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FOREWORD

This book is a practical reference guide accompanied with an Excel Workbook. This
book gives an elementary introduction of the weighted standard deviational ellipse.
This book also presents the computational aspects of the weighted exponential distri-
butions as well. For the examples given, calculations are performed using VBA for
Excel. This book makes comparisons (and shows the computations via VBA for Ex-
cel) using the likelihood functions with spatial data of the weighted ellipses. Lastly,
the book covers spherical statistics. Throughout the text, the reader can see how to
perform these difficult calculations and learn to adapt the code for his research.
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PREFACE

Scientific articles exist since the 1960’s for the use of an area frames for collecting
and interpreting survey data in the United States, and in the 1990°s in Europe and
Africa. Cartographers divide units of land from satellite imagery into enumerable
segments. Statisticians assign the segments to defined strata. Typically, crop esti-
mation is performed using imagery analyzes, field surveys, and mail surveys. The
following list of articles includes both practical results and theoretical results typi-
cally found in the literature on area frame surveys.

[Pratt, Bird, Taylor, and Carter (52)] wrote a paper that covers the topics of plan-
ning and implementing an area frame survey in Nigeria and choosing the estimation
procedures. They were careful to choose their satellite imagery and coordinate it
with the fieldwork. In Europe and Africa, Statisticians use regression to classify
the satellite images from field data collection and from image classification. Image
classification without field data collection does tend to lead to failure due to the fol-
lowing reasons: 1) intercropping practices, 2) fallow/cultivated continuum and 3)
small, irregular field structure. The authors more generally state those reasons as
“spectral confusion.” The authors state that the best time to perform their fieldwork
is shortly after harvest because it would be easiest to distinguish harvested rice fields
from wet, green swamp grasslands. [page 70] calculates the sample size in terms of
segments according to several criteria: 1) the size of the study size area, 2) the need
to maximize the area covered, 3) the speed to cover the area during enumeration, 4)

xXiii
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reduce locational error within the segment during field mapping. The authors ob-
tain a 4.8% sampling fraction by choosing forty-nine segments (500 x 500 meters
with a sampling fraction of 5%) out of 75. Three estimators of the data collected
are presented: 1) direct expansion of the survey data, 2) pixel count, and 3) regres-
sion estimator. The authors recommend the regression estimator, which take into,
account both the irrigation mapped by enumerators on the ground in each segment
and the satellite image classification. This is because it was highly dependent on the
classifier and gave a narrower range of possible classifications. They used a ratio of
the direct expansion variance and the regression model to prove this mathematically.

[Kelly (32), Chhikara and Deng (6), Faulkenberry and Garoui, (15)] discuss area-
frame data collection and estimation in the United States. [Kelly (32)] collects and
summarizes survey data in a production environment. [Chhikara and Deng (6)] con-
sider the problem of using the area frame and rotating segments amongst years. On
page 926, they develop an ANOVA model to capture the stratum means per year and
the segment mean effects for a particular random variable. The author also rotates
and overlaps segments amongst years via a simulation study that shows the optimal
rotation of segments should be 40% to 60%. [Faulkenberry and Garoui, (15)] discuss
the topic of estimating population totals and variances from an area survey frame.
The authors point out that because of the association of a farm with more than one
segment does not lead to cluster sampling. Based on four classifications, the authors
show that the Horvitz-Thompson estimator for totals is probably the best choice of
estimators. Itis a good estimator when the probability of selection 7, is proportional
with the random variables y;,s. Depending on the number of farms or the number of
known segments, four classifications arise. The author assigns an estimator to each
class that will work well, and then takes expectations and variances.

Although most of the authors so far do present maps with their articles and their
statistical estimation methods, they lack discussing the latitude and longitude of their
random variables. The remainder of this section will discuss the history of associat-
ing random variables with the latitude and longitude (i.e. the placement on a map).

[Ebdon, (13), Chapter 7, 1985] discusses spatial statistics and several measures.
The author gives interpretations to the concepts of the mean center and standard
deviational ellipse. For instance, the mean center can be thought of the “center of
gravity” of the distribution of the given points on a map. He defines the standard
deviational ellipse as the “’spread of points” about the mean center. Without using
modern software, the author has an interesting way to draw the ellipse. It involves
plotting the deviation for each point parallel to the rotated axes and fitting the ellipse
[Ebdon, (13), p. 137].

The author Lefever first used the standard deviational ellipse in 1926 to study
the geographic position of social problems [Lefever, (40)]. The author argues that
a uniform distribution will not fit well for location problems of any kind because
ecological and sociological problems occur more frequently on a select area of the
map than other areas. The author shows the correspondence between calculating the
standard deviation between the mean center of the points and each location; and then
showing its geometric relationship on a map. An example is given. In the conclusion,
the author states four characteristics of a unit of locations:
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1. The center of the system determined by the distances from the central point
(versus the extreme unit locations).

2. The direction or trend of the system given by the angle ,,, of the axis of max-
imum standard deviational variation value. This is the line of best fit for the
entire system of unit locations.

3. The concentration of the system (or dispersion) shown in terms of a standard
deviational ellipse.

4. The relative concentration given by the ratio of observations within the ellipse
compared to the entire population expressed in area units.

The author gives no references in the paper. To summarize, the article presents
the mean and standard deviation of a set of numbers — longitude and latitude. So,
who came up with the idea of weighting the longitude and latitude data?

The weighted standard deviational ellipse appears in the literature in 1971 in
[Yuill, (67)]. The author begins with a discussion of the work by Lefever and the
comments by Furtey in 1927. The paper proceeds to defend using the ellipse for
geographic applications. The author derives the formulas on pages 30-31 for the
weighted standard deviational ellipse. It is on page 32 that the weighted mean center
is introduced (a new notion in the literature). The author weights the latitude and
longitudinal observations using the random variable. The author gives the following
computations for comparing ellipses.

1. The enclosed area within the ellipse.
2. The number of points enclosed within the ellipse (more is better).

3. The shape of the ellipse measured by its eccentricity .

The shape of the ellipse determines the distribution of the points . Points con-
centrated at the pole of the ellipse (or circle) should have a non-uniform distribution
while those scattered from the pole will have a uniform distribution . Finally, the au-
thor applies the concepts to several sets of data. References appear in the footnotes
throughout the paper.

So, where did the weighted mean center originate? Yuill’s paper stated the mean
center, but did not derive it. Books and research articles have methods on the
weighted least squares dating back to the 1970’s. The weight assigned to each longi-
tude and latitude pair is between zero and one; additionally, the weights sum to one.
This is due to the formula, not due to the nature of the application (e.g. ecological
versus sociological problem). Other authors [Magee (42), and Woolson and Clarke
(65)] assign least squares weights according to the sample design. Magee assigns
weights based on sample selection probabilities. Woolson and Clarke assign weights
to compensate for missing data. [Rubin, (55)] models the leverage values as weights
in the regression model. This in turn shows which data points in the data set exert
more influence over the others. [Lee and Wong, (36), pages 38-39] assigns weights
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according to the distribution of the phenomenon. If a city’s population is the ran-
dom variable of interest, then the city’s population is the weight for the latitude and
longitude. We apply weights in the context of [Lee and Wong, (36)] in this book.

Finally, to extend the concepts of the weighted mean center and the standard de-
viational ellipse, at times, we prove that the data has a particular distribution. By
transforming the data and plotting the points [¢, F'(t)] where F'(¢) is a known cumu-
lative distribution function , one should obtain a straight regression line [Lee, (35)]
as long as the data has that distribution. The author covers data transformations for
distributions with a location parameter, a scale parameter and a shape parameter.
Knowing the distribution of the data is advantageous. Using maximum likelihood
estimators, we can compare likelihood functions, [Lee (35), page 227]. Generally,
we choose the likelihood function with the largest value.
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CHAPTER 1

INTRODUCTION TO VBA

1.1 The Development Environment

The calculations in this book are difficult at times. Having a programming environ-
ment becomes advantageous. A programming environment provides the flexibility
to calculate statistics and likelihood functions. This textbook uses the Visual Basic
Application (VBA) for Excel. It is a programming environment based on the Visual
Basic programming language. The VBA Development environment does not auto-
matically appear as a menu option in Excel. See Figure 1.1. The user must make this
option visible by following these steps:

| Customize Ribbon. The dialog box

1. Clickon File | Options
in Figure 1.2 will appear.

2. From the Choose Commands drop-down list, select Main Tabs.
3. Highlight Developer.

4. Click on the Add>> button in the middle of the screen.

Random Variables, Their Properties, and Deviational Ellipses. 1
By Roger L. Goodwin Copyright © 2015 Roger L. Goodwin
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Figure 1.1  This figure shows Excel without the Developer menu.

T S A

seneel Customize the Ribbon.

Pracfing [ Main Tabs ] <= [waintons =]

o

e T
e
s

Customize Ribbon

Quick Access Toolbar

AddIns Developer

Teusst Canter Background Removal

b

[l

ackground Removal

e e

Cutomizations:

>
e

Figure 1.2  This figure shows Excel Options dialog box. Excel uses the dialog box for adding
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Figure 1.3  This figure shows Excel with the Developer menu at the top of the screen.

The Developer menu option will appear somewhere along the top of the screen.
See Figure 1.3.

1.2 Variables

To declare variables explicitly in VBA for Excel, use the Dim statement. Excel
supports the following basic data types:

= Integer numbers — Dim X As Integer The Integer data type holds integer
variables stored as 2-byte whole numbers in the range of -32,768 to 32,767.

= Real numbers — Dim Y As Double. The Real data type holds double-precision
floating-point numbers as 64-bit numbers in the range of -1.79769313486231E308
to -4.94065645841247E-324 for negative values and 4.94065645841247E-324
to 1.79769313486232E308 for positive values.

= String characters — Dim S As String. The String data can include letters,
numbers, spaces, and punctuation. The String data type can store fixed-length
strings ranging in length from O to approximately 63,000 characters.

= Date — Dim BirthDay As Date. Excel allows the Date data type to store dates
and times as a real number. Date variables are stored as 64-bit (8-byte) numbers.
The value to the left of the decimal represents a date, and the value to the right
of the decimal represents a time. Excel considers the date expression to be any
expression such as a date, including date literals, numbers that look like dates,
strings that look like dates, and dates returned from functions. A date expression
is limited to numbers or strings, in any combination, that can represent a date
from January 1, 100 to December 31, 9999.
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Dates are stored as part of a real number. Values to the left of the decimal
represent the date; values to the right of the decimal represent the time. Negative
numbers represent dates prior to December 30, 1899.

A date can be any sequence of characters with a valid format surrounded by
number signs (#). Valid formats include the date format specified by the locale
settings for your code or the universal date format. For example, use #12/31/92#
in the VBA editor when explicitly referring to a date.

= Currency — Dim Q As Currency. The Currency data type has a range of -
922,337,203,685,477.5808 to 922,337,203,685,477.5807. Use this data type for
calculations involving money and for fixed-point calculations where accuracy
is particularly important. In the VBA Editor, use the "@” sign when referring
to currency.

= Long integer — Dim R As Long. The Long data type is a 4-byte integer ranging
in value from -2,147,483,648 to 2,147,483,647. In the VBA Editor, use the ”&”
symbol when referring to long integers.

= Logical — Dim L As Boolean. The Boolean data type has only two possible
values, True (-1) or False (0).

Variables defined inside a subroutine are visible only inside that subroutine. Vari-
ables defined at the module level are visible to the subroutines defined in that module.

1.3 Arrays and Records

We can build on the basic data types listed in Section 1.2. Consider arrays and
records.

= One diminisional array — Dim Name_List(1 To 10) As String. This array
defines a set of sequentially indexed elements having the data type String. Each
element of the array has a unique identifying index number. Changes made to
one element of an array do not affect the other elements.

= Two diminisional array — Dim AList(1 To 5, 1 To 10) As Double. This array
defines a matrix of indexed elements having the numeric data type Double.

= A user defined record — Excel allows the definition of the user-defined record
using the TYPE-END-TYPE statement. To define a list of customer address
records, use the following VBA code:
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—Type Customers

[First_Name, Last_ Name As String
Address As String

City As String

State As String

Zip_Code As Integer

| Phone As Integer
| End Type

2 [Dim List As Customers

Do not use the Dim inside the TYPE-END-TYPE statement. Use the dot ”.”
notation to reference the items in the record. For example in the VBA Editor, to
reference the customer phone number, use the code:

1 [List.Phone =3223223

1.4 Branching

VBA has an IF-THEN-ELSE statement for conditionally executing code. The syn-
tax is as follow:

If <condition> Then
VBA statements
1 -Else
3 | VBA statements

End If

The IF-THEN-ELSE construct must appear in a subroutine. It cannot appear as
open code in a module. Aside from variable definitions and subroutine declarations,
this is true for the majority of VBA programming. There can only by one ELSE
statement in any IF-END-IF construct. An alternative to the above IF-THEN-ELSE
construct is the IF-ELSE-IF construct.
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If <condition> Then
VBA statements

-ElseIf <condition> Then
VBA statements

1 Elself <condition> Then
VBA statements

Else
VBA statements

End If

If the user has a short, single VBA statement for any of the ELSEIF statements,
it is not advisable to put it on the same line after the THEN. It usually creates a
run-time error even though the syntax looks correct.

1.5 Loops

The two loops covered in this section are the FOR-NEXT loop and the WHILE-
WEND loop. To execute a set of VBA statements a given number of times in a given
sequence, the FOR-NEXT loop has the following syntax:

For <counter>= start To end
1 | VBA statements
Next <counter>

As an example, we can generate two digits in a phone number.

[multiplier = 1
List.phone =0
Fori=1To7
List.phone = List.phone + i*multiplier
multiplier = multiplier * 10
Next i

The value of List .phone is 28 because @ = @ = 28. The only pur-

pose of the example is to show the syntax of the FOR-NEXT loop.
The WHILE-WEND loop has the following syntax.

While <condition>
1 | VBA statements
Wend
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It is more likely to program infinite loops with the WHILE-WEND loop than
with the FOR-NEXT loop. It is important to initialize the condition variable(s)
before entering the loop and to update the condition variable(s) inside the loop.

1.6 Setting Properties

Both the Excel spreadsheet and the VBA environment allow the user to change the
cell contents properties to bold, italic, underline, strikethrough, and the font size.
Except for the font size, most of these properties are Boolean valued.

= Object.Bold — Boolean

= Object.Italic — Boolean

= Object.Size — Integer

= Object.StrikeThrough — Boolean
= Object.Underline — Boolean

In our case, the VBA object is a cell in a spreadsheet. We use the following code
to reference the properties of the cell.

ActiveSheet.Cells(1, 3).Font.Bold = True
ActiveSheet.Cells(1, 3).Font.Italic = True

1 | ActiveSheet.Cells(1, 3).Font.Size = 25
ActiveSheet.Cells(1, 3).Font.Strikethrough = True
ActiveSheet.Cells(1, 3).Font.Underline = True

Cells(1,3) references row 1, column C in the last spreadsheet viewed before
entering the VBA environment. Alternatively, we could have substituted the Ac-
tiveSheet witha specific spreadsheet name such as Worksheets ("Sheet1") .
We have hard-coded Sheetl. Sheetl will always be the spreadsheet refer-
enced.

When updating a set of cells in a spreadsheet, it is convenient to use the WITH-
END-WITH statement. It can save some typing and make the code easier to read.
For example, we can re-write the VBA code for the font updates as follow:

—With ActiveSheet

.Cells(1, 3).Font.Bold = True

.Cells(1, 3).Font.Italic = True

1 |.Cells(1, 3).Font.Size = 25

.Cells(1, 3).Font.Strikethrough = True
.Cells(1, 3).Font.Underline = True

| End With

The WITH-END-WITH statement is convenient to use in complicated calcula-
tions as well.
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1.7 The Excel Examples

The Excel spreadsheet and the Excel VBA environment contain many of the same
functions. Some common syntax and conventions for the worksheet follows.

