
Munich Personal RePEc Archive

Autocorrelation in an unobservable

global trend: Does it help to forecast

market returns?

Peresetsky, Anatoly and Yakubov, Ruslan

Higher School of Economics, Moscow

2015

Online at https://mpra.ub.uni-muenchen.de/64579/

MPRA Paper No. 64579, posted 26 May 2015 13:50 UTC



 1 

A. Peresetsky
*
, R. Yakubov

† 
Autocorrelation in an unobservable global trend: Does it help to forecast market returns? 

 
 
In this paper a Kalman-filter type model is used to extract a global stochastic trend from discrete non-

synchronous data on daily stock market index returns from different markets‡. The model allows for the 
autocorrelation in the global stochastic trend, which means that its increments are predictable. It does not 
necessarily mean the predictability of market returns, since the global trend is unobservable. The performance of 
the model for the forecast of market returns is explored for three markets: Japan, UK, US. 
 
Keywords: financial market integration; stock market returns; state space model; Kalman filter; non-
synchronous data; market returns forecast. 
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1. Introduction 

The plot of daily closing values of stock indices of different exchanges reveals a common trend in their 

behavior, which is referred to as the “global stochastic trend” in Korhonen, Peresetsky (2013b). Stock 

exchanges are placed in different parts of the globe. Such a plot of daily closing values is misleading, because 

exchanges close at different times. Korhonen, Peresetsky (2013b) suggested a Kalman-filter type model, which 

splits the daily returns of each index into two independent components — local and global. Both components 

are unobservable. Additionally, they suppose a martingale property of the global component. They designed the 

model, which takes into account the asynchrony of the stock indices, and estimated it with a state-space model. 

This very simple model produces results in good accordance with the observed properties of stock market 

returns. 

However, estimates of the global trend reveal a correlation between the increments of the global trend in 

neighboring time intervals. This could be the result of a violation of the model assumption of a martingale 

property of the global trend, or the result of the estimation method. In our paper we suggest a modified model 

which allows for the autocorrelation in the global trend increments. 

Historically, the existence of a “common stochastic trend” in synchronous data was discussed in the 

framework of error-correction VAR models. The description of this approach, based on Engle, Granger, (1987), 

Johansen (1991) can be found in Kasa (1992).  

This approach for finding a common stochastic trend is widely used in the literature. To avoid the 

problem of asynchronous trading returns, long time intervals are considered, so that this problem can be 

neglected. To mention some of them: Chung and Lin (1994), Jeon and Chiang (1991) use weekly data; Siclos 

and Ng (2001), Phengpis, Apilado (2004) use monthly data; Rangvid (2001) use quarterly data. Some papers, 

for example Choudhry, Peng (2007), Lucey, Muckley (2011), Bentes (2015) use daily market data. They 
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 The description of this model was included in the previous paper of authors (Durdyev, Peresetsky, 2014), which is in 

Russian. To make this paper understandable for English language reader, we include here the translation of the theoretical 

description of the model in the section 2. With an exception: in previous paper different set of exchanges was discussed. 
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consider markets from different geographical regions. In this case it is not clear to which point in world time the 

common trend is attributed. Flad, Jung (2008) use high-frequency intra-day one-minute returns data. To avoid 

the problem of non-synchronous data they use data only for the overlapping hours of the US and German stock 

market trading sessions. 

The results of the search for a common stochastic trend could depend on the frequency of data. Loh 

(2013) stressed that “The stock market is a complex system consisting of investors with different investment 

horizons, and they collectively form aggregate market co-movements. Time scale (investment horizon) is an 

important aspect that affects trading behaviour”. 

Error correction VAR models could be formulated in the state-space approach (see Aoki, 1987, 1988). 

This approach is more flexible. Kasa (1992) points out that in this approach a common trend can contain 

transitory elements, rather than being simple random walks. 

There are some papers which apply Kalman filter type state-space models to extract a common 

stochastic trend from synchronous data. Dungey, Martin, and Pagan (2000) use weekly data to study the spreads 

on long-term bonds for Australia, Japan, Germany, Canada and the UK, all relative to the USA, over the period 

1991 to 1999. They found that the world factor is the dominant influence for Australian and Canadian spreads, 

while both the UK and Germany display country-specific effects, albeit not as strong as does Japan. 

Chang, Miller and Park (2009) use a Kalman filter model to derive a latent common stochastic trend 

from daily observations on the 30 price series of the stocks that comprise the Dow Jones Industrial Average 

(DJIA). They found that the extracted common stochastic trend resembles the DJIA quite closely up to an affine 

transformation. 

Cartea and Karyampas (2011) use a Kalman filter-based methodology to decompose price series into 

the true efficient price and the microstructure noise. They found that the decomposition allows one to estimate 

the variance covariance matrix of asset returns in a more efficient way than the usual methods, which is 

important for portfolio optimization. 

