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Abstract: To mitigate the effects of climate change, countries worldwide are advancing technologies 

to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource 

reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal 

production resource reallocation on CO2 emissions reduction, focusing on regional and industrial 

characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 

countries from 1995 to 2009. The resulting emissions reduction potential is 2.54 Gt-CO2 in the year 

2009, with former communist countries having the largest potential to reduce CO2 emissions in the 

manufacturing sectors. In particular, basic material industry including chemical and steel sectors have 

a lot of potential to reduce CO2 emissions. 
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1. Introduction 

To mitigate the effects of climate change, countries worldwide are currently advancing research on 

methods and technologies for estimating and reducing greenhouse gas (GHG) emissions (IPCC, 2007; 

Lobell et al., 2011; Barros et al., 2014). Although previous studies have analyzed the potential to 

reduce GHG emissions, most of these studies have focused on the future adoption of new 

technologies at the national and global levels based on projected scenarios (e.g., Popp et al., 2010; 

Scovronick and Wilkinson, 2013; Wang et al., 2014). However, they have not considered the optimal 

production resource allocation to minimize GHG emissions based on current production technology in 

the manufacturing sector.  

 However, firms naturally reallocate production in response to the strong regulation of 

production activity or disadvantages in international market competitiveness. Thus, understanding the 

reallocation combination of production resources based on current production technology is important 

when analyzing the effect of GHG reduction policies. The impact of regulations pertaining to total 

GHG emissions on each industry in each country is uncertain. 

 Industrial activity contributes to both economic development and GHG emissions. Thus, the 

industrial sector plays a key role in balancing environmental protection and economic development 

(Fujii and Managi, 2013). However, the structure of GHG emissions is not uniform across countries. 

For example, emissions from the manufacturing sector may not be strongly correlated with population 

size because the sector produces products for both the domestic and global markets (Perkins and 

Neumayer, 2012). Additionally, global market dependency differs among industries and countries. 

CO2 emissions also vary by industry, and the characteristics of an industry must be considered when 

analyzing strategies to reduce GHG emissions. 

 Therefore, this study determines the present potential to reduce CO2 emissions and the 

optimal production resource reallocation combination in terms of CO2 emissions for the 

manufacturing sector. The analysis implicitly assumes that climate policy is implicitly or explicitly 

introduced to reduce emissions, and this paper aims to understand the magnitude of its reduction 

potential by country and sector under optimal reallocation. The remainder of this paper is organized as 

follows. Section 2 presents background information relevant to the study. Section 3 introduces our 
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methodology – an optimal resource reallocation problem using the Data Envelopment Analysis (DEA) 

nonparametric production approach. Section 4 describes the study data. In Section 5, we explain the 

results of the optimal production resource reallocation combination and the potential GHG emissions 

reduction. Finally, Section 6 presents our conclusions and discusses policy implications. 

 

2. Research background and objectives 

The optimal production resource reallocation combination is determined by production technology, 

capacity, and environmental policy regarding CO2 emissions. There are several previous studies have 

analyzed allocation problems under environmental restriction or coalition pattern to reduce CO2 

emissions. 

 Wu et al. (2013) analyzed optimal production resource allocation problems of paper mills in 

the Huai River region in China. They clarify the optimal allocation of labor and capital input of each 

firm to minimize biochemical oxygen demand emissions by firms in Huai river region. Feng et al. 

(2015) estimate optimal carbon emissions abatement allocation using 21 OECD countries’ data. They 

used gross domestic product as desirable output and country’s CO2 emissions as undesirable output.  

 Pollak et al. (2011) identified energy coalition and climate coalition defined by their beliefs 

about the primary purpose of CO2 injection which is energy supply or greenhouse gas emission 

reduction by carbon capture and storage focusing on the policy in the United States. They conclude 

that the energy coalition has had greater success that the climate coalition in shaping laws and rules to 

align with its policy preferences. Chen and Chen (2011) clarified the embodied CO2 emissions of 

three supra-national coalition which are group of seven (G7), group of Brazil, Russia, India, and 

China (BRIC), and rest of the world (ROW) applied multi-region input-output modeling for 2004 year 

data. Their results shows that per capita consumption based CO2 emissions for G7, BRIC, and ROW 

are determined as 12.95, 1.53, and 2.22 ton-CO2, respectively. 

  Most of these previous studies focus on the industrial sector as a whole or use country-level 

data to estimate the optimal resource allocation combination or optimal coalition pattern. However, it 

is clear that the required capital equipment investment and operating costs of reducing GHG 

emissions vary by industry because fuel type and production process requirements differ. Table 1 
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shows CO2 emissions and a simple efficiency index by industrial sector. From Table 1, it can be 

observed that the other non-metallic mineral industry has a low ratio of sales per CO2 emissions. 

However, the machinery, electrical and optical equipment, and transport equipment industries have 

high ratios because each of these industries primarily assembles intermediate products. Assembly 

procedures primarily require electricity but not fossil fuels, which have high carbon intensity. 

Additionally, the required energy input, material, labor, and capital equipment differ among industries. 

These differences among manufacturing sectors must be considered when analyzing strategies to 

reduce GHG emissions. 

