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Abstract

This paper considers effects of body mass on wages in the years
following labor market entry. The preferred models allow current
wages to be affected by both past and current body mass, as
well as past wages, while also addressing the endogeneity of body
mass. I find that a history of severe obesity has a large negative
effect on the wages of white men. White women face a penalty
for a history of being overweight, with additional penalties for
both past and current BMI that begin above the threshold for
severe obesity. Furthermore, the effects of past wages on current
wages imply that past body mass has additional, indirect effects
on wages, especially for white women.
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This paper considers effects of past and current body mass on wages in the

early years of workers’ careers. Using data from the National Longitudinal

Survey of Youth 1997, I estimate dynamic models of wages in which body

mass is allowed to be endogenous. This approach allows workers’ history in

the labor market, including past wages, to affect current wages. As a result,

effects of high body mass can accumulate and persist over time. Furthermore,

the preferred estimates are unbiased even when body mass is correlated with

both individual fixed effects and time-varying unobservables.

The literature on body mass and wages has been understandably con-

cerned with the endogeneity of body mass. Cawley (2004) carefully describes

the reasons weight or body mass may be correlated with fixed and time-

varying unobserved heterogeneity; however, most previous work has focused

on either individual fixed effects or time-varying sources of endogeneity, but

not both in the same regression.1

One contribution of this paper is that the estimation addresses multiple

sources of bias simultaneously. The use of autoregressive wage equations

eliminates a potential source of omitted variable bias that has been ignored by

previous work, and individual fixed effects are removed by first-differencing.

The panel data are then exploited to address endogeneity associated with

1E.g., Han et al. (2011) use fixed effects. Baum and Ford (2004) use first differences.
Kline and Tobias (2008) use parent’s BMI as an instrument. Cawley (2004) and Sabia
and Rees (2012) use fixed effects and IV in separate regressions.

Two exceptions, Averett and Korenmann (1996) and Behrman and Rosenzweig (2001),
use differencing to remove sibling (or twin) fixed effects and then use lagged BMI as either
a proxy or an instrument for current BMI.
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remaining, time-varying errors.

Another important contribution of this paper is the estimation of models

that are consistent with discrimination affecting labor market search, occu-

pational sorting or other channels that would imply dynamic effects of body

mass on wages. The preferred specifications allow both current and past

body mass to affect wages. Furthermore, wages are affected not only by the

lags of body mass included in the model, but also by further lags that have

indirect effects through their effects on past wages. As a result, effects of

body mass on wages can persist and even accumulate over time. In contrast,

most previous work implicitly assumes that wage penalties associated with

obesity are the same whether the worker recently became obese or had been

obese her entire career.2

This paper is also the first in the literature to use the NLSY97, and one

of the first to focus on workers who entered the labor market more recently

than the 1980s.3 Odgen et al. (2010) report that obesity doubled among

adults in the U.S. between 1980 and 2000. If prejudice or stereotypes evolve

as the population becomes heavier, results from previous work based on the

NLSY79 may not generalize to more recent cohorts.4

2Recent work by Chen (2012) is the only other to allow both past and current BMI
to affect wages. Examining workers in their 30s, she considers effects of current BMI and
BMI 10 years earlier. The current paper provides a detailed look inside of those early
years using a younger cohort of workers.

3Sabia and Rees (2012) use a sample from Add Health that is between 24 and 32 in
2008. Gregory and Ruhm (2011) also use data with more recent entrants, but their sample
from the PSID pools respondents as young as 25 in 2005 and as old as 55 in 1986.

4Additionally, Altonji et al. (2012) find that the mix of skills and family backgrounds
changed between NLSY cohorts, which would affect the ability to generalize across decades.
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Finally, the estimation sample is unique in its focus on young workers in

the first several years after entry into the labor market. As a result, the esti-

mation should be better able to capture potential discrimination as it unfolds

than it would with a sample of older workers. Wage growth is higher earlier in

careers, and changes in jobs and occupations are more important.5 Removing

fixed effects in a sample of older workers is likely to remove the accumulated

effects of past discrimination suggested by Chen (2012). Furthermore, sig-

nals inferred from body mass should have larger effects for younger than for

older workers because the market knows less about younger workers.6

The empirical results suggest that wages are affected by past body mass

and past wages. White men are penalized for a history of severe obesity.

White women face a penalty for being overweight in previous years, with

additional penalties as either past or current BMI exceeds the threshold

for severe obesity. Furthermore, I find that including past wages in the

model is critical for identification and has important implications for the

interpretation of results, especially for women.

The next section discusses models of wages and body mass, building up

to dynamic panel data specifications. Section 2 discusses the data. Section 3

5See Murphy and Welch (1992), Topel and Ward (1992), and Neal (1999) among others.
6Hamermesh (2011) provides a similar argument to explain why effects of beauty on

wages might decline with age. See Altonji and Pierret (2001) for more on statistical
discrimination in the presence of employer learning. Lange (2007) discusses how quickly
the market learns about young workers.

Employer learning about healthcare costs may be more complicated than learning about
productive characteristics if the correlation between BMI in a given period and expected
healthcare costs changes with age.
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describes tests of the identifying assumptions introduced in Section 1 before

discussing other details of the estimation. Section 4 presents results, followed

by various robustness tests. Section 5 concludes.

1 Empirical Models of Body Mass and Wages

Following the recent literature, our first attempt at specifying a wage regres-

sion to measure effects of body mass might take the form

wit = Xitβ +BMIitϕ+ νit, (1)

where wit is the log of person i’s wage in period t, Xit is a vector of observable

characteristics, and BMIit is a vector that describes body mass using dummy

variables or a polynomial. BMIit is potentially correlated with both fixed

individual effects related to genetics or upbringing and time-varying factors

in the error term, νit, leading to possible endogeneity.

Some previous work has used fixed effects or first-differenced estimation

to eliminate bias in equation (1), but potential correlation between BMIit

and time-varying shocks to wages then remains.7 Other estimates used in-

strumental variables to address the bias in equation (1), but the instruments

used so far in the literature are correlated with individual fixed effects.8 The

7E.g., Cawley (2004), Baum and Ford (2004), and Han et al. (2009).
8The most plausible instrument in the previous literature is the BMI of a family mem-

ber, which was first used by Cawley (2004); however, Han et al. (2009) and my own
preliminary estimation find that sibling or parent’s BMI predicts only time-invariant com-
ponents of body mass.
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two approaches could be combined, but doing so requires a valid instrument

for changes in BMIit.

An additional problem in the literature on weight and wages is that most

authors have, at least implicitly, assumed that only current body mass affects

wages.9 This assumption is inconsistent with the broader discrimination lit-

erature in which dynamic models are now common. For example, Lang et al.

(2005) show that hiring decisions in a wage posting model magnify effects of

prejudice or expected productivity differences, resulting in wage differences

even if employers are not willing to pay more to hire their preferred group.10

Bjerk (2008) shows that any one of a few types of statistical discrimination

can result in wage differentials over time due to effects on hiring and promo-

tions.11 Adapting either of these models to discrimination based on weight

would imply that a worker’s history of body mass could affect her current

wages through effects on past job search and promotions. Furthermore, any

statistical discrimination story in which body mass is used as a signal of

productivity or healthcare costs would imply effects of at least the history of

body mass observed by the current employer.

Regardless of how or why wage penalties arise, the idea that the full effects

More importantly, Cawley et al. (2011) criticize the use of instruments based on genetics,
arguing that even a single gene may be associated with too many outcomes to satisfy an
exclusion restriction. Supporting this argument, I find that siblings’ BMI is correlated
with AFQT scores in the NLSY79, even after controlling for respondents’ BMI.

9As mentioned above, Chen (2012) is a recent, important exception.
10Differences in healthcare costs should have similar effects to productivity differences

in Lang et al. (2005), which would fit the results of Bhattacharya and Bundorf (2009).
11Additionally, Oettinger (1996) shows that differences in uncertainty about workers’

productivity can affect workers’ returns to mobility.
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of changes in body mass would be captured by immediate changes in the wage

is not consistent with the presence of labor-market frictions. Employers that

have difficulty lowering wages during economic downturns may also have

difficulty cutting wages in response to undesirable weight gains. Workers who

face limited opportunities due to their weight may face difficulty moving to

better jobs after losing weight, much as workers who enter the labor market

during recessions face lower wages long after the economy recovers.12

If a history of being overweight or obese can affect current wages, regres-

sions like equation (1) should be modified to allow effects of both current

and past body mass. But body mass (past or current) may be affected by

past wages, which are likely correlated with current wages. In addition to the

potential simultaneity of wages and body mass that has been discussed in

the literature, it is possible that BMI is predetermined by past wages. There-

fore, lagged wages should be added to avoid omitted variable bias. Including

lagged wages has the additional benefit of allowing lags of body mass that

are not included in the regression to have indirect effects on current wages

through their effects on past wages.

