2045
p-val. 0.000 0.000 0.000 0.000 0.965 1.000 1.000 0.828 0.000

b 0.8416 0.8415 0.8498 0.8210 0.9757 0.9771 0.9870 0.9607 0.9916
p-val. 0.000 0.000 0.000 0.000 0.008 0.009 0.000 0.000 0.000

v 0.7089 0.7438 0.6247 0.6372 0.6230
p-val. 0.106 0.252 0.028 0.000 0.000

lamda 0.1055 0.1102 0.0255 0.0817
p-val. 0.957 0.957 0.977 0.852

c -0.6500 -0.6862 -0.8617 -0.7521
p-val. 0.805 0.999 0.999 0.125

beta 0.0153 0.0067 0.0085 0.0205
p-val. 0.812 0.992 0.979 0.569

k 1.5591 1.5633 1.5629
p-val. 0.000 0.000 0.000

gamma 1.2284 0.3740 1.2291 0.3789 0.3780
p-val. 0.000 0.000 0.000 0.000 0.000

sigma 0.9140 0.9127
p-val. 0.000 0.000

lnL -4767.77 -4717.72 -4682.57 -4715.53 -4767.45 -4717.51 -4681.69 -4713.46 -4681.42
AIC 6.509 6.442 6.395 6.439 6.514 6.447 6.399 6.441 6.395
BIC 6.519 6.456 6.413 6.453 6.539 6.476 6.432 6.470 6.416
Q(4) 0.7841 0.6689 0.8118 0.2224 0.8561 0.7200 0.6188 0.0631 0.6140
Q(4)-sq 0.8957 0.9517 0.5284 0.3177 0.8287 0.9474 0.2193 0.1204 0.2242
LR1 0.0000 0.5065 0.9323 0.9323 0.0000 0.5336 0.9526 0.9746 0.9290
LR2 0.5268 0.7986 0.9833 0.9582 0.5248 0.7967 0.9740 0.9595 0.9807
LR3 0.6913 0.6916 0.5111 0.6375 0.7007 0.7425 0.4859 0.6563 0.4729
LR4 0.0000 0.7765 0.9962 0.9978 0.0000 0.7972 0.9977 0.9992 0.9957
LR5 0.0000 0.8804 0.9320 0.9732 0.0000 0.9042 0.9210 0.9782 0.9957

Notes Figures in parentheses correspond to standard errors based on the outer prod-
uct gradient (OPG) estimator of the information matrix. lnL reports the value of the
log-likelihood function, whereas AIC and BIC denotes the Akaike and Schwarz in-
formation criteria. Q(4) and Q2(4) correspond to the p-values of Ljung–Box statistic
for up to 4th order serial correlation in the standardized model residuals and squared
standardized model residuals respectively. LR1 to LR5 display the Berkowitz (2001)
likelihood ratio tests applied to standardized durations.
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Table 2 Out-of-sample 1-step-ahead forecasting results.

MSE RMSE MAE MAPE EXP CORR
ACD-E 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ACD-W 1.0235 1.0117 1.0618 1.1203 0.9951 1.0000
ACD-B 0.9910 0.9955 0.9702 0.9425 1.0157 0.9965
ACD-L 0.9849 0.9924 0.9393 0.8709 1.0062 1.0066
AACD-E 0.9893 0.9946 0.9933 0.9956 0.9945 1.0200
AACD-W 1.0183 1.0091 1.0581 1.1120 0.9935 1.0081
AACD-B 0.9766 0.9882 0.9563 0.9324 1.0073 1.0259
AACD-L 0.9625 0.9811 0.9166 0.8740 0.9931 1.0704
BCACD-B 0.9716 0.9857 0.9453 0.9335 1.0012 1.0358
Notes All measures are divided by the measure of ACD-E. MSE: mean square error,
RMSE: root MSE, MAE: mean absolute error, MAPE: mean absolute percentage
error, EXP: exponential loss function measure, CORR: measures correlation between
actual and forecasted values. See Dufour and Engle (2000) for details on all measures.

Table 3 Estimates of the final BCACD specification with Burr density and predetermined
variables.

omega a b v k gamma BANKNUM CSPREAD FCRISE
Param -0.0277 0.1783 0.9827 0.6078 1.5602 0.3575 -0.0508 -0.0195 -0.0251

(se) 0.0710 0.0707 0.0051 0.2164 0.0562 0.0628 0.0167 0.0067 0.0211
P-val 0.6962 0.0117 0.0000 0.0050 0.0000 0.0000 0.0023 0.0038 0.2329

Model statistics
lnL AIC BIC Q(4) Q2̂(4)

-4671.67 6.3856 6.4181 0.5841 0.0951

LR1 LR2 LR3 LR4 LR5
0.9190 0.9831 0.2326 0.9951 0.6973
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Table 4 Estimates of the final BCACD specification with Burr density, predetermined vari-
ables and structural breaks.

omega a b v k gamma BANKNUM CSPREAD FCRISE
Param 0.1164 0.1171 0.9511 0.7548 1.5726 0.3578 -0.0670 -0.0234 -0.0373

(se) 0.0636 0.0490 0.0109 0.2466 0.0571 0.0639 0.0195 0.0078 0.0229
P-val 0.0673 0.0169 0.0000 0.0022 0.0000 0.0000 0.0006 0.0028 0.1041

d1 d2 d3
Param 0.0645 -0.0790 0.0530

(se) 0.0213 0.0226 0.0135
P-val 0.0025 0.0005 0.0001

Model statistics
lnL AIC BIC Q(4) Q2̂(4)

-4659.11 6.3726 6.4159 0.7561 0.7257

LR1 LR2 LR3 LR4 LR5
0.8949 0.9812 0.3178 0.9910 0.7972
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