 

<Table 1 about here> 

 

 Similar to the differences in industry characteristics, regional characteristics are important to 

consider in resource allocation problems. Schandl and West (2010) show that there is a large 

production technology gap among regions. Thus, this research proposes and measures optimal 

production resource reallocation using the DEA. The objective of this research is to clarify the effect 

of optimal production resource reallocation (hereafter, optimal production) on CO2 emissions, 

focusing on regional and industrial characteristics. 

 

3. Methodology 

This study measures the CO2 emissions reduction that results from optimal production. We apply the 

DEA to measure the optimal production effect and estimate the amount of potential CO2 reduction 

(see Managi (2011) and Barros et al. (2012) for a review). Färe et al. (2011) introduce the framework 

of optimal coalition formation using DEA. We extend their framework and apply it in the 

environmental management field. 

 Let  𝑥 ∈ ℜ+L , 𝑏 ∈ ℜ+R , 𝑦 ∈ ℜ+M  be vectors of inputs, environmental output (or undesirable 

output) and market outputs (or desirable output), respectively. Define the production technology as  
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P(x) = {(x, y, b): x can produce (y, b)}                                                        (1) 

 We make two assumptions. First, we assume strong disposability of input and output.  We 

also assume constant return to scale production. These two assumptions are represented by following 

equations (Färe et al., 2011), where 𝜆 is the intensity variable. 

P(𝜆𝑥) = 𝜆P(𝑥), 𝜆 ≥ 0                                                                            (2) 

 By referring to the efficient production technology, decision-making unit (DMU) k can 

control the amount of undesirable output until Q(𝑥𝑘 , 𝑦𝑘). 

Q(𝑥𝑘 , 𝑦𝑘) = Min {∑ 𝜆𝑛𝑏𝑛𝑁
𝑛=1 : ∑ 𝜆𝑛𝑥𝑛 ≤ 𝑥𝑘𝑁

𝑛=1 , ∑ 𝜆𝑛𝑦𝑛𝑁
𝑛=1 ≥ 𝑦𝑘 , 𝜆𝑛 ≥ 0, 𝑛 =  1,2, ⋯ , 𝑁}         (3) 

 Here, we consider the production resource reallocation among multiple DMUs. We define the 

optimal production resource reallocation as the joint production combination of DMUs to minimize 

total undesirable output (∑ 𝜆𝑛𝑏𝑛𝑁𝑛=1 ) without increasing total input (∑ 𝜆𝑛𝑥𝑛𝑁𝑛=1 ) and decreasing total 

desirable output (∑ 𝜆𝑛𝑦𝑛𝑁𝑛=1 ). The optimal production resource reallocation problem can be solved 

using the following equations: 

Q(𝑥, 𝑦) = Min ∑ 𝜆𝑛𝑏𝑛𝑁
𝑛=1                                                                      (4) 

s.t.  

∑ 𝜆𝑛𝑥𝑛 ≤ ∑ 𝑥𝑛𝑁
𝑛=1

𝑁
𝑛=1                                                                             (5) 

∑ 𝜆𝑛𝑦𝑛 ≥ ∑ 𝑦𝑛𝑁
𝑛=1

𝑁
𝑛=1                                                                              (6) 

0 ≤ 𝜆𝑛                                                                                         (7) 
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 Q(𝑥, 𝑦)  represents minimized CO2 emissions without decreasing the desirable output or 

increasing input. Equations (5) and (6) are restriction formulas of input and desirable output, 

respectively. The optimal resource reallocation combination can be represented by 𝜆𝑛. In this model, 𝜆𝑛  shows the optimal production site and scale to minimize CO2 emissions, considering each 

country’s production technology. 

 Here, we introduce a simple example. Consider data from two countries, country P and 

country Q. The result of the estimation model is  𝜆𝑃 = 2.0, 𝜆𝑄 = 0.7, which indicates that CO2 

emissions from the two countries can be minimized if the production scale of country P doubles and 

the production scale of country Q decreases by 30%. Additionally, the production combination of 𝜆𝑃 = 2.0, 𝜆𝑄 = 0.7 does not result in a decrease in total desirable output or an increase in total input 

compared with the case of 𝜆𝑃 = 1.0, 𝜆𝑄 = 1.0.  

 

4. Data 

We use data from 39 countries and 13 industries between 1995 and 2009 (Table 2). We observed the 

total CO2 emissions, energy use, sales, labor costs, capital stock, and intermediate material from the 

World Input Output Table database (Marcel, 2012). CO2 emissions and energy use are physical data 

and the other data variables are financial data. All financial data are in 1995 dollars (U.S.$), applying 

deflation factors from the world input-output database (WIOD). We compile the 13-panel dataset (39 

countries x 15 years) by industry type. The DEA models are estimated using each panel of the dataset 

separately. 

