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Abstract 

Measuring energy security or resilience in energy is, in the main, confined to indicators which are 

used for comparative purposes or to show trends rather than provide empirical evidence of 

resilience to unpredicted crises. In this paper, the electricity systems of the individual states within 

the United States of America are analysed for their response to the 1973-1982 and the 2003-2012 oil 

price shocks. Empirical evidence is sought for elements which are present in systems that experience 

reduced volatility from the energy shocks in the form of lower prices. Spare capacity is found to be a 

reliable indicator of reduced prices through both periods whilst renewable energy is found to be an 

indicator of reduced prices especially in 1973-1982.  

Keywords 
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1. Introduction 

Economic stability is reliant on effective energy systems which in turn need to be resilient to the 

unexpected. Resilience as a concept has been researched across disciplines and is associated with 

sustainability and robustness, but it is difficult to measure. Several disciplines have advanced models 

for the measurement of resilience or the ability to respond to the unpredictable. Portfolio theory 

(PT), developed for the investment community, measures the risk of an investment portfolio 

(Markowitz, 1952). The Capital Asset Pricing Model (CAPM) built on Markowitz’s theory to optimise 

a portfolio by diversifying assets based on their risk premiums relative to market performance 

(Sharpe, 1964). These models are widely used to measure risk (Fama and French, 2004; Hwang et al., 

2012).  
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In Psychology, the literature on resilience has sought to identify parameters that are associated with 

positive outcomes through principal component and factor analysis (Ungar, 2012). In Ecology, 

research has identified the parameters of diversity, redundancy and system integrity as important 

for resilience, although no model has emerged to predict resilience (Carpenter et al., 2001). Network 

theorists have focused on the structure of a system, indicating its ability to withstand error, failure 

or attack (Watts and Strogatz, 1998; Albert et al., 2000). In the field of energy, security is measured 

by combining relevant indicators which point to risks associated with affordable, available, 

accessible and acceptable supply of energy (Kruyt et al., 2009). Whilst all of these disciplines deal 

with risk and survival, there is little consistency between their approaches and, in the main, little 

evidence of their efficacy. 

The questions that need to be answered to gain insight into resilience in energy are: what role 

diversity, redundancy and structure play in forging resilience; and what predictive models are best 

suited to provide this insight. In this paper two analytical frameworks will be used to construct 

models for predicting resilience in electricity systems.  Firstly, PT will be assessed for its ability to 

predict electricity prices in recognition of research proposing PT for risk optimisation (Awerbuch and 

Berger, 2003; Awerbuch et al., 2008; Bolinger and Wiser, 2008). This will be followed by an 

assessment of the ability of a Resilience Index (RI) to predict electricity prices, in recognition of 

research into the potential for national electricity systems to facilitate electricity intensive industry 

(Molyneaux et al., 2012). To assess the effectiveness of these two methods in predicting good 

outcomes, their prediction accuracy during periods of large energy shocks will be evaluated. 

Analysis of state electricity systems in the United States of America (US) provides data and context 

to measure resilience as the systems provide evidence of diverse system performances over a 40 

year period. The methods of the analysis are outlined in Section 2, the results in Section 3, with 

section 4 providing discussion around the results. In section 5 the study concludes with policy 

recommendations on the significant findings. 
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2. Methods 

The primary research tool is multiple linear regression analysis which assumes a linear relationship 

between the explanatory variables of the PT and RI models and the dependent variable, electricity 

price. 

2.1. Data source 

The US Energy Information Agency (EIA) provides detailed energy information in its State Energy 

Database System (SEDS) 1970-2012i. Electricity capacity and generation data by year, state and plant 

is sourced from the EIA’s Form759.  

2.2. Price as the dynamic variable 

Ecologists argue that fast variables show the dynamics of the underlying structural variables 

(Carpenter et al., 2001) although stability in variables is not considered a predictor of resilience 

(Holling, 1973).  However ecosystems need to keep functioning despite volatility in elements. 

Applying these arguments to electricity systems, price represents the fast variable as it reflects the 

dynamics of the structure.  Thus, if price can show levels of stability, despite volatility in structural 

variables, then this is evidence of resilience in a system such as the electricity supply system. 

2.2.1. Which price to measure 

Electricity assets are large, expensive, enduring and relatively inflexible. Prices reflect not just 

changes in current input costs, but decades of infrastructure expenditure. Price is chosen as the 

dependent variable rather than change in price due to the long-term nature of generation fleets. 

Measuring change in price fails to incorporate the impacts of prior period performance. Thus, price 

provides a metric of value associated with the industry, and captures the role of historical and 

current structural components in influencing that value.  
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The price of electricity to industry is used as a proxy for wholesale price. Industry price is used in 

preference to the average price across all consumer classes to exclude the varying costs associated 

with distribution to residential customers.  

Electricity prices in the US 1970-1990 were subject to regulation which reflected the public mood of 

antipathy to price instability. Although price in any year is a reflection of prior period changes, prices 

in 1982 do not necessarily reflect the lumpy transition from 1973 to 1982. Figure 1 shows the ratio 

of industry price in 1982 to the weighted average of industry price 1973-1982.  States like 

Washington and Oregon saw a single sharp increase in price in 1982 due to nuclear power 

development which is not representative of price 1973-1982. It is therefore more appropriate to 

measure the weighted average price for industry for the periods analysed.

 

Figure 1: The ratio of the price of electricity to industry in 1982 and the weighted average industry price 1973-1982 

Throughout the analysis, real prices are used to differentiate from movements in the general level of 

prices. Real prices are calculated using nominal prices adjusted for CPI, as detailed in Equation 1: 

 𝑃𝑟𝑖𝑐𝑒2012 =  𝑃𝑟𝑖𝑐𝑒𝑛 𝑋 𝐶𝑃𝐼2012𝐶𝑃𝐼𝑛  
(1) 

where   𝑃𝑟𝑖𝑐𝑒2012 = Real price (expressed in 2012 dollars)  𝑃𝑟𝑖𝑐𝑒𝑛 = Nominal price in year n  𝐶𝑃𝐼𝑛 𝐶𝑃𝐼2012 

= Consumer price index in year n 

= Consumer price index in 2012 
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2.3. Portfolio Theory as a model for electricity price prediction 

PT is premised on volatility in prices indicating risk. Applied to a fleet of electricity generators, the 

risk associated with each fleet is based on the effects of fuel cost volatility.  This risk metric is 

analysed for its ability to predict electricity price during an energy shock.  

2.3.1. Calculating PT risk 

PT assumes that the risk of the portfolio is measured by the variance of return of each security and 

by the covariance of returns between each pair of securities (Dobbins et al., 1994). Applying this 

model to an electricity system, generation fuel is substituted for security to establish the risk 

inherent in the system from fuel cost volatility. The five-fuel-source model is shown in Equation 2: 

 𝑉(𝑅) = ∑ 𝑃𝑖2𝑛
𝑖=1 𝜎𝑖2 + 2 ∑ ∑ 𝑃𝑖 𝑛

𝑗=𝑖+1 𝑃𝑗𝜎𝑖𝑗𝑛−1
𝑖=1  (2) 

Where:  𝑉(𝑅) Variance in price of the generation portfolio 𝑃𝑖  Proportion of generation from fuel type i   𝜎 𝑖2 Variance in cost of fuel type i  𝑟𝑖𝑗 Covariance in cost between fuel types i and j  

i, j Fuels: coal (CL), natural gas (NG), uranium (NU), oil (PA), renewable 

(RE) 

  

2.3.2. PT risk regression model 

The PT risk model for regression analysis is specified in Equation 3. 

 𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 =  𝛽0 + 𝛽1𝑉(𝑅)𝑠 + 𝜀𝑠 (3) 

where   𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 = Weighted average price to industry in state s  𝛽0 = ESICDKR intercept  𝛽1 = coefficient of  𝑉(𝑅)𝑠   𝑉(𝑅)𝑠 = variance in price of generation portfolio for state s  𝜀𝑠 = random error in ESICDKR for state s  

2.3.3. Disaggregated PT risk regression model 

An aggregated PT risk metric may mask the impact of individual metrics, so PT risk is disaggregated 

into its component metrics to yield insights into which variables exert most influence. Table 1 shows 

the disaggregated PT risk explanatory variables: 
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Table 1: Risk metrics as explanatory variables 

Risk metric Regression Variable name Variable calculation 

Coal price TERM_RISK_CL 𝑃𝑐𝑙2 𝜎𝑐𝑙2  

Oil price TERM_RISK_PA 𝑃𝑝𝑎2 𝜎𝑝𝑎2  

NG price TERM_RISK_NG 𝑃𝑛𝑔2 𝜎𝑛𝑔2  

Uranium price TERM_RISK_NU 𝑃𝑢𝑟2 𝜎𝑢𝑟2  

Correlation Coal-oil TERM_CORR_CLPA 2𝑃𝑐𝑙𝑃𝑝𝑎𝑟𝑐𝑙𝑝𝑎𝜎𝑐𝑙𝜎𝑝𝑎 

Correlation Coal-NG TERM_CORR_CLNG 2𝑃𝑐𝑙𝑃𝑛𝑔𝑟𝑐𝑙𝑛𝑔𝜎𝑐𝑙𝜎𝑛𝑔 

Correlation Coal-uranium TERM_CORR_CLNU 2𝑃𝑐𝑙𝑃𝑢𝑟𝑟𝑐𝑙𝑢𝑟𝜎𝑐𝑙𝜎𝑢𝑟 

Correlation Oil-NG TERM_CORR_PANG 2𝑃𝑝𝑎𝑃𝑛𝑔𝑟𝑝𝑎𝑛𝑔𝜎𝑝𝑎𝜎𝑛𝑔 

Correlation Oil-uranium TERM_CORR_PANU 2𝑃𝑝𝑎𝑃𝑢𝑟𝑟𝑝𝑎𝑢𝑟𝜎𝑝𝑎𝜎𝑢𝑟 

Correlation NG-uranium TERM_CORR_NGNU 2𝑃𝑛𝑔𝑃𝑢𝑟𝑟𝑛𝑔𝑢𝑟𝜎𝑛𝑔𝜎𝑢𝑟 

   

Price and correlated price risk for renewables are not present because there is no fuel price or 

correlated price risk associated with most renewable energy.  

Using the disaggregated metrics of PT risk as explanatory variables and price as dependent variable, 

the ordinary least squares regression model is shown in Equation 4.  

 𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 =  𝛽0 + 𝛽1𝑋1𝑠 + 𝛽2𝑋2𝑠+. . . + 𝛽𝑘𝑋𝑘𝑠 + 𝜀𝑠 (4) 

where   𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 = Weighted average price to industry in state s  𝛽0 = ESICDKR intercept  𝛽𝑘 = coefficients of  𝑋𝑘   𝑋𝑘 = metric k of PT risk (detailed in Table 1)  𝜀𝑠 = random error in ESICDKR for state s  

2.4. Resilience Index as a model for electricity price prediction 

Energy security indices are popular with respect to evaluating the energy security of a country 

against other countries and over time. Most have focused on the security of oil supply, but others 

have been constructed to include multitudes of variables including metrics for political risk, long-

term sustainability and governance (Kruyt et al., 2009).  Thresholds and limits of the metrics used 

tend to be subjectively applied by nominated experts. An alternate energy security index, the RI, was 

constructed to measure risk at all levels of the electricity supply process using thresholds and limits 

of country statistics rather than expert approximations (Molyneaux et al., 2012).  
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2.4.1. Calculating RI 

The individual risks measured by the index included: ENERGY USE (risk of price rises as a result of 

scarcity; EMISSIONS (risk associated with costs of carbon dioxide (CO2) emissions); GENERATION 

EFFICIENCY (risk associated with additional costs from inefficient generation); DISTRIBUTION 

EFFICIENCY (risk associated with additional costs of inefficient transport of electricity); SPARE 

CAPACITY (risk associated with price increases because of insufficient capacity); DIVERSITY (risk 

associated with increased costs from fuel supply constraints); and IMPORTS (risk associated with 

being reliant on imports of fuel and electricity). The model here is adjusted to reflect constraints in 

data and the context of the periods.  

Firstly, distribution losses are excluded from this analysis. Interstate electricity transfers pre-1990 

are estimated by the EIA using, amongst other things, regional loss estimates. Applying regional loss 

estimates, assumes that distribution losses are constant across multiple states. For this reason, 

analysing distribution losses is meaningless.  

Secondly, CO2 emissions are excluded from the analysis. Control of CO2 emissions was not a cost 

factor during the 1970s and the finalisation of CO2 emission standards by the Environmental 

Protection Agency is only expected during 2015/6 (EPA, 2015). For this reason, CO2 emissions as a 

potential cost risk are not assessed for impact on price. 

Thirdly, the imports metric is an aggregate of imports of fuel for electricity generation and imports of 

electricity for electricity consumption. Fuel imports are subject to volatility in international, national 

and local fuel markets whilst imported electricity is dependent on local electricity generation 

capacity. Reflecting these different structural risks, the imports metric is disaggregated into 

electricity from imported fuels, and imported electricity.  

The RI, as analysed here, is composed of: energy use; generation efficiency; spare capacity; diversity; 

imports of fuel; and imports of electricity. The individual metrics are normalised, against best and 
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worst thresholds established by best and worst state performance, adjusted for a small margin of 

error of 5%, and then aggregated into a geometric mean, as shown in Equation 5. 

 𝑥 𝑖𝑛𝑑𝑒𝑥 = 𝑥 − min(𝑥)max(𝑥) −  min (𝑥) (5) 

The endogenous thresholds are used in preference to subjective predictions of acceptable minima 

and maxima for each of the metrics. The calculation of the RI is shown in Equation 6. 

2.4.2. RI regression model 

The RI ordinary least squares regression model is specified in Equation 7: 

 𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 =  𝛽0 + 𝛽1𝑅𝐼𝑠 + 𝜀𝑠 (7) 

where   𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 = Weighted average price to industry in state s  𝛽0 = ESICDKR intercept  𝛽1 = coefficient of  𝑅𝐼𝑠   𝑅𝐼𝑠 = RI for state s  𝜀𝑠 = random error in ESICDKR for state s  

 

2.4.3. Disaggregated RI regression model 

An aggregated RI metric may mask the dynamics of individual metrics, so disaggregating RI may 

yield insights into which variables exert most influence. Table 2 details the variable calculations. 

