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Abstract 

 

Budgetary constraints on the public purse have led Australian Federal and State 

governments to focus increasingly on the efficiency of public institutions, including 

Technical and Further Education (TAFE) institutes. In this study, we define efficiency as 

the relationship between financial and administrative inputs and educational outputs. We 

employ stochastic frontier analysis in determining the efficiency of Australian TAFE 

institutes using data sourced from institutional annual reports, the Student Outcomes 

Survey and administrative databases. We found significant economies of scale effects and 

conclude that increasing institutional size for very small institutions may result in 

increased efficiencies. 

 

Introduction  

 

Increased competition for scarce public funding has highlighted the need for governments to 

encourage the TAFE sector to demonstrate improved productivity. Efficiency of TAFE 

institutes is thus of great interest to policy makers, regulators, consumers, and to the 

institutions themselves. Knowledge about institutional efficiency may be useful to 

government agencies in allocating funds and in assessing the impact of funding decisions on 

the relationship between financial and administrative input into institutions versus the 

produced output, for instance in the form of hours taught, graduates produced, employment 

outcomes and other outcomes. Institutions may use information about their own efficiency to 

benchmark themselves against other institutions and to make adjustments to their own 

resource allocation. Regulators can also use this knowledge to potentially identify areas of 

high risk in the delivery of vocational education and training (VET). Moreover, due to limited 

market mechanisms in the provision of educational products, knowledge of alternative means 
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to establish benchmarks of efficiency is of importance to all stakeholders in educational 

institutions.  

The contemporary approach to the analysis of the efficiency in the form of a 

production function was pioneered by Farrell. In his seminal paper (Farrell, 1957), he argued 

that the measurement of efficiency is necessary to ascertain whether additional inputs are 

needed to increase desired outputs or if such outputs can be increased by raising efficiency 

alone. He also developed a generalisable production function which enabled the computation 

of efficiency measurements under multiple input scenarios. In the 1970s two groups of 

researchers arrived at two different techniques for the specification of production frontiers: 

Aigner, Lovell, and Schmitt (1977) formulated the first stochastic frontier model, a 

parametric maximum likelihood technique which overcame the previous limitations of 

frontier estimation by introducing a new approach to the specification of the error term, 

namely its separation into a normal ‘noise’ term and a one sided inefficiency term. Almost at 

the same time, Charnes, Cooper, and Rhodes (1978) published their work on a non-

parametric linear programming method, Data Envelopment Analysis (DEA). This method 

focuses on the scalar measure of the efficiency of each unit under consideration which is 

obtained after the determination of weights for the observed data for inputs and outputs.  

The introduction of both of production frontier methods has led a growing body of 

empirical research. One of their features is their utility in multiple input and output scenarios, 

which makes this form of efficiency analysis particularly useful for non-commercial units 

(often called Decision Making Units (DMU)). While production frontier methods have been 

used in the analysis of commercial contexts, one of the main applications has been the 

efficiency analysis of public institutions and government owned entities. The spectrum of 

sectors analysed has varied across a wide field of institutional units, ranging from hospitals, 

public transport, public utilities, and prisons, to numerous applications of educational 

contexts. 

In this study, we employ parametric Stochastic Frontier Analysis (SFA) to determine 

the efficiency of Australian TAFE institutes. We will proceed in the following manner: First, 

we review the theoretical underpinnings of the technique used and identify and describe the 

appropriate variables and data that are going to be used in the analysis. Then, we 

operationalise the model and discuss the resulting estimates and efficiencies. Finally, we 

consider the  practical relevance of our research results and whether concrete policy 

implications could emerge from our findings. 
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Production frontiers and their application in education  

  

Efficiency analysis utilising SFA or DEA has been applied frequently in educational 

contexts. However, despite the popularity of econometric frontier analysis overseas, the 

existing published research utilising SFA or DEA in Australian education is somewhat 

limited. Most of the existing published research has focussed on universities. Avkiran (2001) 

applied DEA and used 1995 data of Australian universities to determine universities’ 

productivity in respect to the delivery of educational services and fee paying enrolments. 