Bae and Kim (2011) use a two-step state space model and monthly data to examine the existence of 

global and regional factors and to analyze the effects of both factors on four Asian country yields curves.  

Felices and Wieladek (2012) use monthly observations (1995–2007) on vulnerability indicators of 

financial crises, real exchange rate appreciation and international reserve growth, for 31 emerging market 

economies (EMEs) and 10 industrialized countries. They employ a Kalman filter-based model with time 

variation (Bayesian dynamic common factor model) to estimate the common component and find that a single 

common factor contributes on average up to 60% of the total variation in the vulnerability indicators. 

Note that when monthly or weekly data are used the asynchrony of the data could be neglected. 

There are two papers which explicitly use models close to the concept of unobserved global stochastic 

trend, which we use in our model.  

King and Wadhwani (1990) study the transmission of volatility between stock markets. They construct 

a model in which “contagion” between markets occurs as a result of attempts of rational agents to infer 

information from price changes in other markets. They consider a model for the two markets which operates in 

different time zones. This model exploits the concept of a “shadow index”: “When a market is closed there is no 

explicit index of prices. But we may define the shadow index as the price that would clear the market if trading 
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were to take place conditional upon the information that is available when it is closed. Although the shadow 

index is unobservable, the concept plays an important role in our model” (page 12). 

Lin, Engle, and Ito (1994) most clearly state the idea of splitting stock returns in global and local parts. 

They state that they “designed an econometric framework which is designed to separate the global factor that 

affects stock returns globally from a local factor that affects stock returns locally”. They improved the approach 

of King, Wadhwani (1990) decomposing close-to-close returns into daytime and overnight returns and by 

allowing time-varying volatility in performing the signal extraction. In empirical application the study relation 

between Tokyo and New York markets was considered using daily data on open and close prices for the period 

1985–1989. 

Following Korhonen, Peresetsky (2013b), we exploit the linear Kalman filter model to extract common 

stochastic trend from non-synchronous data on daily returns of the stock indices. In addition we allow for the 

correlation of the increments of the global stochastic trend in neighboring time intervals. The model with 

correlation in common stochastic trend was included in the previous paper of authors (Durdyev, Peresetsky, 

2014), which is in Russian. To make this paper understandable for English language reader, we include here the 

translation of the theoretical description of the model in the section 2. In the empirical part of this paper we 

consider three market indices (Nikkei 225, FTSE, S&P 500). It is demonstrated that there is a statistically 

significant negative autocorrelation in the global stochastic trend which increases during the crises. However 

that autocorrelation does not help to predict daily stock market returns. 

 

2. The model with autocorrelation 

The model is an extension of the model in Korhonen, Peresetsky (2013b). We consider three stock 

index daily returns: Japan (Tokyo, Nikkei 225), UK (London, FTSE), and US (New-York, S&P 500). Closing 

times of the stock exchanges are respectively 6:00, 16:30, and 21:00 UTC. Figure 1 illustrates the closing times 

for the two days: 1t −  and t . 

 
Figure 1. Daily returns and state variables.  

 

The daily index return is defined as the difference of the logs of closing values of the indices, e.g.  

, 1ln(S&P ) ln(S&P )US t t tR −= − . Obviously daily returns of two stock indices are correlated since the 

corresponding 24-hour time intervals are common. 

UTC 

time 
Nikkeit-1 S&Pt-1 FTSEt-1 Nikkeit FTSEt S&Pt 

day t-1 day t 

12tε − 13tε −  2tε  1tε  3tε  
16:30 16:30 21:00 6:00 21:00 6:00 

,JAP tR  ,UK tR  ,US tR  
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Following Korhonen, Peresetsky (2013a, 2013b), the daily return of market index I is split into two 

components — global and local: 

, , ,I t IG t IL t
R R R= + .      (1) 

The global component ,IG tR  absorbs all news from the world economy and world financial markets that 

is available at time t  and important for all markets. Local component ,IL tR  absorbs local news that is important 

only to investors in the local market. Such splitting corresponds to the market globalization: more and more 

traders/financial firms operate, not in one but in many markets, and there is continuous 24 hours trading for 

many financial instruments.  

Note that both components are unobservable, only their sum ,I tR  is observable. The global component 

(global stochastic trend) exists only in the brains of traders. 

Denote as 1 , 2 , 3t t tε ε ε  the log-returns of the global stochastic trend from 21:00 (day 1t − ) to 6:00 

(day t ), from 6:00 (day t ) to 16:30 (day t ), and from 16:30 (day t ) to 21:00 (day t ). For example, the global 

part of the US index return is proportional to 1 2 3t t tε ε ε+ +  (see Figure 1). 

