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Abstract

This paper considers effects of body mass on wages in the years
following labor market entry. The preferred models allow current
wages to be affected by both past and current body mass, as
well as past wages, while also addressing the endogeneity of body
mass. | find that a history of severe obesity has a large negative
effect on the wages of white men. White women face a penalty
for a history of being overweight, with additional penalties for
both past and current BMI that begin above the threshold for
severe obesity. Furthermore, the effects of past wages on current
wages imply that past body mass has additional, indirect effects
on wages, especially for white women.
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This paper considers effects of past and current body mass on wages in the
early years of workers’ careers. Using data from the National Longitudinal
Survey of Youth 1997, I estimate dynamic models of wages in which body
mass is allowed to be endogenous. This approach allows workers’ history in
the labor market, including past wages, to affect current wages. As a result,
effects of high body mass can accumulate and persist over time. Furthermore,
the preferred estimates are unbiased even when body mass is correlated with
both individual fixed effects and time-varying unobservables.

The literature on body mass and wages has been understandably con-
cerned with the endogeneity of body mass. Cawley (2004) carefully describes
the reasons weight or body mass may be correlated with fixed and time-
varying unobserved heterogeneity; however, most previous work has focused
on either individual fixed effects or time-varying sources of endogeneity, but
not both in the same regression.’

One contribution of this paper is that the estimation addresses multiple
sources of bias simultaneously. The use of autoregressive wage equations
eliminates a potential source of omitted variable bias that has been ignored by
previous work, and individual fixed effects are removed by first-differencing.

The panel data are then exploited to address endogeneity associated with

'E.g., Han et al. (2011) use fixed effects. Baum and Ford (2004) use first differences.
Kline and Tobias (2008) use parent’s BMI as an instrument. Cawley (2004) and Sabia
and Rees (2012) use fixed effects and IV in separate regressions.

Two exceptions, Averett and Korenmann (1996) and Behrman and Rosenzweig (2001),
use differencing to remove sibling (or twin) fixed effects and then use lagged BMI as either
a proxy or an instrument for current BMI.



remaining, time-varying errors.

Another important contribution of this paper is the estimation of models
that are consistent with discrimination affecting labor market search, occu-
pational sorting or other channels that would imply dynamic effects of body
mass on wages. The preferred specifications allow both current and past
body mass to affect wages. Furthermore, wages are affected not only by the
lags of body mass included in the model, but also by further lags that have
indirect effects through their effects on past wages. As a result, effects of
body mass on wages can persist and even accumulate over time. In contrast,
most previous work implicitly assumes that wage penalties associated with
obesity are the same whether the worker recently became obese or had been
obese her entire career.?

This paper is also the first in the literature to use the NLSY97, and one
of the first to focus on workers who entered the labor market more recently
than the 1980s.> Odgen et al. (2010) report that obesity doubled among
adults in the U.S. between 1980 and 2000. If prejudice or stereotypes evolve
as the population becomes heavier, results from previous work based on the

NLSY79 may not generalize to more recent cohorts.*

2Recent work by Chen (2012) is the only other to allow both past and current BMI
to affect wages. Examining workers in their 30s, she considers effects of current BMI and
BMI 10 years earlier. The current paper provides a detailed look inside of those early
years using a younger cohort of workers.

3Sabia and Rees (2012) use a sample from Add Health that is between 24 and 32 in
2008. Gregory and Ruhm (2011) also use data with more recent entrants, but their sample
from the PSID pools respondents as young as 25 in 2005 and as old as 55 in 1986.

4Additionally, Altonji et al. (2012) find that the mix of skills and family backgrounds
changed between NLSY cohorts, which would affect the ability to generalize across decades.



Finally, the estimation sample is unique in its focus on young workers in
the first several years after entry into the labor market. As a result, the esti-
mation should be better able to capture potential discrimination as it unfolds
than it would with a sample of older workers. Wage growth is higher earlier in
careers, and changes in jobs and occupations are more important.> Removing
fixed effects in a sample of older workers is likely to remove the accumulated
effects of past discrimination suggested by Chen (2012). Furthermore, sig-
nals inferred from body mass should have larger effects for younger than for
older workers because the market knows less about younger workers.°

The empirical results suggest that wages are affected by past body mass
and past wages. White men are penalized for a history of severe obesity.
White women face a penalty for being overweight in previous years, with
additional penalties as either past or current BMI exceeds the threshold
for severe obesity. Furthermore, I find that including past wages in the
model is critical for identification and has important implications for the
interpretation of results, especially for women.

The next section discusses models of wages and body mass, building up

to dynamic panel data specifications. Section 2 discusses the data. Section 3

®See Murphy and Welch (1992), Topel and Ward (1992), and Neal (1999) among others.

6Hamermesh (2011) provides a similar argument to explain why effects of beauty on
wages might decline with age. See Altonji and Pierret (2001) for more on statistical
discrimination in the presence of employer learning. Lange (2007) discusses how quickly
the market learns about young workers.