Other DEA studies examining cross-sectional university performance were performed by 

Abbott and Doucouliagos (2003), Carrington, Coelli, & Rao (2005), and Worthington and 

Lee (2008). Horne and Hu (2008) and Abbott and Doucouliagos (2009) published SFA 

research of Australian and New Zealand and Australian universities. Finally, only a small 

number of studies involving Australian TAFEs could be identified. These were notably the 

research by Abbott and Doucouliagos (2002) who performed DEA analyses utilising data 

from Victorian institutes only and one nationwide DEA study by Fieger (2010). There has 

been no previous published efficiency analysis of the Australian TAFE sector which utilised 

the stochastic frontier approach.  

 

Method of Analysis 

 

We employ the stochastic frontier framework. The foundations for this methodology were 

laid by Aigner, Lovell, and Schmidt (1977) who formulated the first stochastic frontier 

model. Their main contribution was the introduction of a new approach to the specification of 

the error term, namely its separation into a normal ‘noise’ term and a one sided inefficiency 

term. Stochastic frontier production functions are an extension to the classic Cobb-Douglas 

(1928) function which can generally be expressed in this form: 

 𝑌 =  𝑒𝛽0𝑋1𝛽1𝑋2𝛽2 … 𝑋𝑛𝛽𝑛𝑒 (1)      

 

This model can then be transformed by taking the log of both sides: 

 𝑙𝑛(𝑌) = 𝛽0 +  𝛽1ln (𝑋1) + 𝛽2ln (𝑋2) … 𝛽𝑛ln (𝑋𝑛) +  = 𝛽0 + ∑ 𝛽𝑖ln(𝑋𝑖) + 𝑛𝑖=1      (2) 
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This model is easily recognisable as a variation of the classical multiple regression model in 

which Y stands for the output, o for the intercept, i for a vector of inputs and  for statistical 

noise. Aigner et al.’s contribution was to postulate that in SFA the error term  essentially 

corresponds to two error components, one being the statistical noise portion v, and the other 

being the non-negative technical efficiency u which is distributed independently from v.  

𝑖 =  𝑣𝑖 − 𝑢𝑖      (3) 

 

The original Cobb-Douglas function can thus be re-formulated as 

 𝑙𝑛(𝑌) = 𝛽0 +  ∑ 𝛽𝑖ln (𝑋𝑖) +  𝑣𝑖 −  𝑢𝑖𝑛𝑖=1       (4) 

 

 

where the technical efficiency TEi of ui can then be determined by   

 𝑇𝐸𝑖 =  𝑒−𝑢𝑖    (5) 

 

TEi is meant to be located between 0 and 1 and is ordinarily assumed to be positively half-

normally distributed2. Aigner et al. determined the mean of  and u as: 

 𝜇 =  𝜇𝑢 =  −𝜎𝑢 √2𝜋2
       (6) 

 

and the variance of error  as:  

 𝑣𝑎𝑟() =  𝑣𝑎𝑟(𝑢) +  𝑣𝑎𝑟(𝑢) =  𝜋−2𝜋  𝜎𝑢2 +  𝜎𝑣2.  (7) 

 

where u represents the variance of the normal distribution prior to truncation to 0. The 

parameterisation above allows for the specification of additional relationships which enable 

the interpretation of results.  The total variance in the error term is given by 𝜎2.  