Table 2: RI metrics as explanatory variables 

RI metric Regression Variable 

name 

Variable calculation 

Diversity DIVERSITY =1−∑ 𝑠2𝑛𝑖=1 ) 

Spare Capacity SPARECAP_GDP (maximum kWh possible - kWh 

generated)/GDP 

Loss in generation LOSSINGEN 1-(BBtu produced as electricity/BBtu 

 𝑅𝐼 = √𝑎. 𝑏. 𝑐. 𝑑. 𝑒. 𝑓6
 (6) 

where   

a non-renewable fuel used per kWh consumed  

b 1-(energy produced as electricity/energy consumed in generation)  

c (maximum electricity capacity - electricity generated)/GDP  

d Probability of electricity from a different fuel type  

e Proportion of energy generated from imported fuels  

f Proportion of electricity consumed from electricity imports or Proportion of 

electricity exported  
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consumed in generation) 

Non-renewable energy used ENERGYUSED non-renewable Btu used/kWh consumed 

Imports: fuel for generation IMPORTS_FUEL kWh from imported fuel / kWh generated 

Imports: electricity for 

consumption 

IMPORTS_ELEC If imports > 0,  

then kWh imported/kWh consumed, 

else kWh exported/kWh generated 

   

Adapting Equation 7 to allow for disaggregated metrics of RI, specifies: 

 𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 =  𝛽0 + 𝛽1𝑋1𝑠 + 𝛽2𝑋2𝑠+. . . + 𝛽𝑘𝑋𝑘𝑠 + 𝜀𝑠 (8) 

where   𝐸𝑆𝐼𝐶𝐷𝐾𝑅𝑠 = Weighted average price to industry in state s  𝛽0 = ESICDKR intercept  𝛽𝑘 = coefficients of  𝑋𝑘   𝑋𝑘 = parameter k of RI risk (detailed in Table 2)  𝜀𝑠 = random error in ESICDKR for state s  

2.5. Periods of analysis 

Figure 2 shows the progression of electricity prices in the US 1970-2012.  

 
Figure 2: Average US price of electricity to industry and oil spot price, 1970-2012  

 

Prior to 1973, oil prices had been low and stable. Due mainly to US support of Israel during the Yom 

Kippur war with Egypt, Arab states declared an increase in the posted price of oil and an embargo on 

the export of oil to most consumer countries in October 1973. This was the start of multiple, large oil 

price increases until June 1974. Then in late 1978, political disruption in Iran triggered oil prices to 

escalate dramatically again (Yergin, 1991). Prices peaked in 1980 before starting a slow decline. 

Electricity prices, being subject to regulatory review and determined by historical costs and profit 

levels, continued to rise through to 1982 before slowly declining from 1983.  
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A lengthy period of relatively stable and low oil prices followed. From 2003 a surge in global demand 

led to oil price increases not seen since the 1970s. The price escalation was interrupted by the 2008 

Global Financial Crisis, but surged again after 2009. During 2003-12, electricity prices increased, 

although not at the levels experienced 1973-1982. 

Based on the levels of oil price volatility, the periods analysed are 1973-1982 and 2003-2012. 

3. Results 

3.1. Analysing the impact of 1970s oil crises on price 

3.1.1. Portfolio Theory risk as predictor of price  

Figure 3 shows the relationship between PT risk, the composite metric, and price 1973-1982. The 

majority of states show low PT risk, with varying levels of pricing. Hawaii shows a high level of risk 

and high price. The fit for risk as a predictor of electricity prices is shown in Table 3. Whilst the 

composite metric for risk explains only 27.6% of the variation in price, the F statistic of 22.85582 

indicates a reasonable overall fit. The coefficient for risk is statistically significant although at 0.0062 

is small and most of the price prediction is explained by the average price across the states.  
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Figure 3: PT risk as predictor of price 1973-1982 

Whilst Hawaii may appear to be an outlier, excluding it increases the coefficient from 0.006228 to 

0.011527 but does not improve the fit. 
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3.1.1.1. Which risk variables are statistically significant as predictors of price  

The disaggregated risk variables explain 31.3% of the variation in prices which is an improvement on 

the fit for the composite metric at 27.6%. However, t-tests on the coefficients indicate that many of 

the variables are not statistically significant. Excluding the statistically insignificant variables, the 

remaining significant variables of TERM_RISK_PA and TERM_CORR_CLPA explain 34.9% of variation 

in price. 

Table 3: Regression analysis of PT variables as predictors of price 

 PT PT disaggregated 

variables 

PT stat-signfcnt 

variables 

Dependent variable  (Weighted average price 1973-82) ESICDKR_AVG 

Mean of dependent variable  0.099258  

Std Deviation of dependent variable  0.030340  

Regression  Least squares  

Observations  51  

    

Fit: R2 0.290219 0.450202 0.374694 

Fit: Adj R2 0.275733 0.312752 0.348639 

Fit: F-stat 22.85582 
(0.000045) 

3.275397 
(0.003547) 

14.38118 

(0.000013) 

    

Intercept (Prob) 

VIF 
0.090559 (0.0000) 

1.3 
0.086081 (0.0000) 

3.9 
0.089083 (0.0000) 

1.4 

    

Coefficients     

Single metric(Prob) 

VIF 
0.006228 (0.0000) 

1.3 
  

Term_risk_CL(Prob) 

VIF 
 0.002573 (0.9351) 

2.4 
 

Term_risk_NG(Prob) 

VIF 
 -0.013746 (0.2417) 

2.5 
 

Term_risk_NU(Prob) 

VIF 
 0.516463 (0.4130) 

1.8 
 

Term_risk_PA(Prob) 

VIF 
 0.006285 (0.0001) 

1.3 
0.006719 (0.0000) 

1.1 

Term_corr_CLNG(Prob) 

VIF 
 0.026603 (0.4898) 

2.2 
 

Term_corr_CLNU (Prob) 

VIF 
 -0.037847 (0.9193) 

1.6 
 

Term_corr_CLPA (Prob) 

VIF 
 0.057980 (0.0698) 

1.5 
0.074380 (0.0105) 

1.3 

Term_corr_NGNU (Prob) 

VIF 
 -0.526896 (0.2240) 

2.0 
 

Term_corr_PANG (Prob) 

VIF 
 0.028852 (0.0521) 

2.1 
 

Term_corr_PANU (Prob) 

VIF 
 0.152748 (0.4619) 

2.4 
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Jarque_Bera stat 
(heteroskedasticity, exists if > 5.99) 

2.195632 4.508548 3.773523 

Matrix condition index 
(multicollinearity, exists if > 15) 

3.4423 503.7042 22.2756 

    

The intercept reflects the average price across the states, with the coefficient for TERM_CORR_CLPA 

of 0.074 with 99% confidence of statistical significance predicting a strong impact on price. The 

graphical representation of the fit and residuals in Figure 4 shows low economic significance. The PT 

risk model predicts none of the benefit experienced by the hydro states of Idaho, Montana, Oregon 

and Washington in the form of very low electricity prices and price stability.  

 

Figure 4: Fit and residual analysis of statistically significant parameters of PT risk as predictors of price  
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3.1.2. Resilience Index as predictor of price 

Figure 5 shows the relationship between RI, the composite metric, and price. Lower prices are 

associated with higher levels of resilience.  
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Figure 5: RI as predictor of price 1973-82 

The fit for the RI as a predictor of price is shown in Table 4. The composite RI explains 18.6% of the 

variation in price, although the RI coefficient of -0.107047 with 99% confidence of statistical 

significance provides evidence of a sizeable negative relationship with price. 

3.1.2.1. Which RI variables are statistically significant as predictors of price 

The disaggregated variables of resilience explain 64.1% of the variation in prices. However, 

hypothesis tests on the coefficients indicate that many of the variables are not statistically 

significant. When the statistically insignificant variables are excluded from the model, the remaining 

LOSSINGEN, SPARECAP_GDP and IMPORTS_FUEL explain 63.4% of variation in price.   