1.

2.

. Precede numeric data with leading zeros with the single quote

Columns in an Excel worksheet always begin with a letter.

Rows in an Excel worksheet always begin with a number.

. The three default names of the worksheets in an Excel workbook are Sheet1,

Sheet2, and Sheet3. Microsoft Corporation capitalized the ”S” in the
word “Sheet.” In the VBA for Excel environment, upper and lower case counts.

. Character and numeric data can ordinarily be copy and pasted into the work-

sheet cells.

9% 9 9.

to retain
those leading zeros. Entering the single quote in front of the data is a man-
ual operation. Changing the column to the TEXT format usually causes other
problems later on.

Formulas begin with an equal sign. Some useful formulas used in this applica-
tion include:

» mod (number, divisor) — where the argument number can either
be reference to a cell or a hard coded number such as 180 or 360; and the
argument divisor can either be a cell reference or a hard coded number
such as 180 or 360.

= average (range) — where the argument range is a range of cells
suchas A2. .A91.

= sum(range) — where the argument range is a range of cells such as
C2..C39.

In this application, we keep the data and results in the worksheets. We use VBA
to perform the calculations. Some common conventions in VBA for Excel follow.

1.

2.

Declare global variables at the top of a module.

VBA program code must appear inside a subroutine. Some useful, recurring
VBA statements used in this application include:

= Selection.Rows.Count — Visual Basicappliesthe selection ex-
pression to a range of data in the active spreadsheet. It returns a count of
the number of rows. Since we included the first row, the count n is larger
by one. This application adjusts for this.
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ActiveSheet.Cells(row, col) .Value —

The activesheet object references the data in the spreadsheet high-
lighted before entering the VBA editor. This entire statement allows reading
the data.

= Worksheets ("name") .Cells (row, col) .Value —
The worksheets object references the spreadsheet named NAME. In the
application name = stats. This entire statement allows writing data to a
spreadsheet other than the active spreadsheet.

= For-Next — This is the common looping structure used for calculating
the sums, the areas, the probability distributions, eccentricities, and so on.

= While-Wend This application uses this looping in Module 3 in the Secant
algorithms because the termination condition required more knowledge that
the number of observations in the data set.

= VBA numeric calculations — The Visual Basic for Excel numeric calcula-
tions are similar in style to those of other programming language statements.

Some useful, recurring VBA functions used in this application include:

* 1og (number) — This function returns the latural logarithm of the given
number. The user must write his own code for other base logarithms.

= exp (number) — This function returns the exponential function of the
given number. e is approximately 2.718282.

= worksheet function.pi () — This function returns the value of .
3. Modules are a collection of related subroutines and variables.
4. Declare local variables inside a subroutine.

5. Variable names are not case sensitive. For all declared variables, the VBA editor
will change the upper and lower case spelling.

In this application, the results are stored in the spreadsheet called STATS. See
Figure 1.4. The data are stored in the remaining spreadsheets. The first three columns
of the data must be in a particular order. Seel Figure 1.5.

1. Latitude z;.
2. Longitude y;.
3. Random variable of interest w;.

Further, select the data (and only the data) so that the subroutines can identify the
beginning and ending rows. To get into the VBA editor, follow these steps.

1. Click on the Developer ribon.
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Figure 1.4  This figure shows the Excel workbook. A data worksheet at the bottom named
KY 2003 has been circled. The worksheet named STATS has been circled. This application
always saves the results to the STATS worksheet.
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Figure 1.5  This figure shows the Excel spreadsheet with data. For this application to run
properly, the first row can contain any column names the reader wishes. Column 1 must
contain the latitude observations. Column 2 must contain the longitude observations. Column
3 must contain the random variable of interest. It is not advisable to put any observations in
the remaining columns as this application may over-write them.
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2. Click onthe Visual Basic button on the left side.

3. For a new module, click on the Insert menu item and select Module.

A blank VBA Editor screen will appear. Just like any other programming language,
either you know the syntax or you do not. VBA for Excel is similar in style to the
programming language Basic. However, the objects tend to be centered around the
Excel workbook — cells, spreadsheets, columns, rows, and so on.



CHAPTER 2

INTRODUCTION TO MAP POINT

Map Point is a software package that maps points on the Earth. The user provides
the latitude and longitude, and Map Point plots the point. The points in this textbook
are either geo-coded observations from Google Earth or calculations such as the
mean center (also called the center of gravity) or the semi-major and semi-minor
axis lengths of an ellipse. It is possible to enter, say a county name into Map Point.
Map Point will identify the county on the Earth. However, it will not give the user
the latitude and longitude coordinates. This is why we must use an alternate software
product.
There are several useful concepts when using Map Point:

1. Plotting the mean center on the Earth.

2. Plotting and graphing the entire survey of points on the Earth.
3. Drawing lines with an exact length in miles (or kilometers).
4. Saving work.

5. Copying and pasting images to other software applications.

Random Variables, Their Properties, and Deviational Ellipses. 13
By Roger L. Goodwin Copyright (©) 2015 Roger L. Goodwin
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Figure 2.1  This figure shows the Map Point dialog box for finding a point on the Earth
using the latitude and longitude.

Map Point does allow us to draw ellipses. However, it does not allow us to rotate
them. Because of this, we must draw ellipses outside of Map Point. We use Map
Point to draw the semi-major axis and the semi-minor axes.

2.1 User Data

Map Point has two ways to enter data:

1. Manually one data point at a time using Tools | Find | Lat\Long.
2. Import an Excel spreadsheet using Data | Data import wizard.

When the user enters data manually, one data point at a time, Map Point requests
the latitude and the longitude. When the user imports multiple data points via an Ex-
cel spreadsheet, Map Point requires column names with “latitude” and “longitude.”
In addition, Map Point expects the user to plot a third variable called a “data” vari-
able or an analysis variable along with the latitude and longitude. Naming the third
variable is at the user’s discretion. Notes on entering data manually appear in Section
2.2. More notes follow on importing data in Section 2.3.

2.2 Plotting the Mean Center

To plot the mean center (a single data point), select Tools | Find. The dialog
box on the left side in Figure 2.1 will appear. Upon selecting the Lat /Long option
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Figure 2.2 This figure shows the Map Point dialog box for browsing Excel files, which have
the coordinates and the random variable.
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Figure 2.3  This figure shows the Map Point dialog box that lists the Excel spreadsheets in
the Excel workbook.

at the top of the dialog box, the user types in the coordinates and clicks on the Find
button. Map Point will locate that latitude and longitude on the Earth and identify
those coordinates with a box.

2.3 Visualizing the Survey Data

Sometimes the user may want to visualize the survey data (i.e. many data points) and
the ellipse together (i.e. drawing). Alternatively, maybe, the user may want to visu-
alize the plotted points on the Earth with the random measurements (i.e. graphing).
Map Point does provide the software tool to plot or graph an entire data set onto the
Earth.

2.3.0.1 Plotting To plot the data, first prepare an Excel file with the latitude, lon-
gitude, and the random variable of interest. To plot the data set, select Data |
Import data wizard.
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Figure 2.4  This figure shows the Map Point dialog box containing the spreadsheet column
names and the data.

= The dialog box in Figure 2.2 allows the user to browse the hard drive and select
the Excel file that contains the survey data.

Map Point displays the dialog box in Figure 2.3 showing the spreadsheet names
in the Excel workbook. Select one of the spreadsheets.

Click the Next button in the Import Data Wizard. The screen in Figure 2.4
appears showing the columns and the data in the spreadsheet.

Click the Finish button.

» The Data mapping wizard inFigure2.5 appears. There are some choices
here. Do we want to use shaded circles, sized circles or pushpins to mark the
points on the Earth? The remaining options pertain to graphing the data. We
will discuss graphing later. Let us choose pushpins since they stand out the best.

= Click on the Pushpin button.

= Click on the Next button at the bottom of the dialog box. The dialog box
in Figure 2.6 appears. The user can change the color of the pushpins here, if
desired. Map Point automatically recognized the column names latitude
and longitude. This is important because the user would have had to
identify these had this not been the case.

= Click on the Finish button at the bottom of the dialog box. Map Point plots
the data in the spreadsheet on the Earth. Plotted data on the Earth are shown
throughout the textbook.

2.3.0.2 Graphing To graph the data, first prepare an Excel file with the survey
data. Save the Excel file to the hard drive. Select Data | Import data wiz-
ard.



i Choose a map type.
Click 2 button to select the best map type for the dat you want to may

©00 Shadedcrde

* Seedarde

& The sized cirde map displays data as dirdes
333 puitile symbol of varying size. The size of each circle
carrespond: the figher the

value, the larger the cide.

VISUALIZING THE SURVEY DATA
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Figure 2.6  This figure shows the Map Point choices for the pushpin colors.
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Figure 2.8  This figure shows the Map Point choices for scaling the data and change the
label text.

= The dialog box in Figure 2.2 allows the user to browse the hard drive and select
the Excel file that contains the data to analyze.

Map Point displays the dialog box in Figure 2.3 showing the spreadsheet names
in the Excel workbook. Select one of the spreadsheets.

Click the Next button in the Import Data Wizard. The screen in Figure 2.4
appears which shows the column names and the data.

Click the Finish button.

The Data mapping wizard inFigure2.5 appears. There are some choices
here. Do we want our data displayed as a pie chart, sized pie chart, column
chart, or as a series column chart? The remaining options pertain to plotting the
data. We discussed plotting data in the previous section.

Click on the Column chart button.

Click on the Next button at the bottom of the dialog box. The dialog box
in Figure 2.7 appears. Map Point automatically recognized the column names
latitude and longitude. The user must confirm to Map Point to graph
the column name 2008.

Click the check box next to the field 2008 to confirm graphing this field.

Click the Next button. The dialog box in Figure 2.8 appears. This lets the
user scale the data if needed. It also allows the user to change the label text.

Click on the Finish button at the bottom of the dialog box. Map Point dis-
plays a graph on the Earth of the data. Short bars represent small values and tall
bars represent large values. Map Point places the bars on the Earth using the
latitude and longitude coordinates.
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Figure 2.9  This figure shows the Microsoft Word shapes for drawing an ellipse.

2.4 Drawing Axes

Before drawing an axis, it may be necessary to zoom into the survey area. To draw
an axis for an ellipse which has an exact length measured in miles or kilometers,
select Tools | Measure distance. To toggle between miles and kilo-
meters, select Tools | Options and the dialog box in Figure 3.1 will appear.
The section on Units changes the unit of measure.

= Single click on the label box for the mean center. This will anchor the ruler.
Map Point displays the unit of measure and number of measurements at the
right side of the line.

= Drag the mouse the length required.
= Single click. This will anchor the right end of the line.

= Hit the <Esc> key to stop drawing lines.

2.5 Drawing Ellipse Boundaries

Given that we drew the major axis and the minor axis, and we identified the mean
center of the ellipse, it is a simple task to draw the ellipse using MS Word. The steps
are as follow:

= Draw the axes described in Section 2.4 using an imaginary X and Y -axes laid
on top of the Earth.
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Figure 2.10  This figure shows the Microsoft Office dialog box for formatting a shape.

= Note the axis of rotation (e.g. X or Y') from the statistical computations.

= Copy and paste the image from Map Point into MS Word. The imaginary X
and Y-axes form 90° angles. Half of 90° is 45°, and so on. If the rotation is
from the Y -axis, then begin counting from there.

In MS Word, select Insert | Shapes. The shapes in Figure 2.9 will
appear.

Select the fifth shape from the top, oval. Left click and right click around
the axes lengths. The oval will be dark filled.

Right click the oval. Left click the oval and select Format shape. The
dialog box in Figure 2.10 will appear.

= Clickonthe No f£i11 radio button.

= Clickon Close.

We drew the ellipse following the steps above. We need to rotate the ellipse.
Suppose we want to rotate the ellipse from the Y-axis 70°. Then, follow these steps:

= Click on one of the edges of the ellipse to highlight it.

= A green circle appears at the top of the ellipse. This is for rotating the ellipse.
Single click on the green circle.
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= Drag the mouse to obtain a 70° angle between the Y-axis and the semi-major
axis. Certainly you know where 90° and 45° are at. This is not difficult.

= Select File | Save As to save the ellipse.

To avoid the appearance of cross hairs in any published graphs, the user can
alternatively identify the ends of the major and minor axes using pushpins or some
other symbol. When in Map Point, delete any lines drawn when using the ruler.

2.6 Programmer Notes

= Microsoft Corporation did not provide Map Point with a development environ-
ment as they did with Excel and MS Word. We need to perform repetitive re-
search manually. The one advantage is that the registered version of Map Point
does accept Excel files for plotting and graphing data.

= Not being able to rotate ellipses in Map Point is a draw back. This is just another
reason to leave Map Point for another software product.

= Map Point does not geo-code data and return the coordinates to the user for
computational purposes. This is just another reason to leave Map Point for
another software product.






CHAPTER 3

MATHEMATICS REVIEW

3.1 Notation

We discuss some common notation used throughout this book here.

Random Variables, Their Properties, and Deviational Ellipses.
By Roger L. Goodwin Copyright ©) 2015 Roger L. Goodwin
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Notation Meaning

T Subscript denoting latitude.

Y Subscript denoting longitude.

t A dummy variable used in integration. Usually denotes the
latitude.

U A dummy variable used in integration. Usually denotes the
longitude.

w Subscript denoting the weight variable.

Yz Shape parameter to the Weibull distribution for the latitude.

Yy Shape parameter to the Weibull distribution for the longi-
tude.

A Scale parameter to the Exponential distribution and the
Weibull distribution for the latitude. Generally, there is no
implied equality.

Ay Scale parameter to the Exponential distribution and the
Weibull distribution for the longitude. Generally, there is no
implied equality.

The iteration number in the Secant algorithm.

n Denotes the sample size .

bi Represents the observed values of the latitude in spherical
statistics.

0; Represents the observed values of the longitude in spherical
statistics.

R Called the resultant length in spherical statistics.

l}, mo, no  Called the mean direction of cosines in spherical statistics.

S* Denotes the spherical variance.

T Denotes the matrix 7. The diagonal elements sum to the
sample size n.

B Denotes the matrix B. The diagonal elements sum to 2n.

The set {x1, x2, ..., x,} represents the observed values of the latitude. The set
{y1,y2, ..., yn } represents the observed values of the longitude. The set {w1, wa, ...
wy, } represents the observed values of the random variable at those corresponding
latitude and longitude. Using these three sets of observed numbers (w;, ©;, y;), we

estimate parameters from known distributions.

3.2 Derivatives

Some common derivatives used in this text are given next. Using the same notation
as in most calculus books and the CRC Standard Math Tables, u represents a func-

tion of =, a and n represent fixed real numbers.
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Example 1:
d(a)
=0.
dx
Example 2:
dlog,n
T
Example 3:
dlog.u 1du
de  udzx’
Example 4:
de" L au
—_— =€ —.
dx dx

Take the derivative of f(w, A, 2) = w +e~ X with respect to z.

dw%ef% 1\? =z
—_ = J— A
e w e

Example 5:
dzx®
da
We are not asking for the derivative with respect to z in this example.

=zx%logx.