 𝜎2 =  𝜎𝑣2 +  𝜎𝑢2  (8) 

                                                 
2 In this study we will apply the half normal error distribution assumption. There are, however, other error 
distribution assumptions possible, such as exponential, half-truncated, gamma etc.  
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The ratio of the standard deviation of the inefficiency component to the standard deviation of 

the ‘noise’ error component is given by , and  is an indicator of the portion of the one sided 

error component in the overall variance: 

 𝜆 =  𝜎𝑢𝜎𝑣  (9)      and      𝛾 =  𝜎𝑢2𝜎2       (10) 

 

These simple relationships represent a convenient means to assess the quality of the results of 

a SFA. For instance,   0 implies that 𝜎𝑣2   and/or 𝜎𝑢2   0 which indicates that the 

symmetric error dominates the overall error component. Similarly, when    then u   

or v  0 and therefore deviation from the frontier can be explained by inefficiency. 

Following from this is that when   1 the amount of the explained inefficiency increases 

over the portion of random noise, that is, the value of  is the approximate proportion that is 

attributed to inefficiency.   

 

Data characteristics and preparation 

 

The aim of this study is to ascertain the efficiency of Australian TAFE institutes via SFA and 

to determine which exogenous variables drive the calculated efficiencies. When deciding on 

an approach to undertake efficiency frontier analysis of TAFE institutes one has to take into 

account some specific circumstances that are unique to the VET sector. Similar efficiency 

frontier analyses involving universities or secondary schools can often rely on data such as 

the number of full time staff, staff qualifications, number of graduates, test scores, grades, 

research outputs such as publications and conference presentations, successful grant 

applications, and others. Data comparable to the aforementioned are difficult to obtain for 

TAFEs. There is obviously a scarcity of research and research related inputs and outputs that 

relate to TAFEs. Many TAFEs employ a large percentage of part time lecturers, and this 

proportion differs from institution to institution and reliable data about this proportion is 

difficult to obtain. Furthermore, TAFEs do not consistently award grades in the same way for 

some or all of their courses through ‘competency based’ assessments. 

It is therefore clear that there are some circumstances that encumber the specification 

of frontier efficiency models for TAFE providers. The majority of those circumstances can be 

categorized into three groups: a) the absence of functional data for the entire sector (e.g. staff 
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qualification data was not reported in a standardised way by institutions), b) partial data only 

available for a subset of TAFEs (e.g. certain financial data), and c) data that is too dissimilar 

in nature due to the lack of a comprehensive national reporting standard (e.g. assessment 

beyond competency based assessment).   

Despite the aforementioned difficulties we have been able to assemble and derive a 

dataset containing adequate information to undertake the course of research set out in earlier 

paragraphs. The data used in this study came from several sources. These sources included 

institutional annual reports, information on institutional websites, personal requests to 

institutional administrators and state regulators, the Student Outcome Survey (SOS), and the 

Students and Courses database at NCVER. Of significance was the choice of year(s) for 

which data should be obtained. It was intended to assemble a panel of data comprising a 

number of years in an effort to a) maximize the number of data points and b) enable analysis 

of changes in efficiency over a given period. However, data collection was more difficult 

than anticipated as institutes do not publish financial data in a uniform pattern. Specifically 

the collecting of several consecutive years of financial data appeared to be difficult. It was 

thus decided to focus on one particular year with the following stipulation: a) the year had to 

be as recent as possible, b) it had to be an augmented SOS year3 to enable the use of the most 

robust institutional data, and c) the chosen year had to have the maximum of available data 

points. Taking these considerations into account 2011 was chosen as the year of analysis.    

The initial plan was to include all 69 Australian TAFE and TAFE like institutions4 in 

this analysis. However, this intention was impeded by a number of factors. In addition to 

those institutes that did not provide data, some institutions proved to be too specialised to be 

compared on an equal footing with the majority of TAFE institutes. These were notably the 

Driver Education Centre of Australia and the National Art School. Some of the TAFE units 

of universities did not have delineated financial data for their TAFE division available. After 

considering availability of data for the remaining institutes it was decided to include those 

units in the final data set that had data for the total expenditure variable in 2011 available. 

This yielded 56 TAFEs for inclusion in the analysis. 