Using a single lag of both wage and body mass results in an autoregressive

wage equation:

wit = γwit−1 +Xitβ +BMIitϕ+BMIit−1ϕ1 + αi + εit. (2)

12See Kahn (2010) and Oreopoulos et al. (2012). Plant closings and layoffs have also
been found to have persistent negative effects on wages. See, e.g., Jacobson et al. (1993).
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Both BMIit and BMIit−1 are potentially correlated with the individual fixed

effect, αi, as is wit−1.
13 As before, BMIit might be correlated with the time-

varying error, εit, or with earlier shocks to the wage.

Dynamic panel data models like equation (2) can be estimated using

the differenced GMM estimator developed in Holtz-Eakin et al. (1988) and

Arellano and Bond (1991) (HENR and AB in what follows).14 The first step

in this approach is to difference equation (2) to eliminate the fixed effect:

∆wit = γ∆wit−1 +∆Xitβ +∆BMIitϕ+∆BMIit−1ϕ1 +∆εit. (3)

After differencing, ∆BMIit and ∆BMIit−1 may still be correlated with the

error term, and ∆wit−1 is correlated with ∆εit through εit−1.

Fortunately, further lagged levels of the wage are valid instruments for

∆wit−1 if there is no serial correlation in ε. Under this assumption, wit−2

is not correlated with εit or εit−1, but is correlated with ∆wit−1.
15 The

GMM estimator of HENR and AB also uses further lags, where available, as

instruments to improve efficiency.

It is important to note that assuming no serial correlation in the time-

varying errors, εit, is not equivalent to assuming no serial correlation in wages

or wage growth. On the contrary, the autoregressive specifications of equa-

13Further lags of BMI or w can be included, but one lag is sufficient to explain the
model. The lag structure is discussed further in Section 3.

14See Arellano and Honoré (2001), Bond (2002), or Arellano (2003) for helpful discus-
sions.

15The correlation of wit−2 and ∆wit−1 is weak if γ is close to 1; however, the results
presented below suggest this is not a problem.
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tions (2) and (3) assume that current wages are correlated with past wages,

and current wage growth is correlated with past wage growth. The assump-

tion of no serial correlation in ε is violated only if there is serial correlation in

residual heterogeneity that is uncorrelated with lagged wages, BMI (lagged

and current), and any other regressors included in Xit.
16

Lagged levels of BMI are valid instruments in the differenced estimator

under an additional assumption. Specifically, BMIit−2 and further lags are

valid instruments for ∆BMIit and ∆BMIit−1 as long as BMIit is uncorre-

lated with εit+1 for all t. On an intuitive level, if the endogeneity of BMIit

is due to reverse causality, this assumption requires that random shocks to

future wages do not affect current body mass. If there are unobserved shocks

that are common to BMIit and εit, this assumption requires that those shocks

only affect wit+1 through their effects on BMIit and wit.
17

Finally, the identification of equation (3) requires changes in BMI to be

predicted by its lagged levels. BMIit−2 should be correlated with ∆BMIit

if BMIit is endogenous.18 This assumption finds empirical support in the

dynamic models of body mass estimated by Goldman et al. (2010) and Ng et

16In contrast, serial correlation in the residuals of static wage regressions, which dom-
inate the previous literature, is expected because those residuals are not independent of
lagged wages. The dynamic estimation in the current paper, therefore, supports the com-
ments in Cawley (2004) about serial correlation in the previous literature.

17Shocks to BMIit that are correlated with both εit and εit+1 would imply serial cor-
relation in ε, which is testable. However, it’s possible that some shocks to BMIit are
uncorrelated with εit but correlated with εit+1, but this is also testable in may cases.
Section 3.1 discusses tests of identifying assumptions in light of such possibilities. Section
4 present results of these tests, as well as an additional falsification test.

18If BMIit were merely predetermined, meaning it was correlated with εit−1 but not
εit, BMIit−1 would also be a valid instrument for ∆BMIit.
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al. (2010). Studies in the epidemiology literature also find that large changes

in weight are more common among those who were initially heavier.19 Lee et

al. (2010) suggest that avoiding weight gain may require greater effort from

overweight women than from normal weight peers. Finally, in supplemental

regressions (available upon request) I find that BMIit−2 is correlated with

∆BMIit, with F statistics above traditional cutoffs for weak instruments.20

2 Data

This paper uses data from the 1997 through 2009 waves of the National

Longitudinal Survey of Youth 1997 (NLSY97). Individuals in the sample

were between 12 and 16 years of age in 1996. They were between 24 and

30 when interviewed in 2009. The data also contain detailed information on

labor market history, demographics, and other common control variables.

The NLSY97 has important advantages over the 1979 cohort for the pur-

poses of this paper. The ’97 respondents were young enough at their first

interview that nearly all of them are observed as they begin their careers.

They were also asked about height and weight in every year of the survey.

In contrast, NLSY79 respondents were as old as 22 when first interviewed;

and they were not asked about weight in ’79, ’80, 83, ’84 or ’87. As a re-

sult, NLSY79 respondents were between 25 and 33 years old in the first year

19E.g., see Lewis et al. (2000) and Williamson et al. (1990).
20These regressions are not equivalent to the first stage of 2SLS. They are suggestive. I

still consider the possibility that the instruments are too weak to identify coefficients on
both BMIit and BMIit−1 when I examine the robustness of my results.
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(1990) that BMI could be observed for three years in a row.

In what follows, attention is limited to white men and women due to

concern for sample sizes. Over twice as many respondents identify as white

than as black, which is the second largest racial or ethnic group. Furthermore,

requiring at least three consecutive years of valid wage observations reduces

the number of observations more for minorities and women than for white

men.

Additionally, only jobs following full-time labor market entry are included

in the estimation sample. Entry is defined as the first two consecutive years

in which the individual works full time and is employed for at least 75% of

the year. This restriction is intended to exclude the temporary or part-time

jobs of younger workers that likely bear little resemblance to their eventual

adult careers.21 Part-time jobs that take place later in workers’ careers are

still included in the sample.

The sample also excludes respondents who were in the military, as well

as observations for women who were pregnant at any point since the last

interview. Limiting attention to observations that can be use as time t, t−1,

or t − 2 in equation (3) leaves 9,037 observations for 1,473 white men and

5,408 observations for 1,060 white women.

21Nearly 75% of jobs excluded by the entry restriction are part-time, compared to 9%
of jobs in the sample. Median tenure is 23 weeks for excluded jobs, but 85 weeks for jobs
following full-time entry.

The sample includes people who entered the labor-market but returned to (or never
left) school. The results discussed below are robust to excluding people who are in school,
but some statistical significance is lost due to the smaller sample size.
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A more detailed discussion of the sample’s selection is left to an appendix.

The rest of this section discusses information on body mass in the data,

followed by a brief description of the estimation sample.

2.1 Body Mass and Measurement Error

The data include self-reported height and weight in each year, which allows

the construction of BMI.22 The measurement error introduced by the use

of self-reported height and weight is well known and widely discussed; how-

ever, previous research has ignored the fact that roughly 10% of person/year

observations in either NLSY cohort come from telephone interviews, which

worsen misreporting relative to in-person interviews.23 All regressions that

include current or lagged BMI variables also include corresponding dummy

variables for the interview being conducted by phone.

I do not adjust self-reported height and weight based on the relationships

between reported and actual measures in NHANES data, as Cawley (2004)

and others do, for a few reasons. First of all, the assumptions required to

treat NHANES samples as validation data for NLSY cohorts are not credible

given the mix of interview methods in the NLSY.24 Secondly, wage penal-

22BMI is defined as (weight in kg)/(height in m)2
23White women are especially sensitive to interview method. Controlling for age and

individual fixed effects, average reported weight falls by over 3.5 pounds when white women
are interviewed by phone. Reported weight falls by over seven pounds when overweight
women are interviewed by phone.

24The critical assumption is that the distribution of actual measures conditional on
reported is the same in both samples. Differences between interview modes suggest this
assumption is violated even within NLSY cohorts. Furthermore, Han et al. (2009) note
that NHANES respondents expect to be weighed, but NLSY respondents do not.
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ties are more likely driven by whether the worker’s appearance conforms to

some desired standard than by an actual BMI number, which is likely not

observed by employers.25 Finally, rescaling BMI to adjust for systematic mis-

reporting may change the BMI numbers at which we observe wage penalties,

but it should not affect our ability to determine whether heavier workers are

penalized at some point.

2.2 The Estimation Sample

Table 1 presents basic summary statistics for the white men and women in

the sample. The appendix tables present additional summary statistics. The

dependent variable in regressions that follow is the natural log of hourly wage.