Employer learning about healthcare costs may be more complicated than learning about
productive characteristics if the correlation between BMI in a given period and expected
healthcare costs changes with age.



describes tests of the identifying assumptions introduced in Section 1 before
discussing other details of the estimation. Section 4 presents results, followed

by various robustness tests. Section 5 concludes.

1 Empirical Models of Body Mass and Wages

Following the recent literature, our first attempt at specifying a wage regres-

sion to measure effects of body mass might take the form
wiy = XyS + BMIy¢ + v, (1)

where w;; is the log of person i’s wage in period t, X}; is a vector of observable
characteristics, and BM I;; is a vector that describes body mass using dummy
variables or a polynomial. BMI; is potentially correlated with both fixed
individual effects related to genetics or upbringing and time-varying factors
in the error term, v;, leading to possible endogeneity.

Some previous work has used fixed effects or first-differenced estimation
to eliminate bias in equation (1), but potential correlation between BM I
and time-varying shocks to wages then remains.” Other estimates used in-
strumental variables to address the bias in equation (1), but the instruments

used so far in the literature are correlated with individual fixed effects.® The

"E.g., Cawley (2004), Baum and Ford (2004), and Han et al. (2009).

8The most plausible instrument in the previous literature is the BMI of a family mem-
ber, which was first used by Cawley (2004); however, Han et al. (2009) and my own
preliminary estimation find that sibling or parent’s BMI predicts only time-invariant com-
ponents of body mass.



two approaches could be combined, but doing so requires a valid instrument
for changes in BM I;.

An additional problem in the literature on weight and wages is that most
authors have, at least implicitly, assumed that only current body mass affects
wages.? This assumption is inconsistent with the broader discrimination lit-
erature in which dynamic models are now common. For example, Lang et al.
(2005) show that hiring decisions in a wage posting model magnify effects of
prejudice or expected productivity differences, resulting in wage differences
even if employers are not willing to pay more to hire their preferred group.'®
Bjerk (2008) shows that any one of a few types of statistical discrimination
can result in wage differentials over time due to effects on hiring and promo-
tions.!! Adapting either of these models to discrimination based on weight
would imply that a worker’s history of body mass could affect her current
wages through effects on past job search and promotions. Furthermore, any
statistical discrimination story in which body mass is used as a signal of
productivity or healthcare costs would imply effects of at least the history of
body mass observed by the current employer.

Regardless of how or why wage penalties arise, the idea that the full effects

More importantly, Cawley et al. (2011) criticize the use of instruments based on genetics,
arguing that even a single gene may be associated with too many outcomes to satisfy an
exclusion restriction. Supporting this argument, I find that siblings’ BMI is correlated
with AFQT scores in the NLSY79, even after controlling for respondents’ BMI.

9As mentioned above, Chen (2012) is a recent, important exception.

10Djfferences in healthcare costs should have similar effects to productivity differences
in Lang et al. (2005), which would fit the results of Bhattacharya and Bundorf (2009).

1 Additionally, Oettinger (1996) shows that differences in uncertainty about workers’
productivity can affect workers’ returns to mobility.



of changes in body mass would be captured by immediate changes in the wage
is not consistent with the presence of labor-market frictions. Employers that
have difficulty lowering wages during economic downturns may also have
difficulty cutting wages in response to undesirable weight gains. Workers who
face limited opportunities due to their weight may face difficulty moving to
better jobs after losing weight, much as workers who enter the labor market
during recessions face lower wages long after the economy recovers.!?

If a history of being overweight or obese can affect current wages, regres-
sions like equation (1) should be modified to allow effects of both current
and past body mass. But body mass (past or current) may be affected by
past wages, which are likely correlated with current wages. In addition to the
potential simultaneity of wages and body mass that has been discussed in
the literature, it is possible that BMI is predetermined by past wages. There-
fore, lagged wages should be added to avoid omitted variable bias. Including
lagged wages has the additional benefit of allowing lags of body mass that
are not included in the regression to have indirect effects on current wages
through their effects on past wages.

Using a single lag of both wage and body mass results in an autoregressive

wage equation:

Wit = YWit—1 + Xy + BM 1y + BMILiy_1¢9 + oy + €44 (2)

12See Kahn (2010) and Oreopoulos et al. (2012). Plant closings and layoffs have also
been found to have persistent negative effects on wages. See, e.g., Jacobson et al. (1993).




Both BM I;; and BMI;;_, are potentially correlated with the individual fixed
effect, o, as is wi_1."> As before, BM I;; might be correlated with the time-
varying error, €;, or with earlier shocks to the wage.

Dynamic panel data models like equation (2) can be estimated using
the differenced GMM estimator developed in Holtz-Eakin et al. (1988) and
Arellano and Bond (1991) (HENR and AB in what follows).!* The first step

in this approach is to difference equation (2) to eliminate the fixed effect:

Awit = /}/Awit—l + AthB + ABMIZth + ABM]it—1¢1 + Agit‘ (3)

After differencing, ABMI;; and ABMI;;_; may still be correlated with the
error term, and Aw;;_; is correlated with Ae; through ;1.