3.3 Integrals
Some common integrals used in this text are given in this section.
Example 6:
/ adu = az.
0
Example 7:
/ Inndr =xzlnn| =alnn.
0 0
Example 8:
1
/ —dz =logx
x
Example 9:

/eam :eam/a

In this textbook, sometimes the symbol exp{} represents the exponential function
instead of e.
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3.4 Quadratic Equation

Most of the material in this section appears in CRC’s Standard Math Tables. A
quadratic equation has the form ax? + bz + ¢ = 0. Then, the roots are

—b £+ Vb2 — 4dac
r==——————
2a

If a, b, and c are real, then
1. If b2 — 4ac is positive, then the roots are real and unequal.
2. If b2 — 4ac is zero, then the roots are real and equal.

3. If b — 4ac is negative, then the roots are imaginary and unequal.

The roots to the quadratic equation give the equation for the standard deviational
ellipse. Cases (1) and (2) have more practicable importance than (3). We will discuss
the standard deviational ellipse and other ellipses in later Chapters.

3.5 Ellipse Equation

The elliptical formula appears in Equation (3.1).

(x—h)? (y—k?
2 + 02 =1,a>b>0 3.D
It may be necessary to complete the quadratic equations in the numerators to
obtain an ellipse.

3.6 Trigonometry Functions and Conversion Factors

In Excel, the Atn () function is used to obtain the argument x from the tangent
function Tan(z). The function takes degrees as input, but returns radians as output.
Given that, it is convenient to know the following conversion factors:

= To convert radians to degrees,

1 radian = @ = 57.2957795 degrees.
™

= To convert degrees to radians,

1 degree = & = 0.0174532925 radians.
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3.7 Modulo Arithmetic

Modulo arithmetic arises when we convert spherical data to directional data. The
spherical data comes from the observed latitude and longitude for a random event.
To apply some statistical techniques, we need to convert the longitude to a circu-
lar reference system, which results in directional data. To accomplish this, we use
modulo arithmetic.
To convert the latitude coordinates x; to the circular reference system z;, we use
the general rule:
x}, = mod(x;, 180). (3.2)

To convert the summary statistic for the mean latitude & back to the original co-
ordinate system, we use the general rule:
z, ifx <90°.
7 = nonEs 3.3)
—mod(180, %), ifz > 90°.
The reader should not worry about how to calulate z in this Chapter. Realize that

when samples with mixed signs for the latitude and longitude arise, we must have a
mechanism to determine the sign of the summary statistics.

Example 10: The coordinates of Australiaare (z;,y;) = (25° 16" 27.84 South, 133° 46’
30.49 East). The decimal degree coodinates are (z;, v;) = (—25.47399, 133.775136).
To convert the coordinates to decimal degrees in Map Point or Google Earth:

= Select Tools | Options.

= If using Map Point, the dialog box in Figure 3.1 will appear. If using Google
Earth, the dialog box in Figure 3.2 will appear.

= Click on the radion button Decimal degrees.

Settings [Map | Navigation | Directions | Coupons | Mabie

Startup
[#] Check for new version of application periadically

Find

[#] search online business listings when connected to the internet
[7] Always dear history when exiting program Clear now

@ piles “) Klometers

Units

Coordinates
8 Decmal degrees *) Degrees/minutes/seconds
© NfSEM = Plus/minus
Sample: 56.68728°N 123. 72997

Data maps

[#] Show currency symbols
[#]Show data tips

Save as web

[#] Show autosave message on save

Figure 3.1  This figure shows the Opt ions dialog box in Map Point. We use it to convert
the latitude and longitude coordinates to decimal degrees.
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—
~ ST eeamme

oview | cage | sounng | nevigasen | Genera |

Texture Colors Anisotrapic Filtering Labels/Ican Size Graphics Mode:

%) High Color (16 bit) = off © small ©) OpenGL
© True Color (32 bit) @ Medium @ Medium © Directx

[¥] Compress T High @ Large 7] use safe mode

Units of Measurement. Fonts

© System default

() Feet, Miles [ Choose 30 Font |

) Meters, Kiometers

igh quali b tion and fast
Use 3D Imagery (disable to use legacy 3D buildings)

[ Use ere rendering )

Overview Map

Map Size: small [ Large

Zoom Relation: infinity 1:1 {] sinfinity
[Restore Defauits o J[ coneel ) [ Apov |

Figure 3.2  This figure shows the Options dialog box in Google Earth. We use it to
convert the latitude and longitude coordinates to decimal degrees.

The latitude is negative. The longitude is positive. We convert the latitude using
modulo arithmetic. The new latitude observation becomes z; = mod(—25.47399, 180) =
154.52601. For computation purposes, we use the coodinates (x;, y;) = (154.52601, 133.775136).

To convert the longitude coordinates y; to the circular reference system y; we use
the general rule:
yi = mod(y;, 360). 3.4)

To convert the summary statistic for the mean longitude ¢ back to the original
coordinate system, we use the general rule:

7 = oty =180~ (3.5)
—mod(360,7), ify > 180°.

Example 11: The coordinates of Canada are (z;,y;) = (55° 56" 18.59 North, 106°
20’ 48.37 West). The decimal degree coodinates are (x;, y;) = (55.938497, —106.346771).
The longitude is negative. The latitude is positive. We convert the longitude using
modulo arithmetic. The new longitude becomes y; = mod(—106.346771, 360) =
253.653229. For computation purposes, we use the coodinates (z;, y;) = (55.938497,
253.653229).

3.8 Weighted Data

Most of the chapters deal with weighted data. What is the motivation for weighting
the latitude and longitude observations? Consider the case of un-weighted obser-
vations. For example, the Bureau of Justice Statistics (BJS) conducts a survey to
measure violent crime in the United States. Hypothetically, let us say that the lowest
level of geography reported by the BJS in the survey is at the state level. To find the
center of gravity of violent crime, we take the average of the latitude observations
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and the average of the longitude observations. Averages are un-biased estimators. To
say that each state contributes equally to the center of gravity is misleading. Some
states have a high number of incidents of crime while others have a low number of
incidents of crime. We should reflect this fact in the estimator. The literature on
weighted data typically multiplies the latitude and longitude by a weight. In this
case, the weight is the number of incidents of violent crime divided by the sum of
the number of incidents of violent crime for the entire U.S. This ensures the weights
are between zero and one. It ensures those states with a high number of incidents of
violent crime will have a correspondingly proportional effect on the center of gravity
— those states will draw the mean center of gravity to themselves. Vise-versa, those
states with a low number of incidents of violent crime will have the mean center of
gravity pulled away from them.

Throughout the text book, the examples use weighted data. Equation (3.6) shows
the weighting scheme for observation 7 out of n observations.

Wy

Wi = e (3.6)
iy Wi

Sub Set_Weights(sum_weight)

’this procedure calculates the weights between O and 1 in column D
’columns A, B, and C must be highlighed

n = Selection.Rows.Count

sum_weight = 0

[Fori=2Ton

[With ActiveSheet

2 |4 | sum_weight = sum_weight + .Cells (i, 3).Value

1
End With
| Next
[Fori=2Ton

—With ActiveSheet

3 |5 |.Cells (i, 4).Value = .Cells (i, 3).Value / sum_weight
End With

_Ne_xt

| End Sub

93999

Comments in VBA for Excel begin with a single tick mar . Loop 2 shows
the code for summing the weight column in an Excel spreadsheet. In this case,
Column C (referred to as 3) and rows 2 thru n are being summed. The Excel provided
function Selection.Rows.Count counts the number of rows hightlighted in
the active spreadsheet. It initializes the value of n. Loop 3 shows the code for the
final calculation of the weights. It divides each observation w; by the sum Y ;" | w;
and stores the results in Column D. We do not weight observation i equal to 1 (i.e.
row 1 in the active spreadsheet) because it is a label.
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Upon running this subroutine, column D will always sum to one. The use of the
WITH-END-WITH statement is optional. It is a short-cut to not having to keep typ-
ing in the Excel object — in this case, the spreadsheet last referenced ”Activesheet.”

3.9 Area

Consider the simple formula for calculating the area of an ellipse (or a circle). Let
a be the length of the semi-major axis. Let b be the length of the semi-minor axis.
If @ > b, then we have an ellipse. If @ = b, then we have a circle. A function to
calculate the area of an ellipse is given next. The parameters to the function are the
semi-major axis length a and the semi-minor axis length b. Equation (3.7) gives the
formula for the area of an ellipse.

f = mab. 3.7)

Function Area(a, b)
’a= semi-major axis length
1 | ’b=semi-minor axis length
2 [Area = WorksheetFunction.Pi * a * b

End Function

Line 2 calculates the area of the ellipse using the formula in Equation (3.7). The
value of the calculation is returned via the function name Area.

3.10 Eccentricity

Equation (3.8) gives the eccentricity of an ellipse (or circle) where a is the length of
the semi-major axis and b is the length of the semi-minor axis, a > b.

a2 — 12
e = —-— (3.8)

[Function Eccentricity(a, b)
’a= semi-major axis length

"b= semi-minor axis length

If a >="1b Then
1 Eccentricity = Sqr(a = 2-b " 2) /a’ eccentricity
2 | Else
Eccentricity = Sqr(b ~ 2-a "~ 2) /b ’eccentricity
End If

| End Function
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Some defensive programming has been incorporated into the Eccentricity ()
function. If a is the semi-major axis, then Equation (3.8) works fine. If the user for-
gets the variable definitions, then the function would return an error message if only
one formula was programmed. If a < b, the roles of a and b are switched in Equation
(3.8). The ITF-THEN-ELSE statment (2) demonstrates the defensive programming
concept.

3.11 Axes Length

Equation (3.9) gives the formula for the semi-major axis length a. Equation (3.10)
gives the formula for the semi-minor axis length b.

e 1Y 2(zy)? (3.9)
n [ )+ (z —y)? + 4(zy)? }
b= |Z+ 2Aey)” (3.10)
\(n [ ) + \/ (r —y)? +4(x } '
y)?

Calculating the values z, y, and xy are complicated sums depending on the proba-
bility distribution. The details on calculating the sums will be covered in later Chap-
ters. For now, assume that the variables z, y, and xy are given.

[Sub Axes_Length(m, x, y, Xy, a, b)

’m= number of observations

’x=sum of diffs from mean center squared x direction (input)

’y= sum of diffs from mean center squared y direction (input)

"xy= diff sums from mean centers x and y direction (input)

’a= semi-major axis (output)

’b= semi-minor axis (output)

1 [1fx >= y Then

a=8qr(y/m+2*(xy) " 2/(m* (-1 *(x-y)+8Sqr((x-y) " 2+4*xy " 2))))
b=Sqrx/m-2*xy) " 2/(m* (-1 *(xX-y)+Sqr((x-y) " 2+4*xy " 2))))
2 | Else

a=Sqr(x/m+2*(xy) " 2/(m*(-1*(y-x)+Sqr((y-x) " 2+4*xy " 2))))
b=Sqr(y/m-2%*(xy) " 2/(m* (-1 *(y-x)+Sqr((y-x) " 2+4*xy " 2))))
End If

_En_d Sub

Given the quantities x, vy, xy, thesubroutine Axes_Length () returnsthe
length of the semi-major axis a and the length of the semi-minor axis b.
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3.12 Rotation

The subroutine Angle_of Rotation () calculatesthe angle of rotation # in Equa-
tion (5.10). It also gives the axis of rotation. The first FOR-NEXT loop (12) cal-
culates the individual sums in Equation (5.10) and stores the values in the variables
x, v, and xy. The next four VBA statements calculate the angle of rotation
with the plus and minus sign accounted for. The angle of rotation 6 is stored in the
variables thetal and theta2. The IF-THEN-ELSE statement (13) deter-
mines the axis of rotation using the values thetal and theta2. If thetal
> theta?2 then the axis of rotation is the Y-axis because the square root term is
positive. Otherwise, the square root term is negative (or equal) and the axis of rota-
tion is the X-axis. The WITH-END-WITH statement (14) puts the results onto the
spreadsheet called STATS.

[Sub Angle_of_Rotation(x, y, Xy, note, atheta, itheta)
’calculate the rotation from the axes
"x= sum of diffs from mean center squared x direction (input)
’y= sum of diffs from mean center squared y direction (input)
"xy= diff sums from mean centers X and y direction (input)
‘note= states direction of rotation (output)
"atheta= angle of rotation in the x direction (output)

’itheta= angle of rotation in the y direction (output)

tan_thetal =-1 * (x -y)/ 2 *xy) + Sqr((x-y) " 2+4 *xy " 2)/ (2 * xy)
tan_theta2 =-1 * (x -y) /2 * xy) - Sqr((x-y) ~2+4 *xy "~ 2) /(2 * xy)
1 |thetal = Atn(tan_thetal) * 180 / WorksheetFunction.Pi()
theta2 = Atn(tan_theta2) * 180 / WorksheetFunction.Pi()
[If thetal > theta2 Then
note = "Rotate on Y-Axis”
atheta = thetal
itheta = theta2
2 | Else
note = “Rotate on X-Axis”
atheta = theta2
itheta = thetal
LEnd If
LEnd Sub
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3.13 Base 10 Logarithm

The VBA logarithm function has a natural exponetial base. VBA for Excel does
not provide a means to change the base of the logarithm. If the programmer wishes
to change the base, then the programmer must write a function for that particular
logarithm with that particular base. The static function Log10 (X) returns the log-
arithm of the number X with the base 10.

Static Function Log10(X)
1 |Log10 = Log(X) / Log(10#)
End Function






CHAPTER 4

GEO-CODING

The data used in this book comes from many sources. The majority of the data
resides on government web sites today. It would have been nice if the data were pre-
pared before downloading it. The data provided (free) did have the random variables
of interest. However, the data did not have the latitude and longitude observations.
Thus, the data must be geo-coded before performing any analyzes in this textbook.
Existing textbook authors use either outdated software or expensive software to
calculate their statistics. Outdated software such as FORTRAN 77 and 10 Statement
Fortran has been around since at least the 1960’s. Arc GIS and Map Soft are modern
Geographic Software Information systems that can geo-code data; however, products
such as those are expensive. We can always geo-code the data free on Google Earth
— but this becomes time consuming. Academic software products do exist such as
CrimeStat. It performs many statistical calculations including weighted calculations.
That one comes with an extensive software manual, too. Map Point, a Microsoft
product, is fairly inexpensive. The user can save work to the hard drive. The user
can copy and paste maps into other Microsoft products to draw the ellipse and to
rotate it. [Hammond (26)] has a thirty-one page printed "Student Notebook Atlas”
of the world. The atlas has the land masses enclosed in a box with the latitude and
longitude references on the sides of the box. The Hammond Atlas is an inexpensive

Random Variables, Their Properties, and Deviational Ellipses. 35
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product, too. It may be difficult to get the same precise coordinates that the software
products give.

It is a trade-off among data precision, time, cost, and scope of the research as to
what software one chooses. Data is data — of course, obtain it in the most prestine
condition possible before performing the research.

Do we need the software or data provider to geo-code the data and calculate the
statistics or just geo-code the data? In this case, we just want the data geo-coded.
We will write the code for calculating the statistics for the various ellipses in Visual
Basic for Applications (VBA) in Excel 2010. This application is further accessible
on Andriod tablets and smart phones using Quick Office.

Most of the geo-coding in this textbook was done using Google Earth. Begin
by downloading the software at http://www.google.com/earth/index.html. Google
Earth periodically updates their images of the Earth. This causes slight differences
in latitude and longitude readings. As long as the data is geo-coded under one or
another satellite images, it does not alter the survey data or the statistical techniques
presented in this textbook. Figure 4.1 shows Google Earth. As an example, for the
June Area Survey in Kentucky, the user types-in the county and state in the upper-left
corner of Google Earth. Google Earth returns the decimal degrees of the county and
state in the lower-right corner.

