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This article analyzes, from the purely mathematical point of view, 
a general practical problem.  The problem consists in the influence of the scatter 
of experimental data on their mean values (and, possibly, on the probability) 
near the borders of intervals.  The second central moment, the dispersion is a 
common measure of a scatter.  Suppose, for instance, a nonnegative random 
variable  X  takes values in a finite interval  ],[ BA .  Write  M  for its mean.  If 

there is a non-zero restriction on a central moment  |E(X-M)n|≥|rn
Disp.n|>0  under 

the condition  2≤n<∞,  then  B
AB

rBM
AB

rAA n
nDisp

n

n
nDisp

n

<







−

−≤≤







−

+< −− 1
.

1
.

)(
||

)(
||

.  

That is,  0
)(

||
1

. >
− −n

nDisp
n

AB
r

  is the width of a non-zero “forbidden zone” for the 

mean  M  near a border of the interval.  Here, in the case of  2=n ,  this non-zero 
restriction is a restriction on the dispersion  E(X-M)2≥r2

Disp.2=σ2
Min>0.  So, if 

there is a non-zero restriction on the dispersion, then a non-zero “forbidden 
zone” exists for the mean near a border of the interval.   
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1.  Introduction 

 
This article analyzes, from the purely mathematical point of view, a general 

practical problem.  The problem is the influence of a scatter, scattering of 
experimental data on the mean value of a characteristic of a real object.  One of the 
next goals of the research is to extend this consideration to the probability.   

The second central moment, the dispersion is a common measure of a 
scattering.  The scattering can be caused by noise and/or uncertainty, measurement 
errors, etc.   

Suppose that a characteristic of a real object is described by the values of a 
function  f  whose domain consists of a set of points within a finite interval of the 
real numbers.  Suppose further that  f  is non-negative, a dispersion of  f  is defined 
and is non-zero.  It is proved that there are certain geometric non-zero restrictions 
which the mean of  f  must satisfy.   

By a “non-zero restriction on the mean,” we will refer to the existence of a 
non-zero distance from a border of the interval.  Within this distance, it is 
impossible for the mean of the function to be located.  In other words, this distance 
is the width of a non-zero “forbidden zone” near a border of the interval.  The 
“restriction” for one border and the “restriction” for another border constitute the 
“restrictions” for the borders.   

Here, the non-zero dispersion of the function models the consequence of 
existence of real scattering.  More rigorously, the non-zero dispersion signifies that 
the minimal dispersion of the function is limited (restricted) from below by a non-
zero value.  In other words, this signifies “a non-zero restriction on the dispersion.”   

The size of the non-zero “forbidden zone” for the mean of the function is 
determined by the value of this minimal dispersion (restriction on the dispersion) of 
the function.  The greater the scattering (due to noise and/or uncertainty, 
measurement errors, etc.), for a minimal dispersion, the larger the “forbidden zone.”   
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The article presents the first part of a whole research program.  The reasons 

that initially motivated this research were practical problems of decision, utility and 
prospect theories, and human behavior.   

These problems play a fundamental part in utility and prospect theories.  Their 
analysis was started by Bernoulli in [1] in 1738.  Examples include the Allais 
paradox [2], the Ellsberg paradox [3], etc.  In 2002 Kahneman received the Prize in 
Economic Sciences in Memory of Alfred Nobel for research in this field.  In 2006, 
Kahneman and Thaler [4] pointed out that preference inconsistencies in such 
problems have still not been adequately explained.   

One possible way to explain these problems has been widely discussed, e.g., 
in [5], [6].  Its essence consists in a proper attention to the widespread noise, 
imprecision, and other reasons that may cause scattering of real data.   

The essential feature of these problems is their intense manifestation near the 
borders of the scale of probability (see, e.g., [7]).  Steingrimsson and Luce [8]  and 
Aczél and Luce [9] emphasized a fundamental question:  whether Prelec’s 
weighting function is equal to  1  at the border  p=1  of the probability scale).  This 
question opens one more way which consists in paying proper attention to borders, 
boundaries and interfaces.   

The presented research program synthesizes these two ways.  That is, it 
considers the influence of a scattering of the data on the mean and probability near 
the borders of intervals, particularly near the borders of the scale of probability.   

An analysis of the synthesis of these two ways has led to purely mathematical 
purposes.  The purely mathematical purposes lead to possible explanation of not 
only the initial particular problems but of a general practical problem (of the 
influence of a scattering of experimental data on the mean value of a characteristic 
of a real object) as well.   
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The ultimate particular practical objectives are possible explanations of the 

problems of utility and prospect theories.  Human behavior is a very complicated 
phenomenon.  To be more thorough and unbiased, the objective of the research is to 
explain the problems by methods as purely mathematical as possible.   

This article is an applied one.  Its general methods are analytical ones.   
The data used in the research are extracted from the literature on economic 

experiments, and are of a very general character.  In essence, they evidence that 
there is an inalienable non-zero scattering of data (due to noise and uncertainties) 
and that a wide use of probability takes place in economic researches, especially in 
utility and prospect theories.   

In this article, these data are used to appropriately choose the general 
properties of the function (to use it further for the probability estimation and 
probability) and the condition of the existence of a non-zero dispersion of the 
function.  The methods for drawing conclusions are mainly mathematical proofs.  

This article deals with the existence theorem for non-zero restrictions on the 
mean of a nonnegative function defined on a discrete set within a finite interval in 
the presence of a non-zero analog of a central moment of the function.   

The immediate purely mathematical particular result of the article is this 
existence theorem.  The theorem can and should be applied in both mathematics and 
practice.  Applications are possible in probability theory, general science, industry 
and business, utility and prospect theories.   
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2.  Preliminary notes 

2.1.  The function 
 

Let us specify the properties of the main function of this article.   
Definition 2.1.  Let us suppose given:   

a)  an interval  X=[A, B]  satisfying   
ABMaxABMin ConstABConst .. )(0 ≤−≤< ,  

b)  a set of points  {xk} : A≤xk≤B,  k=1, 2, … K : 2≤K≤∞,   
c)  a function  fK  (a set of values  {fK(xk)}),  defined on  {xk},  satisfying   

)(0 kK xf≤     and    K

K

k
kK Wxf =∑

=1

)( ,  

where  WK  (the total weight of  fK)  is  a constant satisfying  
KW<0 .  

This function  fK  will be referred to as the “original” function or the “original” set.   
Note, for the first sketches of the theorem, a continuous function was 

preliminary considered (see, e.g., [10]).  A discrete function is preferable for the 
purposes of the first parts of the whole research.   

Without loss of generality,  fK  may be and is normalized so that  WK=1.  
Under this condition, this function will be referred to as a unitary function.   
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2.2.  Analog of the moment 

 
Let us define an analog of a moment.   
Definition 2.2.  An analog of the moment of  nth  order of the function  fK  

relative to a point  x0  is the expression  
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From now on, for brevity, I refer to this analog of the moment of  nth  order as 
simply the moment of  nth  order.   