Fortunately, further lagged levels of the wage are valid instruments for
Aw;;_q if there is no serial correlation in . Under this assumption, w;;_o
is not correlated with €;; or e;_;, but is correlated with Aw;_;.'> The
GMM estimator of HENR and AB also uses further lags, where available, as
instruments to improve efficiency.

It is important to note that assuming no serial correlation in the time-
varying errors, £;, is not equivalent to assuming no serial correlation in wages

or wage growth. On the contrary, the autoregressive specifications of equa-

BFurther lags of BMI or w can be included, but one lag is sufficient to explain the
model. The lag structure is discussed further in Section 3.

14See Arellano and Honoré (2001), Bond (2002), or Arellano (2003) for helpful discus-
sions.

15The correlation of w;_s and Aw;_, is weak if 7 is close to 1; however, the results
presented below suggest this is not a problem.



tions (2) and (3) assume that current wages are correlated with past wages,
and current wage growth is correlated with past wage growth. The assump-
tion of no serial correlation in ¢ is violated only if there is serial correlation in
residual heterogeneity that is uncorrelated with lagged wages, BMI (lagged
and current), and any other regressors included in X;.1¢

Lagged levels of BM I are valid instruments in the differenced estimator
under an additional assumption. Specifically, BM I;;_o and further lags are
valid instruments for ABMI;; and ABM1I;,_; as long as BMI;; is uncorre-
lated with €;;,1 for all £. On an intuitive level, if the endogeneity of BM I,
is due to reverse causality, this assumption requires that random shocks to
future wages do not affect current body mass. If there are unobserved shocks
that are common to BM I;; and &;;, this assumption requires that those shocks
only affect w; 1 through their effects on BMI;; and w;.'"

Finally, the identification of equation (3) requires changes in BMI to be
predicted by its lagged levels. BMI;_5 should be correlated with ABM I
if BM1; is endogenous.!® This assumption finds empirical support in the

dynamic models of body mass estimated by Goldman et al. (2010) and Ng et

16Tn contrast, serial correlation in the residuals of static wage regressions, which dom-
inate the previous literature, is expected because those residuals are not independent of
lagged wages. The dynamic estimation in the current paper, therefore, supports the com-
ments in Cawley (2004) about serial correlation in the previous literature.

17Shocks to BMI;; that are correlated with both &;; and €;;11 would imply serial cor-
relation in e, which is testable. However, it’s possible that some shocks to BM1I;; are
uncorrelated with e;; but correlated with e€;:+1, but this is also testable in may cases.
Section 3.1 discusses tests of identifying assumptions in light of such possibilities. Section
4 present results of these tests, as well as an additional falsification test.

18Tf BM1I;, were merely predetermined, meaning it was correlated with €;;_; but not
€it, BMI;;_1 would also be a valid instrument for ABM I;;.



al. (2010). Studies in the epidemiology literature also find that large changes
in weight are more common among those who were initially heavier.'® Lee et
al. (2010) suggest that avoiding weight gain may require greater effort from
overweight women than from normal weight peers. Finally, in supplemental
regressions (available upon request) I find that BMI; o is correlated with

ABM1;, with F statistics above traditional cutoffs for weak instruments.?°

2 Data

This paper uses data from the 1997 through 2009 waves of the National
Longitudinal Survey of Youth 1997 (NLSY97). Individuals in the sample
were between 12 and 16 years of age in 1996. They were between 24 and
30 when interviewed in 2009. The data also contain detailed information on
labor market history, demographics, and other common control variables.
The NLSY97 has important advantages over the 1979 cohort for the pur-
poses of this paper. The ’97 respondents were young enough at their first
interview that nearly all of them are observed as they begin their careers.
They were also asked about height and weight in every year of the survey.
In contrast, NLSY79 respondents were as old as 22 when first interviewed;
and they were not asked about weight in ’79, '80, 83, '84 or '87. As a re-

sult, NLSY79 respondents were between 25 and 33 years old in the first year

Y9E.g., see Lewis et al. (2000) and Williamson et al. (1990).

20These regressions are not equivalent to the first stage of 2SLS. They are suggestive. I
still consider the possibility that the instruments are too weak to identify coefficients on
both BMI;; and BMI;;_1 when I examine the robustness of my results.
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(1990) that BMI could be observed for three years in a row.

In what follows, attention is limited to white men and women due to
concern for sample sizes. Over twice as many respondents identify as white
than as black, which is the second largest racial or ethnic group. Furthermore,
requiring at least three consecutive years of valid wage observations reduces
the number of observations more for minorities and women than for white
men.

Additionally, only jobs following full-time labor market entry are included
in the estimation sample. Entry is defined as the first two consecutive years
in which the individual works full time and is employed for at least 75% of
the year. This restriction is intended to exclude the temporary or part-time
jobs of younger workers that likely bear little resemblance to their eventual
adult careers.?! Part-time jobs that take place later in workers’ careers are
still included in the sample.

The sample also excludes respondents who were in the military, as well
as observations for women who were pregnant at any point since the last
interview. Limiting attention to observations that can be use as time ¢, t — 1,
or t — 2 in equation (3) leaves 9,037 observations for 1,473 white men and

5,408 observations for 1,060 white women.