Average log wage is around 2.3 for men and 2.2 for women, which translates

to hourly wages of roughly 10 and 8.8, respectively.

The average respondent in the sample is roughly 24 years old.26 In 2009,

the average respondent (male or female) was 27 years old. Average years

in the labor market is 4.5 for white men and four for women. White men

have accumulated an average of 4.2 years of actual experience, while white

women have accumulated 3.8 years of experience. In 2009, the average male

respondent had been in the labor market for seven years, accumulating 6.4

25A related point is made by Johansson et al. (2009) who consider effects of actual BMI,
waist circumference and body fat on labor market outcomes in Finland.

26Respondents were as young as 16 in period t − 2, or 18 in t. This introduces the
possibility that changes in BMI mostly reflect changes in height for part of my sample
and changes in weight for the rest; however, the results presented below are robust to
excluding respondents under the age of 20.
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years of actual work experience. The average woman had been in the labor

market for 6.2 years, accumulating 5.6 years of experience.

Average reported BMI for both genders exceeds 25, which is the threshold

for being overweight. Less than 2% of white men and 4.2% of white women

are underweight (BMI ≤ 18.5). Over 57% of white men and nearly 42% of

white women are overweight (BMI ≥ 25). 22% of white men and 20% of

white women are obese (BMI ≥ 30). Almost 8% of men and over 10% of

women qualify as severely obese (BMI ≥ 35).

As seen in the appendix tables, roughly 9% of the men in my sample and

8% of the women move from one of the official BMI categories to another

between two consecutive years. For either gender, moving to a heavier BMI

category is more likely than moving to a lighter category. Additionally, the

changes in BMI associated with changes in BMI categories (not shown) tend

to be relatively large.27 Therefore, it does not appear as though identification

is coming from small fluctuations in weight that employers would not notice.

3 Estimation

Recall that the differenced equation we’re interested in takes the form

∆wit = γ∆wit−1 +∆Xitβ +∆BMIitϕ+∆BMIit−1ϕ1 +∆εit. (3)

27The median percent change in BMI associated with a change in BMI category is 8.5
percent for men, and 9.5 percent for women. Median changes in BMI are three to four
times larger when categories change than they are otherwise.
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As mentioned in the first section, the GMM approach developed by HENR

and AB uses second and further lagged levels as instruments for ∆wit−1 and

other endogenous variables. The GMM instruments enter as separate vectors

for each year.28 If a lag is missing, it enters as a zero. This allows the use of

further lags without limiting observations to cases that have those lags.

Letting Z denote the matrix of all instruments and ϵ̂ the vector of es-

timated residuals, the moment conditions are E [Z ′ϵ̂] = 0. These moment

conditions are estimated in Stata using XTABOND2.29 All estimates use

two-step efficient GMM, which produces robust standard errors, and apply

the Windmeijer (2005) finite-sample variance correction.

3.1 Testing Assumptions

In Section 1, I assumed that the time-varying errors, εit, are not serially

correlated. AB developed tests for this assumption. First-differenced regres-

sions like equation (3) are AR(1) by design. If there is serial correlation in

ε, equation (3) will be at least AR(2). I present tests for serial correlation

with all of the results that follow.

The results are also presented with tests for overidentifying restrictions.

The Hansen J test examines the joint validity of all moment conditions.

When BMI is treated as endogenous, difference-in-Hansen tests are used to

28At t = 3, wi1 is an instrument for ∆wi2. At t = 4, wi2 and wi1 are instruments for
∆wi3, and so on.

29See Roodman (2006) for documentation. Stata contains other dynamic panel-data
programs, but they do not provide the same array of tests as XTABOND2.
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evaluate the validity of wage lags and BMI lags separately.

The validity of lagged wage levels as instruments is independently evalu-

ated by each of these tests. Lagged wage levels are valid instruments if εit are

not serially correlated. If we fail to detect serial correlation that does exist,

tests of overidentifying restrictions could still reject the validity of lagged

wage instruments as long as further lags are valid instruments.30

The validity of lagged BMI instruments are only evaluated directly by

the overidentification tests; however, testing for serial correlation makes the

assumptions of the overidentification tests more plausible. Tests of overi-

dentifying restrictions require at least one of the BMI lags to be a valid

instrument for ∆BMIit−1. If BMIit were correlated with εit+1 but not εit+2,

the second lags would not be valid instruments but the third lags would be.

Overidentification based on lagged BMI variables would be untestable only

if BMIit was correlated with εit+1, εit+2, εit+3, etc.; however, the absence

of serial correlation in ε would make this less likely. For example, BMIit

could be correlated with εit+1 and later residuals due to health shocks that

affect body mass more immediately than they affect wages. But such health

shocks would imply serial correlation in ε, unless the unobserved shocks that

were common to BMIit and εit+1 were somehow independent of the shocks

common to BMIit and εit+2. Although this strikes me as unlikely, I con-

30The Arellano-Bond tests would have to miss a lot of serial correlation for lagged wage
instruments to be untestable using overidentification. If equation (3) were AR(2) but not
AR(3), wit−2 would not be a valid instrument for ∆wit−1, but wit−3 would be. If the
regression were AR(3) but not AR(4), wit−4 would be a valid instrument, etc.
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sider the possible effects of health shocks on identification when I discuss the

robustness of results in Section 4.2.31

3.2 Other Potential Problems with Instruments

The use of all lagged levels of wage and BMI variables quickly produces a

large number of instruments. A larger set of instruments improves efficiency,

but not without a cost. As discussed by Roodman (2009) and others, us-

ing “too many” instruments overfits the endogenous variables, which biases

coefficients towards OLS and weakens overidentification tests.32

The results presented in the next section restrict lags to the second

through fifth. Using all available lags produces coefficients that are smaller

in magnitude, which is consistent with adding weak instruments. Restrict-

ing lags further (e.g., excluding the fifth lag) has little effect on coefficient

estimates.

3.3 Regression Specifications

All specifications presented in this paper model BMIit as a vector of dummy

variables for various levels of body mass. The use of dummy variables is

motivated by the need for a simple specification that allows a non-linear rela-

31My goal here and elsewhere is to convince readers that my identifying assumptions are
reasonable and weaker than they may seem at first glance. That said, I acknowledge that
the identification of causal effects in this paper, as in any other, still relies on assumptions.

32Roodman (2009) recommends that researchers consider the sensitivity of estimates
to reductions in the number of instruments. He also urges caution when interpreting J
statistics, suggesting p-values below 0.25 are cause for concern.
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tionship between BMI and wages.33 Dummy variables are consistent with the

idea that wage penalties are associated with weight exceeding levels that are

considered desirable in the market, which is supported by the semiparametric

estimation of Gregory and Ruhm (2011). However, there is no theoretical

reason to adopt one specification of BMIit over any other.

When estimating regressions with dummy variables for BMI categories,

the previous literature relied on categories defined by the WHO (overweight,

obese, etc.); however, these categories were defined for the study of public

health, not labor markets. As noted by Gregory and Ruhm (2011), wage

penalties for high body mass may begin at points that fall between WHO

cutoffs. Even if employers wanted to penalize workers based on the WHO

categories, it’s not clear how firms’ imperfect assessments of body mass would

line up with the imperfectly reported height and weight in the data.

The next section begins with specifications that use traditional BMI cat-

egories, but then discusses the use of dummy variables for exceeding alter-

native BMI thresholds. These alternative thresholds range from 23 to 38, in

intervals of half a BMI point. I focus on specifications of BMIit that include

one or two dummy variables.34

I narrow this large set of alternatives specifications based first on the

33In preliminary estimation, linear and polynomial specifications of BMIit only pro-
duced statistically significant results in static OLS regressions. Ignoring statistical signif-
icance, the results based on cubic polynomials are roughly consistent with the preferred
dummy-variable specifications.

34I estimated models with three dummy variables, but they provided no obvious advan-
tage over those with two.
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robustness of coefficient estimates for a BMI dummy variable to other changes

in the specification of BMIit. Essentially, I estimate all of the alternative

models and allow them to “vote” on which BMI thresholds matter. I then

compare these relatively robust specifications to similar specifications using

the tests proposed by Bond et al. (2001) and Andrews and Lu (2001), which

are both based on comparisons of the Hansen J statistic.35 Finally, I consider

the robustness of my preferred specifications to the treatment of outliers in

the distribution of wages.36

All of the dynamic models presented below include only one lag of wage

and one lag of BMI. None of the tests for serial correlation suggest that

more lags of the wage are needed, and the tests of overidentification fail to

suggest a problem with the instruments. Further lags of BMI are never

statistically significant and do not qualitatively change the results for the

first lag of BMI. The main effect of adding a second lag of either BMI or

the wage is reducing observations by 20% for men and 25% for women.37

All regressions control for the local unemployment rate and incidence of

obesity in the state, as well as dummy variables for region, urban residence,

and being interviewed by telephone.38 When lagged values of BMI variables

35I used leave-one-out crossvalidation, dropping all observations for each respondent one
at a time, to ensure that these test results were not peculiar to the estimation sample.