The result of production resource reallocation model provides us the optimal production scale 

in each countries with current production technology. In this study, we set the restriction that optimal 

production resource reallocation satisfies the market demand in global level. This restriction is 

represented as equation (6) in previous section. However, international trade of electricity strongly 

depends on the geological condition comparing with other industrial products because of cost of 

power grid and outage risk. We have difficulty to obtain the cost and risk information to set the 
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restriction for production resource allocation problems in electricity sector. Additionally, 

infrastructure of power grid is not sufficient to transmit the electricity between countries with long 

distance (e.g. Transmission of the electricity from USA to Japan). Under this situation, it is unrealistic 

assumption for electricity sector to allow trading electricity in the world. Therefore, we exclude the 

electricity sector from our research target industry. 

Additionally, composition of energy input is diverse among countries (Kumar et al., 2015). 

Shifting low carbon energy is important to reduce CO2 emissions in manufacturing sectors. For 

example, the steel sector in a region uses a lot of coal for converter furnace while that in another 

region is heavily dependent on electricity for electric furnace. Even when the energy use in the steel 

sectors of the two regions are the same, the emission intensity of the former region is much higher that 

the latter. However, DEA has difficulty to evaluate productive efficiency using many input variables 

(e.g. each disaggregated energy consumption data). The main reason about the difficulty of DEA to 

use many disaggregated input variables is that most of countries in sample data are evaluated as 

efficient production if we use disaggregated energy data (e.g. coal, coke, petroleum, natural gas, 

renewable) as input variables.1 

The differences of carbon intensity should be considered in estimation model because choice 

of low carbon intensity energy is important to reduce CO2 emissions. However, applying individual 

disaggregated energy data will diminish the discriminatory power of DEA. To avoid this problems, 

we only use aggregated energy consumption data for production resource allocation model in this 

                                                           
1 Cook et al. (2014) pointed out “it is likely that a significant portion of decision making units (DMUs) will be deemed as efficient, if there 

are too many inputs and outputs given the number of DMUs” at line 16 on page 3. Cooper et al. (2006) pointed out “the optimal weights 

may (and generally will) vary from one DMU to another DMU. Thus, the weights in DEA are derived from the data instead of being fixed in 

advance. Each DMU is assigned a best set of weights with values that may vary from one DMU to another” on page 33. 

Variable weights are decided to maximize the efficiency of each DMU (e.g. country) in DEA. In this case, country p which uses 

a lot of petroleum and a little of natural gas will select high weight score of natural gas and low weight score of petroleum to minimize the 

virtual input amount to increase efficiency. On the other hand, country q which uses a lot of natural gas and a little of petroleum select high 

weight score of petroleum and low weight score of natural gas to minimize the virtual input. Thus, input weight combination strongly 

depends on the energy mix of each country in DEA. However, share of each fossil fuel use is diverse and depends on the each country’s 

resource reserve. Therefore, most countries are evaluated as efficient due to differences of energy mix strategies if we use disaggregated 

energy input data. 
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research. We consider that the differences of carbon intensity of each energy type is reflected to our 

estimation results through the ratio of aggregated energy input and CO2 emissions because our model 

use both aggregated energy input and CO2 emissions. 

 

<Table 2 about here> 

 

Next, we explain about the transfer potential of productive resources in each country. 

According to Méon and Sekkat (2012), company focus on the country’s political risk to select the 

location of plant in manufacturing sectors. They pointed out that “foreign direct investment inflows 

are on average negatively affected by political risk” on page 2,203. Following their finding, we set the 

assumption that manufacturing company consider the political risk of located area to select the place 

for productive resource allocation. Additionally, physical limitation of new plant building is affected 

by land area of each country. Both political and physical condition of productive resource allocation 

are important to analyse the optimization model. Therefore, we create the additional production 

transfer potential (APTP) indicator to reflect the both political and physical condition into estimation 

results. 

 This study uses each country’s land area and degree of political freedom as constraints on 

additional production transfer potential (APTP). Land area is obtained from the World Development 

Indicator database published by the World Bank. Land area data reflect the constraint of land capacity 

of additional industrial plant building. Additionally, we use the worldwide governance indicators 

(WGI) published by the World Bank as a policy variable. WGI evaluates each country’s policies 

relating to six areas ([1] Voice and Accountability, [2] Political Stability and Absence of 

Violence/Terrorism, [3] Government Effectiveness, [4] Regulatory Quality, [5] Rule of Law, and [6] 

Control of Corruption) (Kaufmann et al., 2010). The WGI score is defined on a scale from one to five, 

with higher scores indicating more freedom. We use the numerical average of the six WGI scores as 

the degree of political freedom for businesses in each country. APTP is estimated using the multiplied 
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estimation of land area (million km2) and average of six WGI score. Therefore, APTP score reflects 

both land restriction and political situation for additional industrial plant building. The value of mean, 

median, variance, minimum, and maximum of APTP are 5.29, 0.57, 110.19, 0.0011, and 37.96, 

respectively. The calculation process of country k’ APTP is that: 

 

APTPk = Land area of country k (million km2) × average score of six WGI in country k (8) 

 

Thus, we can describe the model calculations as follows: 

 

Objective function:           Min. ∑ 𝜆𝑛𝑏𝑛𝑁
𝑛=1                                                                                                           (9) 

s.t.  