The linear Kalman filter model is given in (2): 

1

observation equation, 1,..., ,

state equation,

t t t t

t t t

y Ax Hs u t T

s Fs v−

= + + − =
= + −

         (2) 

where ( 1), observablesty n− × ;  ( 1), state variablests m− × ; ( ), ( ), ( )A n k H n m F m m− × − × − × , 

matrices; ~ (0, ) ( 1)t uu nΣ − × random vector; ~ (0, ) ( 1)t vv mΣ − × random vector. 

In our case the observables are , , ,[ , , ]t JAP t UK t US ty R R R ′= , and the epsilons are state variables. Since 

the indices have different scales, their returns are affine transformations of the common stochastic trend; hence 

the observation equations are (3): 

      , 1 1 1 1( 2 3 1 ) 1
JAP t t t t t

R uα β ε ε ε− −= + + + + , 

, 2 2 1( 3 1 2 ) 2
UK t t t t t

R uα β ε ε ε−= + + + + ,    (3) 

      , 3 3( 1 2 3 ) 3
US t t t t t

R uα β ε ε ε= + + + + , 

Since standard linear Kalman filter model (2) does not allow for lagged state variables in the 

observation equations, it is necessary to increase the dimension of the state vector by introducing two additional 

components, 2 , 3
t t

L Lε ε .  

Thus, the observation equations (3) in new state variables are (4) 

        , 1 1( 2 3 1 ) 1JAP t t t t tR L L uα β ε ε ε= + + + + , 

, 2 2 1( 3 1 2 ) 2UK t t t tR L uα β ε ε ε= + + + + ,                (4) 

        , 3 3( 1 2 3 ) 3US t t t t tR uα β ε ε ε= + + + + . 

If we introduce autocorrelation in the global trend in the state equation we get (5): 

     1 11 1 3t t teε ρ ε −= + ,  

     22 2 1t t teε ρ ε= + , 

     33 3 2t t teε ρ ε= + ,                      (5) 

     12 2t tLε ε −= , 
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     13 3t tLε ε −= , 

where ( 1 , 2 , 3 )t t t te e e e=  and ( 1 , 2 , 3 )t t t tu u u u=  are random vectors both with zero mean. It is supposed that the 

components of the vector 
te  are random shocks i.e. are uncorrelated with corresponding state variables: 

1Cov( 1 , 3 )t te ε − = Cov( 2 , 1 )t te ε = Cov( 3 , 2 )t te ε = 0. Note that (5) imply a predictability of the returns of the global 

trend, e.g. 1 1 1E( 1 | 3 ) 3t t tε ε ρ ε− −= . 

Equations (5) can be presented in the standard form of the state equations (2) by using the substitutions (6): 

1 11 1 3t t teε ρ ε −= + , 

    2 2 1 12 2 1 3t t t te eε ρ ρ ρ ε −= + + , 

    3 3 2 3 2 1 13 3 2 1 3t t t t te e eε ρ ρ ρ ρ ρ ρ ε −= + + + ,        (6) 

    12 2t tLε ε −= , 

    13 3t tLε ε −= . 

Thus model (4), (6) in vector form (2) looks like (4'), (6') : 

, 1 1 1 1

, 2 2 2 2

, 3 3 3 3

1

20 0 1

1 0 0 3 2

0 0 32

3

t

tJAP t t

UK t t t

US t tt

t

R u

R u

R uL

L

ε
εα β β β

α β β β ε
α β β β ε

ε


          = ⋅ + +                 

 
 

,    (4') 

11

12 1 2

13 2 1 3 3 2

1

1

1 10 0 0 0 1

2 20 0 0 0 2 1

3 30 0 0 0 3 2 1

0 1 0 0 0 02 2

0 0 1 0 0 03 3

t t t

t t t t

t t t t t

t t

t t

e

e e

e e e

L L

L L

ε ερ
ε ερ ρ ρ
ε ερ ρ ρ ρ ρ ρ
ε ε
ε ε

−

−

−

−

−

      
      +      
      = + + +
      
      

            

.    (6') 

With covariance matrix 
vΣ  of the vector of errors in the state equation: 

2 2 2
1 2 1 3 2 1

2 2 2 2 2 2 2
2 1 2 2 1 3 2 3 2 1

2 2 2 2 2 2 2 2 2 2
3 2 1 3 2 3 2 1 3 3 2 3 2 1

0 0

0 0

Var( ) 0 0

0 0 0 0 0

0 0 0 0 0

t vv

σ ρ σ ρ ρ σ
ρ σ σ ρ σ ρ σ ρ ρ σ
ρ ρ σ ρ σ ρ ρ σ σ ρ σ ρ ρ σ

 
 

+ + 
 = Σ = + + +
 
 
 
 

. 

where  2
1 Var( 1 ),teσ =  2

2 Var( 2 )teσ = , 2
3 Var( 3 )teσ = . 

We assume the simplest diagonal specification for the covariance matrix of the errors in the observation 

equation (4):  2 2 2
1 2 3diag( , , )u u u uσ σ σΣ = . 