Further, let us suppose the moment of first order, the mean  M≡E(X)  of the 
function  fK  exists   
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Furthermore, let us suppose at least one central moment  E(X-M)n : 2≤n<∞,  
of the function  fK  exists   
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3.  Maximality 

 
Let us search for a function which attains the maximal possible modulus of a 

central moment.  It is intuitively evident that the maximal possible absolute value of 
a central moment is obtained for the function which is concentrated at the borders of 
the interval.  Nevertheless, for the sake of mathematical rigor, this statement must 
be proved. 
 
 

3.1.  Pairs  
 

Let us consider two possible values of  fK.   
Consider three points  xA,  xB,  M  satisfying  BxMxA BA ≤≤≤≤ .  Consider 

two values  fK(xA)  and  fK(xB)  such that  )()()()( BKBAKA xfMxxfxM −=−   and  

wBKAK Constwxfxf ==+ )()( .   

Definition 3.1.  Given a constant point M  as above, two values  fK(xA)  and  
fK(xB)  of  fK  are called a “pair” or a “couple,”   

)}(),({),( 22 BABAPair xfxfxxf ≡  ,  

if they satisfy:   
a)   

BxMxA BA ≤≤≤≤  ,  

b)   
)()()()( BKBAKA xfMxxfxM −=−  ,  

c)  and for a given constant total weight  wPair  or simply  w,  we have  
wwxfxf PairBKAK ≡≡+ )()(  .  

Further, the values of the pairs can be also referred to as “elements” and “elements 
of pairs.”   
 

It is evident that the pair (or couple)  {fK(xA), fK(xB)}  is an example of the 
original function  fK,  defined in Chapter 2, with  K=2  and  wPair≡WK.   

The central moment  EPair(X-M)n  of this pair is  
)()()()()( 22 B

n
BA

n
A

n
Pair xfMxxfMxMXE −+−≡− . 

Its absolute value is limited by the sum of the absolute values of their elements   

)()()()(

|)()(||)()(||)(|

22

22

B
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n

A

B
n

BA
n

A
n

Pair

xfMxxfxM
xfMxxfMxMXE

−+−=

=−+−≤−
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3.2.  Limiting functions  

 
Let us determine a limiting, bounding function for  EPair(X-M)n.  After 

replacing  fK(xB)  from the expressions of the weight  wPair  and mean point  M  by  

)()()( AKPairAK
B

A
BK xfwxf

Mx
xMxf −=

−
−

=    

and  

PairAK
B
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BA
BKAK

wxf
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=
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=
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−+−
=+

)(

)()()(
 ,  

one may replace  fK(xA)  and  fK(xB)  by functions of  xA,  M,  xB  and  wPair   

Pair
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Definition 3.2.  One may define a limiting function  LPair(xA, M, xB, n, wPair)  
or, abbreviated,  L(xA, M, xB, n, w)  which depends only on  xA,  M,  xB,  n,  wPair   
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Note, here  M,  n,  and  w  are parameters, and  xA,  xB  may range over the interval. 
The absolute value of a central moment, say  |EPair(X-M)n|,  of the pair is, 

evidently, limited (bounded) by this limiting function  LPair(xA, M, xB, n, wPair)   
),,,,(|)(| PairBAPair

n
Pair wnxMxLMXE ≤−  .  
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3.3.  Derivatives. Search for the maximum 

 
Let us find the maximum of the limiting function  LPair(xA, M, xB, n, wPair)  for  

xA  and  xB.   
 
 

3.3.1.  Differentiation with respect to  xA   
 

Let us differentiate  LPair(xA, M, xB, n, wPair)  with respect to  xA   
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At  n≥1,  if  (M-xA)<(xB-xA),  that is, if  xB>M,  then 
0)()( <−−− ABA xxnxM    

and (keeping in mind  xB-xA>0)   

0),,,,(
<

∂
∂

A

BA

x
wnxMxL .  

So, at  n≥1,  for  M<xB≤B  (and, as can easily be seen, for  A≤xA<M)  the first 
derivative with respect to  xA  is strictly less than zero.  That is, for  A≤xA<M<xB≤B  
or for  [A, B]  except for the specific point  M,  we have   

),,,,(),,,,( wnxMxLwnxMAL BAB >  . 

If  (M-xA)=(xB-xA),  that is, if  xB=M,  then from  
)()()()( BKBAKA xfMxxfxM −=−  ,  

we obtain  

0
)(
)()()( =−=−

AK

BK
A xf

xfMMxM    

or  xA=M.   
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To include the specific point  M  into the ranges of variation of the arguments  

xA  and  xB  of this inequality, let us estimate the derivative  ∂L(xA, M, xB, n, w)/∂xA  
for both  xAM  and  xBM.  One may impose some natural conditions of finite 
values of elements:  0<ConstMin≤fK(xA)≤ConstMax  and  0<ConstMin≤fK(xB)≤ConstMax  
(and, hence, of finite value of their sum  w).   

Let, say,  M-xA  be the basic term.  Then   
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If  xAM  then the derivative   
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So (at  n>1,  if  M-xA  tends to  0,  then the derivative)   

0),,,,(
;1  →

∂
∂

→> Mxn
A

BA
Ax

wnxMxL  . 

Therefore, for  A≤xA≤M≤xB≤B,  the derivative  ∂L(xA, M, xB, n, w)/∂xA ≤ 0.   
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Let us include the point  M  into the ranges of variation of the arguments  xA  

and  xB  of the inequality  L(A, M, xB, n, w)>L(xA, M, xB, n, w).  Let us consider an 
intermediate point, say  xA=(A+M)/2.   

If, for  A≤xA≤M≤xB≤B,  the derivative  ∂L(xA, M, xB, n, w)/∂xA≤0,  then, for  
A≤xA≤M≤xB≤B,  the function  L(xA, M, xB, n, w)≥L(M, M, xB, n, w)=L(M, M, M, n, 
w)  (and  L((A+M)/2, M, xB, n, w)≥L(M, M, M, n, w)).   

If, for  A≤xA<M<xB≤B,  the derivative  ∂L(xA, M, xB, n, w)/∂xA<0  then, for  
A<xA<M<xB≤B,  the function  L(A, M, xB, n, w)>L(xA, M, xB, n, w)  and  L(A, M, xB, 
n, w)>L((A+M)/2, M, xB, n, w).   

Therefore,  

),,,,(,,,,
2

),,,,( wnMMMLwnxMMALwnxMAL BB ≥





 +

>    

or  
),,,,(),,,,( wnMMMLwnxMAL B >  . 

We have included the specific point  M  into the ranges of variation of 
arguments of the inequality  L(A, M, xB, n, w)>L(xA, M, xB, n, w)  and the inequality 
is true for  A≤xA≤M≤xB≤B.   