In addition to financial expenditure data the ‘teaching hours’ variable used in the 

efficiency analysis was sourced from NCVER’s Students and Courses database. This variable 

                                                 
3 Odd years feature an augmented sample of the SOS, containing about 300,000 questionnaires, of which about one 
third receives a response. In these years the SOS is designed to enable estimates at an institutional level. In even 
years the SOS sample contains about 100,000 questionnaires, and the focus of estimates is the state level. 
4 In the context of this study, the term ‘TAFE and TAFE like institute’ refers to TAFE institutes, TAFE divisions of 
a university, Skills Institutes and Polytechnics. From here on only referred to as ‘TAFE’. 
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indicates the number of student contact hours by institution. A number of further items were 

sourced predominantly from the 2011 SOS. These included institutional proportions in terms 

of sex, student type (module completers/graduates), indigenous students, students who used a 

language other than English at home, and disabled students. Other variables included were 

the average age of the student body at individual institutions, and an average institutional 

remoteness score derived from the ABS’s ARIA variable. We also used the SOS to determine 

the number of different courses offered by each institution which had at least one student 

enrolled. A categorical variable indicating size was derived from the total expenditure 

variable. The categories created were ‘very large’, signifying total expenditure in excess of 

$120,000,000, large ($70,000,000 to $120,000,000), medium ($45,000,000 to $ 69,999,999), 

small ($25,000,000 to $44,999,999), and very small with total expenditure of less than 

$25,000,000. 

 

Empirical model 

 

In this study we aimed to evaluate the technical production efficiency of a number of 

TAFE institutes. Our interest was in determining institutional efficiency based on basic 

financial expenditure and administrative input and the produced output as measured by 

teaching contact hours. The starting point to operationalise our efficiency model was in the 

form of a production function as expressed by a Cobb-Douglas equation: 

 𝑇 =  𝑒𝛽0𝐸𝛽1𝐶𝛽2𝑒𝜀  (11) 

 

where T denotes the output in teaching hours, E the total expenditure, and C the number of 

courses offered by a given TAFE. C was included as it is an indicator of the complexity of 

college administration. Taking the natural logarithm of (11) and accounting for the SFA 

specific error component as shown by Battese and Coelli (1995) resolves to: 

 ln(𝑇𝑖) =  𝛽0 + 𝛽1 ln(𝐸𝑖) + 𝛽2 ln(𝐶𝑖) + 𝑣𝑖 − 𝑢𝑖   (12) 

 

Descriptive statistics for variables used in estimating this model can be found in Table 1. 
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Table 1 Descriptive statistics SFA model 

Variable N Mean StdDev Minimum Maximum 

Teaching Hours 56 5,521,177.5 4,174,682.5 473,279 22,346,943 

Total Expenditure 56 79,966,968.0 53,563,163.2 12,324,312 288,974,000 

Number of courses offered 56 172.6 83.3 32 439 

 

In addition to the frontier production function (12) we intended to investigate which 

exogenous variables may be influencing technical efficiency. We therefore specified a second 

component in which we included some variables which were hypothesised to influence 

efficiency: 

 𝜇 = 𝛿0 + ∑ 𝛿𝑘𝑧𝑘𝐾𝑘=1    (13) 

 

Here, z represents the hypothesised K predictors of efficiency and  the parameters that 

needed to be estimated. In our model we hypothesized that predominantly demographic 

factors influence efficiency, as these factors may require administrative adjustments to TAFE 

operations. We therefore entered the variables with institutional indicators for English as a 

second language, disability, remoteness, age and sex, into our efficiency model (for 

descriptive statistics see Table 2). 