Model (4'), (6') is not identifiable. One can multiply 1 2 3, ,σ σ σ  and ε  by some scale factor λ  and multiply all 

β  by 1λ −  and this procedure does not change the model. The global trend can be identified only up to an affine 

transformation. To make the model identifiable we impose the restriction on the parameters: 2 2 2
1 2 3 3σ σ σ+ + = . 

Model (4'), (6') can be estimated with a standard Kalman filter procedure realized in EViews using actual 

observations of the market index returns. Thus we obtain parameter estimates 

1 1 2 2 3 3
ˆ ˆ ˆˆ ˆ ˆ, , , , , ,α β α β α β 2 2 2 2 2 2

1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,u u uσ σ σ σ σ σ , 1 2 3

ˆ ˆ ˆ, ,ρ ρ ρ  and estimates for the state variables ˆ ˆ ˆ1 , 2 , 3t t tε ε ε  

using all available information ( 1 E( 1 | )t t TIε ε= , 2 E( 2 | )t t TIε ε= , 3 E( 3 | )t t TIε ε= ). By summing the state 
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variables one can estimate the evolution of the global trend at the closing times of the three stock exchanges. It 

is also possible to decompose stock market returns into global and local components (7):  

     
1 1, 1 1 1 , , , ,

ˆˆ ˆ( 2 3 1 ) 1t t t tJAP t JAP G t JAP L tR u R Rα β ε ε ε α− −= + + + + = + + , 

     
1, 2 2 2 , , , ,

ˆˆ ˆ( 3 1 2 ) 2t t t tUK t UK G t RUS L tR u R Rα β ε ε ε α−= + + + + = + + ,    (7) 

     
, 3 3 3 , , , ,

ˆˆ ˆ( 1 2 3 ) 3t t t tUS t US G t US L tR u R Rα β ε ε ε α= + + + + = + + . 

It is assumed that all 
iα  in (7) are zeros, but we include them into (7) by analogy between (7) and CAPM. 

 

3. The estimation of autocorrelation in global stochastic trend 

3.1. Data 

Data for the closing quotes for the three stock indices Nikkei 225, FTSE, S&P 500 for the period 

22.09.1997–06.03.2014 were obtained from Bloomberg. All weekends and holidays were deleted from the 

sample. Descriptive statistics are presented in the table 1. 

 

Table 1. Descriptive statistics 

 UKR  
JAPR  

USR  

Mean –7.14E–05 –4.83E–05 0.00017 

Median 7.97E–05 0.000000 0.00033 

Maximum 0.094 0.132 0.102 

Minimum –0.082 –0.121 –0.095 

Standard deviation 0.0125 0.0158 0.0130 

Skewness –0.165 –0.291 –0.274 

Kurtosis 7.45 9.038 10.47 
Jarque-Bera test 3376.1 6231.2 9503.6 

 p-value 0.00000 0.00000 0.00000 

Serial correlation LM test* 3.70 11.4 36.7 

 p-value 0.055 0.001 0.000 

ARCH-LM test* 144.5 308.5 215.2 

 p-value 0.000 0.000 0.000 

Observations 4069 4069 4069 
* Both Breush-Godfrey serial correlation LM test and ARCH-LM tests were evaluated for lag = 1. 

 

The results of the estimation of the model (4), (6) are presented in Table 2. As expected, alphas are not 

significantly different from 0. All three coefficients 
iρ , responsible for the autocorrelation in the global trend 

are statistically different from 0 and negative. The negative value of 3ρ  means that if the return of the global 

trend in the time interval 6:00–16:30 UTC (closing time Tokyo exchange – closing time London exchange) is 

positive then expected value of return of the global trend in the next interval 16:30–21:00 UTC (closing time 

London exchange – closing time New-York exchange) is negative. A similar interpretation of the global trend 

“overshooting” is valid for other intervals.  
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Estimates of the slope coefficients 1β  (JAP), 2β  (UK), 3β  (US) are close to each other, 2β  and 3β  are almost 

identical. Same behavior of betas in rolling widows is presented in Figure 5 below. This could be explained by 

the fact that US, UK and Japan markets are largest markets in their time zones. 