∑ 𝜆𝑛𝐿𝑎𝑏𝑜𝑟𝑛𝑛=𝑁
𝑛=1 ≤ ∑ 𝐿𝑎𝑏𝑜𝑟𝑛𝑛=𝑁

𝑛=1                                                                                       (10) 

∑ 𝜆𝑛𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑛=𝑁
𝑛=1 ≤ ∑ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑛𝑛=𝑁

𝑛=1                                                                                (11) 

∑ 𝜆𝑛𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑛𝑛=𝑁
𝑛=1 ≤ ∑ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑛𝑛=𝑁

𝑛=1                                                                          (12) 

∑ 𝜆𝑛𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑛=𝑁
𝑛=1 ≤ ∑ 𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑛=𝑁

𝑛=1                                                                                (13) 

∑ 𝜆𝑛𝑆𝑎𝑙𝑒𝑛𝑛=𝑁
𝑛=1 ≥ ∑ 𝑆𝑎𝑙𝑒𝑛𝑛=𝑁

𝑛=1                                                                                            (14) 

0 ≤ 𝜆𝑛 ≤ 1 + 𝐴𝑃𝑇𝑃𝑛                                          𝑛 = 1, … , 𝑁                              (15) 
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Here, we explain about 𝜆 using the case of a country k (1 ≤ k ≤ N). Equation (15) indicates that 

country k can expand its production until 1+𝐴𝑃𝑇𝑃𝑘  scale. Thus, an 𝐴𝑃𝑇𝑃𝑘  score close to zero 

indicates country k cannot expand its production further. If 𝐴𝑃𝑇𝑃𝑘 equals zero, 𝜆𝑘 is restricted from 

zero to one. The estimation results show that 𝜆𝑘 = 0, then it indicates that when the production of 

country k equals zero, the optimal production is achieved, thereby minimizing CO2 emissions. 

Generally, transferences of labor and capital stock are more difficult than intermediate material and 

energy input. Therefore, restriction condition tends to be stricter for labor and capital. Meanwhile, 

transferences of intermediate material and energy input without shifting labor and capital caused 

excess or insufficient input use which become productive efficiency worse. Thus, decision makers of 

productive resource allocation focuses on the entire input and output balance. Based on the above, we 

assume that decision makers select the optimal productive resource allocation with proportionally. 

Thus, this study set the proportional production scale change which is represented as parameter 𝜆.2 

To analyze the effect of industry characteristics, we categorize the thirteen industrial sectors into 

three groups following Fujii et al. (2011): (1) Daily commodity group, (2) Basic material group, and 

(3) Processing and assembly group. The daily commodity group includes the food, textile, leather, and 

wood industries. The basic material group includes the pulp and paper, coal and oil, chemical, rubber, 

nonferrous mineral, and steel industries. Finally, the processing and assembly group includes the 

industrial machinery, electric product, and transport equipment industries. 

 In general, the basic materials sector has heavy industrial production systems. These 

industries require large amounts of fossil fuel energy to move equipment. Additionally, some 

industries use fossil fuels as intermediate products (e.g. the steel and metal industry uses coal both as 

                                                           
2 By applying proportional change of both whole input and output is more consistent with real situation in manufacturing sector. Meanwhile, 

this study does not capture the production scale efficiency change and input substitution technology clearly. This point is limitation of this 

study. 
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a fuel and for oxidation-reduction reactions in shaft furnaces). The processing and assembly group 

uses automated production systems, which require large investments.  

 Table 3 shows the average score for each variable by manufacturing sector. From Table 3, we 

can see that the basic material sectors (pulp and paper, coal and oil, chemical, rubber, mineral, metal) 

are responsible for more than 85% of CO2 emissions from the 13 sectors. 

 

<Table 3 about here> 

 

 

5. Result 

We establish four scenarios considering political and economic relationships. The scenarios are 

denoted as follows: (1) former Communist scenario, (2) Trans-Pacific Strategic Economic Partnership 

Agreement (TPP) scenario, (3) European Union (EU) scenario, and (4) Global scenario. Target 

countries are defined for each scenario. Under each scenario, each country can produce products by 

reallocating its production resources (i.e., labor, capital, material, energy) freely among the target 

countries to minimize CO2 emissions. The target countries for each scenario are listed in Table 4. 

  

<Table 4 about here> 

 

 Figure 1 shows the CO2 emissions reduction ratio by scenario. The CO2 emissions reduction 

ratio is calculated by dividing the CO2 emissions under optimal production by CO2 emissions in the 

reference case (all country’s 𝜆 = 1). From Figure 1, we observe a high CO2 reduction ratio under the 

EU and Global scenarios. However, the CO2 reduction ratios under the former Communist and TPP 
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scenarios are low in 1995. From 1997 to 2000, the CO2 reduction ratio under the former Communist 

scenario increased. 

 

<Figure 1 about here> 

 

 The rapid increase in the CO2 reduction ratio is caused by the modernization of production 

equipment in the metal industry and iron and steel industry in China during the late 1990s. According 

to Fujii et al. (2010), the Chinese iron and steel industry introduced modern production equipment for 

converter furnaces and continuous casting in the 1990s. This modernization of production equipment 

allowed the Chinese iron and steel sector to improve its energy efficiency and reduce the CO2 

emissions associated with steel production in China. Fujii et al. (2010) pointed out that energy 

consumption per unit of crude steel production dramatically improved when the continuous casting 

method came into general use during the 1990s due to rising continuous casting share from 20% in 

1990 to almost 90% in 1999. 