 

Table 2 Descriptive statistics inefficiency model 

Variable N Mean StdDev Minimum Maximum 

English second language 56 16.3 9.8 4.6 40.2 

Students with disability 56 9.4 2.9 4.4 18.5 

Remoteness (ARIA) 56 2.1 1.0 1.1 4.7 

Student age 56 33.0 2.2 27.6 37.1 

Proportion of males 56 57.2 10.7 32.8 96.6 

 

This two component scenario would have originally been estimated in a two step approach, 

where the first step specifies the stochastic production frontier and leads to the estimation of 

efficiency scores and the second step is to estimate the relationship between efficiency scores 

and efficiency predictors. Wang and Schmidt (2002) have demonstrated that this two step 

procedure is biased and that instead stochastic frontier models and the way in which 

efficiency u1 depends on predictors can and should be estimated in one single step using 

maximum likelihood estimation. 
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Analysis by Waldman (1982) has shown that for the specification of a stochastic 

frontier model it is beneficial to examine the third moments of the least squares residual. If 

this quantity is positive, then the least squares slope estimates and =0 represent a local 

maximum of the likelihood. Conversely, if the third moment is negative, the likelihood has a 

greater value at some other point where =0. This means that negative skewness of the 

residuals of the OLS regression indicates that maximum likelihood estimation is indeed the 

appropriate procedure to estimate the production frontier. We thus began our analysis with 

the formulation of a linear regression model identical to our proposed SFA model. The results 

can be seen in table 3 (model 1). The third moment based of the OLS residuals was estimated 

to be -0.63, thus indicating to be a satisfactory prerequisite for the maximum likelihood 

estimation of the stochastic frontier. While the estimates of the OLS model only have limited 

usefulness, they provide a meaningful starting point for the maximum likelihood estimation 

(Cullinane & Song 2006). The R-squared estimate of the OLS is with 0.91 fairly substantial 

and indicates that most of the variation in teaching hours can be explained by total 

expenditure and number of courses offered by institute. The two independent variables 

themself are highly significant and both exhibit the sign that would be expected, e.g. higher 

expenditure and increasing number of courses tend to be associated with a rise in teaching 

hours.  

We could then estimate our basic stochastic frontier model, using the same variables 

(Table 3, model 2). While coefficients and intercept have the same sign as in OLS regression, 

along with similar magnitude and strong significance, the real interest here is in the estimated 

variance parameters.  The strong significance of the Wald test indicates that the coefficient(s) 

are significantly different from zero and thus confirms the model’s explanatory power. u and 

v are both significant. This suggests the statistical significance of the random error and 

inefficiency component of the model. The significance of  confirms the presence of inherent 

statistical inefficiency in the data. The estimate for   at 0.9 is quite high and denotes that 

90% of the variability in delivered teaching hours could be attributed to technical 

inefficiencies. The closeness of  to 1 points towards the existence of a deterministic 

production frontier (Parsons, 2004). The significance of   and  affirm the preponderance of 

inefficiency in the composite error term and also validate SFA as the appropriate tool for this 

specific analysis (Chen, 2007). Additionally a test was performed to determine wether the 

units investigated by our Cobb Douglas model use constant returns to scale technology. 

 



10 
 

Table 3 Estimates for OLS and SFA models 

Variables OLS MLE 

  Model1 Model2 Model 3 

  Est P>|t| Est P>|z| Est P>|z| 

Stochastic FrontierModel             

Constant -4.221 <.001 -4.022 <.001 -2.730 <.001 

Total Expenditure 0.926 <.001 0.989 <.001 0.968 <.001 

Number of courses offered 0.553 <.001 0.345 <.001 0.134 0.025 

Inefficiency Model             

Constant 

 

  

 

  -17.631 0.001 

English second language 

 

      0.129 0.027 

Students with disability 

 

      0.053 0.726 

Remoteness (ARIA) 

 

      2.708 <.001 

Student age 

 

      -0.074 0.768 

Proportion of males         0.112 0.048 

R-squared 0.913       

 

  

Wald Chi-sq 

 

  385.4 <.001 983.5 <.001 

Sigma v 

 

  0.126 <.001 0.127 <.001 

Sigma u 

 

  0.387 <.001 

 

  

Lambda 

 

  3.073 <.001 

 

  

Gamma     0.904       

 

The test of this hypothesis determines whether the sum of the coefficients in the model is 

statistically different from 1. The sum of the coefficients for ‘total expenditure’ and ‘number 

of courses’ was calculated as 1.33 and the test for equality to 1 yielded a chi squared value of 

6.54 (p=0.0106), so that we could reject the hypothesis of constant returns to scale 

technology and assume an increasing returns to scale setting. In the scenario considered, this 

means that outputs will increase disproportionally when inputs are increased.    