Table 2. Model with autocorrelation 

Parameter Estimate Standard error 

1α   (JAP) –4.85E–05 (0.000242) 

1β   (JAP) 0.00745*** (0.00012) 

2α   (UK) 7.09E–5 (0.00019) 

2β   (UK) 0.00783*** (0.00009) 

3α   (US) 0.00017 (0.00019) 

3β   (US) 0.00783*** (0.00010) 
2
1ln uσ  –9.053*** (0.028) 

2
2ln uσ  –10.703*** (0.095) 

2
3ln uσ  –11.114*** (0.132) 

2
1lnσ  –0.2413 (0.0350) 

2
2lnσ  0.2115*** (0.0191) 

1ρ  –0.353*** (0.018) 

2ρ  –0.298*** (0.033) 

3ρ  –0.070*** (0.018) 

Note. *** — significant at 1% level. 
 

3.2. Correlation in the global stochastic trend 

Given coefficients 1ρ , 2ρ , 3ρ  it is possible to calculate the correlations of the returns of the global trend in 

adjacent intervals. From (5) we have (8): 

1 11 1 3t t teε ρ ε −= + ,   

  2 2 1 12 2 1 3t t t te eε ρ ρ ρ ε −= + + ,            (8) 

   3 3 2 3 2 1 13 3 2 1 3t t t t te e eε ρ ρ ρ ρ ρ ρ ε −= + + + . 

Under condition 3 2 1| | 1ρ ρ ρ < , series 3tε  is a weak stationary first order autocorrelation process§. Thus 

( )E 3 0tε =  and 

( )
2 2 2 2 2 2
3 3 2 3 2 1

2
3 2 1

Var 3
1 ( )

t

σ ρ σ ρ ρ σ
ε

ρ ρ ρ
+ +

=
−

.      (9) 

From (8) we have 

1 1
1 1 1 2 2

1 1 1

Var( 3 ) Var( 3 )
Corr( 1 , 3 )

Var( 1 ) Var( 3 )
t t

t t

t t

ε ε
ε ε ρ ρ

ε σ ρ ε
− −

−
−

= =
+

.          (10) 

 
( ) ( )

2 2
1 1 1

2
2 2 2 2 2 2 2
2 2 1 2 1 1 1 1 1

Var( 3 )
Corr( 2 , 1 )

Var( 3 ) Var( 3 )

t

t t

t t

σ ρ ε
ε ε ρ

σ ρ σ ρ ρ ε σ ρ ε
−

− −

+
=

+ + +
,         (11) 

 
( )

2 2 2 2 2
2 2 1 2 1 1

3
2 2 2 2 2

1 2 2 1 2 1 1

Var( 3 )
Corr( 3 , 2 )

Var( 3 ) Var( 3 )

t

t t

t t

σ ρ σ ρ ρ ε
ε ε ρ

ε σ ρ σ ρ ρ ε
−

− −

+ +
=

+ +
.          (12) 

Using (9)–(11), estimates of corresponding parameters (Table 2) and the delta-method we obtain estimates of 

the correlations and their standard errors (see Table 3). 

                                                 
§
 The autocorrelation of this process is 1 2 3ρ ρ ρ , its estimate is –0.0073 with s.e. 0.0017. 
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Table 3. The correlation of global trend returns in adjacent intervals and sample correlations of 
epsilon estimates. 

Coefficients Estimates Sample correlation 

1Corr( 1 , 3 )t tε ε −  –0.368  (0.017) –0.382 

( )Corr 2 , 1t tε ε  –0.248  (0.028) 0.130 

( )Corr 3 , 2t tε ε  –0.081  (0.020) 0.066 

Note. Standard errors are in parentheses. 
 

All three correlation coefficients are statistically significant and their signs coincide with signs of 
iρ . Sample 

correlation between corresponding estimates   3, 3, 3ε ε ε  differ from the estimates, calculated by (10)–(12) since 

they include more noise. Both estimates show the largest negative correlation between global trend returns at the 

interval (closing London, closing NY) and the adjacent interval (closing NY, closing Tokyo). 

 

3.3. Comparison with S&P 500 e-mini 

The concept of the (unobserved) global stochastic trend suggests that traders have an idea of its value at 

each moment, 24 hours a day. There are assets which are traded continuously. The most well-known asset of 

this type is the contract S&P 500 e-mini, which is traded 24 hours with a break of 45 minutes. It was introduced 

by the Chicago Exchange (CME) on September 9, 1997, after the value of the existing S&P contract became too 

large for many small traders. The E-Mini quickly became the most popular equity index futures contract in the 

world. The current average daily implied volume for the E-mini is over $100 billion, far exceeding the 

combined traded dollar volume of the underlying 500 stocks. Thus, it is interesting to compare the estimated 

global stochastic trend with the S&P 500 e-mini. 

For comparison we take the period June 2009 – March 2014, three points each day (at 6:00, 16:30, and 

21:00 UTC). 