So, at  n>1,  the limiting function  LPair(xA, M, xB, n, wPair)  has a maximum  
LPair(A, M, xB, n, wPair)  for  xA  at  xA=A  for the total interval  [A, B].  
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3.3.2.  Differentiation with respect to  xB   

 
Let us differentiate  LPair(xA, M, xB, n, wPair)  with respect to  xB   
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At  n≥1,  if  (xB-xA)>(xB-M),  that is, if  xA<M,  then   
0)()( >−−− Mxxxn BAB    

and (if  xB-xA>0)   

0),,,,(
>

∂
∂

B

BA

x
wnxMxL .   

If  (xB-xA)=(xB-M),  that is, if  xA=M,  then  xB=M  (see above).   
So, at  n≥1,  for  A≤xA<M<xB<B  the first derivative with respect to  xB  is 

strictly greater than zero.  That is, for  A≤xA<M<xB<B  or for  [A, B]  except for the 
specific point  M,  we have   

),,,,(),,,,( wnBMxLwnxMxL ABA <  . 

To include the specific point  M  into the ranges of variation of the arguments  
xA  and  xB,  let us estimate the derivative  ∂L(xA, M, xB, n, w)/∂xB  for both  xBM  
and  xAM  under the same natural conditions of finite values of elements as we 
imposed before:  0<ConstMin≤fK(xA)≤ConstMax  and  0<ConstMin≤fK(xB)≤ConstMax  
(and, hence, of finite value of their sum  w).   

Let, say,  xB-M  be the basic term.  Then   
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If  xBM,  then the derivative   
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So (for  n>1, if  xB  (and  xA)  tend to  M,  then)   
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∂

∂
→> Mxn
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wnxMxL
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),,,,(  . 

Let us include the specific point  M  into the ranges of variation of the 
arguments  xA  and  xB  of the inequality  L(xA, M, B, n, w) > L(xA, M, xB, n, w).  Let 
us consider an intermediate point, say  xB = (M+B)/2.   

If, for  A≤xA≤M≤xB≤B,  the derivative  ∂L(xA, M, xB, n, w)/∂xB ≥ 0  then, for  
A≤xA≤M≤xB≤B,  the function  L(xA, M, M, n, w) = L(M, M, M, n, w) ≤ L(xA, M, xB, n, 
w)  (and  L(M, M, M, n, w) ≤ L((xA, M, (M+B)/2, n, w)).   

If, for  A≤xA<M<xB≤B,  the derivative  ∂L(xA, M, xB, n, w)/∂xB>0  then, for  
A≤xA<M<xB<B,  the function  L(xA, M, xB, n, w) < L(xA, M, B, n, w)  and  
L((A+M)/2, M, xB, n, w) < L(xA, M, B, n, w).   

Therefore,  

),,,,(,,
2

,,),,,,( wnBMxLwnMAMxLwnMMML AA <





 +

≤    

or  
),,,,(),,,,( wnBMxLwnMMML A<  .  

We have included the specific point  M  into the ranges of variation of 
arguments of the inequality  L(xA, M, xB, n, w) < L(xA, M, B, n, w)  and the 
inequality is true for  A≤xA≤M≤xB≤B.   

So, at  n>1,  the limiting function  LPair(xA, M, xB, n, wPair)  has a maximum  
LPair(xA, M, B, n, wPair)  for  xB  at  xB=B  for the total interval  [A, B].  

So, at  n>1,  the limiting function  LPair(xA, M, xB, n, wPair)  has a maximum  
LPair(A, M, B, n, wPair)  for  xA  at  xA=A  and for  xB  at  xB=B  for the total interval  
[A, B].  
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3.3.3.  The maximum 

 
So, at  n>1,  for  A≤xA≤M≤xB≤B,  the limiting function   
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attains its maximum at the borders of the interval  [A, B]   
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So, the absolute value  |EPair(X-M)n|  of a central moment of the pair of values  
{f2(xA), f2(xB)}  is limited by the maximal limiting function, that is concentrated at 
the borders  xA=A  and  xB=B  of the interval  [A, B]   
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3.4.  Representation by pairs.  Succession of situations 

3.4.1.  Preliminary considerations 
 

Let us analyze whether the total weight and central moments of any original 
function  fK  of Chapter 2 can be exactly represented by those of a set of pairs.   

In fact, the function  fK  defined in Chapter 2 is a set of values  {fK(xk)}  
defined on the set of points  {xk}.  A pair  fPair(xA, xB) = {f2(xA), f2(xB)}  defined in 
this chapter is the original function  fK  defined in Chapter 2 and satisfying  K = 2.  
This pair is also the set of two values  {f2(xA), f2(xB)}.  If there are  P  pairs then one 
can denote the  pth  pair as   

)}(),({),( .2.2... BpApBpApPairp xfxfxxf ≡  .  

(The multiple notation, e.g.  xp.A,  is used to avoid numerous three-storey indices in 
the text).   

Let us analyze whether the total weight and central moments of any function  
fK  of Chapter 2 as of a set of values  {fK(xk)} : k=1, …, K : K≥2,  can be exactly 
represented by the total weight and central moments of a set of some  P  pairs of 
values  {fp.Pair(xp.A, xp.B)}={f2(xp.A), f2(xp.B)} : p=1, …, P : P≥1,  of the same function.   

Let us mention the linearity of the total weight and moments.   
The total weight   

∑
=

=
K

k
kKK xfW

1
)( ,  

and the moments  

∑
=

−=−
K

k
kK

n
k

n xfxxXXE
1

00 )()()( .   

of a set  {fK(xk)}  depend linearly on the values  fK(xk)  of the members of this set.  
The sum is a linear function also.  Therefore:   

1)  the total weight of the sum equals the sum of the weights and   
2)  a moment of the sum equals the sum of the moments.   
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Therefore, the total weight and moments of the set  {fp.Pair(xp.A, xp.B)}  of pairs 

are equal to the corresponding sums of the weights and moments of the pairs of this 
set.  The sum of the central moments of the pairs  fp.Pair(xp.A, xp.B)  is limited by the 
sum of the maximal limiting functions  Lp.Pair(A, M, B, n, wp.Pair)  (those are linear 
functions of  fK(xk)  as well) of these pairs.  One can see, indeed, that if for one pair   

),,,,(|)(| ... PairpPairp
n

Pairp wnBMALMXE ≤−  ,  

then for  P  pairs  

∑∑
==

≤−
PairP

Pairp
PairpPairp

PairP

Pairp

n
Pairp wnBMALMXE

.

1.
..

.

1.
. ),,,,(|)(|  .  

The final goal of this chapter is to exactly represent the modulus of any central 
moment of any original function  fK  of Chapter 2 by a sum of moduli of central 
moments of such pairs of the same function and to estimate this sum by the limiting 
functions.   
 
 

3.4.2.  Situations 
 

Let us divide the points  xk  into three groups:  
1)  xk.A<M,   
2)  xk.M=M  (zero central moment(s)),  
3)  xk.B>M.   