2INearly 75% of jobs excluded by the entry restriction are part-time, compared to 9%
of jobs in the sample. Median tenure is 23 weeks for excluded jobs, but 85 weeks for jobs
following full-time entry.

The sample includes people who entered the labor-market but returned to (or never
left) school. The results discussed below are robust to excluding people who are in school,
but some statistical significance is lost due to the smaller sample size.

11



A more detailed discussion of the sample’s selection is left to an appendix.
The rest of this section discusses information on body mass in the data,

followed by a brief description of the estimation sample.

2.1 Body Mass and Measurement Error

The data include self-reported height and weight in each year, which allows
the construction of BMI.?2 The measurement error introduced by the use
of self-reported height and weight is well known and widely discussed; how-
ever, previous research has ignored the fact that roughly 10% of person/year
observations in either NLSY cohort come from telephone interviews, which
worsen misreporting relative to in-person interviews.?® All regressions that
include current or lagged BMI variables also include corresponding dummy
variables for the interview being conducted by phone.

I do not adjust self-reported height and weight based on the relationships
between reported and actual measures in NHANES data, as Cawley (2004)
and others do, for a few reasons. First of all, the assumptions required to
treat NHANES samples as validation data for NLSY cohorts are not credible

given the mix of interview methods in the NLSY.?* Secondly, wage penal-

22BMI is defined as (weight in kg)/(height in m)?

2White women are especially sensitive to interview method. Controlling for age and
individual fixed effects, average reported weight falls by over 3.5 pounds when white women
are interviewed by phone. Reported weight falls by over seven pounds when overweight
women are interviewed by phone.

24The critical assumption is that the distribution of actual measures conditional on
reported is the same in both samples. Differences between interview modes suggest this
assumption is violated even within NLSY cohorts. Furthermore, Han et al. (2009) note
that NHANES respondents expect to be weighed, but NLSY respondents do not.

12



ties are more likely driven by whether the worker’s appearance conforms to
some desired standard than by an actual BMI number, which is likely not
observed by employers.?® Finally, rescaling BMI to adjust for systematic mis-
reporting may change the BMI numbers at which we observe wage penalties,
but it should not affect our ability to determine whether heavier workers are

penalized at some point.

2.2 The Estimation Sample

Table 1 presents basic summary statistics for the white men and women in
the sample. The appendix tables present additional summary statistics. The
dependent variable in regressions that follow is the natural log of hourly wage.
Average log wage is around 2.3 for men and 2.2 for women, which translates
to hourly wages of roughly 10 and 8.8, respectively.

The average respondent in the sample is roughly 24 years old.?% In 2009,
the average respondent (male or female) was 27 years old. Average years
in the labor market is 4.5 for white men and four for women. White men
have accumulated an average of 4.2 years of actual experience, while white
women have accumulated 3.8 years of experience. In 2009, the average male

respondent had been in the labor market for seven years, accumulating 6.4

25 A related point is made by Johansson et al. (2009) who consider effects of actual BMI,
waist circumference and body fat on labor market outcomes in Finland.

26Respondents were as young as 16 in period ¢ — 2, or 18 in t. This introduces the
possibility that changes in BMI mostly reflect changes in height for part of my sample
and changes in weight for the rest; however, the results presented below are robust to
excluding respondents under the age of 20.

13



years of actual work experience. The average woman had been in the labor
market for 6.2 years, accumulating 5.6 years of experience.

Average reported BMI for both genders exceeds 25, which is the threshold
for being overweight. Less than 2% of white men and 4.2% of white women
are underweight (BMI < 18.5). Over 57% of white men and nearly 42% of
white women are overweight (BMI > 25). 22% of white men and 20% of
white women are obese (BMI > 30). Almost 8% of men and over 10% of
women qualify as severely obese (BMI > 35).

As seen in the appendix tables, roughly 9% of the men in my sample and
8% of the women move from one of the official BMI categories to another
between two consecutive years. For either gender, moving to a heavier BMI
category is more likely than moving to a lighter category. Additionally, the
changes in BMI associated with changes in BMI categories (not shown) tend
to be relatively large.2” Therefore, it does not appear as though identification

is coming from small fluctuations in weight that employers would not notice.

3 Estimation

Recall that the differenced equation we're interested in takes the form

Awi = yAwy 1 + AXy 8+ ABM1y¢ + ABM I 1¢y + Aeyy. (3)

2TThe median percent change in BMI associated with a change in BMI category is 8.5
percent for men, and 9.5 percent for women. Median changes in BMI are three to four
times larger when categories change than they are otherwise.

14



As mentioned in the first section, the GMM approach developed by HENR
and AB uses second and further lagged levels as instruments for Aw;;_; and
other endogenous variables. The GMM instruments enter as separate vectors
for each year.?® If a lag is missing, it enters as a zero. This allows the use of
further lags without limiting observations to cases that have those lags.
Letting Z denote the matrix of all instruments and € the vector of es-
timated residuals, the moment conditions are E [Z’¢] = 0. These moment
conditions are estimated in Stata using XTABOND2.2 All estimates use
two-step efficient GMM, which produces robust standard errors, and apply

the Windmeijer (2005) finite-sample variance correction.