LOSSINGEN, however, masks the different efficiencies associated with different fuel types and 

technologies. If LOSSINGEN is disaggregated into the percentage of generation from each fuel source 

(Pi in Equation 2), greater visibility of each fuel’s impact on price can be achieved. Including the 

percentage of all fuel types in regression analysis however could result in collinearity between the 

fuel percentage variables.  Thus, in recognition of the dominance of CL in electricity generation, 

CLPERC is excluded as an explanatory variable.  
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The explanatory variables that are included in the adjusted model, are NGPERC, NUPERC, PAPERC, 

REPERC, DIVERSITY, SPARECAP_GDP, IMPORTS_FUEL and IMPORTS_ELEC. These variables explain 

74.8% of the variation in price. The coefficients for NGPERC, NUPERC and IMPORTS_FUEL are very 

small and the hypothesis tests on the coefficients indicate a high probability that the coefficients are 

not statistically significant, so they are excluded from the model.  

Table 4: Regression analysis of RI variables as predictors of price 

 RI RI  

disagg. 

variables 

RI  

Stat-signfcnt 

variables 

RI adj 

W-

FuelPerc 

variables 

RI adj 

Stat-signfcnt 

variables 

Dependent variable (Weighted average price 1973-82) ESICDKR_AVG 

Mean of dependent variable  0.099258   

Std Deviation of dependent variable  0.030340   

Regression   Least squares   

Observations   51   

      

Fit: R2 0.202505 0.683774 0.656080 0.788649 0.780384 

Fit: Adj R2 0.186230 0.640653 0.634128 0.748392 0.755982 

Fit: F-stat 12.44239 
(0.000922) 

15.85687 
(0.000000) 

29.88660 
(0.000000) 

19.59019 
(0.000000) 

31.98066 
(0.000000) 

      

Intercept  
(Prob) 

VIF 

0.140695 
(0.0000) 

10.4 

0.41508 
(0.0022) 

25.0 

0.038134 
(0.0036) 

23.5 

0.110369 
(0.0000) 

21.4 

0.112084 
(0.0000) 

18.9 

      

Coefficients       

Single metric 
(Prob) 

-0.107047 
(0.0009) 

    

EnergyUsed 
(Prob) 

VIF 

 0.001058 
(0.2273) 

19.0 

   

Lossingen 
(Prob) 

VIF 

 0.093598 
(0.0030) 

56.2 

0.124238 
(0.0000) 

26.4 

  

Imports_elec 
(Prob) 

VIF 

 0.002524 
(0.8917) 

3.9 

 -0.028637 
(0.0084) 

1.8 

-0.026225 
(0.0098) 

1.6 

Imports_fuel 
(Prob) 

VIF 

 0.031783 
(0.0010) 

3.6 

0.026594 
(0.0023) 

3.0 

0.009373 
(0.3274) 

5.7 

 

Diversity 
(Prob) 

VIF 

 0.018865 
(0.1690) 

6.1 

 0.025875 
(0.0385) 

7.1 

0.028178 
(0.0074) 

5.0 

Sparecap_gdp 
(Prob) 

VIF 

 -0.122260 
(0.0000) 

9.9 

-0.100925 
(0.0001) 

7.6 

-0.097249 
(0.0003) 

11.6 

-0.095639 
(0.0003) 

11.5 

NGperc    -0.003205  
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(Prob) 

VIF 
(0.8014) 

2.1 

NUperc 
(Prob) 

VIF 

   0.003753 
(0.8105) 

2.3 

 

PAperc 
(Prob) 

VIF 

   0.055855 
(0.0000) 

3.1 

0.061970 
(0.0000) 

2.4 

REPerc 
(Prob) 

VIF 

   -0.059217 
(0.0000) 

2.3 

-0.061539 
(0.0000) 

1.8 

      

Jarque_Bera stat 
(heteroskedasticity  

exists if >5.99) 

4.96 0.69 1.79 1.22 1.65 

Condition index 
(multicollinearity  

exists if >15) 

9.1 168.0 12.9 5.3 14.2 

 

The explanatory variables of PAPERC, REPERC, DIVERSITY, SPARECAP_GDP AND IMPORTS_ELEC, 

explain 75.6% of the variation in price, as detailed in Table 4 with a good overall fit. The coefficients 

on fuel percentages provide a useful indication of how the price of electricity from different fuel 

sources varies from the intercept (which reflects the average price associated with CLPERC, NGPERC 

and NUPERC). The coefficients for PAPERC and REPERC, at +0.061970 and -0.061539 respectively 

with 100% confidence of statistical significance, show the additional price associated with electricity 
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Figure 6: Fit and residual analysis of statistically significant variables of RI as predictors of price 
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from PAPERC and the discount associated with electricity from REPERC. The coefficient for 

SPARECAP_GDP at -0.095639 with nearly 100% confidence of significance highlights the potential for 

spare capacity to exert downward pressure on price. The coefficient for IMPORTS_ELEC at -0.026 

with 99% confidence of significance shows modest downward pressure on price. Against 

expectations, the coefficient for DIVERSITY at +0.028 with 99% confidence of significance shows 

evidence of upward pressure on price.  Figure 6 shows the fit and residual analysis of the statistically 

significant RI variables on price.  

For completeness, alternative calculations for diversity shown in Table 5 were also analysed using 

single linear regression. However they showed no improved relationship between alternative 

measures of diversity and price.   

Table 5: Alternative measures of diversity analysed 

Measure of diversity Calculation  

Shannon’s diversity index  -∑ 𝑝𝑖𝑠𝑖=1 𝑙𝑛 𝑝𝑖  𝑝𝑖 = proportion of entity from ith type 𝑠 = total number of entities 

Simpson’s Equitable diversity 
index 

𝐸 = 1∑ 𝑝𝑖2𝑠𝑖=1  𝑥 1𝑠 𝑝𝑖 = proportion of entity from ith type 𝑠 = total number of entities 

Hunter-Gaston index 

(Simpsons index sampling 

without replacement) 

∑ 𝑛𝑖(𝑛𝑖 − 1)𝑠𝑖=1𝑠(𝑠 − 1)  
𝑛𝑖= number of entities from ith type 𝑠 = total number of entities  

  

3.1.2.2. Considering multi-collinearity 

Analysis of the coefficients indicates the possibility of collinearity between SPARECAP_GDP and the 

intercept. Variance Inflation Factor (VIF), a measure of the inflation of a coefficient estimate due to 

collinearity, for SPARECAP_GDP is 11.5 and for the intercept is 18.9.  Collinearity is not considered to 

indicate mis-specification but rather the potential for unstable estimated regression coefficients. 

Acceptable levels of collinearity are based on rules of thumb, generally up to a VIF of 10 (Chatterjee 

and Hadi, 2006).  

Whilst the VIF for SPARECAP_GDP is higher than the usual threshold, there is little other evidence 

that collinearity is a problem in the model. Firstly, the adjusted R2 is not unusually high and increases 
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by only 0.079 when SPARECAP_GDP is added to the model. Secondly, when SPARECAP_GDP is 

removed from the model, the other variable coefficients adjust marginally and the coefficient for 

IMPORTS_ELEC reduces in statistical significance but the signs do not change.  Thirdly, the standard 

errors for SPARECAP_GDP and the other variables are small which does not point to collinearity. 