 
Let us introduce the numbers  K.A,  K.M  and  K.B, such that  k.A≤K.A,  

k.M≤K.M,  k.B≤K.B  and   
KBKMKAK =++ ... .  

Owing to  xk.M-M≡0,  an arbitrary non-zero central moment depends only on  
K.A  and  K.B.  Let us consider in turn situations with various numbers  
K.AB≡K.A+K.B  from  K.AB=0  to the general situation.  
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Situation  K.AB=0   

 
Due to the condition  K≥2  of Chapter 2 and  K.M≤1, the case  K.AB<1  

cannot exist.   
Nevertheless, let us consider optionally more general (or fictitious) cases of  

K=1  and of mutually coincident points  {xk.M=M} : k.M=1, …, K.M : K.M≥2.   
If  K.AB=0,  then only one point  M  (or mutually coincident points  {xk.M=M}) 

and the corresponding value  fK(M)  (or the values  fK(xk.M)) can exist.  Evidently, 
the value  fK(M)  (or the values  fK(xk.M)) do not contribute to the non-zero central 
moments.   

All the mutually coincident points  {xk.M=M}  (or the single point) may be 
represented as only one aggregated point  xAggr.M=M  and the corresponding value   

∑
=

≡
MK

Mk
MkKAggrK xfMf

.

1.
.. )()(  .  

We may formally divide the value  fK.Aggr(xAggr.M)≡fK(M)  into two parts  fK,1 (M)  
and  fK,2(M)  satisfying  fK,1(M)=fK,2(M)=fK(M)/2.  The two values  fK,1(M)  and  
fK,2(M)  are the required pair  fPair(M, M)  of the previous subchapters of this 
chapter.  The balance formally remains   

)()()()( 2,1, MfMMMfMM KK −=−    

or   

2
)()(

2
)()( MfMMMfMM KK −=−  .  

Evidently, the total weight of the formal pair  fPair(M, M)  equals the total 
weight of the value  fK(M)  (or the values  fK(xk.M)).  The central moments equal zero 
for both the pair  fPair(M, M)  and the value  fK(M)  (or the values  fK(xk.M)).  So, the 
total weight and central moments of the value  fK(M)  (or the values  fK(xk.M))  can be 
exactly represented by a pair of the previous subchapters.   

Further, as a rule, we will not consider the point(s)  xk=M  and corresponding 
value  fK(M)  (values  fK(xk.M)).  
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Situation  K.AB=1   

 
Here, only two possible cases can take place:  the case  K.A=1  and  K.B=0  or 

the case  K.A=0  and  K.B=1.   
Generally, the first central moment   

0)()(
1

≡−∑
=

K

k
kKk xfMx   

may be transformed to   

0)()()()(

)()()()(

..
..

..
..

..
..

1

=−+−+

+−=−

∑∑

∑∑

≤≤

≤=

BKBk
BkKBk

MKMk
MkKMk

AKAk
AkKAk

K

k
kKk

xfMxxfMx

xfMxxfMx
 ,  

where the limits of the sums  k.A≤K.A,  k.M≤K.M  and  k.B≤K.B  denote, that  K.M  
or  K.A  or  K.B  can equal zero.  That is, generally, there can be cases with no 
members of the sum(s) of  k.M  or  k.A  or  k.B. 

Now, since  
0. ≡−Mx Mk  ,  

this central moment may be transformed to the balance  

∑∑
≤≤

−=−
BKBk

BkKBk
AKAk

AkKAk xfMxxfxM
..

..
..

.. )()()()(  .  

Suppose  K.A=1  and  K.B=0.  Then  

0)()(
..

.. =−∑
≤ AKAk

AkKAk xfxM  .  

There are only two possible cases:  fK(xk.A)>0  and  fK(xk.A)=0.  Evidently, for  
K.AB=1,  the case  fK(xk.A)>0  cannot exist.  If  fK(xk.A)=0  then the balance can 
formally hold, but this case does not contribute to the non-zero central moments  
E(X-M)n>0.   

The consideration of the case  K.A=0  and  K.B≥1  is fully analogous to the 
preceding one.   

So, the case  K.A=0  and  K.B≥1  and the case  K.A≥1  and  K.B=0  either 
cannot occur or do not contribute to the non-zero central moments  E(X-M)n>0.   

So, Situation K.AB=1 cannot occur or does not contribute to the non-zero 
central moments.   

Further, as a rule, we will not consider those cases that do not contribute to the 
non-zero central moments, namely  fK(xk)=0  and  fK(M).   
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Situation  K.AB=2   

 
Here, the only possible case which contributes to the non-zero central 

moments, is the case  K.A=1  and  K.B=1.   
If  K.A=1  and  K.B=1,  then   

)()()()( .1.1.1.1 BKBAKA xfMxxfxM −=−  . 
Therefore,  fK(x1.A)  and  fK(x1.B)  are the required pair of the previous subchapters.  

Here, the set of values  {fK(x1.A), fK(x1.B)}  of the pair  f1.Pair(x1.A, x1.B)  and the 
set of values  {fK(x1.A), fK(x1.B)}  of the original function  fK  are the same sets.  
Therefore, the total weight of the pair is the same as that of the function.   

Moreover, the set of values  {fK(x1.A), fK(x1.B)}  of the pair  f1.Pair(x1.A, x1.B)  and 
the set of values  {fK(x1.A), fK(x1.B)}  of the original function  fK  are the same sets of 
values defined on the same sets of points  {x1.A, x1.B}.  Therefore, an arbitrary total 
moment of the pair is the same as that of the function.   

This can be seen, indeed, in more detail for an arbitrary total moment:   
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 .  

So, the total weight and central moments of Situation  K.AB=2  can be exactly 
represented by the total weight and central moments of a pair of the previous 
subchapters.   
 
 

Remark  3.3 
 

Let us further, for definiteness, enumerate the points  xk.A  and  xk.B,  for 
example, from those furthest from  M  and with maximal weights, to those closest to  
M  and with minimal weights.   
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Situation  K.AB=3   

 
Here, there are only two possible cases those can contribute to the non-zero 

central moments:  the case of  K.A=2  and  K.B=1,  or the case of  K.A=1  and  
K.B=2.   

If, for example,  K.A=2  and  K.B=1,  then the value  fK(x1.B)  can be exactly 
divided into two parts  fK,1(x1.B)  and  fK,2(x1.B)  satisfying  

)()()()( .11,.1.1.1 BKBAKA xfMxxfxM −=−    
and   

)()()( .11,.1.12, BKBKBK xfxfxf −=  .  
 