3.1 Testing Assumptions

In Section 1, I assumed that the time-varying errors, €;, are not serially
correlated. AB developed tests for this assumption. First-differenced regres-
sions like equation (3) are AR(1) by design. If there is serial correlation in
g, equation (3) will be at least AR(2). I present tests for serial correlation
with all of the results that follow.

The results are also presented with tests for overidentifying restrictions.
The Hansen J test examines the joint validity of all moment conditions.

When BM]I is treated as endogenous, difference-in-Hansen tests are used to

28At t = 3, w;; is an instrument for Aw;s. At t = 4, w;s and w;; are instruments for
Aw;s3, and so on.

298ee Roodman (2006) for documentation. Stata contains other dynamic panel-data
programs, but they do not provide the same array of tests as XTABOND2.

15



evaluate the validity of wage lags and BM I lags separately.

The validity of lagged wage levels as instruments is independently evalu-
ated by each of these tests. Lagged wage levels are valid instruments if €;; are
not serially correlated. If we fail to detect serial correlation that does exist,
tests of overidentifying restrictions could still reject the validity of lagged
wage instruments as long as further lags are valid instruments.3°

The validity of lagged BMI instruments are only evaluated directly by
the overidentification tests; however, testing for serial correlation makes the
assumptions of the overidentification tests more plausible. Tests of overi-
dentifying restrictions require at least one of the BM1I lags to be a valid
instrument for ABMI;; . If BMI;; were correlated with €;,,1 but not €;,40,
the second lags would not be valid instruments but the third lags would be.
Overidentification based on lagged BMI variables would be untestable only
if BMI;; was correlated with €41, €49, €113, etc.; however, the absence
of serial correlation in € would make this less likely. For example, BMI;
could be correlated with €;;,1 and later residuals due to health shocks that
affect body mass more immediately than they affect wages. But such health
shocks would imply serial correlation in €, unless the unobserved shocks that
were common to BM[; and €;,; were somehow independent of the shocks

common to BM1I; and e;,9. Although this strikes me as unlikely, I con-

30The Arellano-Bond tests would have to miss a lot of serial correlation for lagged wage
instruments to be untestable using overidentification. If equation (3) were AR(2) but not
AR(3), wit—2 would not be a valid instrument for Aw;;_1, but w;;—3 would be. If the
regression were AR(3) but not AR(4), wi;—4 would be a valid instrument, etc.

16



sider the possible effects of health shocks on identification when I discuss the

robustness of results in Section 4.2.31

3.2 Other Potential Problems with Instruments

The use of all lagged levels of wage and BMI variables quickly produces a
large number of instruments. A larger set of instruments improves efficiency,
but not without a cost. As discussed by Roodman (2009) and others, us-
ing “too many” instruments overfits the endogenous variables, which biases
coefficients towards OLS and weakens overidentification tests.?

The results presented in the next section restrict lags to the second
through fifth. Using all available lags produces coefficients that are smaller
in magnitude, which is consistent with adding weak instruments. Restrict-
ing lags further (e.g., excluding the fifth lag) has little effect on coefficient

estimates.

3.3 Regression Specifications

All specifications presented in this paper model BM [; as a vector of dummy
variables for various levels of body mass. The use of dummy variables is

motivated by the need for a simple specification that allows a non-linear rela-

31My goal here and elsewhere is to convince readers that my identifying assumptions are
reasonable and weaker than they may seem at first glance. That said, I acknowledge that
the identification of causal effects in this paper, as in any other, still relies on assumptions.

32Roodman (2009) recommends that researchers consider the sensitivity of estimates
to reductions in the number of instruments. He also urges caution when interpreting J
statistics, suggesting p-values below 0.25 are cause for concern.

17



tionship between BMI and wages.?* Dummy variables are consistent with the
idea that wage penalties are associated with weight exceeding levels that are
considered desirable in the market, which is supported by the semiparametric
estimation of Gregory and Ruhm (2011). However, there is no theoretical
reason to adopt one specification of BM I;; over any other.

When estimating regressions with dummy variables for BMI categories,
the previous literature relied on categories defined by the WHO (overweight,
obese, etc.); however, these categories were defined for the study of public
health, not labor markets. As noted by Gregory and Ruhm (2011), wage
penalties for high body mass may begin at points that fall between WHO
cutoffs. Even if employers wanted to penalize workers based on the WHO
categories, it’s not clear how firms’ imperfect assessments of body mass would
line up with the imperfectly reported height and weight in the data.

The next section begins with specifications that use traditional BMI cat-
egories, but then discusses the use of dummy variables for exceeding alter-
native BMI thresholds. These alternative thresholds range from 23 to 38, in
intervals of half a BMI point. 1 focus on specifications of BM I;; that include
one or two dummy variables.?*

I narrow this large set of alternatives specifications based first on the

33In preliminary estimation, linear and polynomial specifications of BMI;; only pro-
duced statistically significant results in static OLS regressions. Ignoring statistical signif-
icance, the results based on cubic polynomials are roughly consistent with the preferred
dummy-variable specifications.