36As noted in the appendix, I only drop wages if ∆ ln(wit) is greater than 6.5 in absolute
value. This leaves some observations with unusually high or low wages.

37An advantage of focusing on young workers is that they have less history in the market
to control for. In a sample of older workers, one lag of wages or BMI would be expected
to capture less of a worker’s relevant past.

38Local unemployment and state identifiers are provided by the NLSY97 Geocode files.
Percent obese in the state is tracked by the CDC.
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are included as regressors, the corresponding lag of the phone dummy is

also included. Education enters as dummy variables for completing high

school, some college, or college and beyond. I control for time using dummy

variables for calendar year and the number of years since labor market entry.

No estimation in this paper is weighted.

I also control for actual experience in the labor market and it’s square

in the dynamic panel estimates. To control for commitment to the labor

market, I add interactions of experience with years since entry. Controlling

for actual experience and its interactions makes the validity of lagged wages

as instruments more likely.39 Since actual experience might be endogenous,

potential experience (age−schooling−six), its square and its interactions are

used as traditional instruments in the dynamic models. In OLS regressions,

I simply replace actual experience with potential.

Finally, there are a number of potential confounders, such as occupa-

tion or hours worked, that are excluded from the preferred models due to

their likely endogeneity. After presenting the main results, I examine the

robustness of those results to the addition of these variables. I also discuss

the possibility that some of these variables may be intermediate outcomes

through which body mass affects wages.

39Lagged wages might reflect the accumulation of experience or commitment to the
labor market. Overidentification tests for lagged wage instruments improve with the use
of actual experience and its interactions.
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4 Results

I find that white men face a penalty for past severe obesity. White women

face a penalty for past BMI over 24.5, with additional penalties for past BMI

of 37 or more. The only evidence of an effect of current BMI on wages is a

penalty faced by women with a reported BMI of at least 37. Additionally,

the results support the use of autoregressive wage equations and suggest that

BMI is endogenous even after removing individual fixed effects.

The next subsection discusses the main results, and then compares the

preferred dynamic models to simpler regressions. Section 4.2 considers the

robustness of the main results to several potential sources of bias.

4.1 The Preferred Models

As discussed in section 3.3, BMIit is modeled using dummy variables for ex-

ceeding various BMI thresholds. In what follows, I first present specifications

based on the familiar categories of overweight, obese and severely obese. I

then consider alternative specifications of BMIit. Preferred specifications

are selected based on robustness of the estimated coefficients to changes in

specification and the treatment of outliers, as well as formal specification

tests.

21



4.1.1 Results for White Men

Table 2 presents results for white men from various models that use dummy

variables indicating overweight, obesity or severe obesity.40 First of all, note

that the tests presented in the lower panel are all consistent with the iden-

tifying assumptions discussed above. All of the equations are AR(1) due to

first-differencing; but none of them are AR(2), which they would be if there

were serial correlation in the residuals. Furthermore, none of the tests of

overidentifying restrictions reject the validity of the GMM instruments. All

of the p-values for Hansen and difference-in-Hansen tests are well above the

conservative threshold of 0.25 suggested by Roodman (2009).

The coefficient estimates in Table 2 suggest that white men face a penalty

of roughly 17% for having been severely obese in the previous year. The

coefficients on lagged severe obesity range from -0.165 (0.060) in column 4

to -0.172 (0.059) in column 5. No other BMI variable has a statistically

significant coefficient in this table, and there is no evidence of current BMI

having any effect on the wages of white men.41

The results for men also support the inclusion of an autoregressive term in

the wage equations. In specifications that include severe obesity, coefficients

on lagged log wages are between 0.072 (0.041) and 0.077 (0.042). Further-

40All specifications in Tables 2 and 3 use lagged indicators of overweight, obesity and
severe obesity as instruments. This ensures that the instruments capture the same amount
of variation in each specification. I also use lags of three BMI dummies as instruments
when alternative BMI cutoffs are considered, with each alternative category replacing the
closest WHO category.

41Results for the model that specified BMIit using overweight and obese are excluded.
They are consistent with those in columns 2 and 3.
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more, controlling for lagged wages is essential for identification. Specifica-

tions that exclude lagged wages but are otherwise similar to those in Table 2

(not shown) are at least AR(2). Consistent with Cawley’s (2004) point that

lagged BMI variables are not likely to be valid instruments in the presence of

serial correlation, the second lags of BMI are rejected by overidentification

tests in these specifications.42

When I consider alternative dummy variable specifications for BMIit,

I find that the penalty for lagged severe obesity is the most robust result

for men across specifications.43 There is no robust evidence of an effect at

lower levels of current or lagged body mass for white men.44 Finally, the test

proposed by Andrews and Lu (2001) supports models that use severe obesity

over similar models that use nearby cutoffs.45

I select a preferred specification from Table 2 using the test of parameter

restrictions proposed by Bond et al. (2001).46 The only restricted specifica-

42It is reassuring to see that overidentification tests reject the validity of instruments in
cases where we do not expect the exclusion restrictions to hold.

43The coefficient on lagged severe obesity is qualitatively similar and statistically sig-
nificant in specifications with lower cutoffs ranging from 24 to 33. Coefficients on lagged
BMI≥34.5 are similar, but smaller and statistically significant in fewer models.

44Coefficients on BMI ≥ 29.5 are statistically significant in a few specifications, but are
not robust to the treatment of outliers. They are driven by a single observation in which
the reported wage fell from $7.11 to $0.04.

45Andrews and Lu (2001) develop a GMM analogue of the Bayesian Information Crite-
rion. When comparing models that have the same number of variables and instruments,
their approach amounts to selecting the model that minimizes the Hansen J statistic. For
example, the J statistics of models that replace severe obesity in column 5 of Table 2 with
indicators for BMI≥ 34.5 or 35.5 rise to 135.5 and 139.3, respectively.

46Bond et al. (2001) show that differences between the J statistics of restricted and
unrestricted specifications are distributed χ2 with degrees of freedom equal to the number
of restrictions.
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tion that cannot be rejected in favor of the full specification (column 1) is the

specification in column 5, which models BMIit using dummy variables for

being overweight and severely obese.47 The Andrews-Lu test also selects this

specification over the others that use two dummy variables to model BMIit.

Since the specification in column 5 is simpler than that in column 1, it is my

preferred specification in what follows.

4.1.2 Results for White Women

Table 3 presents results for white women using dummy variables for tradi-

tional BMI categories. The only statistically significant results for a BMI

variable in these specifications suggests a penalty for a lagged BMI in (or

above) the overweight category. The coefficient on lagged overweight status

is -0.082 (0.040) in column 2, and -0.093 (0.044) in column 6.

Using alternative BMI dummy variables is more important for white

women than for white men. My preferred specification for white women

uses indicators for a reported BMI greater than or equal to 24.5 and 37. The

penalty for a lagged BMI≥24.5 is robust across all specifications with a sec-

ond cutoff at or above 27, or without a second BMI variable. As seen in Table

4, the estimated coefficients on lagged overweight status (columns 5-8) are

similar, but consistently smaller than analogous coefficients on lagged BMI

≥ 24.5 (columns 1-4).48 Among dummy variables for higher BMI thresholds,

47Columns 2 and 3 are rejected at any conventional level. Column 6 is rejected at a 5%
level, and column 4 at a 10% level.

48Coefficients on lagged overweight status are statistically significant roughly half as
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those indicating a current or lagged BMI ≥ 37 were the most robust across

specifications.49 The results for this specification are also robust to changes

in the treatment of outliers.

Comparing the J statistics in Table 4, the specification in column 7, which

uses overweight status, narrowly outperforms the one in column 3. However,

the direction of this difference is not robust to the treatment of outliers or

to small changes in the set of instruments used.50 To cast more light on

this matter, I use the test proposed by Bond et al. (2001) to compare these

specifications to a specification that nests both. Regardless of the set of

instruments used, the specification that uses indicators for BMI ≥ 25 and

BMI ≥ 37 is easily rejected against the nested model, but the specification

with indicators for 24.5 and 37 is not.51 Therefore, I model BMIit using

dummy variables for BMI ≥ 24.5 and ≥ 37 in what follows; however, using

overweight status instead of BMI ≥ 24.5 has little qualitative effect on the

results.