Fourthly, a correlation matrix reveals that there is some correlation between SPARECAP-GDP and 

CLPERC but it is only 0.431 while the correlation between SPARECAP_GDP and CLPERC-NGPERC-

NUPERC combined is 0.553. Fifth, the coefficient covariance matrix indicates little covariance 

between any of the coefficients or the intercept. Finally, Belsley et al propose that decomposition of 

the coefficient-variance matrix to establish the sensitivity of the estimated standard errors of 

regression coefficients to small changes in the data, can diagnose potential collinearity problems. 

This sensitivity is measured by the condition number of the matrix which is the largest condition 

index, calculated as follows:  

 𝐼 = √𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛⁄  (9) 

 

They find that the joint condition of high variance-decomposition proportions for two or more 

coefficients associated with a high condition number signals the presence of degrading collinearity. 

Condition numbers of 15 indicate some level of collinearity but over 30 indicate serious and 

degrading collinearity (Belsley et al., 2005). In this model, the condition number is 14.2, which points 

to acceptable levels of collinearity.  

In conclusion, it is to be expected that there will be some relationship between SPARECAP_GPD and 

CLPERC-NGPERC-NUPERC because they are the major sources of large generation.  Although there is 

some evidence of collinearity between SPARECAP_GDP and CLPERC, it is unlikely to diminish the 

results as presented in Table 4. 

3.1.3.   Comparing PT and RI variables as predictors of price 

TERM_RISK_PA predicts small impact on price but TERM_CORR_CLPA predicts large impact on price. 

However, TERM_RISK_PA and TERM_CORR_CLPA explain only 34.9% of the variation in price. By 
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contrast, the RI parameters of PAPERC and REPERC, SPARECAP_GDP, DIVERSITY and IMPORTS_ELEC 

explain 75.6% of the variation in price. DIVERSITY and PAPERC exert upward pressure on price whilst 

REPERC, SPARECAP_GDP and IMPORTS_ELEC exert downward pressure on price. The results, 

summarised in Figure 7, suggest that the RI variables are better at predicting price over the longer 

term than the PT variables.  

 

 
 
Figure 7: Summary of PT risk and RI variables as predictors of price 

In theory, electricity from coal, natural gas and nuclear should have offered security from price 

volatility in the oil markets. PT indicates that correlation between oil and coal prices explains an 

increase in the price of electricity generated from coal, but fails to identify the benefits associated 

with diversification towards renewable energy. The improved fit of the RI suggests that the RI 

variables are more representative of the illiquid nature of the fleet and show the effect of the slow-

moving structural variables on price. Types of fuels used, which dictate technologies used and fuel 

import networks, are structural variables that change slowly over time, whereas price variance and 
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correlations are designed to measure short-term marginal benefits from switching between 

substitutes.  

3.2. Analysing the impact of oil demand growth 2003-12 on price 

US average electricity prices for industry remained at pre-1973 price levels from 1997 to 2002. 

However, in 2003 oil prices started rising again. In this period, prices in Hawaii were more than 3 

standard deviations higher than the rest of the country, as can be seen in Figure 8. Hawaii is 

therefore excluded as an outlier. 
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Figure 8: Prices to industry 2003-12 

3.2.1. Portfolio Theory variables as predictors of price 

As detailed in Table 6, PT risk explains only 7.4% of the variation in price, but disaggregating PT into 

its component metrics, shows the statistically significant independent variables explaining 63.1% of 

the variation in price. The coefficient for TERM_RISK_NU at 10.27375 with 94% confidence of 

significance shows a strong influence on variation in price. The negative coefficient 

TERM_CORR_NGNU with nearly 100% confidence of significance, appears to contradict the positive 

coefficient for TERM_RISK_NG. 
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The results are sufficiently unexpected to justify additional analysis. Checking for collinearity, VIFs 

range from 1.1 to 3.0 which are not high. However the matrix condition number of 6582 suggests 

serious collinearity (Belsley et al., 2005). Using fuel price variance multiple times within the 

calculation of PT risk, reiterates the same relationship with electricity price, so the existence of 

collinearity makes sense. Variables associated with variance decomposition proportions of greater 

than 0.5 include TERM_RISK_NU, TERM_CORR_CLNU, TERM_CORR_CLPA, TERM_CORR_NGNU and 

TERM_CORR_CLNG. The condition number reduces to 3.7 when these variables are excluded. Whilst 

collinearity does not predict mis-specification of the model, very high levels indicate that the 

coefficients are extremely sensitive to small changes in variable values and are therefore unreliable 

(Chatterjee and Hadi, 2006). Considering that the composite metric, PT risk, is not a good predictor 

of price and that it is inadvisable to rely on the coefficients of the disaggregated PT explanatory 

variables, it is suggested that only the explanatory variables TERM_RISK_NG and TERM_RISK_PA be 

included for analysis.  The Jarque-Bera stat however indicates heteroskedasticity which is only 

reduced under the test threshold of 5.99 when Alaska, New Hampshire, Connecticut, Massachusetts, 

California and Vermont are excluded.  With the remaining 43 states, TERM_RISK_NG and 

TERM_RISK_PA show small increases in coefficients and explain 63% of the variation in price. 

Excluding so many states from the analysis however complicates comparison with RI, so the 43 state 

model is excluded. 

Table 6: Regression analysis of PT risk variables as predictors of price 

 PT PT 

disaggregated 

variables 

PT stat-

signfcnt 

variables 

PT stat-

signfcnt 

variables 

wout 

collinear 

PT stat-

signfcnt 

variables 

wout 

collin&hetskd 

Dependent variable (Weighted average price 2003-12) ESICDKR_AVG 

Mean of dependent variable 0.073919  0.066128 

Std Deviation of dependent variable 0.024989  0.015926 

Regression   Least squares  Least squares 

Observations   50  43 

      

Fit: R2 0.093072 0.711348 0.683802 0.284068 0.649446 

Fit: Adj R2 0.074178 0.637335 0.631102 0.253603 0.631918 
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Fit: F-stat 4.925941 
(0.031216) 

9.611076 
(0.000000) 

12.97545 
(0.000000) 

9.324360 
(0.000389) 

37.05251 
(0.000000) 

      

Intercept  
(Prob) 

VIF 

0.071842 
(0.0000) 

1.1 

0.064818 
(0.0000) 

3.4 

0.063650 
(0.0000) 

2.6 

0.067418 
(0.0000) 

1.2 

0.060546 
(0.0000) 

1.2 

      

Coefficients (Prob) VIF      

Single metric 
(Prob) 

VIF 

0.002741 
(0.0312) 

1.3 

    

Term_risk_CL 
(Prob) 

VIF 

 -0.058358 
(0.351) 

2.9 

   

Term_risk_NG 
(Prob) 

VIF 

 -0.013908 
(0.0000) 

1.5 

0.013798 
(0.0000) 

1.4 

0.015214 
(0.0000) 

1.2 

0.013362 
(0.0000) 

1.2 

Term_risk_NU 
(Prob) 

VIF 

 8.823021 
(0.1113) 

3.2 

10.27375 
(0.0590) 

3.0 

  

Term_risk_PA 
(Prob) 

VIF 

 0.001315 
(0.1817) 

1.5 

0.002065 
(0.0168) 

1.1 

0.001922 
(0.1051) 

1.0 

0.002136 
(0.0002) 

1.0 

Term_corr_CLNG 
(Prob) 

VIF 

 0.112245 
(0.0277) 