341 estimated models with three dummy variables, but they provided no obvious advan-
tage over those with two.

18



robustness of coefficient estimates for a BMI dummy variable to other changes
in the specification of BM ;. Essentially, I estimate all of the alternative
models and allow them to “vote” on which BMI thresholds matter. I then
compare these relatively robust specifications to similar specifications using
the tests proposed by Bond et al. (2001) and Andrews and Lu (2001), which
are both based on comparisons of the Hansen J statistic.?® Finally, I consider
the robustness of my preferred specifications to the treatment of outliers in
the distribution of wages.?

All of the dynamic models presented below include only one lag of wage
and one lag of BMI. None of the tests for serial correlation suggest that
more lags of the wage are needed, and the tests of overidentification fail to
suggest a problem with the instruments. Further lags of BMI are never
statistically significant and do not qualitatively change the results for the
first lag of BMI. The main effect of adding a second lag of either BMI or
the wage is reducing observations by 20% for men and 25% for women.37
All regressions control for the local unemployment rate and incidence of

obesity in the state, as well as dummy variables for region, urban residence,

and being interviewed by telephone.®® When lagged values of BMI variables

35T used leave-one-out crossvalidation, dropping all observations for each respondent one
at a time, to ensure that these test results were not peculiar to the estimation sample.

36 As noted in the appendix, I only drop wages if Aln(w;;) is greater than 6.5 in absolute
value. This leaves some observations with unusually high or low wages.

37 An advantage of focusing on young workers is that they have less history in the market
to control for. In a sample of older workers, one lag of wages or BMI would be expected
to capture less of a worker’s relevant past.

38Local unemployment and state identifiers are provided by the NLSY97 Geocode files.
Percent obese in the state is tracked by the CDC.
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are included as regressors, the corresponding lag of the phone dummy is
also included. Education enters as dummy variables for completing high
school, some college, or college and beyond. I control for time using dummy
variables for calendar year and the number of years since labor market entry.
No estimation in this paper is weighted.

I also control for actual experience in the labor market and it’s square
in the dynamic panel estimates. To control for commitment to the labor
market, I add interactions of experience with years since entry. Controlling
for actual experience and its interactions makes the validity of lagged wages
as instruments more likely.?® Since actual experience might be endogenous,
potential experience (age—schooling—six), its square and its interactions are
used as traditional instruments in the dynamic models. In OLS regressions,
I simply replace actual experience with potential.

Finally, there are a number of potential confounders, such as occupa-
tion or hours worked, that are excluded from the preferred models due to
their likely endogeneity. After presenting the main results, I examine the
robustness of those results to the addition of these variables. I also discuss
the possibility that some of these variables may be intermediate outcomes

through which body mass affects wages.

39Lagged wages might reflect the accumulation of experience or commitment to the
labor market. Overidentification tests for lagged wage instruments improve with the use
of actual experience and its interactions.
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4 Results

I find that white men face a penalty for past severe obesity. White women
face a penalty for past BMI over 24.5, with additional penalties for past BMI
of 37 or more. The only evidence of an effect of current BMI on wages is a
penalty faced by women with a reported BMI of at least 37. Additionally,
the results support the use of autoregressive wage equations and suggest that
BMI is endogenous even after removing individual fixed effects.

The next subsection discusses the main results, and then compares the
preferred dynamic models to simpler regressions. Section 4.2 considers the

robustness of the main results to several potential sources of bias.

4.1 The Preferred Models

As discussed in section 3.3, BM [;; is modeled using dummy variables for ex-
ceeding various BMI thresholds. In what follows, I first present specifications
based on the familiar categories of overweight, obese and severely obese. I
then consider alternative specifications of BM1I;. Preferred specifications
are selected based on robustness of the estimated coefficients to changes in
specification and the treatment of outliers, as well as formal specification

tests.
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4.1.1 Results for White Men

Table 2 presents results for white men from various models that use dummy
variables indicating overweight, obesity or severe obesity.*’ First of all, note
that the tests presented in the lower panel are all consistent with the iden-
tifying assumptions discussed above. All of the equations are AR(1) due to
first-differencing; but none of them are AR(2), which they would be if there
were serial correlation in the residuals. Furthermore, none of the tests of
overidentifying restrictions reject the validity of the GMM instruments. All
of the p-values for Hansen and difference-in-Hansen tests are well above the
conservative threshold of 0.25 suggested by Roodman (2009).

The coefficient estimates in Table 2 suggest that white men face a penalty
of roughly 17% for having been severely obese in the previous year. The
coefficients on lagged severe obesity range from -0.165 (0.060) in column 4
to -0.172 (0.059) in column 5. No other BMI variable has a statistically
significant coefficient in this table, and there is no evidence of current BMI
having any effect on the wages of white men.*!