The estimates from the preferred specification, presented in column (3)

of Table 4, suggest that white women face a 10% penalty for a lagged BMI

of 24.5 or more. Women are penalized an additional 10% for a lagged BMI

often as those on lagged BMI ≥ 24.5.
49Coefficients for BMI cutoffs near 37 were similar to those for BMI ≥ 37, but were

smaller in magnitude and statistically significant in fewer alternative models.
50E.g., the specification in column 3 minimizes the J statistic if dummy variables for

lags of obesity are not included in the set of instruments, or if lagged overweight status is
used as an instrument in both specifications. In contrast, such changes have no effect on
the relative performance of specifications for men.

51These tests hold GMM instruments constant across specifications. I repeat the tests
with and without dummy variables for past obesity included in the set of instruments.
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of 37 or more. Furthermore, white women face a 13% penalty for a current

BMI of 37 or more.

It is worth noting that the upper BMI cutoffs for white men and women

are more similar than they appear. The percentage of women in the sample

who exceed a BMI of 37 (7.9%) is similar to the percentage of men who are

severely obese (7.8%). Therefore, the results for both white men and women

suggest that workers are penalized for past body mass in the heaviest 8% of

the relevant subsample.

The results also suggest that lagged wages have larger effects on current

wages for white women than for white men. The coefficients on lagged log

wages are 0.220 (0.053) for women and 0.077 (0.042) for men.52 As in Table

2, there is no evidence of serial correlation in the residuals of any model

shown in Table 3 or 4; however, regressions that exclude lagged wages are

at least AR(2). Furthermore, neither Hansen nor difference-in-Hansen tests

cast doubt on the validity of instruments in the autoregressive models of

Tables 2 through 4.

On a more meaningful level, autoregressive wage equations imply that

workers’ history of body mass affects wages beyond the single lags included

in the model. The wage in t−1 is a function of BMIit−2. It’s also a function

of wit−2, which is affected by BMIit−3, and so on. This is an important

advantage of dynamic models: In contrast to previous work, the models in

52Note that the weak identification problem discussed by Blundell and Bond (1998) is
not relevant when none of the coefficients on lagged wages approach one.
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this paper do not assume that the penalty for being heavy is the same as

the penalty for becoming heavy. Wages respond slowly to changes in BMI,

implying in penalties that persist and accumulate over time.

As an example, consider two women who enter the market at t− 2. One

has a BMI of 38 and the other has a BMI of 23. The heavier woman loses

weight and the other gains weight so that both are overweight (but not obese)

in years t− 1 and t. In t− 1, the woman who had been heavier faces a 20%

penalty according to Table 4, while the woman who had been lighter faces

no statistically significant penalty for her recent weight gain. In year t, both

women have been overweight (but not obese) for two years; however, one

faces a penalty of 10% and the other faces a penalty of nearly 15%.53

The negative effects of high body mass also accumulate over time. A

woman who enters the market with a BMI over 37 initially faces a penalty of

roughly 13%. If she does not lose weight, she will again face the 13% penalty

for current body mass in her second year, plus a 20% penalty for her past

body mass. In her third year with a BMI over 37, she will be penalized an

additional 4.5% for her BMI two years ago, on top of the 33% penalty for

her BMI in t and t− 1.

53The estimated effect of BMIit−2 ≥ 37 in t is -0.044 (0.020), the effect in t−1 multiplied
by the coefficient on ∆wit−1. If the woman was also overweight in t − 1, her combined
penalty in t is -0.148 (0.056).
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4.1.3 Comparisons to Simpler Models

Tables 5A and 5B compare the preferred dynamic specifications to OLS re-

gressions and an autoregressive model that assumes BMIit is exogenous.

The OLS results for men in Table 5A suggest that overweight men are paid

more than lighter peers while severely obese men are paid less.54 The OLS

results in Table 5B suggest that a BMI≥24.5 is associated with lower wages

for white women, which is consistent with previous research; however, this

negative association appears to be driven by lagged BMI, not current.

The autoregressions presented in the second column of Tables 5A and

5B remove any bias that may arise from correlation with individual fixed

effects or the omission of lagged wages, but assume ∆BMIit and ∆BMIit−1

are exogenous. Tests of overidentifying restrictions (not shown) reject this

assumption, suggesting that changes in BMI are correlated with time-varying

unobservables.55 The fact that the negative effects of body mass found in the

preferred specifications are not found in the second column of either table is

consistent with time-varying unobservables, such as time spent sitting at a

desk, that are positively correlated with both wages and body mass.

Finally, note that the error terms in the OLS regressions shown in Tables

5A and 5B are serially correlated, while the errors in the dynamic models are

54When lagged BMI variables are added, the OLS coefficients on current and lagged
dummies for BMI categories are jointly significant for white men.

55I can reject the exogeneity of the BMIit for white men when I use only the second and
third lags of w as instruments. (Recall that using more instruments weakens overidenti-
fication tests.) I can reject the exogeneity of BMIit and BMIit−1 for women in models
that include further lagged levels of BMI as instruments.
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not. Serial correlation in the static OLS regressions supports the argument

in Cawley (2004) against the use of lagged BMI variables as instruments in

static wage equations. The fact that evidence of serial correlation disap-

pears when lagged wages are incorporated into the model supports the use of

dynamic models and the identifying assumptions they require. Essentially,

the dynamic wage equations explicitly model the correlation between past

and current wages creates serial correlation in the residuals of static wage

regressions.

4.2 Robustness Tests and Potential Sources of Bias

4.2.1 Adding Potentially Endogenous Variables

There are a number of variables that might be correlated with both wages

and BMI that have been excluded so far due to potential endogeneity. Some

of these variables are potential intermediate outcomes through which body

mass could influence wages. Examining the robustness of the results to the

inclusion of such variables may shed light on potential mechanisms connecting

BMI to wages. If controlling for a new variable does not affect the estimated

coefficients for BMI, it probably isn’t an important intermediate outcome.

The results presented above are surprisingly robust to the addition of

potentially endogenous confounders.56 The first such variables I consider are

marital status, number of children, and indicators for age of the youngest

56All of the results discussed in this subsection are available on request; however, I do
not present most of these results for the sake of brevity.
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child being less than or equal to two or five. There are a number of reasons

these variables may be correlated with wages and BMI, especially for women;

however, their addition to my preferred models has no noticeable affect on

the estimated coefficients.57

One might expect a high BMI to be related to hours worked, the dura-

tion of employment relationships or investment in on-the-job training; how-

ever, I find no evidence that these are important confounders or intermediate

outcomes. I examined hours worked by adding current and lagged dummy

variables for working part time or working 60 hours or more per week. I also

added current and lagged levels of tenure, as well as indicators for the receipt

of on-the-job training.58 In each case, the estimated coefficients of interest

were similar to those presented above.

I also find no evidence of BMI affecting wages through selection into

jobs that offer health insurance. Working for an employer that offers health

insurance is associated with higher wages. A wage differential could arise

in part from heavier workers being pushed out of jobs that offer insurance;

however, adding indicators for employer-provided insurance has little effect

on the results.59

57For discussions of BMI and marriage, see Averett et al. (2008) or Chiappori et al.
(2012). The presence and age of children would more likley be an endogenous confounder
than an intermediate outcome.

58I considered specifications of training as both a dummy variable for training in the
past year, and a count of years in which training was received.

59This result does not directly contradict Bhattacharya and Bundorf (2009), who suggest
that wage penalties vary with whether health insurance is offered or not. Unfortunately,
extending my estimation to investigate their story is not practical.
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Health Shocks & Identification

The identifying assumptions in this paper have already received an unusual

amount of empirical scrutiny in Section 4.1; however, further examination of

these assumptions is justified for two reasons. First, as is always the case, it

is possible that a test presented in Section 4.1 failed to reject an assumption

that should have been rejected.60 Secondly, as discussed in Section 3.1, the

validity of using lagged levels of BMI as instruments would be untestable if

(and only if) BMIit were somehow correlated with all future wage residuals

(εit+1, εit+2, etc.) without those residuals being correlated with each other.

The most obvious reason why BMIit might be correlated with future wage

residuals is that random health shocks could affect body mass immediately,

but have delayed effects on wages that are independent of BMIit. Although

it seems likely that health shocks that cause BMIit, to be correlated with

both εit+1 and εit+2 would also cause εit+1 and εit+2 to be correlated with

each other, I empirically examine the possibility that my main results are

biased by such shocks in Table 6.

Table 6 compares the preferred models from Section 4.1 to models that

add indicators of current and lagged general health. The self-reported mea-

sure of health that is available in the data is obviously not ideal; however, it

is at least correlated with body mass as one would expect it to be.61 If the

60Tests of serial correlation and overidentifying restrictions did reject the hypotheses in
Section 4.1 that were expected to be rejected, but type II errors are still possible.