Definition 3.4.  We will define a “divided” or “exactly divided” set.   
Let us suppose given an original, initial set of values  {fK(xk)},  as in Chapter  

2.   
A divided or exactly divided set (with respect to the initial set) is defined as a 

modification of the initial set such that at least one value  fK(xk)  is exactly divided 
into, at least, two parts  fK,1(xk)  and  fK,2(xk)  satisfying   

)()()( 2,1, kKkKkK xfxfxf +≡    
or  

)()()( )(2,)(1, kkKkkKkK xfxfxf +≡    
or, more generally,  

∑
=

≡
)(

1)(
)(, )()(

kD

kd
kkdKkK xfxf  ,  

where  2≤D(k)≤∞.   
More generally, every member  fK(xk)  (that will be either divided or not 

divided in the divided set) of the initial set  {fK(xk)}  may be written via the members  
fK,d(k)(xk)  of the exactly divided set  {fK,d(k)(xk)},  by definition, as  

∑
=

≡
)(

1)(
)(, )()(

kD

kd
kkdKkK xfxf  ,  

where  1≤D(k)≤∞.   
Note, that a divided set can serve as the new initial set for a subsequent 

division, i.e., modification.   
 

Definition 3.5.  A “divided member” is defined as one of the members of the 
divided set.  A “divided value” is defined as the value of one of these members.   
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Let us consider the total weight and moments of an exactly divided set  

{fK,d(k)(xk)}.   
A weight is a sum of values.  The sum of the divided values  fK,d(k)(xk)  for a 

value  fK(xk)   

∑
=

=
)(

1)(
)(, )()(

kD

kd
kkdKkK xfxf    

is a linear function with respect to the values  fK,d(k)(xk).  Due to the linearity of the 
total weight for  fK,d(k)(xk)  (see the Preliminary consideration above), the total 
weight of the sum of divided values  fK,d(k)(xk)  is equal to  fK(xk).   

The sum of moments of the divided values  fK,d(k)(xk)  for a value  fK(xk)  is a 
linear function with respect to the values  fK,d(k)(xk).  The divided values  fK,d(k)(xk)  
for an initial value  fK(xk)  are defined on the same point  xk  as the initial value  
fK(xk).  Therefore, the moments of the whole divided set  {fK,d(k)(xk)}  are equal to 
those of the whole initial set  {fK(xk)} 
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One can see, indeed, that, by definition, the total weight  WD  of the exactly 
divided set is  
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and the total moment  ED(X-X0)n  of the exactly divided set is 
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So, we have specified the properties of the divided sets:  the total weight and 
moments of a divided set are equal to the total weight and moments of the initial 
set.   
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Let us recur to Situation  K.AB=3.   
The above considerations as to divided sets are true, in particular, when the 

value  fK(x1.B)  is exactly divided into two parts  fK,1(x1.B)  and  fK,2(x1.B).  Namely, the 
total weight and moments of the divided set are equal to the total weight and 
moments of the initial set.   

Let us make the first step of the representation of the total weight and central 
moments of the set of values of the function by the total weight and central 
moments of the set of values of the pairs.   

Since  
)()()()( .11,.1.1.1 BKBAKA xfMxxfxM −=−  ,  

two values  fK(x1.A)  and  fK,1(x1.B)  of the divided set are the required pair of the 
previous subchapters.  The portion  {fK(x1.A), fK,1(x1.B)}  of the set of values of the 
pairs and the portion  {fK(x1.A), fK,1(x1.B)}  of the divided set of values of the function 
are the same portions defined on the same points  x1.A  and  x1.B.  So, the total weight 
and moments of these portions are the same.   

This can be seen for the total weight:  the weights of the same sets are the 
same weights.  This can also be seen for the central moments.  The moments of the 
same sets defined on the same points are the same moments.  In more detail   
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So, the first step of the representation has been done.   
The balance remains  
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 ,   

and we come to Situation  K.AB=2  for  fK(x2.A)  and  fK,2(x1.B)   
)()()()( .12,.1.2.2 BKBAKA xfMxxfxM −=−  .   
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As has been proved above, the total weight and central moments of Situation  

K.AB=2  can be exactly represented by the total weight and central moments of a 
pair of the previous subchapters.  So, this is the final situation.   

For the central moments in the scope of Situation  K.AB=3,  this can be seen, 
indeed, in more detail   
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So, in Situation  K.AB=3,  at  K.A=2  and  K.B=1,   
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Let us resume the consideration of Situation  K.AB=3,  at  K.A=2  and  

K.B=1.   
There are three initial values:  fK(x1.A),  fK(x2.A)  and  fK(x1.B).   
One should divide the value  fK(x1.B)  of the initial set into two values  fK,1(x1.B)  

and  fK,2(x1.B)  such that  fK,1(x1.B)  constitutes the pair with  fK(x1.A).  Due to the 
properties of divided sets, the total weight and moments of the divided values  
fK,1(x1.B)  and  fK,2(x1.B)  are equal to those of the initial value  fK(x1.B).   

Then one should perform the first step of the representation of the total weight 
and moments.   

The values  fK(x1.A)  and  fK,1(x1.B)  of the pair  f1.Pair(x1.A, x1.B)  and the values  
fK(x1.A)  and  fK,1(x1.B)  of portion of the divided set  {fK,d(k)(xk)}  are the same values 
defined on the same points.  Therefore, the total weight and moments of the pair are 
the same as those of the portion of the divided set.   

As a result of the first step, the number of unpaired values is diminished by 
one and we come to the resulting Situation  K.ABDiminished=K.AB-1=2.  As it has 
been proved above, the total weight and moments of Situation  K.AB=2  can be 
exactly represented by the total weight and moments of a pair and, hence, this is the 
final situation.   

So, Situation  K.AB=3,  at  K.A=2  and  K.B=1,  can be represented by the 
sum of the first step and the final situation.  Both the total weight and moments 
depend linearly on the values of the members of the sets.  Therefore, the total 
weight and moments of the sum are equal to the sum of the constituent weights and 
moments correspondingly.   

If  K.A=1  and  K.B=2,  then the consideration is analogous to the preceding 
one.  

So, the total weight and central moments of Situation  K.AB=3  can be exactly 
represented by the total weight and central moments of a set of pairs of the previous 
subchapters.   
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General Situation  K.AB   

 
General Situation  K.AB.  Suppose  K.AB≥4,  K.A≥1  and  K.B≥1  (according 

to the consideration of Situation  K.AB=1,  the case of  K.A=0  and  K.B≥1  and the 
case of  K.B=0  and  K.A≥1  cannot exist or do not contribute to the non-zero central 
moments).  

Let us consider  fK(x1.A)  and  fK(x1.B).  There are only two possible variants:   
Variant 1 (inequality)   

)()()()( .1.1.1.1 BKBAKA xfMxxfxM −≠−    
and Variant 2 (equality)   

)()()()( .1.1.1.1 BKBAKA xfMxxfxM −=−  .  
Let us make a general step of the representation of the total weight and 

moments.  Evidently, this general step may be implemented in one of the two forms 
depending on whether Variant 1 (inequality) or Variant 2 (equality) takes place.   