The results for men also support the inclusion of an autoregressive term in
the wage equations. In specifications that include severe obesity, coefficients

on lagged log wages are between 0.072 (0.041) and 0.077 (0.042). Further-

40A]l specifications in Tables 2 and 3 use lagged indicators of overweight, obesity and
severe obesity as instruments. This ensures that the instruments capture the same amount
of variation in each specification. I also use lags of three BMI dummies as instruments
when alternative BMI cutoffs are considered, with each alternative category replacing the
closest WHO category.

41Results for the model that specified BM I;; using overweight and obese are excluded.
They are consistent with those in columns 2 and 3.
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more, controlling for lagged wages is essential for identification. Specifica-
tions that exclude lagged wages but are otherwise similar to those in Table 2
(not shown) are at least AR(2). Consistent with Cawley’s (2004) point that
lagged BMI variables are not likely to be valid instruments in the presence of
serial correlation, the second lags of BM I are rejected by overidentification
tests in these specifications.*?

When I consider alternative dummy variable specifications for BM [,
I find that the penalty for lagged severe obesity is the most robust result
for men across specifications.*® There is no robust evidence of an effect at
lower levels of current or lagged body mass for white men.** Finally, the test
proposed by Andrews and Lu (2001) supports models that use severe obesity
over similar models that use nearby cutoffs.*®

I select a preferred specification from Table 2 using the test of parameter

restrictions proposed by Bond et al. (2001).46 The only restricted specifica-

42Tt is reassuring to see that overidentification tests reject the validity of instruments in
cases where we do not expect the exclusion restrictions to hold.

43The coefficient on lagged severe obesity is qualitatively similar and statistically sig-
nificant in specifications with lower cutoffs ranging from 24 to 33. Coefficients on lagged
BMI>34.5 are similar, but smaller and statistically significant in fewer models.

44 Coefficients on BMI > 29.5 are statistically significant in a few specifications, but are
not robust to the treatment of outliers. They are driven by a single observation in which
the reported wage fell from $7.11 to $0.04.

45 Andrews and Lu (2001) develop a GMM analogue of the Bayesian Information Crite-
rion. When comparing models that have the same number of variables and instruments,
their approach amounts to selecting the model that minimizes the Hansen J statistic. For
example, the J statistics of models that replace severe obesity in column 5 of Table 2 with
indicators for BMI> 34.5 or 35.5 rise to 135.5 and 139.3, respectively.

46Bond et al. (2001) show that differences between the J statistics of restricted and
unrestricted specifications are distributed x? with degrees of freedom equal to the number
of restrictions.
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tion that cannot be rejected in favor of the full specification (column 1) is the
specification in column 5, which models BMI; using dummy variables for
being overweight and severely obese.*” The Andrews-Lu test also selects this
specification over the others that use two dummy variables to model BM [;;.
Since the specification in column 5 is simpler than that in column 1, it is my

preferred specification in what follows.

4.1.2 Results for White Women

Table 3 presents results for white women using dummy variables for tradi-
tional BMI categories. The only statistically significant results for a BMI
variable in these specifications suggests a penalty for a lagged BMI in (or
above) the overweight category. The coefficient on lagged overweight status
is -0.082 (0.040) in column 2, and -0.093 (0.044) in column 6.

Using alternative BMI dummy variables is more important for white
women than for white men. My preferred specification for white women
uses indicators for a reported BMI greater than or equal to 24.5 and 37. The
penalty for a lagged BMI>24.5 is robust across all specifications with a sec-
ond cutoff at or above 27, or without a second BMI variable. As seen in Table
4, the estimated coefficients on lagged overweight status (columns 5-8) are
similar, but consistently smaller than analogous coefficients on lagged BMI

> 24.5 (columns 1-4).*® Among dummy variables for higher BMI thresholds,

47Columns 2 and 3 are rejected at any conventional level. Column 6 is rejected at a 5%
level, and column 4 at a 10% level.
48Coefficients on lagged overweight status are statistically significant roughly half as
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those indicating a current or lagged BMI > 37 were the most robust across
specifications.*® The results for this specification are also robust to changes
in the treatment of outliers.

Comparing the J statistics in Table 4, the specification in column 7, which
uses overweight status, narrowly outperforms the one in column 3. However,
the direction of this difference is not robust to the treatment of outliers or
to small changes in the set of instruments used.’® To cast more light on
this matter, I use the test proposed by Bond et al. (2001) to compare these
specifications to a specification that nests both. Regardless of the set of
instruments used, the specification that uses indicators for BMI > 25 and
BMI > 37 is easily rejected against the nested model, but the specification
with indicators for 24.5 and 37 is not.’* Therefore, I model BMI;; using
dummy variables for BMI > 24.5 and > 37 in what follows; however, using
overweight status instead of BMI > 24.5 has little qualitative effect on the
results.

The estimates from the preferred specification, presented in column (3)
of Table 4, suggest that white women face a 10% penalty for a lagged BMI

of 24.5 or more. Women are penalized an additional 10% for a lagged BMI

often as those on lagged BMI > 24.5.

49Coefficients for BMI cutoffs near 37 were similar to those for BMI > 37, but were
smaller in magnitude and statistically significant in fewer alternative models.