61Respondents were asked to evaluate their health on a five-point scale from “excellent”
(1) to “poor” (5). Higher levels of BMI are negatively correlated with “excellent” or “very
good” health, and positively correlated with “fair” or “poor” health.
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main results are biased by health shocks that are correlated with changes in

reported health, results from the preferred specifications should not be ro-

bust to the inclusion of first-differenced health variables. The results would

also not be robust to the addition of health variables if health were an in-

termediate outcome through which body mass affected wages. Therefore,

the falsification test in Table 6 could suggest a problem with my identifying

assumptions even when none exists.

The preferred models for men and women are quite robust to the inclusion

of changes in general health status. Regardless of whether I add only the

current changes or current and lagged changes in health, the coefficients on

BMI change very little.62 Furthermore, the overidentification tests at the

bottom of the table do not suggest that the health variables have any impact

on the identification of the BMI variables, or the overall identification of the

model.

Occupation

As shown in Table 7, indicators for occupation are the only variables I’ve

found that do affect the results of my preferred models. The estimated effects

of BMI on the wages of women fall when controls for occupation are added.

62I also estimated models with up to five lags of the health indicators, as well as models
that use the lagged residuals of BMI regressed on indicators for changes in health. In
each case, the results were similar to those in Table 6.

The results for BMI are not sensitive to assumptions about the exogeneity of general
health, but the coefficients for the health indicators (not shown) are. When health is
treated as exogenous, reporting “very good” health is associated with higher wages than
“excellent” health; but that effect disappears when health is treated as endogenous.
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Only the coefficient for a lagged BMI≥24.5 is still statistically significant at

even a 10% level, and it falls from -0.103 (0.043) to -0.078 (0.046). On the

other hand, the effect of past severe obesity on the wages of white men rises,

if anything.

The regressions presented in Table 7 use second lagged levels of occu-

pation as instruments because the exogeneity of current occupation can be

rejected for both genders. Although the second lags cannot be jointly rejected

for either gender, the second lag of managerial, professional and technical oc-

cupations can be rejected for women. Especially when combined with the

changes in coefficients on BMI variables, these results are consistent with

those in Lakdawalla and Philipson (2007), which suggest that body mass

drives selection into occupations for women.63

4.2.2 Sample Selection

There are two reasons to worry about selection into the estimation sample

biasing results in this paper: The dynamic models require three consecutive

years of labor market participation, and I’ve limited attention to workers who

have worked full time for at least 75% of two consecutive years. On the other

hand, the differenced estimator is only affected by selection bias if selection

into the sample is based on time-varying unobservables. Bias from selection

on unobservables that are constant over time is removed by differencing.

I apply the test of sample selection bias developed by Semykina and

63Also see Han et al. (2011), as well as the recent structural work of Harris (2014). Like
Lakdawalla and Philipson (2007), these papers use data from the 1979 NLSY.
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Wooldridge (2010). I estimate probits for the probability of being in the

sample in year t with valid observations for t, t − 1 and t − 2.64 I then add

the resulting inverse Mills ratios and their interactions with time dummies

to the wage regressions. The null hypothesis of no selection is rejected if

coefficients on the Mills ratios and their interactions are jointly significant.

The null hypothesis of no selection cannot be rejected for either men

or women. None of the coefficients on inverse Mills ratios or their interac-

tions are statistically significant. The p-value on the test of joint statistical

significance is 0.26 for white men and 0.29 for white women. These tests,

therefore, do not suggest that the results of this paper are biased by selection

on time-varying unobservables.

4.2.3 Further Examination of the Strength of Instruments

Although preliminary regressions support the assumption that BMIit−2 and

other recent lags predict ∆BMIit, one might still worry that lagged levels are

not capable of identifying coefficients on both ∆BMIit and ∆BMIit−1.
65 In

that case, the estimates in my preferred specifications, especially for ∆BMIit,

would be biased toward zero.66

To examine this possibility, I compare the preferred specifications to re-

64AFQT is used as an instrument in the probit estimates. AFQT strongly predicts
participation, but it is differenced out of the wage equations.

65The GMM estimator of HENR exploits a larger set of moment conditions than tra-
ditional IV estimation. Regressions of ∆BMIit on lagged levels are not analogous to the
first stage of traditional 2SLS.

66More precisely, the coefficients would be biased toward those in the second columns
of Tables 5A and 5B, which are smaller and statistically insignificant.
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stricted specifications that include either ∆BMIit or ∆BMIit−1, but not

both. If there is an effect of ∆BMIit that we can’t observe in the main

results due to insufficient variation in the instruments, we would expect a

change in the coefficients on ∆BMIit when ∆BMIit−1 is excluded.67

The results (not shown) do not suggest that the preferred specifications

are affected by weak instruments. Dropping ∆BMIit−1 from wage equations

does not reveal effects of current BMI that were not previously identified.

In fact, the estimated penalty white women face for a current BMI≥37 is

only statistically significant when lagged BMI is also included in the regres-

sion. Furthermore, comparing Hansen J statistics between specifications, as

suggested by Bond et al. (2001), rejects the restricted specifications for both

men and women in favor of the preferred models from Tables 2 and 4.

5 Discussion

The results of this paper demonstrate the importance of using dynamic mod-

els when considering effects of body mass on wages. I find that past body

mass affects the wages of young workers more often than current body mass.

Furthermore, current wages are affected by lagged wages, which are affected

by further lags of body mass and wages. Therefore, in contrast to previous

work, my results make it clear that the penalty for becoming heavy is not the

same as the penalty for being heavy throughout the early years of a career.

67The coefficients could also change because ∆BMIit is correlated with ∆BMIit−1.
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Penalties for a high body mass can persist and even accumulate over time,

especially for women.

Consistent with the youth of the sample, the penalties for high body

mass identified in this paper do not appear to be driven by changes in health

or selection into jobs with employer-provided health insurance. The main

results are robust to the addition of controls for general health or having a

job that offers insurance coverage. Furthermore, the differences in penalties

by gender seem more consistent with discrimination based on appearance

than with impaired health or expected healthcare costs.

The results are consistent with dynamic models of discrimination that

incorporate labor market frictions. For example, models in which discrimi-

nation affects labor market search, like those in Bowlus and Eckstein (2002)

and Lang et al. (2005), are consistent with penalties based on recent lags of

body mass. The idea that body mass can affect labor market search is also

supported by the field experiment of Rooth (2009), who finds that obese job

applicants receive fewer interview requests.

Finally, persistent effects of high body mass on wages are consistent with

effects on occupational selection. Some of the evidence in this paper points

to occupation as an intermediate outcome through which body mass affects

wages, especially in the case of white women. The results suggest that the

occupational selection observed in the NLSY79 by Lakdawalla and Philipson

(2007) and Harris (2014) still affects the wages of young workers who entered

the labor market in more recent decades.
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A Data

This appendix describes the selection of the estimation sample, and presents

more detailed summary statistics.

The sample was first restricted to white respondents in the NLSY97. This

drops 3,752 respondents, leaving 2,702 white men and 2,530 white women.

Respondents who reported being in the military were then dropped, leaving

34,522 person/year observations for 2,470 men, and 31,378 observations for

2,481 women.68

Restricting observations to those in which the respondent has entered the

labor market reduces the number of observations to 12,368 for 1,771 white

men, and 10,008 for 1,566 women. Only the primary (current or most recent)

job is used from each interview. Observations in which a woman reported

being pregnant in the current year (since the last interview) or previous year

were also dropped, reducing observations to 8,600 for 1,558 women. Finally,

5 observations for men and 2 for a woman were dropped because the absolute

value of the change in log wages was greater than 6.5.69

The preferred dynamic panel specifications require three consecutive ob-

servations in a row with non-missing values of wage and BMI. Restricting

observations to those that could be from one of three such consecutive years

leaves 9,037 observations for 1,473 men and 5,408 observations for 1,060

women.

68This includes 63 observations in which a respondent reported a military occupation
despite not being otherwise identified as in the military.

69These observations were obvious outliers in the distribution of log wage changes. One
of the wage observations in each case was below $0.2. Otherwise, observations that might
appear to be outliers in the distribution of wages were not dropped from the sample.
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The appendix tables A1 and A2 present summary statistics for men and

women that are not presented in Table 1. The mean wage for white men is

pulled up by outliers; however, estimates do not appear sensitive to dropping

these high wage observations. Median hourly wages (not shown) are $9.86

for men and $8.98 for women.