The plots of the dynamics of the S&P 500 e-mini** and estimated global trend are presented at the 

Figure 2. Since the global trend is determined up to an affine transformation, the scale of the left axis was 

chosen in order to make two graphs comparable. 

 

                                                 
**

 Data on S&P e-mini are taken from www.finam.ru 
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Figure 2. Global stochastic trend (“global”, left axis) and S&P 500 e-mini  

(“emini_finam”, right axis) 
 

Note that S&P 500 e-mini mainly reflects information important for the US stock market and global 

stochastic trend accumulates information important for all markets. US is the largest economy, hence the US 

market is the most important component of the global trend (Korhonen, Peresetsky, 2013b). This is why the 

plots are so close to each other. On the other hand, other markets (in our example – Japan, UK) also impact the 

global trend, so the plots are different. This is in agreement with the conclusion in Lin et al. (1994) that not only 

does the US market affect Japan, but the Japan market also affects the US. 

For a more detailed visual comparison of the global trend and S&P 500 e-mini Figure 3 presents scatter 

plots of 24-hour returns of the global trend (r_global) and contract S&P 500 e-mini (r_emini) for closing of 

exchanges in Tokyo (JAP), London (UK), and New York (US). Correlation between r_global and r_emini is 

0.837 for Tokyo, 0.883 for London, and 0.968 for New York. Most similarity is observed for US, as expected. 
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Figure 3. Scatter plots of 24-hour returns of the global trend (r_global) and contract S&P 500 e-mini (r_emini) 
 for the closing of exchanges in Tokyo (JAP), London (UK), and New York (US) 

 

3.4. The dynamics of correlations 

14 parameters of the model (4), (6) were estimated on the whole sample (see Table 2, 4096 obs.). It was 

assumed that the parameters are constant in time. To study the evolution of coefficients 1 2 3, ,ρ ρ ρ  in time we 

estimate them in a rolling window of length τ . Is it true that during the crisis periods the correlations increase? 

In order to estimate a Kalman filter model with a large number of parameters we need many 

observations for the convergence of the likelihood function maximization algorithm. In our case a stable 

convergence of the algorithm is achieved only for windows of around 500 observations. 

The evolution of the coefficients 1 2 3, ,ρ ρ ρ  in rolling windows of length 500τ =  is presented in Figure 

4. Points correspond to the right end of the rolling window. Markers highlight estimates which are significant at 

10% level. Almost all significant values are negative. Contrary to 1 2,ρ ρ  which are significant in most of 

windows, 3ρ  after 2008 is significant only between 11.2010 and 08.2011. The evolution of respective 

correlations (10)–(12) is presented in Figure 6 in Appendix. 

The evolution of betas is presented in Figure 5. Plot of the log-likelihood log L  — a measure of 

goodness-of-fit — is also presented. During the crisis of 2008 one can observe a drop of log-likelihood. Thus, 

the model fits data less than in quiet periods of the markets. However, during the crisis all betas increase which 

means there is a synchronization of the markets.  
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Figure 4. Evolution of 1 2 3, ,ρ ρ ρ  (r1sig, r2sig, r3sig in the plot)  
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Figure 5. Evolution of the beta coefficients 1 2 3, ,β β β  in rolling windows   

(beta1, beta2, beta3 at the plot). LogL — log-likelihood. 
 

 

4. Does the model of the global trend help to forecast market returns? 

The existence of a non-zero autocorrelation in the global trend allows us to make a non-trivial one step ahead 

forecast of its increment. Since the increment of the global trend is a part of the daily market return it also 

provides the possibility to forecast market returns. The success of such a forecast depends upon the balance 

between the global and local parts of market return and on the precision of the global market return forecast. 
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Given the estimates of the coefficients of the model (4), (6), in the interval [1, ]T  we can estimate the 

state variables 1tε , 2tε , 3tε , 1,...,t T=  and using (8) to forecast the next step increment of the global trend 

 
1 1

ˆ1 3T Tε ρ ε+ =  Then by (3) we forecast , 1JAP TR +  (assuming 1E( | ) 0T Tu I+ = ) as 

     
1, 1 , 1 1 1 1 1 1

ˆ ˆˆ ˆ ˆ ˆE( | ) ( 2 3 1 ) ( 2 3 3 )T T T T T TJAP T JAP T TR R I α β ε ε ε α β ε ε ρ ε++ += = + + + = + + + .  (13) 