Variant 1 (inequality).  If  
)()()()( .1.1.1.1 BKBAKA xfMxxfxM −≠−  ,  

then there are only two possible cases as well:  
)()()()( .1.1.1.1 BKBAKA xfMxxfxM −<−    

and 
)()()()( .1.1.1.1 BKBAKA xfMxxfxM −>−  .  

Suppose, for example, that  
)()()()( .1.1.1.1 BKBAKA xfMxxfxM −<−  .  

Then one should divide the value  fK(x1.B)  into two parts  fK,1(x1.B)  and  fK,2(x1.B)  
satisfying  

)()()()( .11,.1.1.1 BKBAKA xfMxxfxM −=−    
and 

)()()( .11,.1.12, BKBKBK xfxfxf −=  .  
The value  fK(x1.B)  is exactly divided into two parts  fK,1(x1.B)  and  fK,2(x1.B).  

Due to the properties of the divided sets, the total weight and moments of the 
divided set  {fK,1(x1.B), fK,2(x1.B)}  are equal to the total weight and moments of the 
initial set  {fK(x1.B)}.   

Due to the above   
)()()()( .11,.1.1.1 BKBAKA xfMxxfxM −=−  ,  

two values  fK(x1.A)  and  fK,1(x1.B)  of the divided set are the required pair of the 
previous subchapters.   

Here, the set of values of the pair and the portion of the divided set of values 
are the same sets defined on the same points.  Therefore, the total weight and an 
arbitrary total moment of the pair are the same as those of the portion of the divided 
set.   
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This can be seen for the total weight:  the weights of the same sets are the 

same weights.  This can be seen for the central moments.  The moments of the same 
sets defined on the same points are the same moments.  In more detail   
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As a result of this general step within the scope of Variant 1 (of the inequality 
and divided set), the number of unpaired values is diminished by one (taking into 
account the part of the other value) and we come to Situation  K.ABDiminished=K.AB-
1.  Note, that the number  K.AB  is composed of  1, …, K.A  and  1, …, K.B.  And 
here, the number  K.ABDiminished=K.AB-1  is composed of  2, …, K.A  and  2, …, K.B  
plus one.   

If  
)()()()( .1.1.1.1 BKBAKA xfMxxfxM −>−    

then the argument is analogous to the preceding one.   
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Variant 2 (equality).  If   

)()()()( .1.1.1.1 BKBAKA xfMxxfxM −=−    
then the two values  fK(x1.A)  and  fK(x1.B)  are the required pair (couple) of the 
previous subchapters.   

Here, the set of values of the pair and the portion of the initial original set of 
values are the same sets defined on the same points.  Therefore, the total weight and 
an arbitrary total moment of the pair are the same as those of the portion of the 
initial set.   

This can be seen for the total weight:  the weights of the same sets are the 
same weights.  This can be seen for the central moments:  the moments of the same 
sets defined on the same points are the same moments.  In more detail,   
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As a result of this general step within the scope of Variant 2 (of the equality 
and initial set), the number of unpaired (uncoupled) values is diminished by two and 
from Situation  K.AB  we come to Situation  K.ABDiminished=K.AB-2.  Here, the 
number  K.ABDiminished=K.AB-2  is composed of  2, …, K.A  and  2, …, K.B.   
 

So, we have considered the general step of diminishing the number  K.AB  for 
general Situation  K.AB≥4  within the scopes of both parallel variants.  It diminishes  
K.AB  by one or two.  Evidently, this general step may be repeated as many times as 
needed to reach the final Situations  K.ABDiminished=3  or  K.ABDiminished=2.   
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Let us resume the consideration of general Situation  K.AB≥4,  at  K.A≥1  and  

K.B≥1.  There are at least four initial values:  fK(x1.A), …   and  fK(x1.B), …  
One should perform the general step of the representation of the total weight 

and moments.  One should consider two first values  fK(x1.A)  and  fK(x1.B)  of the 
initial set  {fK(xk)}  of the function  fK.  There are only two possible variants:   

In Variant 1, these values are not the pair.  Therefore, one should divide one 
of the values  fK(x1.A)  or  fK(x1.B)  into two values such that one of them constitutes a 
pair with the remaining other value out of  fK(x1.A)  and  fK(x1.B).  Due to the 
properties of divided sets, the total weight and moments of the divided values are 
equal to those of the initial value.  This pair may be a portion of the representation.   

In Variant 2 these two initial values are the pair.  This pair may be a portion of 
the representation as well.   

The values of the pair (in both variants) and the divided (or initial) values are 
the same values defined on the same points.  Therefore, the total weight and 
moments of the pair are the same as those of the first portion of the divided (or 
initial) set.   

As a result of this general step of the representation, the number of unpaired 
values is diminished by one or two and we come to one of the resulting Situations  
K.ABDiminished=K.AB-1  or  K.ABDiminished=K.AB-2.  There are only two possible 
cases:  one case is  K.ABDiminished≤3  (K.ABDiminished=3  or  K.ABDiminished=2  and they 
are the final Situations) and another case is  K.ABDiminished>3  (they are the 
intermediate Situations).   

If an intermediate Situation takes place, then one should repeat the general 
step of the representation as many times as it needs to reach the final Situations  
K.ABDiminished=3  or  K.ABDiminished=2.   

Both in Situation K.AB=3 and Situation K.AB=2, the total weight and central 
moments of the set of the initial values can be exactly represented by the set of 
values of the pairs, as has been shown above.   

So, the total weight and central moments of the general Situation can be 
represented by the sum of those of all the portions and of the final Situation.  Both 
the total weight and moments depend linearly on the values of the members of the 
sets.  Therefore, the total weight and moments of the sum are equal to the sum of 
the constituent weights and moments correspondingly.   

So, in the general Situation  K.AB : K.AB≥4,  at  K.A≥1  and  K.B≥1,  the total 
weight and central moments of an arbitrary original function of Chapter  2  may be 
exactly represented by the total weight and central moments of the pairs of this 
chapter.   
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One can see in more detail that the total weights  
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and central moments (keeping in mind that the central moments of  fK(M)  equal 
zero)   
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of the arbitrary original function and of the set of pairs are equal to each other.   
So, the exact representation of the total weight and central moments of an 

arbitrary original function of Chapter 2 by the total weight and central moments of a 
set of pairs of the previous subchapters of this chapter has been performed.   
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3.5.  General limitations  

3.5.1.  Weights 
 

Let us consider the weights of groups of values of the function and general 
limitations on them.  

Remembering  
KBKMKAK =++ ...    

of the preceding subchapter, the total weights of these groups may be denoted as  
WA,  WM  and  WB   

∑
≤

≡
AKAk

AkKA xfW
..

. )(  ,  ∑
≤

≡
MKMk

MkKM xfW
..

. )(  ,  ∑
≤

≡
BKBk

BkKB xfW
..

. )(    

and the sum of the weights is   
KBMA WWWW =++  .  