As expected, the sample is largely urban. The differences in urbanicity

between men and women, as well as most of the differences in education,

appear to be due to how men and women enter the labor market. Looking

at the entire sample (not shown), instead of focusing on those who are com-

mitted enough to the labor market to be in the estimation sample, reveals no

difference by gender in urbanicity and much smaller differences in education.
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Mean Std. Dev. Min Max

White Men

Wage 19.887 356.121 0.039 23,883.93

Log Wage 2.332 0.619 -3.252 10.081

BMI 26.721 5.524 12.838 63.313

Underweight 0.018 0.134 0 1

Overweight 0.573 0.495 0 1

Obese 0.222 0.415 0 1

Severely Obese 0.078 0.269 0 1

Age 23.711 2.693 16 30

Phone Interview 0.108 0.310 0 1

Yrs since LM Entry 4.474 2.658 1 14

    Yrs in 2009 7.012 2.563 3 14

Actual Experience 4.172 2.459 0.75 13.058

     Exp in 2009 6.398 2.413 1.846 13.058

White Women

Wage 11.051 21.528 0.046 774.08

Log Wage 2.196 0.563 -3.069 6.652

BMI 25.810 6.665 10.962 72.620

Underweight 0.042 0.201 0 1

Overweight 0.417 0.493 0 1

Obese 0.202 0.401 0 1

Severely Obese 0.103 0.304 0 1

Age 23.963 2.554 16 30

Phone Interview 0.103 0.304 0 1

Yrs since LM Entry 4.053 2.491 1 13

    Yrs in 2009 6.187 2.510 3 13

Actual Experience 3.793 2.293 0.75 12.769

     Exp in 2009 5.625 2.334 1.558 12.769

The sample for this table includes all observations that are used as t , t- 1, or t -2 in the main estimation. 

There are 9,037 observations for 1,473 white men; and 5,408 observations for 1060 white women.

Table 1.  Summary Statistics



(1) (2) (3) (4) (5) (6)

L.ln(wage) 0.0722* 0.0605 0.0648 0.0769* 0.0720* 0.0768*

(0.0414) (0.0410) (0.0416) (0.0420) (0.0412) (0.0421)

Overweight -0.1187 -0.0977 -0.1190

(0.1198) (0.1224) (0.1207)

L.Overweight 0.0540 0.0477 0.0549

(0.0491) (0.0456) (0.0470)

Obese 0.0112 0.0054 -0.0051

(0.0979) (0.1021) (0.1012)

L.Obese 0.0030 0.0175 0.0061

(0.0567) (0.0576) (0.0600)

Severely Obese 0.0465 0.0745 0.0557 0.0360

(0.0927) (0.0938) (0.0925) (0.0951)

L.Severely Obese -0.1699*** -0.1649*** -0.1722*** -0.1668**

(0.0632) (0.0598) (0.0594) (0.0680)

AR(1): z -statistic -5.008 -4.968 -4.995 -5.003 -4.998 -4.994

   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AR(2): z -statistic -0.542 -0.685 -0.693 -0.595 -0.568 -0.603

   p -value 0.588 0.494 0.489 0.552 0.570 0.546

Hansen J Statistic 128.5 144.4 146.3 136.7 130.3 135.3

Hansen test p -value 0.802 0.546 0.501 0.718 0.803 0.707

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- values)

   ln(wage) lags 0.377 0.367 0.395 0.341 0.347 0.339

   BMI cat. Lags 0.770 0.516 0.533 0.662 0.738 0.678
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 . There are 5,897 observations for 1,473 men. All 

specifications have a total of 196 instruments, with lags of all three BMI dummies used as instruments in each case. 

Regressions also control for the local unemployment rate and percent obese in the state, as well as dummies for region, urban 

residence, being interviewed over the phone and its lag, completing HS, some college, and college or beyond, calendar year 

and years since labor market entry. To control for commitment to the labor market I include actual experience and its 

interactions with years since entry; however, I treat experience as endogenous, using potential experience and its interactions 

as instruments.

Results for Traditional BMI Categories

…

…

…

…

…

…

…

…

…

…

Table 2. Effects of Past and Current BMI on the Log Wages of White Men
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…

…

…

…

…



(1) (2) (3) (4) (5) (6)

L.ln(wage) 0.2110*** 0.2308*** 0.2158*** 0.2209*** 0.2237*** 0.2223***

(0.0567) (0.0568) (0.0542) (0.0557) (0.0577) (0.0575)

Overweight 0.0420 0.0760 0.0509 0.0658

(0.1007) (0.0547) (0.0957) (0.0549)

L.Overweight -0.0781 -0.0819** -0.0625 -0.0931**

(0.0519) (0.0402) (0.0466) (0.0436)

Obese 0.0712 0.0937 0.0785

(0.0840) (0.0649) (0.0814)

L.Obese -0.0319 -0.0032 -0.0085

(0.0582) (0.0477) (0.0563)

Severely Obese 0.0166 0.0267 0.0155

(0.0589) (0.0672) (0.0612)

L.Severely Obese -0.0640 -0.0579 -0.0503

(0.0718) (0.0647) (0.0661)

AR(1): z -statistic -4.863 -4.994 -4.937 -4.928 -4.941 -4.907

   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AR(2): z -statistic -0.405 -0.162 -0.329 -0.455 -0.261 -0.405

   p -value 0.686 0.871 0.742 0.649 0.794 0.686

Hansen J Statistic 111.8 114.6 115.2 121.2 113.4 112.2

Hansen test p -value 0.936 0.943 0.938 0.872 0.938 0.947

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- value)

   ln(wage) lags 0.704 0.667 0.745 0.559 0.775 0.740

   BMI cat. Lags 0.931 0.939 0.912 0.855 0.928 0.958

…

…

…

Results for Traditional BMI Categories

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 . There are 3,154 observations for 1,060 women. All 

specifications have a total of 187 instruments, with lags of all three BMI dummies used as instruments in each case. 

Regressions also control for the local unemployment rate and percent obese in the state, as well as dummies for region, urban 

residence, being interviewed over the phone and its lag, completing HS, some college, and college or beyond, calendar year 

and years since labor market entry. To control for commitment to the labor market I include actual experience and its 

interactions with years since entry; however, I treat experience as endogenous, using potential experience and its interactions 

as instruments.

Table 3. Effects of Past and Current BMI on the Log Wages of White Women
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…



(1) (2) (3) (4) (5) (6) (7) (8)

L.ln(wage) 0.214*** 0.220*** 0.220*** 0.221*** 0.227*** 0.233*** 0.224*** 0.230***

(0.059) (0.054) (0.053) (0.054) (0.059) (0.055) (0.053) (0.055)

Lower BMI Var. 0.050 0.066 0.018 0.027 0.081* 0.100* 0.084 0.062

(0.148) (0.096) (0.085) (0.091) (0.048) (0.058) (0.071) (0.077)

L.(Lower BMI Var.) -0.112*** -0.104** -0.104** -0.098** -0.083** -0.082* -0.087** -0.080**

(0.039) (0.046) (0.043) (0.040) (0.041) (0.044) (0.041) (0.039)

BMI ≥ 36.5 -0.102 -0.099

(0.096) (0.086)

L.(BMI ≥ 36.5) -0.048 -0.032

(0.056) (0.056)

BMI ≥ 37 -0.131** -0.138**

(0.056) (0.058)

L.(BMI ≥ 37) -0.099* -0.069

(0.058) (0.057)

BMI ≥ 37.5 -0.048 -0.063

(0.068) (0.073)

L.(BMI ≥ 37.5) -0.052 -0.030

(0.054) (0.053)

AR(1): z -statistic -4.910 -5.041 -5.028 -5.094 -4.994 -5.079 -5.075 -5.050

   p -value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

AR(2): z -statistic -0.476 -0.483 -0.606 -0.492 -0.162 -0.379 -0.461 -0.375

   p -value 0.634 0.629 0.545 0.623 0.871 0.705 0.645 0.708

Hansen J  statistic 120.3 113.1 105.3 110.7 112.7 108.4 101.3 108.8

Hansen test p -value 0.885 0.924 0.976 0.945 0.957 0.961 0.989 0.958

Diff-in-Hansen Tests for Exogeneity of Subsets of GMM Instruments (p- value)

   ln(wage) lags 0.590 0.380 0.472 0.497 0.751 0.574 0.749 0.630

   BMI cat. Lags 0.856 0.920 0.983 0.953 0.956 0.965 0.993 0.966

…

…

…… …

… … …

Table 4. Effects of Past and Current BMI on the Log Wages of White Women

Results for Alternative BMI Categories

…

…

…

Lower Dummy Variable: BMI ≥ 24.5 Lower Dummy Variable: BMI ≥ 25

…

… …

… …

…

…

…

…

…

…

…

… …

… …

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 .  There are 3,154 observations for 1,060 women.    All specifications 

use lags of three BMI dummy variables as GMM instruments. (See text for further detail.) This totals to 187 instruments in columns 1 and 5, 

but the number falls to 185 in other columns because a lagged BMI > 35 is rare among the 22 women with more than 12 years since 

market entry. See Table 3 for a description of other variables included in these specifications.