Similarly by (6) we can forecast the next two intervals  

 
1 1 2

ˆ ˆ2 3T Tε ρ ρ ε+ =    and    
1 1 23 3

ˆ ˆ ˆ3 3T Tε ρ ρ ρ ε+ = , 

and then using (3) forecast two other market returns as 

     
1 1, 1 , 1 2 2 2 2 1 1 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆE( | ) ( 3 1 2 ) ( 3 3 3 )T T T T T TUK T UK T TR R I α β ε ε ε α β ε ρ ε ρ ρ ε+ ++ += = + + + = + + + ,  (14) 

     
1 1 1, 1 , 1 3 3 3 3 1 1 2 1 2 3

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆE( | ) ( 1 2 3 ) ( 3 3 3 )T T T T T TUS T US T TR R I α β ε ε ε α β ρ ε ρ ρ ε ρ ρ ρ ε+ + ++ += = + + + = + + + .  (15) 

However, the distance between information set , , ,{ ( , , ); 1,..., }T t JAP t UK t US tI y R R R t T= = =  and events 

forecasted in (14) and (15) is larger than for the event forecasted in (13). To forecast , 1UK TR +  it is possible to use 

information from , 1JAP TR +  and for , 1US TR +  information from , 1JAP TR +  and , 1UK TR + . 

We construct that “improved” forecast with the following trick. We redefine “24 hours day” and use 

, , , 1( , , )t UK t US t JAP ty R R R +=  as the vector of observables††. Using equations (4), (6) with that vector of observables 

we get forecast , 1
ˆ

UK TR +  as , 1 , 1E( | , )UK T T JAP TR I R+ +  with a formula corresponding to (13). Similarly for the 

“improved” forecast of , 1US TR +  we use model (4), (6) with vector of observables , , 1 , 1( , , )t US t JAP t UK ty R R R+ += ‡‡ 

and get the forecast by (13) as , 1 , 1 , 1E( | , , )US T T JAP T UK TR I R R+ + +  (see Figure 1). 

In order to estimate the quality of these forecasts we use the following procedure. Model (4), (6) was 

estimated in rolling windows of size 500 observations with step 21. For each window a one day ahead forecast 

was made. Thus 165N =  forecasts were obtained for the days from 30.09.1997 to 06.03.2014. Two measures of 

the precision of the forecast were used mean absolute error (MAE) and root mean squared error (RMSE): 

1

1
,

N
F

t t

t

MAE R R
N =

= −∑   ( )2

1

1 N
F

t t

t

RMSE R R
N =

= −∑ , 

here F

tR  is the forecast for day t , and 
tR  is the observed return. Column “model” in Table 4 presents the 

precision measures for the “improved” forecasts for the three market returns Nikkei 225, FTSE and S&P 500. 

The next four columns in the table 4 present ratios of the measures of the model precision to the similar 

measures for the four benchmark models. Column “martingale” corresponds to the forecast 0F

iR ≡ , 

corresponding to the perfect market hypothesis; column “trend” corresponds to the naïve forecast 1
F

t tR R −= . 

The next two columns “regression (16)” and “regression (17)” correspond to the forecast made by two 

regression models which regress market return on the preceding market returns. For example, for the Nikkei 225 

index return the regressions are: 

, 1 2 , 1 3 , 1 , 500, 499,...,JAP t US t UK t tR c c R c R w t τ τ τ− −= + + + = − − ,    (16) 

                                                 
†† It corresponds to the choice of the beginning of the day not 0:00 UTC but for example 10:00 UTC. 
‡‡ It corresponds to the choice of the beginning of the day for example 17:00 UTC. 



 13 

forecast: , 1 1 2 , 3 ,
ˆ ˆ ˆ ˆ

JAP US UKR c c R c Rτ τ τ+ = + + . 

and 

, 1 2 , 1 3 , 1 4 , 1 , 500, 499,...,JAP t US t UK t JAP t tR c c R c R c R w t τ τ τ− − −= + + + + = − − ,   (17) 

forecast: , 1 1 2 , 3 , 4 ,
ˆ ˆ ˆ ˆ

JAP US UK JAPR c c R c R c Rτ τ τ τ+ = + + + . 

 

Table 4. Precision of the forecast by 500 observations 

    Error Relative Error: Model/(Benchmark Model) 

    model martingale trend 
regression 

(16) 
regression 

(17) 

Japan MAE 0.0099 0.8810 0.5810 0.9792 0.9842 

 RMSE 0.0140 0.8393 0.5774 0.9578 0.9619 

UK MAE 0.0078 0.8742 0.6058 0.9821 1.0140 

 RMSE 0.0105 0.8349 0.5899 0.9561 1.0071 

US MAE 0.0065 0.8331 0.6101 0.9513 1.0277 

  RMSE 0.0086 0.7843 0.5923 0.9362 1.0015 

 

RMSE of the forecasts (column “model” in table 4) are approximately equal to the standard errors of 

corresponding market returns (Table 1). The model forecast is more precise than the zero (“martingale”) 

forecast and much better than naïve (trend) forecast. However, the model forecast has approximately same 

precision as these two simple benchmark regression models forecasts. 