S Google Eart —
¥ Search | E (][] @]

ex: Restaurants
Get Directions History

v Union, KY, USA

[+ QiF] x

¥ Places

Union, KY,

lay ed “ ’
[EE Temporary Places iy

[+ IT—EE
v Layers | Earth Gallery 5
@S primary Database
¢ [ Borders and Labels
C@ ploces
v &= photos
CI= Roods
& LI 30 Buildings
> B ocean
& CI %8 Weather
b Clgr Gallery

& 1D Ginkal swarensce

Geoglees

Tour Guide o) § : e al i

Figure 4.1  This figure shows Google Earth. It shows how to geo-code a county with-in a
state.

Similarly, the user can type in a state name to obtain the geo-coding or the user
can type in a country name such as Canada to obtain the geo-coding. It is important
not to zoom into or out of the Earth when collecting these coordinates. Otherwise,
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the altitude (which is not being collected) will change. This in turn will change the
latitude and longitude observations.

4.1 Kentucky June Area Survey

This is a survey conducted by the US Department of Agriculture (USDA). Within the
USDA, the National Agricultural Statistics Service (NASS) supervises and oversees
the data collection and reporting responsibilities for this survey. Plenty of data is
available and downloadable that is ready to use with little or no formatting issues.

Experience says the Area Frame Section at USDA / NASS uses a stratified survey
design to obtain population totals, standard errors, and CVs. The June Area Survey is
conduced every year to measure, among other things, corn acreage, cotton acreage,
soybean acreage, three seasons of wheat acreage, NOL cattle, and the number of
farms in the United States. Each state has a set of land use strata specific to it. Within
each strata, replicates are assigned to sub-strata. A sample of land called a segment is
finally sampled. Since a minimum of two replicates is assigned to the sub-strata, the
minimum number of segments per strata is two (assuming one sub-strata). Segment
sizes range from 1/10th of a square mile to 1 square mile (640 acres per mile). Often,
multiple sub-strata are assigned to each stratum. A complete, comprehensive set of
designs for the United States can be found in the Area Frame Design Books.

[Kelly (32)] describes the June Area Survey conducted by the USDA / National
Agricultural Statistics Service. That paper describes techniques intended to identify
differences in variation, not to visualize them. Given that the spatial data is available
and the computations described so far, it is possible to visualize the variation in
the data. The author draws the sample from a sample of land called a segment.
Segment sizes range from 1/10th of a square mile to 1 square mile (640 acres per
mile). Enumerators completely cover each segment during the survey. Cartographers
and survey researchers know every segments center point coordinates. Instead of
using the simplistic weighted estimators for the total crop acreage where the weights
are simply the total number of segments divided by the number of sampled segments,
the alternative weights will be defined using spatial data . We will define alternative
weights using spatial data, instead of using the simplistic weighted estimators for
the total crop acreage where the weights are simply the total number of segments
divided by the number of sampled segments. From these alternative weights, we can
derive what are called what are called weighted mean centers and weighted standard
deviational ellipses.

We obtain the data in this book by augmenting the NASS data available to the
public with Google Earth! coordinates for each county. Data consumers can easily
download the crop data. Figure 4.2 shows the data downloaded from the NASS web
site. Regional level observations have arrows identifying them. The yellow arrows
point to the following formatting issues for us.

IThe web site is www.earthgoogle.com. Decimal coordinates are preferred since we can more easily
integrate them than degrees, minutes, and seconds.
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A. The arrow points to non-geographical data. For analytical purposes, we delete

non-geographical observations.

B. The arrow points to the sum of a region. For analytical purposes, we delete

regional observations.

Obtaining the latitude and longitude for the counties does take time. Given that,
our sample will be the county-level data in Kentucky for corn for grain. We are not
so much interested in the quantity of acreage of corn grown in June for the state. We
are interested in the location that corresponds to that single quantity for the state.
Hence, we augment the data with latitude and longitude coordinates.

| A | B c| o E F H | L M N
1 [Commodity _IPractice Year State  cofips StFips District county CommCode PracCode Planted All Purposes Harvested Yield Productior
2 (Com For Grain Total For Crop 2003 Kentucky Ballard 21 10 711199199 9 26100 25500 128 326400
3 (Corn For Grain Total For Crop 2003 Kentucky Calloway 21 10 3 11199199 9 38300 37600 112 421120
4 |Comn For Grain Total For Crop 2003 Kentucky Carlisle 21 10039 11199199 9 2300 22700 141 320070
5 (Com For Grain Total For Crop 2003 Kentucky Fulton 21 0 75 11199199 9 26300 24200 144 348480
6 Com For Grain Total For Crop 2003 Kentucky Graves 2 10 83 11199199 9 60400 59400 131 778140
7 Com For Grain Total For Crop 2003 Kentucky Hickman 21 100105 11199199 9 36800 37000 138 510600
@ [Com For Grain Total For Crop 2003 Kentucky Livingston 21 10 139 1119919 9, 7000 6600 114 75240
9 |Com For Grain Total For Crop 2003 Kentucky Lyon 21 100 143 11199199 9 6000 5700 132 75240
10 Com For Grain Total For Crop 2003 Kentucky McCracken 21 100 145 11199199 9 12500 12000 117 140400
11 Corn For Grain Total For Crop 2003 Kentucky Marshall 21 100 157 11199199 9 9300 8700 100 87000
12 Corn For Grain Total For Crop 2003 Kentucky Trigg 21 100 221 11199199 9 21300 21100 126 265860
13 Corn For Grain Total For Crop 2003 Kentucky D10 Purchase ¢21 10 999 11199199 9 264100 260500 1285 3348550
14 Comn For Grain Total For Crop 2003 Kentucky Caldwell 21 20 3 119999 9 24400 23700 120 284400
15 Com For Grain Total For Crop 2003 Kentucky Christian 21 200 47 11199199 9 75200 73700 144 1061280
16 Corn For Grain Total For Crop 2003 Kentucky Crittenden 21 200 55 11199199 9 9000 8400 124 104160
17 Corn For Grain Total For Crop 2003 Kentucky Daviess 24 200 55 11199199 9 56000 54700 139 760330
18 Com Far Grain Total For Crop 2003 Kentucky Hancock 21 20 91 11199199 9 0500 0500 118 76700
19 Corn For Grain Total For Crop 2003 Kentucky Henderson 21 200 101 11199199 9 63900 61800 140 865200
20 Com For Grain Total For Crop 2003 Kentucky Hopkins 21 200107 11199199 9 27100 26900 135 363150
2 Com For Grain Total For Crop 2003 Kentucky Logan 21 200 141 1119199 9 56900 55000 168 924000
22 Com For Grain Total For Crop 2003 Kentucky McLean 21 200 149 11199199 9 34800 34500 153 52780
23 Cam For Grain Total For Crop 2003 Kentucky Muhlenberg 21 200 AT 11199199 9 12100 1900 123 146370
24 Com For Grain Total For Crop 2003 Kentucky Ohio 21 200 183 11199199 9 24300 24000 141 338400
25 Com For Grain Total For Crop 2003 Kentucky Simpson 23 200 213 11199199 9 36100 35100 163 7130
26 Com For Grain Total For Crop 2003 Kentucky Todd 21 200 219 11199199 9 44700 43200 151 652320
27 Com For Grain Total For Crop 2003 Kentucky Union 21 20 25 11199199 9 77300 75300 139 1046670
28 Com For Grain Total For Crop 2003 Kentucky Webster 21 20 233 11199199 9 30800 30400 147 446880
29 Com For Grain Total For Crop 2003 Kentucky D20 Midwester engi i | 200999 11199199 9 579100 565100 144.6 8169840
30 Com For Grain Total For Crop 2003 Kentucky Adair 21 30 1 1194199 9 7800 4500 83 37380
3 Com For Grain Total For Crop 2003 Kentucky Allen 21 30 311199199 9 3000 200 147 39690
32 Com For Grain Total For Crop 2003 Kentucky Barren 21 30 9 11199199 9 15700 9500 135 128250

My W County wo_units1387 .
=

Figure 4.2  This figure shows the Excel spreadsheet of the Kentucky data. The spreadsheet

has not been geo-coded. It still contains the regional data.

The data lacks latitude and longitude observations. These observations are ob-
tainable from Google Earth. Since, the geography attached to the observations from
USDA are at the county level , the most precision we can hope for from Google
Earth is the latitude and longitude of the counties in the reported data for the given

counties.

4]
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4.2 US Crime Statistics

The Department of Justice established the Bureau of Justice Statistics (BJS) on De-
cember 27, 1979, under the Justice Systems Improvement Act of 1979 as an amend-
ment to the Omnibus Crime Control and Safe Streets Act of 1968. According to
the Bureau of Justice Statistic’s website, their mission is to collect, analyze, publish,
and disseminate information on crime, criminal offenders, victims of crime, and the
operation of justice systems at all levels of government.

This data appears on the Fed Stats web site. Figure 4.3 shows the downloaded
data from the Department of Justice. Examining the left column (Column A), some
of the rows are summarized to the regional level . The data provider merged the
headings across the top. The data include Puerto Rico and Hawaii. These states and
islands are disconnected from the US. We are interested in the main-land part of the
United States.

A ] 3 D E E g H i J K L ]
Murder and
nomneghigent

‘ Violeat crime manslmghter Forcible rape Robbery Aggravated assaut
5 Rate per Rate per Rate per Rate per Rate per
6 Area Year Populsion’ _ Number 100,000 Number 100000 Number 100000  Number 100,000  Number 100,000
Bt st TP g 1 01,621,157 1408337 4669 16929 56 90427 300 45125 1476 85856 2838
s States Tt 2008 304059,724 1382012 4545 16272 54 89,000 293 441855 1453 BI488S 2746
9 Percent change -1.9 27 -39 47 -1.6 24 0.7 1.5 -5 32
0ot A 0 S4680.626 203,632 AT24 2261 41 10821 198 75326 1378 L1524 2007
¢ Rhaeeal 2008 54924779 203,654 308 2203 42 10981 200 76048 1385 11433 2082
12 Percent change L 04 +4 L0 +1.5 +1.0 +#.0 HS5 08 12
1 - 2007 14264185 43334 3038 3725 3398 ;Y 12225 887 27357 1918
e Bnd 2008 14303542 46681 3264 380 27 3580 250 12696 888 30026 2099
15 Percent change 417 474 464 46l 54 452 B39 436 98 495
L 2000 B 3502300 8965 2560 06 30 658 188 3607 1030 4594 1312
17 ws B 3501252 10427 2978 ;35 674 193 3907 1116 573 1635
18 Percent change <163 +163  +160 +161 #2415 83 483 M6 <26
Bl i 2007 1317200 1554 1180 16 B 297 M9 265 9 602
w 2008 131645 L8417 1175 A4 s 28 3283 808 614
2 Percentchange  C 05 04 HI6 HLT 41 40 46 45 49 419
2 s 2007 6449755 27832 4315 18 29 163 253 7006 1086 19,008 2947
nl * 2008 6497967 20174 4490 167 26 1736 267 7060 1088 20202 3109

Figure 4.3  This figure shows the Excel spreadsheet of the crime data. The spreadsheet
has not been geo-coded and still contains the regional data, two years of data in the same
spreadsheet, merged columns, and percentages.

To address cleaning the data from this spreadsheet will take more work than that
for the Kentucky spreadsheet. This data contains merged cells, regional data and
two years of data in the same spreadsheet. In addition, we are not interested in the
percentages. We must contend with some of the problems indicated by the yellow
arrows. Obviously, the data provider created this spreadsheet for presentation pur-
poses, not analytical. The yellow arrows point to the following formatting issues for
us.
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A. The arrow points to the sum of the U.S. totals for the U.S. This is the first clue
that other summary data exists in the spreadsheet. We need to delete summary
data.

B. The arrow points to multiple years of data in the same spreadsheet. We need to
separate this into two different spreadsheets for the algorithms in the VBA code
to work properly.

C. The arrow points to a percentage change. Although useful for a presentation,
we do not need the percentage change for any analyzes in this book. We need
to delete percentage change data.

4.3 OECD Countries

The Organization for Economic Cooperation and Development (OECD) has its head-
quarters in Paris, France; the organization produces 250 publications per year. Eu-
rope created OECD as a successor to the Marshall Plan for the reconstruction of Eu-
rope after World War II. OECD countries are committed to democracy and the mar-
ket economy. This data comes from the Organization for Cooperation and Economic
Development website at www.oecd.org. Obviously, some very large economies are
missing from the data. Non-OPEC countries such as India is missing. Most OPEC
countries (Saudi Arabia, Egypt, Iran, Libya, etc.) are missing. This data does provide
a global aspect for the computations in this textbook. We must perform additional
pre-computations on the latitude and longitude before performing any proposed cal-
culations.

We need knowledge of the bounds on the latitude and longitude before modeling
this data set. In prior data sets, the longitude was consistently negative. We can
simply change the sign to positive, and then carry out certain computations. This is
not the case with the OECD data. It has mixed signs for both the latitude and the
longitude. See Figure 4.4. An understanding of the Prime Meridian and the Equator
measurements helps. Very little formatting is necessary compared to the US Crime
data to use it "as-is.”

Consider the following mapping for the latitude [—90°, 90°].
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[ ] B F G H \ \ ]
1 [Feonomics:Key tables from OECD - 1SSN 2074-384x- © OECD 2011
2 Gross domestic productin US dollars
3 At current prices and current PPPs
4 Bilhons of US dollars
5 2006 [ 2007 [ 2008 [ 2009 [ 2010
6 Australia 1743 8282 8472 8765¢ 9015e
7 Austria 2999 3138 3322 247 3345
§ Belgium 360.1 3181 3949 391.8 4059
3 Canada 12005 12630 1299 12756 13313
10 Chile 2142 207 2442 2382 2538
1 Czech Republic 2295 2537 2396 2682 2T41e
2 Dermark 1959 2060 2169 2081 2155
13 Estonia 57 285 292 266 283
1 Finland 1743 1912 2008 188.1 196.7
15 France 20002 21239 21957 21733 22327
16 Germany 27768 29305 30525 29753 31064
7 Greece 3021 3162 3380 307 6.7
13 Hungary 1846 1929 2078 2033 2104
19 Iceland 109 16 125 "1 ik
0 Ireland 180.1 1917 189 1768 1751
n Israel (1) 176.1 1909 2023 2058 2180e
n fialy 17815 18939 19905 19515 19952
B Japan 40714 42902 43229 41352¢e 43303e
u Korea 11730 12691 13064 13210 14237e
5 Luxembourg 31 406 438 422 459
% Mexico 14322 15409 16296 15404 16412¢

Figure 4.4  This figure shows the Excel spreadsheet of the Gross Domestic Product data.
The spreadsheet has not been geo-coded.

Latitude | mod(x;, 180)
10 10
20 20
30 30
40 40
50 50
60 60
70 70
80 80
90 90

0 0
—10 170
—20 160
—40 140
—50 130
—60 120
—80 100
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For negative values of the latitude, the conversion has unique, positive latitude
values. We can do the same for the longitude using modulo 360. When we interpret
the results, the mean latitude and longitude must be converted back to the original
coordinate system.

Longitude | mod(y;, 360)
10 10

40 40
80 80
120 120
160 160
180 180
—10 350
—40 320
—80 280
—120 240
—160 200

4.4 Coordinate Systems

The Cartesian coordinate system is the classical coordinate system taught in most
textbooks. In two dimensions, we have an X-axis and a Y-axis. This is a single
pole coordinate system with (0, 0) at the center. In three dimensions, we have the
additional Z-axis — still a single pole coordinate system.