… … …

… … … …… …



Preferred Dynamic Dynamic w/ OLS OLS

Specification BMI exogenous W/out Lags W/ Lags

L.ln(wage) 0.0720* 0.1213***

(0.0412) (0.0470)

Overweight -0.1190 0.0305 0.0655*** 0.0387

(0.1207) (0.0317) (0.0166) (0.0271)

L.overwt 0.0549 0.0115 0.0371

(0.0470) (0.0312) (0.0269)

Severely Obese 0.0557 0.0314 -0.0652** -0.0113

(0.0925) (0.0382) (0.0266) (0.0495)

L.(Severely Obese) -0.1722*** -0.0525 -0.0813

(0.0594) (0.0609) (0.0517)

AR(1): z -statistic -4.998 -4.746 10.57 10.59

   p- value < 0.001 < 0.001 < 0.001 < 0.001

AR(2): z -statistic -0.568 -0.523 11.95 11.90

   p -value 0.570 0.601 < 0.001 < 0.001

Number of Instruments 196 88 … …

Hansen test (p- value) 0.803 0.766 … …

…

Table 5A.  Preferred Specification Compared to Simpler Models

White Men

… …

…

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 .  There are 5,897 observations for 1,473 men.  Specifications 

are as described in previous tables, except for BMI variables being treated as exogenous in the second column and the OLS 

regressions using potential experience in place of actual, as described in the text.



Preferred Dynamic Dynamic w/ OLS OLS

Specification BMI exogenous W/out Lags W/ Lags

L.ln(wage) 0.2197*** 0.3009***

(0.0528) (0.0730)

BMI ≥ 24.5 0.0177 0.0084 -0.0602*** 0.0069

(0.0852) (0.0277) (0.0207) (0.0303)

L.(BMI ≥ 24.5) -0.1039** 0.0195 -0.0904***

(0.0431) (0.0332) (0.0302)

BMI ≥ 37 -0.1305** 0.0615 0.0269 -0.0005

(0.0564) (0.0771) (0.0321) (0.0401)

L.(BMI ≥ 37) -0.0990* -0.0099 0.0535

(0.0577) (0.0825) (0.0412)

AR(1): z -statistic -5.028 -4.904 10.48 10.54

   p- value < 0.001 < 0.001 < 0.001 < 0.001

AR(2): z -statistic -0.606 -0.604 7.761 7.773

   p -value 0.545 0.546 < 0.001 < 0.001

Number of Instruments 187 86 … …

Hansen test (p- value) 0.976 0.818 … …

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 .  There are 3,154 observations for 1,060 women.  

Specifications are as described in previous tables, except for BMI variables being treated as exogenous in the second column and the 

OLS regressions using potential experience in place of actual, as described in the text.

Table 5B.  Preferred Specification Compared to Simpler Models

White Women

… …

…

…



Table 6. Effects of Health Shocks on Identification in the Preferred Models

Preferred Preferred

Specification  t  only t & t -1 Specification  t  only t & t -1

L.ln(wage) 0.0720* 0.0709* 0.0707* 0.2197*** 0.2191*** 0.2285***

(0.0412) (0.0416) (0.0414) (0.0528) (0.0541) (0.0535)

Overweight -0.1190 -0.1266 -0.1239

(0.1207) (0.1148) (0.1168)

L.Overweight 0.0549 0.0569 0.0561

(0.0470) (0.0477) (0.0476)

Severely Obese 0.0557 0.0311 0.0310

(0.0925) (0.0991) (0.1027)

L.(Severely Obese) -0.1722*** -0.1708*** -0.1697***

(0.0594) (0.0645) (0.0643)

BMI ≥ 24.5 0.0177 0.0218 0.0190

(0.0852) (0.1087) (0.1021)

L.(BMI ≥ 24.5) -0.1039** -0.0993** -0.0950**

(0.0431) (0.0423) (0.0456)

BMI ≥ 37 -0.1305** -0.1405** -0.1499**

(0.0564) (0.0576) (0.0619)

L.(BMI ≥ 37) -0.0990* -0.1084* -0.1005*

(0.0577) (0.0554) (0.0564)

Hansen J statistic, χ2
(df) 130.3 129.2 129.6 105.3 106.8 108.7

   p -value 0.803 0.822 0.815 0.976 0.970 0.959

   degrees of freedom

BMI diff-in-Hansen, χ2
(df 102.1 101.2 101.6 75.1 76.1 77.6

   p -value 0.738 0.758 0.749 0.983 0.978 0.971

   degrees of freedom
Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  There are 5,897 observations for 1,473 men, and 3,154 

observations for 1,060 women. General Health is reported on a 5-point scale from "Excellent" (1) to "Poor" (5), with "Excellent" being the 

excluded category.

…

…

… … …

…

… …

… …

… … …

…

Differenced Health Variables Differenced Health Variables

Men Women

… …

145 136

103112

… … …
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Occupation Occupation

Added Added

L.ln(wage) 0.0720* 0.0721* 0.2197*** 0.2170***

(0.0412) (0.0411) (0.0528) (0.0473)

Overweight -0.1190 -0.0850

(0.1207) (0.1126)

L.Overweight 0.0549 0.0510

(0.0470) (0.0463)

Severely Obese 0.0557 0.0652

(0.0925) (0.1137)

L.(Severely Obese) -0.1722*** -0.2138***

(0.0594) (0.0790)

BMI ≥ 24.5 0.0177 0.0081

(0.0852) (0.0870)

L.(BMI ≥ 24.5) -0.1039** -0.0783*

(0.0431) (0.0455)

BMI ≥ 37 -0.1305** -0.0806

(0.0564) (0.0520)

L.(BMI ≥ 37) -0.0990* -0.0553

(0.0577) (0.0540)

Difference-in-Hansen Tests for Added Occupation Instruments

   p -values … 0.430 … 0.261

… …

…

… …

… …

White Men White Women

Table 7.  Effects of Adding Occupation to the Preferred Model

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  There are 5,897 observations for 1,473 men, and 

3,154 observations for 1,060 women. Occupations are grouped into five categories with service occupations being the 

comparison group. Second lagged levels of occupation dummies are used as instruments, producing a total of 200 

instruments for men and 189 for women. 

Preferred Model Preferred Model

… …

… …

… …

… …

…



Mean Std. Dev. Min Max

ln(Wage) 2.332 0.619 -3.252 10.081

ln(Wage) Difference 0.052 0.587 -6.202 6.142

Decrease in BMI cat. 0.031 0.174 0 1

Increase in BMI cat. 0.058 0.235 0 1

South 0.319 0.466 0 1

Urban 0.703 0.457 0 1

Part Time 0.071 0.257 0 1

Married 0.231 0.422 0 1

Any Children 0.272 0.445 0 1

HS 0.362 0.480 0 1

Some College 0.239 0.427 0 1

College 0.171 0.376 0 1

Local Unempl. Rate 6.314 2.734 0 27.8

Occupations

Service 0.155 0.362 0 1

Mgmt, Tech., & Prof. 0.177 0.382 0 1

Sales 0.109 0.312 0 1

Clerical, Admin. 0.088 0.284 0 1

Misc. Blue Collar 0.470 0.499 0 1

Note: As in Table 1, there are 9,037 observations used for most of these variables. Occuption summarized

where not missing. "Decrease (or Increase) in BMI cat." refers to the fraction who move to a lower (or higher)

BMI category as defined by the WHO.

Table A1.  Additional Summary Statistics for White Men



Mean Std. Dev. Min Max

ln(Wage) 2.196 0.563 -3.069 6.652

ln(Wage) Difference 0.044 0.488 -6.060 4.499

Decrease in BMI cat. 0.026 0.159 0 1

Increase in BMI cat. 0.051 0.220 0 1

South 0.331 0.470 0 1

Urban 0.757 0.429 0 1

Part Time 0.115 0.319 0 1

Married 0.253 0.435 0 1

Any Children 0.204 0.403 0 1

HS 0.280 0.449 0 1

Some College 0.282 0.450 0 1

College 0.319 0.466 0 1

Local Unempl. Rate 6.237 2.674 0 19.2

Occupations

Service 0.236 0.425 0 1

Mgmt, Tech., & Prof. 0.314 0.464 0 1

Sales 0.133 0.340 0 1

Clerical, Admin. 0.248 0.432 0 1

Misc. Blue Collar 0.069 0.254 0 1

Note: As in Table 1, there are 5,408 observations used for most of these variables. Occuption summarized

where not missing. "Decrease (or Increase) in BMI cat." refers to the fraction who move to a lower (or higher)

BMI category as defined by the WHO.

Table A2.  Additional Summary Statistics for White Women
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