Diebold, Mariano (1995) suggested the test to compare the relative predictive accuracy of the two 

forecasts. Results of the tests for the same 165 forecasts are presented in the table 5 in Appendix for two loss 

functions: MAE and MSE. Our model is not significantly different from the “long” regression (17) forecasts, 

but at 10% significant level it beats “short” regression (16) for the MSE criteria and Japan and US forecasts.  

Results for 3569 forecasts (rolling windows of size 500 with step 1) are presented in the table 6 in 

Appendix§§. Now our model beats benchmark models for the forecasts of the UK and US indices for MSE loss 

function. Most likely this result is statistically significant only because of large number of observations although 

this does not imply that we can construct an arbitrage strategy out of these forecasts. 

 

6. Conclusion 

The model based on a linear Kalman filter which extracts a common stochastic trend from 

nonsynchronous observations was suggested in Korhonen, Peresetsky (2013b). We extend this model allowing 

for the autocorrelation in the global stochastic trend, and estimate this model using daily observations for the 

period 22.09.1997–06.03.2014  for three markets indices Nikkei 225, FTSE, S&P 500. 

We found a statistically significant autocorrelation in the global trend. However, this observation does 

not help to make market return forecasts statistically reliable for practical applications. Still it might be that 

                                                 
§§

 Table 4 for 3569 forecasts does not differ significantly from the table for 165 forecasts (with step 21 rolling windows). 
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estimating a model for more markets uniformly distributed on the UTC time scale will show a better 

performance. 

Comparing the extracted global stochastic trend with the S&P 500 e-mini, which is traded continuously 

23 hours per day, we found that their 24-hour returns have the largest correlations for the closing time of the NY 

exchange. This is not unexpected since the US market has the largest impact on the global trend and that 

S&P 500 e-mini is mostly based on the US company stocks. 
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Figure 6. Evolution of the correlations of the returns of the global trend in adjacent intervals, 

calculated by (10)–(12). 1corr13=Corr( 1 , 3 ), corr12 Corr( 2 , 1 ), corr23 Corr( 3 , 2 ).t t t t t tε ε ε ε ε ε− = =  
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Table 5. Diebold-Mariano test for comparing predictive ability of the model (4)–(6) vs. benchmark models, 165 
forecasts* 

    martingale trend 
regression 

(16) 
regression 

(17) 

Japan MAE –2.42  
[0.015] 

–6.44  
[0.000] 

–0.96 
[0.337] 

–0.92 
[0.358] 

 MSE –2.18 
[0.030] 

–4.1 
[0.000] 

–1.84 
[0.066] 

–1.37 
[0.170] 

UK MAE –2.38 
[0.017] 

–5.89 
[0.000] 

–0.54 
[0.589] 

0.87 
[0.386] 

 MSE –2.20 
[0.028] 

–3.34 
[0.001] 

–1.39 
[0.165] 

0.50 
[0.618] 

US MAE –2.82 
[0.005] 

–5.8 
[0.000] 

–1.32 
[0.188] 

0.97 
[0.334] 

  MSE –3.07 
[0.002] 

–4.21 
[0.000] 

–1.78 
[0.076] 

0.064 
[0.949] 

* P-values in brackets, null hypothesis is H0: equal predictive accuracy. Negative value of the test 
statistic corresponds to better performance of the model in comparison with a benchmark model. 

 
Table 6. Diebold-Mariano test for comparing predictive ability of the model (4)–(6) vs. benchmark models, 

3569 forecasts* 

    martingale trend 
regression 

(16) 
regression 

(17) 

Japan MAE –6.17 
[0.000] 

–13.66 
[0.000] 

–2.94 
[0.003] 

–1.30 
[0.192] 

 MSE –3.14 
[0.002] 

–4.76 
[0.000] 

–1.47 
[0.143] 

–1.04 
[0.299] 

UK MAE –4.64 
[0.000] 

–12.08 
[0.000] 

–4.50 
[0.000] 

–1.58 
[0.114] 

 MSE –3.31 
[0.001] 

–5.81 
[0.000] 

–3.81 
[0.000] 

–2.66 
[0.001] 

US MAE –7.52 
[0.000] 

–10.95 
[0.000] 

–3.82 
[0.000] 

–3.54 
[0.000] 

  MSE –4.08 
[0.000] 

–4.18 
[0.000] 

–2.51 
[0.012] 

–3.31 
[0.001] 

* P-values in brackets, null hypothesis is H0: equal predictive accuracy. Negative value of the test 
statistic corresponds to better performance of the model in comparison with a benchmark model. 
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