We can alternatively define the function r = ix + jy, where i and j are vectors

defined as:
. 1
1=
0
. (0
=4

In the spherical statistics literature, a one-pole coordinate system appears most
often because these coordinate systems have the most practical applications and in-
terpretations. Suppose we are measuring the hands on a clock, a roulette wheel, an
experiment where a person in a room must identify the source of a sound, and so
on. All of these examples have one common theme in that they have one pole. The
center of the clock is the pole. The center of the roulette wheel is the pole. The
person’s head is the pole. [Leong and Carlile (38)] describe the hoop coordinate sys-
tem, which has two dimensions and one pole. They mention that data is restricted
to observations lying on the sphere as opposed to measuring distance (i.e. the sound
experiment).

and
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Figure 4.5  This figure shows the Earth using Map Point. We identify points on the Earth
using latitude and longitude.

Exact formulas exist for converting from the polar coordinate system to the Carte-
sian coordinate system (and vise-versa). For most problems of practicable impor-
tance from these two coordinate systems, we restrict the space to one-dimension or
two-dimensions so that it becomes a circular coordinate system. Otherwise, inter-
preting the results becomes difficult.

Another set of practicable problems use latitude and longitude coordinates. We
identify points on the Earth using latitude and longitude. See Figure 4.5. We look-
up the latitude and longitude coordinates for our data. This is called geo-coding.
The latitude ranges from (—90°,90°). The longitude ranges from (—180°, 180°).
We can always convert geographic data to circular data. The mean results can be
converted back to the original coordinate system while preserving the sign. We must
interpret the results such as the mean center, which is also called the center of gravity.
Using the calculations from the spherical statistics literature, these calculations strive
to project the data onto an X, Y and Z-axis as opposed to the Earth. Using the
calculations from the geography and statistics literature, the center of gravity will
always be in the survey area. Some careful forethought goes into what you expect
from spherical statistics.

Many times the data in this textbook comes from several sources. The random
variable w; augments with a pair of coordinates called latitude z; and longitude
y; for each observation 7. We omit the altitude from the analysis. Using special
software, we plot the random variable on a map using the pair (z;,y;). To make
calculations simple, we measure the latitude and longitude pairs (z;, y;) in degrees,
then decimal minutes and seconds as opposed to degrees, minutes, and seconds.
Having knowledge of the Cartesian coordinate system for plotting points does help
to understand the subtle differences between mapping and plotting.

When drawing an ellipse on a map, knowledge of the polar coordinate system is
most useful. We derive several pieces of information:

= The center of the ellipse.

= The semi-major and the semi-minor axis lengths.
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= The angle of rotation from an imaginary X or Y -axis.

We have enough information to draw an ellipse and to rotate the ellipse from the
imaginary axis. The imaginary axis (or axes) is simply the X and Y-axes from the
Cartesian coordinate system super-imposed onto a map using specialty software.
Chapter 2 discusses some of the specialty software available.

= The software comes with a ruler to draw lines. The software can measure lines
in miles or kilometers. We use the ruler to draw the semi-major and semi-minor
axes.

= The user must use another software product to draw and rotate the ellipse.



CHAPTER 5

STANDARD DEVIATIONAL ELLIPSE

Textbooks on geo-statistics cover the weighted mean center and the dispersion of
the data, [Davis, (12), p. 25]. The author defines the weighted mean center used
in Section 5. The author also defines the accompanying standard distance based on
Pythagoras’ theorem for a set of coordinates (x;, y;) as

n

1
PICEEE
n =1

> (i —9)> (5.1)
1=1

S|

The author objectively compares the standard distance of the dispersion of different
point patterns. to be compared objectively. He gives as an example the number of
clothing shops versus butchers or grocers. The standard distance is a single num-
ber and always results in a circle around the mean center to show the dispersion.
[Gregory (22), and Lee (35)] discuss data transformations and regression estimators.
To derive the estimators for the weighted mean centers, we can use a general lin-
ear means model. [Johnston, (31), p. 130-34] discusses the relationship between
the standard deviational ellipse and the correlation coefficient in linear regression
modeling. The author provides details to graphical representations in lieu of proofs.

Random Variables, Their Properties, and Deviational Ellipses. 45
By Roger L. Goodwin Copyright ©) 2015 Roger L. Goodwin
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We will introduce an extension to the standard deviational ellipse and use the
above three criteria given in [Yuill, (67)] to compare the results. This book will
consider these two spatial estimators:

1. The weighted mean center — shows the spatial mean of a random variable.

2. The weighted standard deviational ellipse — shows the spatial spread of a set
of point locations for a random variable.

The mean center is simply the usual sample mean found in the statistics literature.
For the weighted mean center found in the geo-statistics literature, the formulas and
their distributional properties are neither too obvious nor intuitive. We will discuss
those concepts next.

5.1 A Weighted Regression Model

Consider the weighted regression model y; = « + (z; + ¢; where ¢; ~ N (0, \/1,1_-‘7)
where w; represents the weighted observations. [Lee (35), page 236] gives the fol-
lowing estimators.

The parameter estimator for o appears in Equation (5.2).

a=y-pz. (5.2)
The parameter estimator for 3 appears in Equation (5.3).
6 =
. (S war) (S0 wiwe)
n _ _ WY — = 7 =
Y wil@i —2)(yi —y) 2im1 Wiy Tow 53)
n — n 2 *
i wila: — ) S et — O )
i=1
where the averages are estimated using Equations (5.4) and (5.5).
T = M (5.4)
D Wi
j = izt Wi (5.5)

D wi
Under the normal distribution, the weighted residual sums of squares for o2 ap-
pears in Equation (5.6).

&= wily — & — By, (5.6)
=1 =1

Equation (5.7) shows the weighted likelihood function for the regression model.
It has a chi-square distribution.
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n

L=]] (ﬁ) exp{—z o } (5.7)
=1

=1

The natural logarithm of the weighted likelihood function appears in Equation
(5.8).

n n

() |- 43 0

=1 =1

- B%)Q

(5.8)

(TB )

1nL—1nl

Equation (5.8) is based on the Akaike information criterion. The entire equation is
retained for comparison purposes in Section 7.10.

5.2 Mean Latitude and Mean Longitude

Let (w; x;, w; y;) equal to a weighted, paired observation. Let w; equal to the weight
for the sample total of a random variable on observation 7. Let z; equal to the latitude
of the i*" observation such that 0 < z; < 90. Let y; equal to the longitude of the ith
observation such that —180 < y; < 180.

Equation (5.9) is called the center of gravity.

5.3 Standard Deviational Ellipse

To calculate the standard deviational ellipse, one must substitute the latitude and
longitude coordinate pairs as follow.
A ot !/ =
Ty =Ty =T, Yy =Yi— Y-

[Yuill (67)] calculates the angle of rotation for the weighted standard deviational
ellipse as

(S ot w - v ws)
23wy,
’ ’ 2 2
VS 22w — S w) + 4 (S0 alyjw)
23wy,

Observe that Equation (5.10) gives the roots to the quadratic equation where the
constants

tanf = —

(5.10)

n n n
10 2/ 2/
a = E Tiywi, b= E Ti W — E Y7 w;, and c= 1.
i=1 i=1 i=1
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The Arctan () function is applied to the right-hand-side of Equation (5.10) to
obtain the angle of rotation #. The value for 6 is substituted into Equations (5.11)
and (5.12) to calculate the standard error terms along the axes. The standard error
terms for the semi-major axis and semi-minor axis are given by Equations (5.11) and
(5.12).

"y sinf — ! cos 0) 2w
5m — \/Z'L—l(yzs;:n jiLCOS ) w (511)
i=1 Wi
" (yhcos — z sin 6)2w;
5y—\/21_1(y1 ST ) (5.12)
i=1 Wi

The advantages of these two estimators are that they allow trends in the data to
be visualized. The mean center is pulled closer together with counties with larger
weights w; using Equation (5.9). Section 5 will show how Equation 5.9 is derived
using a general linear means model and a linear regression model. Section 5.5 will
show how Equation (5.10) can be extended to the exponential model.

5.3.1 Weighted Mean Center

Although [Yuill, (67)] did provide a derivation for the weighted ellipse, the author
did not provide the derivation for the mean centers. We will cover the derivation
next. Let the variable W represent the random variable of interest. We wish to give
those latitude observations with the largest values of W the most weight, and those
latitude values with the smaller values of 1/ the lesser weights. Consider the general
linear means model

€ €y
+

where w; equals to the weight for the sample total of a random variable on ob-
servation 7; x; equals to the latitude of the it" observation such that 0 < z; < 90;
y; equals to the longitude of the 7*" observation such that —180 < 7; < 180; i
represents the weighted mean response of the latitude responses; and ., represents
the weighted mean response of the longitude responses. The general linear means
model weights the error terms by w;.

Consider the first model (latitude). We wish to minimize the weighted sum of
squares. Our error terms are the difference between the known random values and
the predicted values (i.e. the epsilons).

ex = VJwi(Ti — fiz).

We square e, and sum to obtain the weighted sum of squares.

model z; y; = piz + fty +

n
ei = sz(% - ,um)Q.
i=1
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The w}s and x}s are known observations. We estimate /i, using the wjs and xs
observations. We take the derivative of e,, with respect to i, ; set it to zero; and solve
for piy.

n n
Zwixi —;szwi =0=
i=1 i=1

n n
E WiT; = g E Wi =
i=1 i=1

7. (5.13)

A similar derivation holds for the longitude e,, by substituting y; for x; and p,, for
4o above.

My, = Z?:l WilYi _ 7
Y Dt Wi '

The quantities (Z, §) are the weighted mean center for the random variable V.

(5.14)

5.4 Ellipse Properties

The quantity a; in Equation (5.15) gives the length of the semi-major axis under the
standard deviational ellipse.

— = Zyl w; = (5.15)

1 23" alytw; 2
+— (Zz 1 iYi )

n 2
(S P, — Y 2w+ (0 2w — S w4+ 4 (0 alyw,)

where 2 = 2, — 2,0 < z; < 90and ¢} = y; — g, —180 < y; < 180, w; >
0. Both f and y are weighted means. Equation (5.15) is subject to the constraint
Doy Wi > 3 Y wi

The quantity b; in Equation (5.16) gives the formula for the semi-minor axis
length for the weighted standard deviational ellipse.

1 n
b2 — ~ >t = (5.16)
1=1
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2

2(2? 1x;y’wi)
2 2
(O s — Y y2w) + (0 e — S w4+ 4 (0 alyw,)

There are two formulas for the area. We use one formula to check the other.

1
n

F= (5.17)

n

> (@i —2)Pwi Yy (i — §)Pwi — Y (@i — 2)(yi — Pw

i=1 =1 =1

The second formula for the area uses the axes lengths. F' = 7a1b; gives the area
where a; is the semi-major axis length and b; is the semi-minor axis length.

Most calculus books give the eccentricity for an ellipse (or circle). It is based on
the axes lengths with the major axis a; being the longest.

2 _ 12
o= YOl (5.18)
a
0 < e < 1 binds the eccentricity e. It denotes the degree from circularity. When e
is close to 1, it means that the shape of the ellipse is very elliptical and very close to
a straight line. When the eccentricity e is close to 0, it means that the shape of the
ellipse is close to a circle.

The concentration is a count of the number of data points that fall within (or on)
the ellipse. We calculate this quantity as a percentage relative to the total number
data points.

IF Y7 a2 w; > 3", y2 w;, then the lengths must be calculated using the two
equations:

n
1
2 /2 _
= E Yi Wi =
=1

2

1 2(2? 1x’y’wi)
n 2
(0 @y — Y )+ (S e — Ty + 4 (S alylwy)

n
1 12 _
- — T, Wi =
n -
1=1

n 2 2
— (i 2w — i yiwi) + \/(Z?zl witwi = 3o yPwi)” + 4 (0 wiyiws)
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If Y7 a2 w; < 31, y? w;, then the lengths must be calculated using the two
equations:

n
2 1 12 o
a; — — T, Wi =
n-
1=1

2
L1 2 (X0, whylwy)
n 2 2
(T yPws — Y alw) (D s — S ) 4+ 4 (S, alylw)
and

2 1 ¢ 2
bl_ﬁzyiwi:
i=1

1 2 (L0 alyiw)”

n no 2 n 2 no 2 no_ 2,02 n
= (im Y wi = Yo A wi) + \/(Zi:l Yrwi — 3 i vrwi)” +4 (i
This ensures we do not take the square root of a negative number in the denominator.
Avoiding taking the square root of a negative number, if a; > by, then a; is the

semi-major axis and by is the semi-minor axis. Otherwise, if a; < by, then a4 is the
semi-minor axis and b; is the semi-major axis.

5.5 Kentucky Example

Table 5.1 Results on Corn acreage in Kentucky

2003
Center (37.38297399, -86.8129514)
Axes a = 184.8734659, b = 52.23219209
Area 30,336.30686 sq. mi.
Standard Deviations | ¢, = 1.29151776, 6, = 1.625551351
Rotation Y-Axis
Orientation 0, = 70.36257022°, 0, = —19.63742978°
Eccentricity 0.959258636
Concentration 55/90

Tables 5.1 and 5.2 summarize the results from the weighted standard deviational
ellipse. Using Equation (5.10), we calculate the angle of rotation as # = 70.4°, the
semi-major axis length as ¢ = 184 miles and the semi-minor axis length as b = 52
miles (using 2003 data as an example). With the semi-major and semi-minor axis

2
Yiw;)
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Figure 5.1  This figure shows the Kentucky data from 2003 and the standard deviational
ellipse. It shows a sketch of the standard deviational ellipse with Ohio County at the center.
The semi-major axis is approximately 184 miles long and the semi-minor axis is approximately
52 miles long. We rotated the major axis roughly 70° from the Y-axis in an imaginary
Cartesian coordinate system.

Table 5.2  Results on Corn acreage in Kentucky
2004

Center (37.40588805, -86.8066601)
Axes a = 184.632769, b = 53.02565716
Area 30,757.05259 sq. mi.

Standard Deviations

0, = 1.28529402, §, = 1.613981198

Rotation Y-Axis
Orientation 0, = 70.42188382°,0, = —19.57811618°
Eccentricity 0.957872058

lengths, #, and the weighted mean centers from Section 5, we can draw the standard
deviational ellipse in Figure 5.1 using the procedure outlined in [Lee and Wong (36)].
It shows Ohio County as the center.

Given the summary tables, there is sufficient information to draw the ellipse. The
information needed includes (Z, 7), the angle of rotation from the given axis, and
the lengths of the major and minor axes. The program does not draw the ellipse or
calculate the percentage of concentration.
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5.6 Crime Example

The example in this section comes from violent crime in the U.S. for 2007 and 2008.
Tables 5.3 and 5.4 summarize the results for the weighted standard deviational el-
lipse. The data includes the continental U.S.

Table 5.3 Results on Violent Crime in the U.S.
2007

Center (36.8766,-92.1131260)
Axes a = 2,604.517043, b = 821.0805658
Area 6,718,353.465 sq. mi.

Standard Deviations

0, = 4.857083084, §, = 4.857028283

Rotation X-Axis
Orientation 0> = 0.045206827°, 0, = —89.95479317°
Eccentricity 0.949007823
Table 5.4 Results on Violent Crime in the U.S.
2008
Center (36.88957333, —92.0322279)
Axes a = 2,577.512836, b = 809.2827681
Area 6,553,163.484 sq. mi.

Standard Deviations | ¢, = 15.39212752, 6, = 15.39222494

Rotation Y-Axis
Orientation 0> = 89.89264601°, 6, = —0.107353986°
Eccentricity 0.949430202

Figure 5.2 shows the standard deviational ellipse for the violent crime in the US
for 2007. The ellipse covers most of the United States. We omitted Puerto Rico and
Hawaii from the analysis. A historgram of the data shows the three highest crime
states as California (13.6%), Texas (8.7%), and Florida (9.4%). These three states
streach from the west coast to the east coast and account for almost 32% (one-third)
of the violent crime. This could explain why the weighted, standard deviational
ellipse covers so much area.