Let us denote the total weight of the total set of the pairs as  WPair,  the weight 
of the pair  fPair.M(M, M)  as  WPair.M  and the total weight of the pairs  fp.Pair.AB(xp.A, 
xp.B)  as  WPair.AB.  By this definition, the weight of, e.g., a p-th pair  fp.Pair.AB(xp.A, 
xp.B)  is denoted as  wp.Pair.AB,   

Pair

PairP

Pairp
Pairp Ww ≡∑

=

.

1.
.  ,   MPair

MPairPMPairp
MPairp Ww .

....
.. ≡∑

≤
 ,   ABPair

ABPairP

ABPairp
ABPairp Ww .

..

1..
.. ≡∑

=
   

and we have  

ABPairMPairPair WWW .. +=  .   
Evidently,  

MMPair WW =.  ,  

BAABPair WWW +=.    
and  

KPair WW =  .  
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3.5.2.  The general limiting function 

 
Let us consider the central moments  
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The maximal limiting functions  Lp.Pair(A, M, B, n, wp.Pair)  satisfying   
),,,,(|)(| ...... ABPairpABPairp

n
ABPairp wnBMALMXE ≤−  ,  

allow estimating the central moments of the original function  fK:   
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This estimate can be easily simplified.  From  

ABPairp
nn

ABPairp
n

ABPairp
n

ABPairpABPairp

w
AB
AMMB

AB
MBAM

w
AB
AMMBw

AB
MBAM

wnBMAL

..

....

....

)()(

)()(

),,,,(







−
−

−+
−
−

−=

=
−
−

−+
−
−

−=

=

   

there follows  

∑

∑

∑

=

=

=







−
−

−+
−
−

−=

=





−
−

−+
−
−

−=

=

ABPairP

ABPairp
ABPairp

nn

ABPairP

ABPairp
ABPairp

nn

ABPairP

ABPairp
ABPairpABPairp

w
AB
AMMB

AB
MBAM

w
AB
AMMB

AB
MBAM

wnBMAL

..

1..
..

..

1..
..

..

1..
....

)()(

)()(

),,,,(

 .  

 
 



32 
 

 
Since  
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1..
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 ,  

using  

KBAABPair WWWW ≤+=.   , 
it follows for a unitary function  fK  (i.e., assuming  WK=1)  that   

1. ≤ABPairW    
and  
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So, we have proved that the maximal possible modulus of a central moment of 
any function  fK  of Chapter  2  is obtained for the function which is concentrated at 
the borders of the interval.  We have also found this general limiting function:  for 
any unitary function  fK  of Chapter  2,  the modulus of any central moment of  fK  is 
not greater than  

(3.1). 
AB
AMMB

AB
MBAMMXE nnn
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−≤− )()(|)(|  
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4.  Two notes  

 
One may denote the unitary function   

AB
AMMB

AB
MBAM nn

−
−

−+
−
−

− )()(    

as a general, total limiting function  L(A, M, B, n, 1)≡L(A, M, B, n)  or  L(M, n).   
Let us analyze the total limiting function  L(A, M, B, n)  for   

2
ABM −

=   

and for   
AM ≈   and   BM ≈ .  

 
 

4.1.  The mean is in the center of the interval 
 

Let us analyze the total limiting function  L(A, M, B, n)  when   

2
ABM −

= .  

 
Let us differentiate  L(A, M, B, n)  with respect to  M:   
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So, at  M=(B-A)/2,  for any  n≥2  there is an extremum or a point of inflection.   
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Let us differentiate  L(A, M, B, n)  once more   
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and, at  M=(B-A)/2,   
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That is, at  M=(B-A)/2:   

 
For  n=2  there is a well-known maximum, the moment of inertia of two 

material points whose weights are equal to each other   
222

22
1

22
1

2
2,,

2
, 






 −

=





 −

+





 −

=





 − ABABABBABAL  .  

 
For  n=3  there is a point of inflection.   

 
For  n>3  there are minima.   
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4.2.  The mean is near a border of the interval 

 
Let us search for maxima which are close to the borders of the interval.   
Let us differentiate the total limiting function  L(A, M, B, n)  with respect to  M  

for  M≈A  and  n>>1   
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For  M≈A  and  n>>1,   
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and, for  M≈A+(B-A)/(n+1)  and  n>>1,   
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So, the second derivative is negative and there are maxima at the points  
M≈A+(B-A)/(n+1).   

The total limiting function   
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and the maxima at the points  M≈A+(B-A)/(n+1)  and for  n>>1  may be taken as  
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So, for  M≈A+(B-A)/(n+1)  and  n>>1,  the maxima (those can be attained by  
E(X-M)n  for even  n)  of  L(A, M, B, n)  are, curiously, with a coefficient  ≈1/e   
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Evidently, for  M≈B-(B-A)/(n+1),  at  n>>1,  the maxima (those can be attained by  
E(X-M)n  for even  n)  of  L(A, M, B, n)  are analogously  
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5.  Theorem 

5.1.  Lemma about the tendency to zero for central moments  
 

Lemma 5.1.  If, for the nonnegative function  fK  defined in Section 2,  
M≡E(X)  tends to  A  or to  B,  then, for  n : 2≤n<∞,  E(X-M)n  tends to  zero.   

Proof 1.  For  MA,  the estimate (3.1) gives  
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This rough estimate is already sufficient for the purpose of this article.  But a more 
precise estimate may be obtained:   

Proof 2.  Let us transform  
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Let us consider the terms  (M-A)/(B-A)  and  (B-M)/(B-A).  Keeping in mind that  
A≤M≤B  we obtain  0≤(M-A)/(B-A)≤1  and  0≤(B-M)/(B-A)≤1.  For  n≥2  we have   
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So,  
0)()(|)(| 1  →−−≤− →

−
AM

nn AMABMXE      (5.1). 

For  MB,  the proof is similar and gives   
0)()(|)(| 1  →−−≤− →

−
BM

nn MBABMXE      (5.2). 

So, if  (B-A)  and  n  are finite and  MA  or  MB,  then  E(X-M)n0.   
The lemma has been proved.   
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5.2.  Existence theorem for restrictions on the mean 

 
Let us define two terms for the purposes of this article:   

 
Definition 5.2.  A “non-zero restriction on the mean  rMean”  (or, simply, a 

“non-zero restriction”) signifies the impossibility for the mean to be located closer 
to a border of the interval than some non-zero distance.   

In other words, a non-zero restriction designates the existence of a non-zero 
distance from a border of the interval.  Within this distance, it is impossible for the 
mean to be located.   

This restriction may be denoted also as a “forbidden zone” for the mean near a 
border of the interval.   

The “restriction” for one border and the “restriction” for another border 
constitute the “restrictions” for the borders.  

The value of a non-zero restriction (or the width of a non-zero “forbidden 
zone”) signifies the minimal possible distance between the mean and a border of the 
interval.  For brevity, the term “the value of a restriction” may be shortened to “the 
restriction.” 
 