3.4 

0.158853 
(0.0003) 

2.3 

  

Term_corr_CLNU  
(Prob) 

VIF 

 -1.253339 
(0.0649) 

3.2 

-1.373458 
(0.0191) 

2.3 

  

Term_corr_CLPA  
(Prob) 
VIF 

 0.334788 
(0.0021) 

2.0 

0.355043 
(0.0002) 

1.4 

  

Term_corr_NGNU  
(Prob) 

VIF 

 -0.696605 
(0.0203) 

4.2 

-0.947696 
(0.0001) 

2.4 

  

Term_corr_PANG  
(Prob) 

VIF 

 0.031776 
(0.1955) 

1.9 

   

Term_corr_PANU  
(Prob) 

VIF 

 1.540874 
(0.1888) 

3.3 

   

      

Jarque_Bera stat 
(heteroskedasticity.  

exists if >5.99) 

16.49 4.14 15.00 29.07 4.85 

Matrix condition  
(collinearity,  

exists if >15) 

3.4 6800 6582 3.7 3.8 
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TERM_RISK_NG and TERM_RISK_PA as explanatory variables explain 25% of the variation in price. 

The regression results in Table 6 show that TERM_RISK_NG exerts upward pressure on price with 

nearly 100% confidence of statistical significance and TERM_RISK_PA exerts small upward pressure 

on price with 89% confidence of statistical significance. The F-stat indicates a good overall fit.  

Figure 9 shows the fit and residual analysis of the statistically significant PT variables as predictors of 

price. 

 

Figure 9: Fit and residual analysis of statistically significant PT variables as predictors of price 2003-12 (excluding HI) 

3.2.2. Resilience Index variables as predictors of price  

As detailed in Table 7, the composite RI explains only 3.2% of the variation in price. However, the 

statistically significant disaggregated RI variables, with fuel percentages substituted for LOSSINGEN, 

explain 72.4% of the variation in price. The coefficients for the fuel percentages indicate, with more 

than 99% confidence of statistical significance, that the price of electricity from: NG is higher than 

the average by 8c/kWh; nuclear is higher by 5c/kWh; and oil is higher by 5c/kWh. The increased 

price associated with electricity from NG is surprising in view of the large reduction in NG prices as a 

result of supply from unconventional sources, but confirms the finding in the PT risk analysis that NG 

price risk was associated with higher prices.  
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Table 7: Regression analysis of RI variables as predictors of price 

 RI RI  

disagg. 

variables 

RI  

Stat-signfcnt 

variables 

RI adj 

W.FuelPerc 

variables 

RI adj 

Stat-signfcnt 

variables 

Dependent variable (Weighted average price 2003-12) ESICDKR_AVG 

Mean of dependent variable 0.073919 

Std Deviation of dependent variable 0.024989 

Regression Least squares 

Observations 50 

      

Fit: R2 0.051388 0.317928 0.299996 0.759040 0.746856 

Fit: Adj R2 0.031625 0.222755 0.254344 0.712023 0.724354 

Fit: F-stat 2.600228 3.340530 6.571302 16.14408 33.19111 

      

Intercept  
(Prob) 

VIF 

0.094399 
(0.0000) 

14.3 

0.047730 
(0.0215) 

41.2 

0.064859 
(0.0000) 

10.8 

0.061477 
(0.0000) 

16.5 

0.060518 
(0.0000) 

6.8 

      

Coefficients (Prob) VIF      

Single metric 
(Prob) 

VIF 

-0.049933 
(0.1134) 

14.3 

    

EnergyUsed 
(Prob) 

VIF 

 9.07E-05 
(0.9541) 

34.9 

   

Lossingen 
(Prob) 

VIF 

 0.029599 
(0.4959) 

73.8 

   

Imports_elec 
(Prob) 

VIF 

 0.006380 
(0.8046) 

6.1 

 -0.009316 
(0.3096) 

2.1 

 

Imports_fuel 
(Prob) 

VIF 

 0.015927 
(0.2179) 

4.6 

0.020372 
(0.0489) 

3.0 

0.000820 
(0.9204) 

5.1 

 

Diversity 
(Prob) 

VIF 

 0.037361 
(0.0584) 

10.6 

 0.002676 
(0.8439) 

14.1 

 

Sparecap_gdp 
(Prob) 

VIF 

 -0.067451 
(0.0026) 

4.4 

-0.064977 
(0.0015) 

3.9 

-0.060671 
(0.0001) 

5.1 

-0.054312 
(0.0000) 

4.1 

NGperc 
(Prob) 

VIF 

   0.087292 
(0.0000) 

2.7 

0.085848 
(0.0000) 

2.0 

NUperc 
(Prob) 

VIF 

   0.047065 
(0.0022) 

3.7 

0.049304 
(0.0000) 

2.1 

PAperc 
(Prob) 

VIF 

   0.054862 
(0.0048) 

1.7 

0.047133 
(0.0025) 

1.2 

REPerc 
(Prob) 

VIF 

   -0.007822 
(0.5133) 

2.3 

 

      

Jarque_Bera stat 13.86 11.57 9.56 2.96 4.22 
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(heteroskedasticity 

exists if >5.99) 

Condition index 
(multicollinearity  

exists if >15) 

10.4 187.5 8.0 14.5 9.1 

-.04

-.02

.00

.02

.04

.02

.04

.06

.08

.10

.12

.14

A
K

A
L

A
R

A
Z

C
A

C
O

C
T

D
C

D
E

F
L

G
A IA ID IL IN K
S

K
Y

L
A

M
A

M
D

M
E M
I

M
N

M
O

M
S

M
T

N
C

N
D

N
E

N
H

N
J

N
M

N
V

N
Y

O
H

O
K

O
R

P
A R
I

S
C

S
D

T
N

T
X

U
T

V
A

V
T

W
A

W
I

W
V

W
Y

AK

AL AR

AZ

CA

CO

CT

DC

DE

FL

GA

IA

ID IL

IN
KS

KY

LA

MA

MD
ME

MI

MN

MOMS
MT

NC

ND

NE

NH

NJ

NM

NV

NY

OH

OK

OR

PA

RI

SC

SD

TN

TX
UT

VA

VT

WA

WI

WV

WY

Residual Actual Fitted  

Figure 10: Fit and residual analysis of statistically significant variables of RI on price (excluding HI) 

SPARECAP_GDP with a coefficient of -0.054 and 100% statistical significance is again found to 

provide downward pressure on price. The fit and residual analysis is shown in Figure 10. 

Assessment of collinearity shows that there is some relationship between SPARECAP_GDP and the 

intercept, with a VIF of 4.1 for SPARECAP_GDP. The condition number of 9.1 points to acceptable 

levels of collinearity in the model. 

3.2.3. Comparing PT and RI as predictors of price 

The PT statistically significant variables of TERM_RISK_NG and TERM_RISK_PA explain 25% of the 

variation in price. If multicollinearity and heteroskedasticity is ignored, PT risk variables explain 63% 

of the variation in price. The RI variables of NGPERC, NUPERC, PAPERC and SPARECAP_GDP explain 

72% of the variation in price. SPARECAP_GDP is a consistent predictor of lower prices. The fit of the 

model with the statistically significant RI variables shows more robust prediction of variation in 

prices than does the model with the statistically significant PT variables. 