5.7 GDP Example

This section shows the weighted standard deviational ellipse and the statistics for the
Gross Domestic Product of OECD Countries data set. Since this is a global data set,
the quantities tend to be enormous compared to the other two examples. Tables 5.5
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Figure 5.2 This figure shows the standard deviational ellipse of violent crime in the US for
the year 2007. It also shows the values of the violent crime using a bar graph. The ellipse is
rather large compared to the area in the survey.

Table 5.5 Results on Gross Domestic Product of OECD Countries

2008
Center (44.95865069, 173.1929)
Axes a = 4,308.807649, b = 695.7350122
Area 9,417,829.832 sq. mi.
Standard Deviations | ¢, = 20.69202965, 6, = 19.93139537
Rotation X-Axis
Orientation 0, = 1.307691476°, 0, = —88.69230852°
Eccentricity 0.986877931

and 5.6 summarize the standard deviational ellipse for the GDP data for 2008 and
2009. We see that the ellipses are highly eccentric. The total area contracted from
2008 to 2009. This is the period where the Great Recession took place. The mean
center changed an entire degree in both the latitude and longitude directions.

The GDP data for 2010 gives the center of gravity as (45.94186507, —60.0743298).
The GDP data for 2006 gives the center of gravity as (46.02643851, —48.8800190)
and for 2007 as (45.94290023, —52.4580413). As we can see, the trend shows that
the global GDP is moving away from the U.S. and toward the China coastline before
and after the Great Recession.

5.8 Exercises

1. Show that if there are no predictor variables in Table 3.1 and w; = %, then the
total sum of squares equals to the standard distance formula. HINT: z; = Z and

Yy=1y.
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Figure 5.3  This figure shows the plot of the mean centers of global GDP on a map. As the
years progress, the mean center measurements move closer to the Chinese coastline.

Table 5.6 Results on Gross Domestic Product of OECD Countries

2009
Center (45.10440685, 172.9595)
Axes a = 4,259.806334, b = 700.0081681
Area 9,367,912.709 sq. mi.
Standard Deviations | d, = 21.04761702, 6, = 20.27737248
Rotation X-Axis
Orientation 0, = 1.328357537, 0, = —88.67164246
Eccentricity 0.986405646

Solution: If Z; = Z and ; = ¥, then the sum of squares due to the model equals

to zero.

n

n n n

Y@+ G-9P=) @-2)?+) (5-9°=0

=1

=1 =1 =1

Then, the total sums of squares in Table ?? due to error,
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n n n

1 1
(o )2 (e — T2 = = 324 )2
wi(wi — )+ wilyi — 1) > (1 —7)° + - > (i —7)

: : n- :

i=1 i=1 i=1 i=1
The standard deviation is the square root of the sums of squares which gives
Equation (5.1).

2. Derive Equation (5.17) using Equations (5.11), (5.12) and F' = 7ab.

3. What are two ways to obtain un-weighted estimates and statistics from the given
Excel spreadsheets? Soluton:

= Put % into column 3.

= Copy and paste the VBA code to a new module, modify it to perform un-
weighted calculations.

4. Show that the linear regression least squares sums of squares due to error does
not equal to the standard deviational ellipse error.

5.9 VBA Code

To calculate the weights w;, 7 = 1, 2, ...n, we first create the VBA subroutine called
SDE_Stats (AVar) . This subroutine does not require any input parameters.
The first FOR-NEXT loop (2) calculates the sum of the total weights > ., w;. The
second FOR-NEXT loop (3) calculates the observation weights
W = e, 0<w < 1.
D iy Wi

The observation weights are stored in column D of the active spreadsheet. Upon
running this subroutine, column D will always sum to one. The use of the WITH-
END-WITH statement is optional. It is a short-cut to not having to keep typing in
the Excel object — in this case, the spreadsheet last referenced ”Activesheet.”

To calculate the mean center of gravity in Equation (5.9), the weights must be
set on the active spreadsheet first. The subroutine named SDE_Stats (AVar) cal-
culates the weigthed mean center of the standard deviational ellipse. The FOR-
NEXT loop (2) multiplies the latitude and longitude observations by the weights. It
sums the observations and puts the sums into the variables mean_latitude and
mean_longitude.

The cell reference is always row, then column. For example, thecode .Cel1 (3, 2)
refers to row 3 and column 2. Column 2 refers to column B.

The subroutine Angle_of _Rotation () calculates the angle of rotation 6 in
Equation (5.10). It also gives the axis of rotation. The first FOR-NEXT loop (3) cal-
culates the individual sums in Equation (5.10) and stores the values in the variables
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x, v, and xy. The next four VBA statements calculate the angle of rotation
with the plus and minus sign accounted for. The angle of rotation 6 is stored in the
variables thetal and theta2. The IF-THEN-ELSE statement (13) deter-
mines the axis of rotation using the values thetal and theta2. If thetal
> theta?2 then the axis of rotation is the Y-axis because the square root term is
positive. Otherwise, the square root term is negative (or equal) and the axis of rota-
tion is the X-axis. The WITH-END-WITH statement (14) puts the results onto the
spreadsheet called STATS.

The subroutine SDE_Stats (AVar) calculates the standard error terms along
the axes in Equations (5.11) and (5.12). The first FOR-NEXT loop (4) calculates
the sums and stores the values in variables delta_x and delta.y. After the
FOR-NEXT loop (4), the two VBA statements divide by the total sum of the weights
and take the square weights of the sums. The final values of the standard error
terms along the axes are stored in the variables delta_x and delta.y. The
WITH-END-WITH statements (16) save the results to the output spreadsheet called
STATS.

The subroutine Eccentricity () calculates the eccentricity using Equation
(5.18). Avoiding taking the square root of a negative number, if a; > by, then a; is
the semi-major axis and b; is the semi-minor axis. Otherwise, if a; < by, then a; is
the semi-minor axis and b; is the semi-major axis.

We use the function Area () to calculate the area of the standard deviational el-
lipse. It calculates the area using the formual F' = 7a;b;. We can write special code
to calculate the area using Equation (5.17). It does need the sums x, vy, and xy
from the subroutine Angle_of Rotation (). If Y7 a2w; > 320, y2 w,
then the lengths must be calculated using the two equations:

n
1
2 2,
ar = E Yi Wi =
=1

1 2 (20, alyiw;)’

n 2 2
(S0 s = S ) (S s — S ) + 4 (S alyw)
1 n
b~ > wwi=
1=1

2 (Z?:l x;y;wl)Q

1
n

2 2
— (i 2Pwi = i yiwi) + \/(Z?zl witwi = 3o yPwi)” + 4 (0 wiyiws)

If Y7 a2 w; < 31, y? w;, then the lengths must be calculated using the two
equations:
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2
_,_l 2 (Z?:l x;y;wl)
n 2 2
(O P = S )+ (0 yPws — Y a4+ 4 (0 alyw,)

K2

and

o 1= p
bl_ﬁzyiwi—
i=1

1 2 (L0 alyiw)”

n 2 2
(O s = S )+ (0 yPw — S aw) 4+ 4 (0 alyw,)

This ensures we do not take the square root of a negative number in the denominator.

Avoiding taking the square root of a negative number, if a; > by, then a; is the
semi-major axis and by is the semi-minor axis. Otherwise, if a; < by, then a; is the
semi-minor axis and b; is the semi-major axis.

The subroutine SDE_Likelihood (AVar) calculates the log likelihood func-
tion of the regression model from Equation (5.8) of the weighted standard devi-
ational ellipse for comparion to other mathematical models later. The subroutine
Put_SDEOutput. In _Spreadsheet (AVar) outputsthe variables and labels
of the standard deviational ellipse to the spreadsheet called STATS.

Finally, we output the area, the axes lengths, and the eccentricity to the spread-
sheet called STATS using the WITH-END-WITH statement (18).
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[Sub SDE_Stats(AVar)

’calculate the mean center for the latitude and the longitude
mean_latitude = 0

mean_longitude = 0

n = Selection.Rows.Count

Fori=2Ton

9 mean_latitude = mean_latitude + ActiveSheet.Cells(i, 1).Value* ActiveSheet.Cells(i, 3).Value
mean_longitude = mean_longitude + ActiveSheet.Cells(i, 2).Value* ActiveSheet.Cells(i, 3).Value
Next

mean_latitude = mean_latitude / sum_weight
mean_longitude = mean_longitude / sum_weight

’calculate the rotation from the axes

x=0

y=0

xy=0
[Fori=2Ton

X =X + (ActiveSheet.Cells(i, 1).Value- mean_latitude) ~ 2 * ActiveSheet.Cells(i, 3).Value

y =y + (ActiveSheet.Cells(i, 2).Value- mean_longitude) ~ 2 * ActiveSheet.Cells(i, 3).Value

Xy = xy + (ActiveSheet.Cells(i, 1).Value- mean_latitude) * (ActiveSheet.Cells(i, 2).Value- mean_longitude) * _
ActiveSheet.Cells(i, 3).Value

| Next

Call Angle_of_Rotation(x, y, Xy, note, atheta, itheta)

’calculate the deltas

deltax=0
delta_y =0
[Fori=2Ton

delta_x = delta_x + ((ActiveSheet.Cells(i, 2).Value- mean_longitude) * Sin(atheta / (180 / WorksheetFunction.Pi()))- _
(ActiveSheet.Cells(i, 1).Value - mean_latitude) * Cos(atheta / (180 / WorksheetFunction.Pi())))" 2 * ActiveSheet.Cells(i, 3).Value
delta_y = delta_y + ((ActiveSheet.Cells(i, 2).Value- mean_longitude) * Cos(itheta / (180 / WorksheetFunction.Pi())) - _
(ActiveSheet.Cells(i, 1).Value- mean_latitude) * Sin(itheta / (180 / WorksheetFunction.Pi()))) ~ 2 * ActiveSheet.Cells(i, 3).Value
| Next

delta_x = Sqr(delta_x / sum_weight)

delta_y = Sqr(delta_y / sum_weight)

’calculate the area, axes lengths, and eccentricity
m=n-1

f = Area(m, x, y, Xy) ’area

Call Axes_Length(m, X, y, Xy, a, b)

e = Eccentricity(a, b)

area_check2 = Area_Check(a, b)

LEnd Sub
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[Sub SDE_Likelihood(AVar)

Dim sum_latitude, sum_longitude As Double "Z"Tw
Dim alpha, beta As Double *parameter estimates
’calculate the mean center for the latitude and the longitude
mean_latitude = 0
mean_longitude = 0
n = Selection.Rows.Count
Fori=2Ton
mean_latitude = mean_latitude + ActiveSheet.Cells(i, 1).Value* ActiveSheet.Cells(i, 3).Value
mean_longitude = mean_longitude + ActiveSheet.Cells(i, 2).Value* ActiveSheet.Cells(i, 3).Value
Next
mean_latitude = mean_latitude / sum_weight
mean_longitude = mean_longitude / sum_weight
"calculate Z"TZ and store it in the active spreadsheet
[For j=1To2
[Fori=2Ton
If j=1 Then
ActiveSheet.Cells(j, j + 20).Value= ActiveSheet.Cells(j, j + 20).Value + _
(ActiveSheet.Cells (i, j).Value - mean_latitude) * (ActiveSheet.Cells(i, j).Value - mean_latitude)
7 |8 | Else
ActiveSheet.Cells(j, j + 20).Value = ActiveSheet.Cells(j, j + 20).Value + _
(ActiveSheet.Cells(i, j).Value - mean_longitude) * (ActiveSheet.Cells(i, j).Value - mean_longitude)
End If
| Next ’i
| Next ’j

[Fori=2Ton

ActiveSheet.Cells(2, 21).Value = ActiveSheet.Cells(2, 21).Value + _

(ActiveSheet.Cells(i, 1).Value- mean_latitude) * (ActiveSheet.Cells(i, 2).Value - mean_longitude)
| Next ’* off diagonals
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[ActiveSheet.Cells(1, 22).Value= ActiveSheet.Cells(2, 21).Value

"keep a copy for checks

ActiveSheet.Cells(9, 21).Value= ActiveSheet.Cells(1, 21).Value

ActiveSheet.Cells(10, 21).Value = ActiveSheet.Cells(2, 21).Value

ActiveSheet.Cells(9, 22).Value = ActiveSheet.Cells(1, 22).Value

ActiveSheet.Cells(10, 22).Value = ActiveSheet.Cells(2, 22).Value

‘initialize the identity matrix

ActiveSheet.Cells(1, 23).Value = 1

ActiveSheet.Cells(2, 24).Value = 1

ActiveSheet.Cells(1, 24).Value =0

ActiveSheet.Cells(2, 23).Value =0

"perform guassian elimination to find the inverse of Z"TZ

m=24

[Do While m >= 21

ActiveSheet.Cells(1, m).Value = ActiveSheet.Cells(1, m).Value / ActiveSheet.Cells(1, 21).Value
10 | ActiveSheet.Cells(2, m).Value= ActiveSheet.Cells(2, m).Value / ActiveSheet.Cells(2, 21).Value

m=m- 1
| Loop
T -12 ——->12
m=24

Do While m >= 21
ActiveSheet.Cells(2, m).Value = ActiveSheet.Cells(1, m).Value - ActiveSheet.Cells(2, m).Value

m=m- 1

11

| Loop

2 /a22 -—-->12

m =24

[Do While m >= 21

ActiveSheet.Cells(2, m).Value = ActiveSheet.Cells(2, m).Value / ActiveSheet.Cells(2, 22).Value
m=m-1

12

| Loop

a 122 -rl -——-->rl
m =24

[Do While m >= 21

13 | ActiveSheet.Cells(1, m).Value

m=m- 1

| Loop

ActiveSheet.Cells(1, m).Value = ActiveSheet.Cells(1, 22).Value * ActiveSheet.Cells(2, m).Value -
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1%l —--->rl
m =24
Do While m >= 21
14 ActiveSheet.Cells(1, m).Value = -1 * ActiveSheet.Cells(1, m).Value
m=m- 1
Loop
’end of gaussian elimination. (Z"TZ)"-1 resides in (23,1), (24,1), (23.,2), (24,2)
(2" TZ) resides in (21,9), (22.,9), (21,10), (22,10)
“calculate Z" Tw
sum_latitude = 0
sum_longitude = 0
n = Selection.Rows.Count
Fori=2Ton

15 sum_latitude = sum_latitude + ActiveSheet.Cells(i, 1).Value * ActiveSheet.Cells(i, 3).Value 'w_i

sum_longitude = sum_longitude + ActiveSheet.Cells(i, 2).Value * ActiveSheet.Cells(i, 3).Value "w_i
Next

’calculate alpha and beta

alpha = ActiveSheet.Cells(1, 23).Value * sum_latitude + ActiveSheet.Cells(1, 24).Value * sum_longitude

beta = ActiveSheet.Cells(2, 23).Value * sum_latitude + ActiveSheet.Cells(2, 24).Value * sum_longitude
"calculate log L

Lreg=0
n = Selection.Rows.Count
Fori=2Ton

beta * (ActiveSheet.Cells(i, 2).Value- mean_longitude))
Next

End Sub

16 L_reg = L_reg + (ActiveSheet.Cells(i, 3).Value - alpha * (ActiveSheet.Cells(i, 1).Value- mean_latitude) -
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[Sub Put_SDEOutput_In_Spreadsheet(AVar)
"put the values in STATS spreadsheet

With Worksheets(”STATS”)

’center of gravity

.Cells(1, 1).Value = "Standard Deviational Ellipse Statistics”
.Cells(2, 1).Value = "Latitude Mean Value”
.Cells(3, 1).Value = "Longitude Mean Value”
.Cells(2, 2).Value = mean _latitude

.Cells(3, 2).Value = mean_longitude

’rotation from axes

.Cells (4, 1).Value = "Rotation”

.Cells (4, 2).Value = note

.Cells (5, 1).Value = "Major Axis Rotation”
.Cells (5, 2).Value = atheta

.Cells (6, 1).Value = ”"Minor Axis Rotation”
.Cells (6, 2).Value = itheta

“deltas along the axes

.Cells (7, 1).Value = "Delta X”

.Cells (7, 2).Value = delta_x

.Cells (8, 1).Value = "Delta Y”

.Cells (8, 2).Value = delta_y

“area, axis length, eccentricity

.Cells (9, 1).Value = "Area (F)”

.Cells (9, 2).Value = f

.Cells (10, 1).Value = "Major Axis Length (a)”
.Cells (10, 2).Value = a

.Cells (11, 1).Value = "Minor Axis Length (b)”
.Cells (11, 2).Value =b

.Cells (12, 1).Value = ”Area Check”

.Cells (12, 2).Value = area_check?2

.Cells (13, 1).Value = "Eccentricity (e)”
.Cells (13, 2).Value =¢

"likelihood function

.Cells (14, 1).Value = "Likelihood L(x,y)”
.Cells (14, 2).Value = L_reg

End With
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CHAPTER 6

THE EXPONENTIAL ELLIPSE

Most of the theory in this section follows the text in [Lee, (35)]. [Lee, (35), pages
164-165] demonstrates how to prove that a set of data has a particular distribution
using graph paper. In the absence of graph paper, modern graphing software will
suffice. The technique involves transforming the data to a linear regression model
and plotting the transformed data. This section deviates from the traditional linear
regression literature in that the data are not directly observed, then modeled.