50E.g., the specification in column 3 minimizes the J statistic if dummy variables for
lags of obesity are not included in the set of instruments, or if lagged overweight status is
used as an instrument in both specifications. In contrast, such changes have no effect on
the relative performance of specifications for men.

5IThese tests hold GMM instruments constant across specifications. I repeat the tests
with and without dummy variables for past obesity included in the set of instruments.
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of 37 or more. Furthermore, white women face a 13% penalty for a current
BMI of 37 or more.

It is worth noting that the upper BMI cutoffs for white men and women
are more similar than they appear. The percentage of women in the sample
who exceed a BMI of 37 (7.9%) is similar to the percentage of men who are
severely obese (7.8%). Therefore, the results for both white men and women
suggest that workers are penalized for past body mass in the heaviest 8% of
the relevant subsample.

The results also suggest that lagged wages have larger effects on current
wages for white women than for white men. The coefficients on lagged log
wages are 0.220 (0.053) for women and 0.077 (0.042) for men.5> As in Table
2, there is no evidence of serial correlation in the residuals of any model
shown in Table 3 or 4; however, regressions that exclude lagged wages are
at least AR(2). Furthermore, neither Hansen nor difference-in-Hansen tests
cast doubt on the validity of instruments in the autoregressive models of
Tables 2 through 4.

On a more meaningful level, autoregressive wage equations imply that
workers’ history of body mass affects wages beyond the single lags included
in the model. The wage in t —1 is a function of BM I;;_». It’s also a function
of wy_o, which is affected by BM1I;;_3, and so on. This is an important

advantage of dynamic models: In contrast to previous work, the models in

52Note that the weak identification problem discussed by Blundell and Bond (1998) is
not relevant when none of the coefficients on lagged wages approach one.
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this paper do not assume that the penalty for being heavy is the same as
the penalty for becoming heavy. Wages respond slowly to changes in BMI,
implying in penalties that persist and accumulate over time.

As an example, consider two women who enter the market at t — 2. One
has a BMI of 38 and the other has a BMI of 23. The heavier woman loses
weight and the other gains weight so that both are overweight (but not obese)
in years t — 1 and ¢t. In ¢ — 1, the woman who had been heavier faces a 20%
penalty according to Table 4, while the woman who had been lighter faces
no statistically significant penalty for her recent weight gain. In year ¢, both
women have been overweight (but not obese) for two years; however, one
faces a penalty of 10% and the other faces a penalty of nearly 15%.%

The negative effects of high body mass also accumulate over time. A
woman who enters the market with a BMI over 37 initially faces a penalty of
roughly 13%. If she does not lose weight, she will again face the 13% penalty
for current body mass in her second year, plus a 20% penalty for her past
body mass. In her third year with a BMI over 37, she will be penalized an
additional 4.5% for her BMI two years ago, on top of the 33% penalty for
her BMI in ¢ and ¢ — 1.

53The estimated effect of BM I;;_o > 37 in t is -0.044 (0.020), the effect in t—1 multiplied
by the coefficient on Aw;;—1. If the woman was also overweight in ¢t — 1, her combined
penalty in ¢ is -0.148 (0.056).
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4.1.3 Comparisons to Simpler Models

Tables 5A and 5B compare the preferred dynamic specifications to OLS re-
gressions and an autoregressive model that assumes BM1I; is exogenous.
The OLS results for men in Table 5A suggest that overweight men are paid
more than lighter peers while severely obese men are paid less.>* The OLS
results in Table 5B suggest that a BMI>24.5 is associated with lower wages
for white women, which is consistent with previous research; however, this
negative association appears to be driven by lagged BMI, not current.

The autoregressions presented in the second column of Tables 5A and
5B remove any bias that may arise from correlation with individual fixed
effects or the omission of lagged wages, but assume ABMI;; and ABM1I;
are exogenous. Tests of overidentifying restrictions (not shown) reject this
assumption, suggesting that changes in BMI are correlated with time-varying
unobservables.”® The fact that the negative effects of body mass found in the
preferred specifications are not found in the second column of either table is
consistent with time-varying unobservables, such as time spent sitting at a
desk, that are positively correlated with both wages and body mass.

Finally, note that the error terms in the OLS regressions shown in Tables

5A and 5B are serially correlated, while the errors in the dynamic models are

5*When lagged BMI variables are added, the OLS coefficients on current and lagged
dummies for BMI categories are jointly significant for white men.

53] can reject the exogeneity of the BM I;; for white men when I use only the second and
third lags of w as instruments. (Recall that using more instruments weakens overidenti-
fication tests.) I can reject the exogeneity of BMI;; and BM1I;;_; for women in models
that include further lagged levels of BM I as instruments.
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not. Serial correlation in the static OLS regressions supports the argument
in Cawley (2004) against the use of lagged BMI variables as instruments in
static wage equations. The fact that evidence of serial correlation disap-
pears when lagged wages are incorporated into the model supports the use of
dynamic models and the identifying assumptions they require. Essentially,
the dynamic wage equations explicitly model the correlation 