Page 25 of 35 

 

3.3. Other regression analysis matters 

Prior period price is excluded as an explanatory variable from the models. In analysing the models, 

where prior period price was included in the models, the absolute fit improved but the size and 

number of the statistically significant coefficients decreased. This suggested that prior period price 

masks the relationship between price and the structural variables. It is proposed then that the 

disaggregated metrics of PT and RI adequately identify the dynamics of the electricity system 

structure. 

Alternative functional forms were considered for regression analysis. In particular, log-linear models 

were considered for both PT and RI variables and found to provide no improved relationship 

information. 

4. Discussion 

4.1. Is risk, as calculated by PT, an adequate predictor of resilience? 

Using fuel price volatility and price correlations as predictors of an electricity system’s response to 

energy shock does not appear to provide an adequate model for the calculation of resilience in the 

electricity system for 1973-1982 nor for 2003-2012. There is evidence of structural problems in the 

model, specifically significant levels of multicollinearity, which degrades the results. Regression 

analysis shows that the coefficients for a few variables of PT risk indicate higher prices but do not 

predict the low-risk, low-cost effect of renewable sources of generation on price.   

4.2. Is the RI an adequate predictor of resilience? 

The original variables of the RI are slightly better at predicting stable electricity prices during an 

energy shock than the PT variables. However, when the metric for energy efficiency, LOSSINGEN, is 

disaggregated into its component fuel source percentages, fuel source and SPARECAP_GDP show a 

reasonable ability to predict electricity prices during energy shocks.  This empirical analysis indicates 
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that spare capacity and the type of fuel used play an important role in resilience, but diversity, 

imports and energy efficiency do not.  

4.3. The role of diversity in resilience 

Diversity does not play a consistent role in the models. During 1973-1982, regression analysis 

indicates that diversity led to increased prices whilst during 2003-2012, there is little evidence from 

regression analysis that diversity plays any role in prices.  Greater stability in prices is associated with 

renewable energy more than with any combinations of fuel types especially during 1973-82.  

Table 8 shows prices for states with generation from a single dominant fuel source and states with 

mixed portfolios over the decades. Across the decades, the price of electricity for states with a mixed 

portfolio is higher than the US average. The price of electricity 1973-1982 increased by 34% for 

predominantly coal fired generation, 59% for natural gas generation and 67% for oil generation. 

States with high levels of hydro experienced no increase in prices. However, Washington and 

Oregon’s nuclear programs resulted in electricity prices rising after 1982. 

Table 8: Price of electricity by fuel source 1970-2012 

During the oil price surge 2003-2012, the average electricity price across all the states rose only 6 %. 

Coal prices and electricity prices from coal generation remained low. There is no evidence that 

declining NG price as a result of technological advances in unconventional production was passed 

through to electricity price.  Outside of the coal-oil-NG fuel nexus, electricity from nuclear sources 

$2012/kWh 1970-2 

Wtd-Avg 

1973-82 

Wtd-Avg 

1983-92  

Wtd-Avg 

1993-02 

Wtd-Avg 

2003-12 

Wtd-Avg 

1970-12 

Wtd-Avg. 

US average  0.064 0.099 0.091 0.065 0.069 0.079 

States with mixed 

generation portfolios 

0.074 0.108 0.111 0.084 0.077 0.100 

States with > 50% 

generation from: 

      

Coal  0.070 0.094 0.088 0.061 0.062 0.073 

Natural gas 0.059 0.094 0.128 0.115 0.120 0.104 

Nuclear n/a 0.105 0.120 0.098 0.099 0.087 

Oil 0.088 0.147 0.130 0.112 0.160 0.137 

Renewables 0.049 0.046 0.062 0.051 0.053 0.052 
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remained more expensive than that from coal and renewable sources despite its exceedingly low 

fuel requirements and mature technology. Electricity prices in states with high levels of renewable 

energy experienced small absolute increases in price from 2003-2012. Unlike 1973-82, states with 

mixed generation portfolios showed price decreases in 2003-2012. However, this decrease reflects 

historically high price mixed portfolio states like California and Massachusetts shifting from mixed to 

predominantly NG generation and historically low price coal generation states like Arkansas shifting 

to mixed portfolios.  

Figure 11: Average price of electricity to industry in states with dominant fuel source, and oil spot price 
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The weighted average price 1970-2012 shows a significant discount for industries doing business in 

states with high levels of renewables.  The pattern of prices among states is also evident in Figure 11 

which shows the progression of prices 1970-2012 for states with a dominant fuel source, and states 

with mixed generation portfolios. 

The conclusion drawn from these analyses is that the impact of an oil crisis on the US electricity 

systems is determined mostly by the individual performance of the fuel systems within each state 

and region, and by policy decisions which drive perceptions of fuel constraints. The calculation of 

diversity shows no role in price stabilisation, so it follows that the PT risk model will not be effective 

in predicting stable prices. Equally, the diversity metric within the RI will not measure resilience.  

The over-riding question is whether diversifying between fuels like coal, oil and gas serves as 

diversification, or merely as variation. Complex systems theorists have considered the difference 

between variation and diversity (Page, 2011). In this view, variation is difference within a type 

whereas diversity is difference of type. Whilst variation assists with adaptation by encouraging the 

establishment of niches, its effectiveness is limited to being able to respond to minor changes in the 

environment. By comparison, diversity creates synergies and overlap that facilitate robustness to 

major changes.  In the 1970s, shifts within fossil fuel types could have facilitated adaptation but the 

combination of policies pursued by the US federal government reduced the systems’ ability to adapt. 

The only fuel sources that offered diversification, rather than variation, were uranium and 

renewable (mainly hydro) systems. Reduced policy intervention in 2003-12, enabled generation to 

shift between fossil fuel types thus limiting the impact of rising oil prices on electricity systems. 

Notwithstanding the benefits associated with substitution in 2003-12, renewable energy provided 

the lowest priced electricity across both periods. 

4.4. The role of spare capacity in diversity 

As a metric of resilience, spare capacity as calculated in the RI is consistently associated with lower 

electricity prices. However, a requirement for spare capacity should not stop at electricity 
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generation capacity. The requirement for spare capacity needs to extend to the inherent capacity 

within each fuel system which supplies electricity systems. An examination of these systems’ spare 

capacity during the crises produces a narrative of how spare capacity within all fuel systems 

influenced electricity prices. 

4.4.1. 1973-82 

When the Arab embargo of oil started in October 1973, the Texas Railroad Commission had recently 

removed all restrictions on US oil production removing capacity to adapt to the supply shock (Yergin, 

1991). This coincided with utilities transitioning to oil-and NG generation to prepare for sulphur 

emissions standards. Therefore, oil price escalation, facilitated by a lack of US spare capacity, 

increased generation costs and caused electricity prices to rise across the eastern states. 

After 1973 NG production declined across the US. The Federal Power Commission’s (FPC) regulatory 

power over NG interstate sales and prices halted exploration (NaturalGas.org, 2015) and reduced 

spare capacity.  Residential and small business consumers were given priority access to NG forcing 

generators onto alternative fuels (Woodmansee, 1972).  The Energy Supply and Environmental 

Coordination Act (US Government, 1974) and the Powerplant and Industrial Fuel Use Act (US 

Government, 1978), forced states that had traditionally relied on in-state affordable NG, like 

Louisiana, Oklahoma and Texas, to fuel electricity generation with relatively higher priced ex-state 

coal. The shift to coal generation caused electricity prices in the NG-rich states to increase. 