Definition 5.3.  At the beginning, let us define a “non-zero restriction on the 
dispersion  r2

Dispersion.2≡r2
Disp.2=σ2

Min”  to be the minimal value of the analog of the 
dispersion  E(X-M)2  satisfying  E(X-M)n≥r2

Disp.2>0.   
Let us define analogously a general “non-zero restriction on the  nth  order 

central moment  |rn
Disp.n|”  to be the minimal absolute value of the analog of the  nth  

order central moment  E(X-M)n  satisfying  |E(X-M)n| ≥ |rn
Disp.n|>0.   

 
Theorem 5.2.  If, for a nonnegative function  fK  as in Section 2,  such that its 

mean  M≡E(X)  and its analog of the  nth : 2≤n<∞,  order central moment  E(X-M)n  
exist,  there exists a non-zero restriction on this analog of the  nth  order central 
moment  |rn

Disp.n| = ConstDisp.n > 0 : |E(X-M)n| ≥ |rn
Disp.n|,  then a non-zero 

restriction on the mean  rMean=ConstMean>0  exists and   
BrBXEMrAA MeanMean <−≤≡≤+< )()()( .  
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Proof.  From the conditions of the theorem and from Lemma (5.1), for  MA,  

we have   
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)(

||)( 1
. >

−
≡≥− −n

nDisp
n

Mean AB
rrAM  . 

 
For  MB,  the proof is similar and gives   
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||)( 1
. >

−
≡≥− −n
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n

Mean AB
rrMB  . 

The results (5.3) and (5.4) may be rewritten as  
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rAA n
nDisp
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nDisp
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−

+< −− 1
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1
.

)(
||

)(
||
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So, as long as  (B-A)  and  n  are finite  and  |rn
Disp.n|=ConstDisp.n>0,  then  

rMean=ConstMean>0  and  A<(A+rMean)≤M≤(B-rMean)<B,  which proves the theorem.   
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6.  Remarks 
Remark 6.1 

 
The estimation of a probability possesses the properties assumed for the 

function  f  of Chapter 2.  In fact, these properties have been chosen to be those 
satisfied by the estimation of a probability.  This opens prospects to develop the 
theorem to the probability.   

Sketches of the proof of the existence theorem for non-zero restrictions on the 
probability were made (see, e.g., [11]-[12]) and used in particular practical cases in 
items connected with utility and prospect theories.  Some well-known old problems 
of utility and prospect theories were explained, at least partially, with the help of 
these sketches (see, e.g., [12]-[14]).   
 
 

Remark 6.2 
 

For  n=2  the analog of the central moment is the analog of the dispersion,  
and  rMean  at  A  may be rewritten for the minimum  σMin  of the analog of the 
standard deviation  σ,  i.e.,  σ≥σMin≡rDisp.2>0,  as   

0
)()(

)(
2

2.
2

>
−

≡
−

≡≥−
ABAB

rrAM MinDisp
Mean

σ
 . 

The value of the restriction  rMean  at  B  may be also rewritten for the minimum  
σMin  of the analog of the standard deviation  σ  as  

0
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2
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2
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−
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ABAB

rrMB MinDisp
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 . 

These results may be rewritten as  

B
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or   
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Remark 6.3 

 
The estimates (5.3)—(5.6) are rather reliable ones, especially the estimate 

(5.6) for  0→
− AB
Minσ

 .  They are, in a sense, as reliable as the Chebyshev inequality.  

Preliminary calculations [15] which were performed for real cases such as the 
normal, uniform and exponential distributions with the minimal values  σ2

Min  of the 
analog of the dispersion, gave much stronger restrictions  rMean  on the mean of the 

function (for  0→
− AB
Minσ

,  for the unitary interval  [A, B] : (B-A)=1)  which are not 

worse than   

3
Min

Meanr σ
≥  .  

So, the inequalities  A<(A+rMean)≤M≤(B-rMean)<B  for these cases may be 
rewritten as  

(5.7)  BBMAA MinMin <





 −≤≤






 +<

33
σσ

 .  
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7.  Conclusions 

 
The possibility of the existence of non-zero restrictions on the mean in the 

presence of a non-zero restriction on the dispersion has been analyzed.   
It has been proved that there are non-zero restrictions on the mean of a 

nonnegative function defined on a discrete set of points within an interval  [A, B]  
when there is a non-zero restriction on the analog of some central moment of the 
function.  Suppose  |rn

Dispersion.n|≡|rn
Disp.n|=ConstDisp.n>0  is a non-zero restriction on 

the modulus of the analog of  nth  central moment  |E(X-M)n|  of a nonnegative 
function,  where  2≤n<∞.  That is,  |E(X-M)n|≥|rn

Disp.n|≥ConstDisp.n>0.  Then other 
non-zero restrictions  rMean  on the mean  M  of this function exist at the borders  A  
and  B  of the interval  [A, B],  satisfying   

BrBXEMrAA MeanMean <−≤≡≤+< )()()(  ,  

or (see (5.5))   
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For  n=2  the analog of the central moment is the analog of the dispersion.  
So, restrictions on the mean  M  may be rewritten in terms of the minimum  σMin  of 
the analog of the standard deviation  σ,  i.e.,  σ≥σMin≡rDisp.2>0,  as   

B
AB

BM
AB

AA MinMin <







−

−≤≤







−

+<
22 σσ

 .  

The above estimates are, in a sense, as reliable as the Chebyshev inequality.  

For real cases such as the normal distribution, for  0→
− AB
Minσ

,  the preliminary 

calculations of [15] gave much stronger restrictions  rMean  on the mean (see (5.7)).   
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Sketches of the proof of the existence theorem for non-zero restrictions on the 

probability were made from 2010 to 2014 and were used to explain, at least 
partially, some problems of utility and prospect theories (see, e.g., [11]-[16]).   
 

Additionally, properties of the accessory limiting function  

( )
AB
AMMB

AB
MBAMnBMAL nn

−
−

−+
−
−

−= )()(,,,    

were analyzed near the center of the interval  [A, B]  at  M=(B-A)/2   and near its 
borders at  A  and  B.   

Near the center of the interval  [A, B]  at  M=(B-A)/2  one can obtain:   
For  n=2  there is a well-known maximum, the moment of inertia of two 

material points whose weights are equal to each other   
2

2
2,,

2
, 






 −

=





 − ABBABAL  .  

For  n=3  there is a point of inflection.  For  n>3  there are minima.   
Near the borders of the interval  [A, B]  at  A  and  B,  one can obtain:   
For  M≈A+(B-A)/(n+1)  and  n>>1,  there are the maxima  of  L(A, M, B, n)  

(those can be attained by  E(X-M)n  for even  n).  Curiously, they have a coefficient  
≈1/e   
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.  

For  M≈B-(B-A)/(n+1),  at  n>>1,  the maxima (those can be attained by  E(X-M)n  
for even  n)  of  D(A, M, B, n)  are analogously   
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