Meanwhile, the Russian iron and steel industry did not update their production equipment and 

continued to produce steel with inefficient technology in the 1990s. Thus, the production efficiency 

gap widened during this period. Under the optimal production case, steel production shifts from 

Russia to China because the Chinese iron and steel industry is at an advantage in reducing CO2 

emissions. As a result, total CO2 emissions in former Communist countries decrease under the optimal 

production scenario. 

 Figures 2 through 5 show the CO2 emissions reduction impact of optimal production in 1995  

(hereafter referred to as old) and 2009 (hereafter referred to as recent) under each scenario. From 

Figure 2, there is little difference in the CO2 emissions between the reference case and the optimal 

case in 1995. This result might be related to the characteristics of former communist countries.  

 In the 1980s, China’s iron and steel was produced in inefficient facilities, and its industry 

lagged behind that of developed countries. Until 1990, because of internal and external political 

factors, limited technology transfer from developed countries contributed to this lag, and China was 
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limited to introducing aging technologies and equipment from the former Soviet Union and Eastern 

Europe (Fujii et al., 2010). 

  Thus, former communist countries had difficulty introducing modern productive equipment 

invented in capitalistic countries. As a result, the industrial sector in former communist countries 

relied on old and inefficient equipment. Therefore, technology gap in industrial production is small 

among former communist countries. The optimal productive resource allocation effectively reduces 

CO2 emissions if the productive technology gap is larger. 

 In the recent period, the CO2 emissions in the reference case increased relative to the old 

period as a result of production scale expansion in the Chinese industrial sector. Correspondingly, the 

CO2 emissions from the basic material industry in optimal case decreased 0.398 Gton-CO2 compared 

with the reference case. This decrease can be explained primarily by the technological progress in 

production equipment in Chinese steel sector discussed above. Additionally, productive resources 

shifted from Russia and Poland to China in the chemical and wood industries in the optimal case 

under the former communist scenario.  

 

<Figure 2 about here> 

 

 Figure 3 shows the CO2 emissions under the TPP scenario. In Figure 3, there is not a large 

difference between the optimal case and the reference case in the old period. Meanwhile, in the 

optimal case, there is a large reduction in CO2 emissions in the recent period. The reduction in CO2 

emissions in this case was achieved primarily by the basic material industry, particularly the pulp and 

mineral industries. Additionally, productive resources were shifted from Australia and Mexico to 

Canada in the pulp industry in the optimal case under the TPP scenario.  

 One interpretation of this result is that the Canadian pulp industry uses large amounts of black 

liquor as renewable energy. The main renewable energy source in the pulp industry is black liquor, 

and the investment and operating costs of black liquor have become cheaper over time as a result of 
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technological progress (e.g., Black liquor gasification, see Naqvi et al. (2010)). This technological 

advancement has allowed the pulp industry to reduce CO2 emissions without significant financial 

stress. 

 From the data, we can see that black liquor comprises a small share of total energy in the pulp 

industry in Mexico and Australia, with shares of 1% and 15% in 2009, respectively. However, the 

share of black liquor in the Canadian pulp industry was 58% in 2009. Thus, the low fossil fuel 

dependency of the Canadian pulp industry creates an advantage in terms of carbon intensity. 

Therefore, the dissemination rate of renewable energy is one reason why the production location 

shifted from Australia and Mexico to Canada in the optimal case under the TPP scenario. 

 

<Figure 3 about here> 

 

Figure 4 shows CO2 emissions under the EU scenario. Under this scenario, the emissions reduction is 

large in both the old and recent periods. Additionally, the CO2 reduction ratio under the EU scenario 

is in the same range for each industry. From figure 4, the CO2 reduction ratios are 43.8% in daily 

commodities, 39.7% in basic materials, and 48.1% in the processing industry in the old period, and 

35.5% in daily commodities, 35.9% in basic materials, and 35.3% in the processing industry in the 

recent period. However, the scenarios shown in Figures 2 and 3 in which the CO2 reduction ratio is 

primarily in the basic materials industry. Thus, the CO2 emissions reduction potential is large in all 

three industrial groups under the EU scenario. 

 The differences in CO2 emissions reduction across scenarios can be explained by the large 

production technology gap between former communist countries and Western countries in both the 

old and recent periods. Kravtsova and Radosevic (2012) noted that the economic growth in Eastern 

Europe since 1996 is attributable to an increase in production scale, and not to innovation. 

Additionally, the authors concluded that Eastern European countries are inefficient at converting their 
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research and development, innovation and production capabilities into appropriate levels of 

productivity. 

 As noted above, politics limited the technology transfer from Western countries to former 

communist countries in the old period, and the production technologies in these countries were 

relatively old and inefficient as a result. Additionally, the evidence identified by Kravtsova and 

Radosevic (2012) indicates that the production technology gap between former communist countries 

and Western countries may still exist in the recent period. 