6.1 Mean Latitude

We consider fitting the weighted exponential distribution to the data. If the fit is a
success, then the result is a linear relationship between the random variable and the
cumulative distribution function. If the fit fails to result in a linear relationship, then
we can add a location parameter and a shape parameter to the distribution. Before
we can transform the data, we need to find the maximum likelihood estimator for the
scale parameter of the weighted exponential distribution. We summarize the latitude
data using the maximum likelihood estimator.
The exponential distribution function considered for the latitude is

Random Variables, Their Properties, and Deviational Ellipses. 65
By Roger L. Goodwin Copyright ©) 2015 Roger L. Goodwin



66 THE EXPONENTIAL ELLIPSE

Exponential TransformationFit of the Latitude
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Figure 6.1  This figure shows the probability plot of the weighted latitude transformation.
The exponential distribution fits the weighted latitude data since it shows a straight line.

Exponential Transformation Fit of the Longitude
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Figure 6.2  This figure shows the probability plot of the weighted longitude transformation.
The exponential distribution fits the absolute value of the weighted longitude data since it
shows a straight line. It was necessary to take absolute values since longitudinal data is

negative.

fo(wi, ) = Apgwe %, 0 < x; < 180, w; > 0,

where )\, is the scale parameter. We estimate )\, using the sample data.

6.1)

Equation

(6.1) is a probability density function only if > ; w; = 1. Why is this? Because

the cumulative distribution function is

t t
Fp(w,x) = / flw,z)de = / Npwe =T dy =
0 0

¢
=w —we Mt = Fi(ty).
0

_wef)\zm
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1. Ast — 0, F;, — 0.
2. Ast — 180, F}, — w.

3. F} is right continuous.

Thus, for F} to be a true cumulative distribution function, w = Z? Jw; =1lisa

necessary condition. We let each observation be weighted by w; = —=’— where
i=1 wj

wy is the observed value of the random variable with the latitude z;.
The maximum likelihood estimator for the parameter A\, occurs at the first deriva-
tive of the likelihood function L = []"_, f,(w, z;) taken with respect to ;.

n

L= fo(w,xl) =

=1
H)\ w exp{—A;z;} = (A\gw) exp{ -z sz},
=1
log L = nlog(Az w) — Ap le, (6.2)

Ay = ——- (6.3)

The maximum likelihood estimator appears in Equation (6.3).
As in [Lee, pages 162-164,(35)], we wish to fit a linear relationship by solving
the following equality:
e MWl =1 — Fy(ty),

1
)\xwtx = 1Oge [Tt(t)] y

1 1
tx = Eloge [Tt(tx)] /'LU (64)

Using Equation (6.4), we plot our transformed data points [t(, ;y, F(t.,i)], to
obtain the graph in Figure 6.1 on page 66. As one can see, it shows a linear relation
that means the weighted latitude is exponentially distributed. We repeat the same
procedure for the longitude.

For the joint distribution, we do not need to prove linearity. We do need the
relationship between the two transformed variables, though.
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6.2 Mean Longitude

A similar set of equations follow for the longitude from the latitude. The parameter
estimator is different from that for the latitude since the data can be negative and the
sample space for exponential distribution only allows for positive numbers (including
zero). The exponential distribution function considered for the longitude is

Sy(wiyyi) = Aywie 0 < y; <360, w; > 0. (6.5)

We derive the cumulative distribution function as follow.

Fy(“’,y):/ f(w,y)dy:/ )\ywe*)‘yydy:
0 0

—we™ MY = w —we " = F,(uy).

0

1. Asu—0, F, — 0.
2. Asu — 360, F, — w.

3. F), is right continuous.

Thus, for F, to be a true cumulative distribution function, w = Z?Zl w; = lisa
!

necessary condition. We let each observation be weighted by w; = —mi— where

i=1

w} is the observed value of the random variable with the longitude y; .

We obtain the maximum likelihood estimator for ), for the longitude by taking
the derivative of the likelihood function L = []/_, f(w,y;) with respect to Ay;
setting it to zero; and solving for \,.

L:Hf(w,yl H)\ w exp{—Ayyi} = (A\yw) exp{ -2 Zyl}

=1 =1

log L = nlog(\, w) — A Zyl, (6.6)

dlog L n -
A, Aw Zﬂ Y
This results in Equation (6.7).

B n
y = T~—m -
Wi Yi
We wish to see if we can obtain a linear relationship using the exponential distri-
bution. We transform the data as follow:

h) 6.7)
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e MW =1 — F,(uy),

1
:1 B ——
Aytotey = loge [1 = Fu<uy>} ’

I 1
Uy = Eloge [m] /’(U (68)

Using Equation (6.8), we plot our transformed data points [u(y ), F'(uy.:)], to
obtain the graph in Figure 6.2 on page 66. As one can see, it shows a linear relation
that means the weighted longitude is exponentially distributed.

6.3 Joint Distribution

Finally, the joint distribution between two weighted exponential models needs to be
determined. Given the two probability density functions in Equations (6.1) and (6.5),
the joint likelihood function is

L =1 folw @) fy(w,y:) =

i—1

H Azwexp {—Agx;} Aywexp{—Ayy}.

=1

Let Ay = Ay = Ayy. Then, the joint likelihood function becomes,

L(w, i, y:) = H )\?cyU’Q exp {—=Auy (i +vi)}-
i=1

Next, we find the maximum likelihood estimator of A.,.

log L(w, x5, yi) = 2n10g(Aay w) — Ay > (21 + 13). (6.9)
=1
dlog L 2n -
hy 2n (6.10)

Y w T ()
Equation (6.10) gives the maximum likelihood estimator for ., for the joint

distribution of the latitude and longitude. The joint probability density function of
the latitude and longitude is
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Say(wi, i, yi) = A3 wi exp {—Xay (zi + 1)} -

We need to find the cumulative distribution function F, (w;, zi,y;) for the joint
distribution, next. We need the cumulative distribution function in the exponential
standard deviational ellipse formula.

Fx’y(waxay) =

/ot /ou (wAzy)? exp {=Auy(z + )} dy da =

dr =

t
/ P Aay exp { ey (x + )}
0 0

t
/ “Aayw? exp {—Auy (T + )} + Agyw? exp { =gz} dv =
0

t
w? exp {—Auy (2 + 1)} — w?exp {—Ayyz}

0

w? exp {—Agy (t + 1)} — w?exp {=Agyt} — w? exp {—Agyu} +w?  (6.11)
= Fuu(w, t,u)
Is Equation (6.11) a valid cumulative distribution function?
1. Ast — 0, and v — 0, then F},, — 0.
2. Ast — 180, and u — 360, then F},, — w.

3. Fy, is right continuous.

This is a valid cumulative distribution function only if the weights w sum to 1 as
t — 180 and v — 360. We choose the weights

’ Wi
w; = n

D i Wi

where w; equals to the observed value of the random variable. Then it is a trivial
fact that

n n w
2 [
w? = E w, = E = = 1.
; ; Z-, w;
i=1 i=1 i=1
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6.4 Exponential Ellipse

We really do not know how the ellipse in Section 5 got its name. The sums come from
the method of least squares in regression. Both the general linear means model and
the linear regression model assume the random variable has a normal distribution.
The normal distribution has a location parameter typically named the mean p and a
scale parameter typically named the variance o2. The term really does not apply to
the exponential distribution since it does not have a location parameter. This Section
will derive the exponentially distributed, weighted, deviational ellipse.

6.4.1 Mean Center

The weighted mean estimates (Z, i) under the general linear means model in Section
5 and the exponential distribution are exactly the same — except possibly the sign
on the longitude. Equation (6.12) gives the relationship for the exponential mean
center for the latitude. Equation (6.13) gives the relationship for the exponential
mean center for the longitude.

L) (6.12)
Az

n

g (6.13)
N,

The exponential ellipse uses the following formulas.

1 1
tx = ; iloge [1_7%] /'LU»L (614)

1 1
Z Eloge [m] /’LU»L (615)

Uy =
i=1
"1 1
toy = —1 _ i 6.16
! ;)\xy O |:1_Ftu(ti’ui):|/w ( )

The two ellipses differ from the sums of squares between the original data (w;z;, w;y;)
and the transformed data (t(m-), ’U,(yyi)). Equation (6.16) gives the mean joint distri-
bution estimate between the weighted latitude and weighted longitude estimates. The
estimators for A;, Ay, and )\, appear in Equations (6.3), (6.7) and (6.10).

6.4.2 Ellipse

Equation (7) in [Yuill, (67)] is general enough to obtain a weighted, exponential
standard deviational ellipse. We need to substitute the original sums of squares with
the new sums of squares and re-calculate the major and minor axes. These axes
lengths will determine the total area from which we can compare the area and number
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of weighted points inside the ellipse. Additionally, we can compare the standard
deviations and the eccentricity of the ellipses.

Using equations (6.14), (6.15), and (6.16), we obtain our exponentially distributed,
weighted, deviational ellipse in Equation (6.17).

7.17 t2 J— 7_17 u2 .
ta’no I (Z’L—l I,’Ln Z’L—l ’y,’L) :I: (6.17)
2 Zi:l ta,y,i
n n 2 n 2
\/(Zi:l t?c,z‘ - Zi:l U’zz) +4 (Zi:l tay,i)
2 Z?:l tay,i

6.5 Axis Rotation

The two values of 6 from Equation (6.17) determine the axis of rotation. If the sum

iy ta; < Yoiiyug, then the axis of rotation is about the Y-axis. Otherwise, if

it > >0 ug 4, then the rotation is about the X-axis.

6.6 Ellipse Properties

Equation (6.18) gives the formula for calculating the deviations along the X axis.

by =

(Uy,i SN0, — ty; cOs 0,) w; (6.18)

I

s
Il
-

where the subscript a denotes the major axis for the angle of rotation 6. Equation
(6.19) gives the formula for calculating the deviations along the Y~ axis.

I

Il
-

6y = Y (uy,;cosfy — t,;sin ) w; (6.19)

K2

where the subscript b denotes the minor axis for the angle of rotation 6.
Equation (6.20) gives the formula for calculating the major axis.

n 2
Ul .
o2 = (6.20)

n

n 2
2 (Z txyl)

+ 1=1

2
”(—(Z?:l t?m- - Z?:l uzz) + \/(Z?:l ti,z- - Z?:l uzz)Q +4 (Z?:l toy,i))

subject to

n n
2 2
PR DAS
i=1 i=1
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Equation (6.21) gives the formula for calculating the minor axis.

n 2
Ul
p2 _ 2oiz1 Uy _ (6.21)

2
”(—(Z?:l t?c,i - Z?:l uzz) + \/(Z?:l t?m- - Z?:l ug”)z +4 (Z?:l toy,i))
subject to
n n
PRLRED BUA
i=1 i=1
The difference between Equations (6.20) and (6.21) is the positive and negative
sign after the first term. Since square roots are involved in the formulae, one must

ensure that the conditions are true.
Equation (6.22) gives the formula for calculating the area.

n n n 2
F=o) | S d - <Z tmy> (6.22)
=1 i=1 i=1

It can be verified that F' = 7ab. The last equation is for the eccentricity of the ellipse.
Equation (6.23) gives the formula for the eccentricity.

=~ (6.23)

where Equation (6.20) gives the major axis length a and Equation (6.21) gives the
minor axis length b.

Should the value 77" | 2 ; < 377" | w2 ;, then we reverse the roles of the sums to
calculate the lengths of the semi-major and semi-minor axes. This approach avoids
the square root of a negative number in the denominator.

If the axis lengths a > b, then a is the semi-major axis. If b > a, then b is assumed

to be the semi-major axis and Equation (6.23) is applied appropriately.

6.7 Kentucky Example

We compare the weighted, standard deviational ellipse Tables 5.1 on page 51 to the
exponential ellipse Tables 6.1 and 6.2. It shows that the area of the ellipses have
been significantly reduced (within years). It shows that the exponential ellipse is
contained inside the standard deviational ellipse.

Figure 6.3 on page 74 shows both the standard deviational ellipse and the expo-
nential deviational ellipse using 2003 Kentucky data as an example. The gain in
knowing the distribution of the data is in the reduction of the standard deviations
and the reduction of area. What did the two exponential ellipses identify that the
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Table 6.1 Results for the Exponential Model for Kentucky
2003
Center (37.38297399, —86.8129514)
Axes a = 273.2320657, b = 37.38920285
Area 32,094.2879 sq. mi.
Standard Deviations | d, = 3.050790055, 6, = 3.050809397
Rotation Y-Axis
Orientation 0, = 89.99867285°, 0, = —0.001327443°
Eccentricity 0.990593099
Concentration 27/90

Table 6.2  Results for the Exponential Model for Kentucky
2004
Center (37.40588805, —86.8066601)
Axes a = 273.2391008, b = 37.4120928
Area 32,114.76312 sq. mi.
Standard Deviations | ¢, = 2.987069658, 6, = 2.987088203
Rotation Y-Axis
Orientation 0, = 89.99870116°, 60, = —0.001299137°
Eccentricity 0.99058201
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Figure 6.3  This figure shows sketches of both the standard deviational ellipse and the
exponential deviational ellipse from the Kentucky data for the year 2003. The exponential
ellipse is the smaller of the two ellipses. It covers one-third the area of the standard deviational
ellipse, yet one-half of the same points.
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Figure 6.4  This figure shows a raised bar graph of the weights in their respective counties
for the Kentucky data for the year 2003. The majority of the weighted data comes from the
lower-left corner of the state of Kentucky. The majority of the un-weighted data comes from
the center of the state and the right-hand side.

Table 6.3 Results for the Exponential Model on Violent Crime in the U.S.

2007

Center (36.8766,-92.1131260)

Axes a = 268.0294408, b = 36.89621172

Area 31,068.06111 sq. mi.

Standard Deviations | 6, = 5.511172335, 6, = 5.511237311

Rotation Y-Axis

Orientation 0> = 89.99754656°, 6, = —0.002453737°

Eccentricity 0.990479917

standard deviational ellipse did not? The bar graph in Figure 6.4 shows the weighted
data in Kentucky. Looking at Figure 6.4, it found those land segments with the largest
weights that are closest to those with smaller weights.