 Having gained insights into the characteristics of our basic frontier model we could 

proceed to specify the SFA model that included explanatory variables for the technical 

inefficiency variance function (Table 3, model 3). First we note that parameters and 

significance of the frontier function are comparable to the model without the inefficiency 

terms. The Wald chi-squared value and the variance component of the random error term of 

the whole model were also significant and of similar magnitude. The main items of interest in 

model three are thus the inefficiency effects. We note that the proportion of students with a 

disability and the institutional mean age of the student body are not related to institutional 

efficiency. The strong significance of remoteness points to inefficiency being a function of 

remoteness. This result confirms the findings of Fieger (2010), who found remoteness being 

the key variable associated with inefficiency. This finding may be partially attributed to 
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Australia’s unique geography and related issues of infrastructure and demographics, however, 

it must also be noted that ‘remoteness’ acts also as a proxy for institution size as many urban 

institutes tend to be significantly larger than rural institutes. Internationally, remoteness is 

rarely identified as driver of inefficiency, although Izadi, Johnes, Oskrochi, & Crouchley 

(2002) found some incidental relationship between remoteness and inefficiency. In model 3 

we find further, albeit weaker, positive associations between the proportion of males and 

inefficiency, and the proportion of students with English as a second language and 

inefficiency. Possible explanations here may be that males tend to be engaged at higher rates 

in apprenticeships, which require larger administrative and financial efforts on the part of the 

institution. An assessment of the correlation between the proportion of males and the 

proportion of apprentices and trainees in 2011 revealed an overall correlation of 0.44 

(p<0.001), thus supporting this explanation. Greater financial, educational and administrative 

efforts may also be at play when considering the relationship between increasing inefficiency 

and higher rates of non-native English speakers. Larger proportions of students with English 

as a second language may necessitate more intensive teaching modes, such as lower 

teacher/student ratios, which may in turn explain some variation in institutional inefficiency 

in respect to the percentage of non-native English speakers.  

 After verifying the suitability of our model and discussing the interpretation of model 

statistics and coefficients we were interested in the actual estimated efficiencies of individual 

institutions. The efficiencies follow from (5) and specifically for the half-normal production 

model are derived by 

 𝑇𝐸 = {1−Φ(𝜎∗−𝜇∗𝑖)1−Φ(−𝜇∗𝑖𝜎∗ ) }exp (−𝜇∗𝑖 + 12 𝜎∗2)  (14) 

 

where  signifies the cumulative distribution of the normal distribution and 𝜇∗𝑖 and 𝜎∗are 

defined as 

 𝜇∗𝑖 = −𝜖𝑖𝜎𝑢2/𝜎𝑠2  (15)      and      𝜎∗ = 𝜎𝑢𝜎𝑣/𝜎𝑠   (16) 

 

The calculated efficiencies for model 3 can be found in table 4. 
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Table 4 Observed institutional efficiencies 

Technical efficiency 

Institute Efficiency Institute Efficiency Institute Efficiency Institute Efficiency 