 Our results show most former communist countries’ 𝜆  parameter is close to zero, which 

indicates that shifting production from former communist to Western countries would minimize CO2 

emissions without increasing input or decreasing sales.  

 

<Figure 4 about here> 

 

Finally, Figure 5 represents the CO2 emissions under the Global scenario. The CO2 emissions in the 

reference case increase from the old period to the recent period because CO2 emissions from Brazil, 

China, India, and Russia increase due to the expansion of the industrial sector. In Figure 5, the CO2 

reduction ratio is high in both the old and recent periods compared with the previous Figures. The 

high number of sample countries in this scenario (39 countries) explains this difference because the 

model has more countries available to shift production and minimize CO2 emissions. 

 From the results, we find parameter 𝜆 is diverse among the countries in each industry (see 

Appendix 1). Our results show that nine countries (Australia, Canada, Germany, France, Italy, Japan, 

Netherland, Spain, and Sweden) score high on the parameter 𝜆 for most industrial sectors. However, a 

low score on parameter 𝜆 is observed in ten countries, which include Bulgaria, Cyprus, Indonesia, 

India, Latvia, Poland, Romania, Russia, Slovenia, and Turkey. Thus, shifting the location of 
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production from the latter countries to the former countries effectively minimizes industrial CO2 

emissions in the 39 countries. 

The APTP score affected the production transfer potential by setting upper limit of parameter 𝜆. To confirm the effect of APTP, we described the country list whose parameter 𝜆 achieved upper 

limit defined as (1+APTP) in Appendix 2. From Appendix 2, the effect of APTP into production 

transfer potential is different by type of industries. Only one countries is listed in Rubber, mineral and 

transportation equipment industries. Meanwhile there are more than six countries listed in Appendix 2 

in textile, pulp, and chemical industries. 

From Appendix 2, we can understand that there are several industries which are weakly and 

strongly affected by APTP. Therefore, APTP is needed to estimate considering each industrial 

characteristic which needs the detail data about production processes and technologies which are 

difficult to obtain. Further research is needed to set the APTP parameter considering each industrial 

characteristic to improve accuracy of analysis. 

Additionally, the results show that scale down of the production in Indonesia is needed to 

minimize CO2 emissions in global model. One interpretation of this result is that production 

technology in Indonesia has disadvantage to prevent increasing CO2 emissions in manufacturing 

sector. It implies that current production technology in Indonesia or other developing countries have 

difficulty to keep international competitiveness in the global market if international environmental 

policy for climate change (e.g. carbon tax) is enforced. Thus, low carbon production technology in 

manufacturing sector is needed to keep international market competitiveness under carbon emission 

restriction. 

Intergovernmental Panel on Climate Change (IPCC) pointed that bio-energy with carbon 

capture and storage (BECCS) is important approach to achieve atmospheric concentration levels of 

about 450ppm CO2 equivalent by year 2100 in their fifth assessment report reports (IPCC, 2014). 

Meanwhile, Benson (2014) pointed out the concern about whether biomass could be practically and 

sustainably harvested, dried, and collected without interfering with food production or negatively 

affecting other ecosystem services.  
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Today, many developing countries have rich forest resources which can be enough to provide 

bio-mass energy (Ricci and Selosse, 2013). Thus, disseminate the technology of BECCS in 

developing countries contribute to create manufacturing sectors with low carbon emissions which 

enable to reduce global CO2 emissions and keep international market competitiveness. 

  

<Figure 5 about here> 

 

6. Conclusion 

To mitigate the effects of climate change, countries worldwide are advancing research and 

introducing policies to reduce CO2 emissions (Somanathan et al. 2014). This research analyzes the 

potential to reduce CO2 emissions by reallocating production, considering both regional economic and 

emissions characteristics. The results of this study can aid our understanding of feasible emission 

reduction estimates and inform climate policy. Compared with previous studies of climate policy, 

which used top-down or bottom-up approaches, we are able to estimate a realistic potential reduction 

using actual emissions production characteristics in the economy. 

Evaluation of existing policies in climate change is provided in Somanathan et al. (2014).  

The review stated that once stringent policy implemented, reduction in emissions are expected though 

practically there are many institution blocking the policy implementation. Our estimate shows middle 

term expected reduction once stringent policy implemented such as emission trading in major emitting 

countries. Especially, new policy starts from developed countries such as OECD therefore we focus 

our study on 39 countries where the data is available. This provides clear signal to the market and 

firms can re-allocate plants based on emission and other economic factors in which we considered in 

this paper. Once the signal informed, labor and capital changed accordingly.  

Our methods analyze relative performance of production technology where one inefficient 

country can improve the performance by catching up to their counterpart countries. This limitation in 



18 

 

their comparison is meaningful as not all country can use world-best technology available in the 

market. In addition, this study applies to aggregate data of industry as we can think increased capital 

as additional capital installed which could be added plants in new or old plants. 

 Applying optimal production resource reallocation, we found a large potential to reduce CO2 

emissions. In particular, there is a significant potential to reduce CO2 emissions in the manufacturing 

sectors of former communist countries. This potential implies that the previous productivity 

improvements in former communist countries are insufficient to catch up with Western countries in 

terms of emissions reduction. Our results show that more drastic changes could significantly reduce 

CO2 emissions. 