The Appalachian coal region, the largest coal producing region in the US, struggled to meet demand 

in 1973 (Westerstrom, 1973). The Federal Environment Agency, in the Energy Supply and 

Environmental Coordination Act, legislated to prohibit the use of oil and NG in the generation of 

electricity (US Government, 1974). The perception that demand for coal would soar resulted in the 

coal price rising across the Appalachian states from an average of $10/ton to $20/ton between 1973 

and 1974 (Westerstrom, 1974) as shown in Figure 12. This could happen as the Nixon Wage-Price 

controls expired in April 1974 (Yergin, 1991). Analysts claimed that the age of cheap energy was over 
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(Fiscor, 2012). A lack of transport network capacity limited non-Appalachian producers from 

resolving the perceived supply-demand imbalance. Although production from the Great Plains 

region gradually increased, high transport costs to demand centres and lower heat value meant that 

coal prices in the Great Plains region did not rise as fast as eastern coal prices. A combination of a 

lack of spare capacity in coal production in the eastern coal region coupled with a lack of spare 

capacity in the transport network to the eastern demand centres, served to facilitate increases in the 

price of electricity from coal

 

Figure 12: Coal system regional responses 1972-1982 

The conclusion drawn about 1973-1982 is that the crisis was heightened and spread to electricity 

systems by a lack of spare capacity in oil, NG, coal  and coal-transport systems. 

4.4.2. 2003-12 

After more than a decade of low stable prices, growth in demand from China and India, the US-led 

invasion of Iraq and declining US production, caused oil prices to escalate from 2003. High oil prices 

facilitated investment in technology to release tight shale oil onto the US market, although 

production increased only after 2008 with US production levels recovering to pre-2003 levels after 

2010.  Access to tight shale oil released spare capacity for the oil system. 
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Prices for NG in the US were relatively high in 2003 reflecting declining US production levels. As with 

tight shale oil, technology increased access to tight shale gas with production increasing after 2006. 

A surplus in supply led to the price halving after 2008, and falling further after 2011. Access to new 

reserves provided the NG system with spare capacity. 

Coal prices increased only marginally from 2003-12. The lack of correlation with oil prices may have 

been as a result of perceived concerns over coal as a strategic source for energy in a carbon 

constrained world. It could also have been as a result of competition from cheaper NG. Figures 13 

and 14 show the fuel prices for electricity generation between the 2 different periods. 

 

Figure 13: Fuel prices for electricity generation: 2003-12 

 

Figure 14: Fuel prices for electricity generation: 1973-82 

The difference between the 1970s and the 2000s was the existence of spare capacity in coal and the 

emergence of spare capacity in NG and oil in 2003-2012.  
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5. Conclusions and policy implications 

Each fuel system is a complex web of structural variables, interconnected with other fuel systems 

through the ability of fuels to serve as substitutes. The price of each fuel reflects the dynamic 

structure of each fuel system. Where structural imbalances in supply or demand occur, price adjusts 

to reduce the pressure of the imbalance.  If substitution is possible, substitute fuel systems will 

supply into the constrained system to reduce pressure. This will increase the pressure in the 

substituting fuel system, causing both systems to reach a new extended equilibrium. Where policy 

interventions constrain the response of either system, the pressure from the original structural 

problem will shift to another, more responsive, substitute system.  

In 1973-1982, the consequences of historic policy interventions in the wake of the Natural Gas Act of 

1938, the curtailment plans associated with NG regulation, the Energy Supply and Environmental 

Coordination Act of 1974 and the Power Plant and Industrial Fuel Use Act of 1978, reduced the 

ability of the NG systems to respond to the imbalance in the oil market. This shifted fuel supply 

imbalances to the coal industry and from there spread price increases to the electricity industry. The 

energy policy interventions which sought to control inflation and increase energy security shifted the 

contagion to all fuel systems, failing to isolate and contain it.  

By contrast, in 2003-12 energy policy interventions were limited to judicious drawdowns of oil from 

the strategic petroleum reserve in 2005 after Hurricane Katrina and 2011 after civil unrest in Libya. 

Prices in the oil and NG systems relieved the structural imbalances by stimulating technological 

advances. In effect, the lack of policy intervention ensured that the systems responded effectively to 

the energy shock. The price of uranium escalated in 2007 not due to scarcity but due to perceptions 

of increased demand and a potential scarcity of supply, which resulted in prices of electricity in 

states with predominantly nuclear power increasing unexpectedly.  

This is not the first study to identify that policy mechanisms in the 1970s exacerbated the energy 

crises but it is the first to highlight that a lack of spare capacity within fuel systems constrains 
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responses that can isolate and contain the original problem. Whether the lack of spare capacity was 

caused by legislation, or the lack of capacity resulted in legislation, the underlying trigger is that a 

fuel source is in some way constrained. Fuels that have to be found, extracted, transported and 

financed will always be vulnerable to constraints, structural imbalances and price volatility. Although 

spare capacity is crucial to isolate contagion, network structure also plays a role in the spread or 

control of contagion.  Restrictions placed on NG interstate sales and the lack of capacity in coal 

transport facilitated the rise of all fuel prices in the 1970s, whilst transport of NG and coal in the 

2000s facilitated the flow of fuels from areas with capacity to areas of structural imbalance, averting 

general fuel price rises.  

A preferable policy intervention is to increase the proportion of generation from fuel sources that 

are not substitutes and are not subject to systemic contagion; fuel sources that show diversity rather 

than variation. In the 1970s, there was investment in nuclear generation which was a diverse 

alternative but it was expensive, subject to the availability of uranium and safety costs. In 2003-2012 

oil price contagion spread to uranium, perhaps identifying that uranium, like NG, offers variation 

rather than diversity. Most renewable energy, however, is subject to system constraints that are 

independent of fossil fuel system constraints making them an excellent counter to systemic 

contagion. Geographic limitations of hydro-electricity, and the immaturity of other renewable 

technologies, eliminated wide-spread roll out of renewable energy options during and after 1973-

1982, but that is no longer the case in 2015. The 2003-2012 technological advances in oil and NG 

production and effective fuel transport networks served to provide access to spare capacity to avert 

structural imbalances and avoid the consequences of the 1973-82 crises. The technology 

breakthrough that stopped high-price contagion was however due more to luck, than good strategy. 

If energy policy is to address resilience in energy it needs to ensure that critical fuel systems have 

adequate spare capacity to respond to unexpected threats and that truly diverse fuel sources are 

readily available at sufficient scale to contain any threat of systemic contagion.  
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Notes 

                                                           
i The estimations of net interstate electricity transfers 1970-1989, as calculated by EIA SEDS, involve total 

energy estimates that are considered by the International Energy Agency (IEA) to be inappropriate (TAYLOR, Y. 

22 January 2014 2014. RE: Historic Data. Type to MOLYNEAUX, L.). An alternative method has been devised in 

this paper to calculate net interstate transfers 1970-1989. States are separated into Western Interconnection 

and Eastern Interconnection to reflect the larger transmission distances in the former. Generation, plus net 

international electricity flows, less consumption, calculates interstate transfers.  The totals provide the average 

electricity loss percentage for each interconnection area. The interconnection area electricity loss percentage 

is applied to each applicable state to calculate net interstate transfer. Equation A details the calculation: 

 NET INTERSTATE TRANSFERS  = GENERATION + NET INTERNATIONAL TRANSFERS – 

CONSUMPTION – (ESTIMATED INTERCONNECTION LOSS PERCENTAGE * GENERATION) 

(A) 

Equation A calculates net interstate transfer estimates that appear consistent with data reported 1990-2012. 