1 0.984 22 0.862 36 0.986 53 0.840 

4 0.977 23 0.921 37 0.979 55 0.967 

5 0.973 24 0.964 38 0.991 56 0.474 

7 0.932 25 0.968 40 0.621 57 0.723 

10 0.953 26 0.908 43 0.960 58 0.327 

11 0.943 27 0.985 44 0.946 60 0.389 

13 0.971 28 0.973 45 0.893 64 0.948 

14 0.953 29 0.959 46 0.980 65 0.977 

15 0.978 30 0.987 47 0.916 66 0.979 

16 0.966 31 0.967 48 0.927 70 0.918 

17 0.953 32 0.866 49 0.992 71 0.978 

18 0.986 33 0.982 50 0.972 74 0.198 

19 0.960 34 0.996 51 0.981 77 0.983 

20 0.963 35 0.920 52 0.739 110 0.423 

Mean: 0.888 

SD: 0.182 

 

 Economies of scale effects can always be suspected where comparable units produce 

variable quantities of similar goods. The obvious reason for this in the setting under 

consideration is that increasing ‘hours taught’ costs decrease on a per hour basis as 

operational fixed costs can be shared over more hours. In the higher education sector such 

economies of scale have been well documented (see, for instance, Hashimoto and Cohn, 

1997), albeit mostly in the university context. In the Australian TAFE sector, one could 

reasonably expect that larger institutes exhibit higher efficiency. We were therefore interested 

in patterns of efficiency in respect to institute size. Figure 1 displays the institutional 

efficiency in respect to institute size, as measured by teaching hours. 

In this graph blue dots identify individual institutes and their location indicates the 

relationship between efficiency and size. As was hypothesised, smaller institutes appear to 

exhibit significantly lower efficiency than larger institutes. This graph should be of interest to 

regulators and policy makers, as it shows a striking change in efficiency over only a small 

portion of size increase on the far left of the chart. We fitted a curve over the data in order to 

be able to mathematically define the point at which further increases in size cease to translate 

into significant gains in efficiency. Practically, this point should define the minimum size for  
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Figure 1 Technical efficiencies as a function of institute size 

 

a TAFE to operate efficiently. The curve fitted defines the relationship efficiency as a 

function of size as 

 𝐸 = 1 − 2.7∗105𝑆  (17) 

 

where S indicates size as measured by teaching hours. The resulting fit explains about 88 

percent of the variance in efficiency and is thus a reasonable representation of the data. We 

then defined the turning point of this function as the point where the strong increase in 

efficiency in respect to teaching hours eases. The derivative of (17) yields 

 𝑑𝐸𝑑𝑠 = 2.7∗105𝑠2    (18) 

 

Solving (18) for a slope of 1 and accounting for the different scale of y and x axis yields 

 𝑇 = √2.7 ∗ 105 ∗ 𝑇𝐻𝑚𝑎𝑥 = 2.4 ∗ 106 (19) 

 

where THmax represents the teaching hours of the largest institution.  It can thus be stated that, 

based on the above derivation, when institutional size is equal or greater to about 2.4 million 

teaching hours, size is no longer an impediment to efficiency. Alternatively it can be 
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concluded that, in order to be efficient in the transformation from financial resources to units 

taught, TAFE institutes should be of a size that corresponds at least 2.4 million teaching 

hours. Interestingly, this finding is similar to the results presented in Fieger (2010), where a 

different methodology, different data and variables, and a different base year were employed. 

This may add impetus to the validity of our findings presented here. 

 

Conclusion 

 

In this study we have applied a stochastic frontier model to estimate the efficiency of 

Australian TAFE institutes, focussing on the relationship between financial and 

administrative inputs and teaching output. We have observed some clear inefficiencies. These 

are mainly related to the degree of remoteness and student characteristics. The least efficient 

TAFE institutes are more likely to be found in remote locations, have a higher percentage of 

males, and a larger proportion of individuals from non English speaking backgrounds. We 

speculate these inefficiencies are driven by a combination of interrelated factors, including 

geographic location, available infrastructure and the absence of occupational diversity of 

graduates. Significant economies of scale effects were observed. These effects disappear once 

institutions exceed a certain minimum threshold in size. We conclude that increasing 

institutional size for very small institutions (that is those that produce less than 2.4million 

teaching hours) may result in increased efficiencies. 
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