In this study, we apply the production resource reallocation model to minimize the CO2 

emissions. However, drastic shifts in production location can also cause social problems such as 

increasing the unemployment ratio and decreasing corporate taxes. Meanwhile, we can only replace 

the production resource reallocation as an international joint venture if national policy supports such a 

change because the production technology of an international joint venture is comparable with the 

main plant. Thus, the results can be understood as the CO2 reduction potential of transferring 

production technology from efficient countries to inefficient countries, considering current production 

technology at the manufacturing sector level. It is often said that reducing CO2 emissions is difficult, 

though the potential to reduce CO2 emissions is huge. Meanwhile, global production resource 

reallocation would solve this problem if international collaboration for CO2 reduction were enhanced. 

 This study contributes in two ways to the literature on regional cooperation in climate policy 

and international technology transfer. First, the paper clarifies the CO2 emissions reduction potential 

considering current production technology at the manufacturing sector level. Second, the paper 

develops an application model using a nonparametric production approach to estimate the effect of 

production resource reallocation. It is important for policymakers to understand the size of potential 

CO2 emissions reduction considering current technology because it provides a realistic estimate. 
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 Steininger et.al. (2014) noted clean technology transfer to developing countries is a crucial 

complement for climate policy. However, this research clarifies that several OECD countries’ 

production technology is not sufficient to reduce CO2 emissions compared with efficient countries. 

Thus, the policy implication of this study is that the diffusion of production technologies from 

Western countries to former communist countries is an effective way to reduce CO2 emissions 

without increasing input resource consumption or sacrificing economic output, particularly in the 

basic materials industry. 

 A limitation of our study is the difficulty of obtaining cost and CO2 emissions data for 

shipping for international trade. However, the trade barrier will be weakened by the recent TPP and 

regional free trade agreements (Baghdadi et al., 2013). Additionally, new shipping operations have 

been developed using new simulation methods. Research in this area predicts that new operations will 

make it possible to significantly reduce cost and CO2 emissions by optimizing shipping speed (Chang 

and Wang, 2014).  

    Further research is needed to analyze optimal resource allocation considering with inter-

industry relationship using input-output coefficient matrix, which is provided WIOD (Timmer et al., 

2015). Inter-industry relationship play important roles to analyze the domestic optimal productive 

resource allocation problems to reduce CO2 emissions. Such an analysis could provide a more 

comprehensive estimate of the potential to reduce CO2 emissions among countries considering 

industrial characteristics. 
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Table 1. CO2 emissions and simple efficiency by industrial sector 

Industry name CO2 Sale/CO2 Sale/Energy Sale/Material Sale/Labor Sale/Capital 

Food, Beverages and Tobacco 8,198 8.36 0.35 1.32 8.30 1.60 

Textiles and Textile Products 3,204 8.49 0.37 1.39 6.00 1.27 

Leather, Leather and Footwear 300 13.83 0.72 1.30 6.80 1.06 

Wood and Products of Wood and Cork 1,283 8.75 0.21 1.39 5.91 1.69 

Pulp, Paper, Paper , Printing and Publishing 5,210 7.31 0.21 1.51 5.63 1.50 

Coke, Refined Petroleum and Nuclear Fuel 16,945 3.26 0.20 1.03 37.80 3.33 

Chemicals and Chemical Products 19,942 3.57 0.21 1.29 11.17 1.84 

Rubber and Plastics 1,486 3.70 0.16 1.39 6.05 1.67 

Other Non-Metallic Mineral 30,082 0.66 0.09 1.44 6.49 1.39 

Basic Metals and Fabricated Metal 35,917 2.37 0.17 1.29 6.74 1.60 

Machinery, Nec 2,118 26.73 1.16 1.43 5.49 2.23 

Electrical and Optical Equipment 1,735 56.41 2.24 1.44 10.39 2.30 

Transport Equipment 2,324 30.09 1.30 1.35 7.18 2.10 

Source World input-Output Dataset. (Marcel P.T. (ed), 2012) 

Note: score is global average from 1995-2009. 
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Table 2. Description of sample 

Country 
Name 

Australia, Austria, Belgium, Bulgaria, Brazil, Canada, China, Cyprus, Czech Republic, 
Germany, Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, 
Hungary, Indonesia, India, Ireland, Italy, Japan, Korea, Lithuania, Luxembourg, Latvia, 
Mexico, Malta, Netherlands, Poland, Portugal, Romania, Russia, Slovak Republic, 
Slovenia, Sweden, Turkey, United States 

Industry 
Name and 
code 

Daily commodity industry group : 
   [1] Food, Beverages and Tobacco (FOOD) 
   [2] Textiles and Textile Products (TEXTILE) 
   [3] Leather, leather and footwear (LEATHER) 
   [4] Wood and Products of Wood and Cork (WOOD) 
 

Basic material industry group :  
   [5] Pulp, Paper, Paper , Printing and Publishing (PULP) 
   [6] Coke, Refined Petroleum and Nuclear Fuel (OIL) 
   [7] Chemicals and Chemical Products (CHEMICAL) 
   [8] Rubber and Plastics (RUBBER) 
   [9] Other Non-Metallic Mineral (MINERAL) 
   [10] Basic Metals and Fabricated Metal (METAL) 
 

Processing and assembly industry group :  
   [11] Machinery, Nec (MACHINE) 
   [12] Electrical and Optical Equipment (ELECTRIC PRODUCT) 
   [13] Transport Equipment 

Year 1995-2009 
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Table 3. Average score of data variables by type of industries 

  CO2 Energy Sale Material Labor Capital 

 (kt-CO2) (TJ) (million US$) (million US$) (million US$) (million US$) 

Food, Beverages and Tobacco 8,198 188,785 57,513 42,614 7,770 31,814 

Textiles and Textile Products 3,204 74,409 20,651 14,872 3,655 10,201 

Leather, Leather and Footwear 300 5,796 3,518 2,673 558 1,747 

Wood and Products of Wood and Cork 1,283 53,554 9,695 6,801 1,882 4,985 

Pulp, Paper , Printing and Publishing 5,210 180,082 29,378 18,630 6,186 20,009 

Coke, Refined Petroleum and Nuclear Fuel 16,945 291,593 17,417 18,990 880 10,002 

Chemicals and Chemical Products 19,942 346,814 43,659 31,126 5,621 26,823 

Rubber and Plastics 1,486 39,678 19,139 13,398 3,445 9,967 

Other Non-Metallic Mineral 30,082 244,270 15,727 10,031 2,953 11,942 

Basic Metals and Fabricated Metal 35,917 501,378 57,891 43,209 10,340 34,221 

Machinery, Nec 2,118 49,545 38,899 25,510 7,749 19,077 

Electrical and Optical Equipment 1,735 48,405 82,424 51,319 10,737 31,892 

Transport Equipment 2,324 55,259 60,271 44,894 8,741 25,194 

Source World Input-Output Dataset. (Marcel P.T. (ed), 2012) 

Note: score is 39 countries and 15 years (1995-2009) average. 
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Table 4. Description of Scenario 

Scenario Countries 

former 
Communist  
(8 countries) 

China, Czech Republic, Hungary, Poland, Romania, Russia, Slovak Republic, Slovenia 

TPP  
(5 countries) 

Australia, Canada, Japan, Mexico, United States 

EU 
 (27 countries) 

Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Germany, Denmark, Spain, 
Estonia, Finland, France, United Kingdom, Greece, Hungary, Ireland, Italy, Lithuania, 
Luxembourg, Latvia, Malta, Netherlands, Poland, Portugal, Romania, Slovak 
Republic, Slovenia, Sweden 

Global 
 (39 countries) 

Australia, Austria, Belgium, Bulgaria, Brazil, Canada, China, Cyprus, Czech Republic, 
Germany, Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, 
Hungary, Indonesia, India, Ireland, Italy, Japan, Korea, Lithuania, Luxembourg, 
Latvia, Mexico, Malta, Netherlands, Poland, Portugal, Romania, Russia, Slovak 
Republic, Slovenia, Sweden, Turkey, United States 
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Figure 1. CO2 emissions reduction ratio by scenario 

Note : CO2 reduction ratio = CO2 emissions in optimal production case / CO2 emissions in reference case. 
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Figure 2. CO2 emissions in optimal production case under former Communist scenario 

Note : Reference case is estimated CO2 emissions if all countries’ 𝜆 = 1. 
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Figure 3. CO2 emissions in optimal production case under TPP scenario 

Note : Reference case is estimated CO2 emissions if all countries’ 𝜆 = 1. 
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 Figure 4. CO2 emissions in optimal production case under EU scenario 

Note : Reference case is estimated CO2 emissions if all countries’ 𝜆 = 1. 
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Figure 5. CO2 emissions in optimal production case under Global scenario 

Note : Reference case is estimated CO2 emissions if all countries’ 𝜆 = 1. 
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Appendix1.  The distribution of parameter 𝜆 in global scenario (average score from 1995 to 2009) 
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Appendix2.  The country list whose parameter 𝜆 achieved upper limit (1+APTP) in whole research 

period (1995 to 2009). 

Type of industry 
(# of countries) 

Country name list 

Food (4) Finland, Malta, Netherlands, Romania 

Textile (8) Belgium, Cyprus, Estonia, France, Hungary, Italy, Malta, Netherlands 

Leather (5) Austria, Finland, Hungary, Malta, Portugal 

Wood (4) Estonia, Finland, France, Sweden 

Pulp (6) Czech Republic, Hungary, Ireland, Italy, Malta, Netherlands 

Oil (4) Belgium, Greece, Ireland, Romania 

Chemical (6) Cyprus, Denmark, Greece, Ireland, Korea, Sweden 

Rubber (1) Italy 

Mineral (1) Czech Republic 

Metal (2) Greece, Portugal 

Machine (4) Austria, Finland, Netherlands, Sweden 

Electric product (5) Finland, Ireland, Malta, Portugal, Sweden 

Transportation equipment(1) Belgium 

 

 

 