6.8 Crime Example

The example in this section comes from violent crime data in the U.S. for 2007
and 2008. Tables 6.3 and 6.3 summarize the results for the weighted exponential
deviational ellipse for violent crime in the U.S. for 2007 and 2008. The data includes
the continental U.S.
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Figure 6.5

This figure shows both the exponential deviational ellipse and the standard

deviational ellipse for the violent crime data in the US for 2007. Both have the same center of
gravity. The exponential ellipse is much smaller than the standard deviational ellipse.

Table 6.4 Results for the Exponential Model on Violent Crime in the U.S.

2008

Center (36.88957333, —92.0322279)
Axes a = 268.1090262, b = 36.90903466
Area 31,088.08671 sq. mi.

Standard Deviations

0z = 5.51140013, §, = 5.511465094

Rotation Y-Axis
Orientation 0, = 89.99754726°, 0, = —0.002453032°
Eccentricity 0.990478949
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Table 6.5 Results for the Exponential Model on Gross Domestic Product

2008
Center (44.95865069, 173.19287)
Axes a = 162.1154426, b = 45.08062313
Area 22,959.59217 sq. mi.

Standard Deviations

0z = 5.203392563, §, = 5.203732811

Rotation Y-Axis
Orientation 0> = 89.99301352°, 6, = —0.006986772°
Eccentricity 0.960558702

77

Table 6.6 Results for the Exponential Model on Gross Domestic Product
2009

Center (45.10440685, 172.9595353)
Axes a = 161.9197005, b = 45.22752649
Area 23,006.59785 sq. mi.

Standard Deviations | 6, = 5.198792719, 6, = 5.199135181

Rotation Y-Axis
Orientation 0, = 89.99299395, 0, = —0.007006348
Eccentricity 0.960197864

Figure 6.5 on page 76 shows the exponential ellipse inside of the standard devia-
tional ellipse. The center of gravity is the same as that for the standard deviational
ellipse (36.89957, —92.03222). There is a tremendous difference in the size of the
two different ellipses.

6.9 GDP Example

. This section shows the weighted exponential ellipse and the statistics for the Gross
Domestic Product of OECD Countries data set. Since this is a global data set, the
quantities tend to be enormous compared to the other two examples. Tables 6.5 and
6.5 summarize the standard deviational ellipse for the 2008 and 2009 GDP data. We
see that the ellipses are highly eccentric. The total area contracted from 2008 to
2009. This is the period where the Great Recession took place. The mean center
changed an entire degree in both the latitude and longitude directions. Where are
the mean centers located? In 2008, the center of gravity for the OECD countries
was in the Pacific Ocean between the United States and China. In 2009, the center
of gravity moved away from the United States coastline and closer to the Chinese
coastline. See Figure 5.3.
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6.10 Comparison to SDE

We will derive proof that shows the weighted deviational ellipse always has a smaller
area than the standard deviational ellipse. We base the proof on showing that both
the semi-major axis and the semi-minor axis are shorter than those of the standard
deviational ellipse are.

Semi-major Axes Length Equation (6.24) gives the length of the semi-major axis
under the standard deviational ellipse by the quantity a; .

- = Z yw; = (6.24)

1 230 wlyfw, 2
+— (Zz 1 Y4 )

n 2 2
— (i wPws — 300y yPwi) + \/ i TPwi — 3o ytwe)” 4 4 (0 wiyiw:)
where 2} = x; — 2,0 < z; < 90and y; = y; — g, —180 < y; < 180, w; >
0. Both j and y are weighted means. Equation (6.24) is subject to the constraint

Z? 1T 2wy > Zl 1 yi2w;. Equation (6.25) gives the length of the semi-major axis
under the weighted, exponential deviational ellipse.

1 n
g S, = (6.25)
=1

2

Z?ltmyl)
n 2
_(Zzllt?cz_ i=1 yl +\/ 1 1 I’L_ i= 1t51) +4(Z?:1tmyyyi)

Xy = = W= =, 0< y; < 360.

- n 1 1 /
b = ; <3\\xy o |:(1 - ny(t“ul))]/wl> ,
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3\\ o 2n ’LU/ - w;
xy n /o 1,0 T n o
D1 WiTi + wiys Dy Wi

0< 2 <180, 0 < y; < 360.

Under both models, —90 < # < 90 and —180 < 3 < 180. Now that the lengths
of the semi-major axes have been defined under the weighted standard deviational
ellipse and the weighted exponential deviational ellipse, it will be shown that the
sums of squares for the latitude, longitude, and jointly are smaller for the exponential
ellipse. If that is proven, then n a3 < na?.

Using substitution, the sum from the standard deviational ellipse

n n
2 7)2
ng xiwi:ng (x; — T)“w;
i—1 i=1

where 7 is a weighted mean is positive definite. Using the relationship between A\,
and z in Equation (6.12), we can rewrite the sum from the exponential ellipse as

ke (o [ ] /) -

We make two observations.
. n ) —\2 : .. .
1. In the standard ellipse, the sum )" | (x; — &) is positive definite.

2. In the exponential ellipse, an approximate formula for the log, is log, = (x —
2 3 4
1) - oy e ety o< <2

So,
> (@i — 2w =) (0f — 20,7 + 2 )w; >
i=1 i=1
2
n S S
INolF L, _(uf&@m 1) N
n - (1- Fu(ty)) 2

&:ﬁm—ﬂg
3

2

Qriﬁﬁ_04+”.<21ﬂm> _

4 w;
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23 (e[| ()

1=1

5 (e [t )

K2

Hence, we can conclude that the sums n Y, | z/?w; > ntf“ There are two more
sets of sums to prove are smaller — those associated with the weighted longitude
and the weighted joint distribution. The sums associated with the weighted longi-
tude follow the same argument as above. Simply replace = with y for the standard
deviational ellipse and replace x with y for the exponential ellipse. Then it follows
thatn ) 1" yiPw; > nug ;.

We wish to establish the relationship between (327, /y/w;)” and t% - Which is
larger?

<Z xiyﬂh) = <Z($z — o) (yi — Q)uh) > tiyy =

=1

<_ (i;zg [((1 i 1> :

1 2 1 3
((17Ftu(ti7ui)) - 1) T ((lthu(ti,ui)) - 1)
2 3

4
1 n
(= - 1) | (e _
4 Wy

We can make similar observations as before. The bounds on log, are 0 < m—

1 < 2 and the sums (>, #}ylw;)? and (¢, ,)? are positive definite.

We have shown that the three sums 7 ; u2 ; and t3 , are smaller than their re-
spective sums in the standard deviational ellipse >\ | z/?w;, Y ., yi*w;, and
>or, x;y;wl)Q . From this, we can conclude that the semi-major axis length of
the exponential ellipse ao is smaller than that of the standard deviational ellipse a; .
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Semi-Minor Axes Length The sums of squares in this section are the same as those
in the previous section. The formulas for the semi-minor axes are slightly different
than those for the semi-major axes. The quantity b; in Equation (6.26) gives the
formula for the semi-minor axis length for the weighted standard deviational ellipse.

1 n
b — =3 aPw; = (6.26)
n
1=1

1 2 (Z? 1 x/y/wi)Q

n 2
(O s — Y y2w) + (0 e — S w4+ 4 (0 alyw,)

Equation (6.27) gives the length by of the semi-minor axis under the weighted,
exponential deviational ellipse.

1 n
b2 — ~ o= (6.27)
1=1

n 2
l 2 (Zi:l tey, 1)
n n n 2
- (Z’L 1 tfc K Zi:l u;,z) + \/(Z’L 1 tfc K Zi:l u;,z) +4 (Zz 1 tm,y,i)

Given the arguments in the previous Section, the following three inequalities of
the sums hold true.

LonY o afPw; > nt2
2.n> 0y w1>nuzi.
3. (20, Tiyiwi)® > t?g,y-

We can conclude that the semi-minor axis length of the exponential ellipse bz is
smaller than that of the standard deviational ellipse by, bs < b;.

Axes Summary We showed that both the semi-major axis length and semi-minor
axis length of the exponential ellipse are smaller than those of the standard devia-
tional ellipse. Given this, the area of the exponential ellipse is always smaller.

Given that both share the same mean center, then next obvious question is that,
does the weighted standard deviational ellipse always encompass the weighted ex-
ponential deviational ellipse? Obviously, in the numeric example given, the an-
swer is yes. Under what conditions do the standard deviational ellipses encompass
the weighted exponential deviational ellipses? If the axes relationship holds true,
a1 < bg, then the standard deviational ellipse encompasses the exponential ellipse
regardless of the angle of rotation 6. Let 6, be the expression for the angle of rotation
for the standard deviational ellipse given in Equation (6.28).
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(Z?*l wfw; — Yict yf/wl)

tanfy, = — + 6.28
e 2 Z’L 1 ; ylwl ( )
n ’ n ’ 2 n 2
V(S o w = S wi) + 4, wlgiw)
2 Z’L 1 ; ylwl ,

—1 <tan#; < 1. Let 05 be the angle of rotation for the exponential ellipse given in
Equation (6.29).

2. =57
tan 92 = — (Zl 12§:l ;1:1 uy’l) + (629)
i=1"T,y,t
n n 2
\/(Zizl ti,z‘ - Zi:l U’zl) +4 (Z 1 tay,i)
22?:1 LN ,

—1 < tanfy < 1. Tables 6.7 and 6.8 summarize the relationship between 6; and 65
for different values of the plus/minus sign in the middle of 6; and 6.

Table 6.7 Relationship of angles of rotation for large x/s.

Bounds Plus/Minus tan() Angle Inference
Zj | zPw; > ZZ 1 Y2 w; + Positive  6; >0 0<6; <90
Z?1t§z>211 Uy ; + Positive 02 >0 0 <02 <61 <90
Zj | zPw; > ZZ 1 Y2 w; — Negative 61 <0 0<6; <90
S>> ul, - Negative 62 <0 0<6; <62 <90

Table 6.8 Relationship of angles of rotation for small z}s.

Bounds Plus/Minus tan() Angle Inference
Z?lx wl<z 1yl w; + Positive  6; >0 0<6;: <90
Z?1t§z<211 uy ; + Positive 02 >0 0 <6y <6 <90
Zj L 2w < ZZ 1 Y2 w; — Negative 61 <0 0<6; <90
Z?zl ti’i < Zi:1 i — Negative 602 <0 0<6; <63 <90

Upon examining Tables 6.7 and 6.8, we would expect that for extreme values of
6, that the exponential ellipse would fall inside the standard deviational ellipse.

6.11 Exercises

1. Consider the pdf f(y) = e Mvy/w,
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(a) Derive the mle for \,.
(b) Find the cdf. Show that it is a true cdf for Z?:l w; = 1. Solution:

Fly) = rem =

u

(y) = / e Mgy = we MY = — we N/
0 0

As u — o0, F(y) — w. So, for F(y) tobe acdf, w =1 w; = 1.
2. Consider the pdf f = \e™ vV,
(a) Derive the mle for \,.

(b) Find the cdf. Show that it is not necessarily a cdf for Z?Zl w; = 1.

3. Programming Exercise. Verify the cdfs F'(x), F(y), and F(x,y) sum to 1. This
should take no more than three or four lines of additional VBA code.

4. Explicitly show that

ZZl 1“’1

Solution: Let w = Y7 | w;, w; > 0, Vi. Then,

n

1 w
ZZZ o :EZwlf—:l.

1=1

5. Show that
= 7 in Chapter 5.

=

Solution: Let w =

wi—_ w; > 0, Vi. Then,
=1 wi

6. Show that

= gy in Chapter 5.
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Solution: This is very similar to Question 2, but the bounds are different. Let

W= =mt—, w; > 0,Vi. Then,
w;
i=1
~ n
y = o = =
w 21:1 Yi ETL WiYi
i=1 "w;
i=1

7. Derive Equation (6.22) using Equations (6.18), (6.19) and F' = mab.
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6.12 VBA Code

The subroutine EXP_Stats (AVar) (1) calculates the parameter estimates A, Ay,

and /)\\xy using Equations (6.3), (6.7), and (6.10). It also calculates the mean latitude
and the mean longitude (Z, ) using Equations (6.12) and (6.13). The FOR-NEXT
loop (3) calculates the sums for the maximum likelihood estimates. The VBA state-
ments that follow the FOR-NEXT loop (3) calculate the final values for the parame-
ter estimates and store them in the variables 1ambda_x for the latitude, 1ambda_y
for the longitude, and 1ambda_xy for the joint distribution. We need the parameter
estimates to calculate the distribution functions.

The subroutine EXP_Stats (AVar) (1) calculates the exponential distributions
for the latitude using Equation (6.1) and the longitude using Equation (6.5). The
subroutine calculates the cumulative joint distribution function in Equation (6.11)
and stores the value in the variable F_xy . The FOR-NEXT loop (4) calculates the
sums from Equations (6.14), (6.15), and (6.16) and stores the values in the variables
tx, toy, and t_xy, respectively. This FOR-NEXT loop also calculates the
log likelihood functions in Equations (6.2), (6.6), and (6.9). It stores those values in
the variables L_x, L.y, and L_xy, respectively.

The subroutine EXP_Stats (AVar) (1) calculates the deviations on the X-axis
and the Y-axis. The FOR-NEXT loop (18) calculates the values ¢, and u, using
Equations (6.14) and (6.15), respectively. In addition to ¢, and u,, using the two
values for § we previous obtained using the plus and minus sign, we can calculate
the sums for the deviations on the X-axis and Y-axis using Equations (6.18) and
(6.19). We store the final values in the variables delta_x and delta_.y. The
source code after the FOR-NEXT loop calculates the standard errors on the X-axis
and Y-axis. We simply divide by the sum of the weights and then take the square
root of the quantity. The final values for the standard errors in Equations (6.18) and
(6.19) reside in the variables error_x and error_y.

The EXP_Stats (AVar) subroutine calculates the major and minor axes lengths,
the area, and the eccentricity. One of the first VBA statements calculates the area
of the exponential ellipse before the TF-THEN-ELSE statement using Equation
(6.22) and saves the value in the variable f . The TF-THEN-ELSE statement (20)
calculates the semi-major axis length a in Equation (6.20) and the semi-minor axis
length b in Equation (6.21). Should the value Y7 | ¢2 ; < 7" | ug ;, then we re-
verse the roles of the sums to calculate the lengths of the semi-major and semi-minor
axes. This approach avoids the square root of a negative number in the denominator.

The second TF-THEN-ELSE statement (21) calculates the eccentricity. If the
axis lengths a > b, then a is the semi-major axis. The code uses Equation (6.23) to
calculate the eccentricity. If b > a, then b is assumed to be the semi-major axis and
Equation (6.23) is applied appropriately.

The WITH-END-WITH statement (7) saves the remaining exponential statistics
to the STATS spreadsheet in column E (column 5). We add appropriate labels in
column D (column 4).
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[Sub EXP_Stats(AVar)
n = Selection.Rows.Count
Fori=2Ton
2 | ActiveSheet.Cells(i, 5) = ActiveSheet.Cells(i, 2). Value ’copy values to column E
Next
wx =0
wy =0
Fori=2Ton
wx = wx + ActiveSheet.Cells(i, 1).Value * ActiveSheet.Cells(i, 4).Value
wy = wy + ActiveSheet.Cells(i, 5).Value * ActiveSheet.Cells(i, 4).Value
Next
lambdax=(n-1)/wx
lambda_y = (n - 1) / wy
lambdaxy =2 * (n- 1) / (WX + wy)
’calculate the cumulative distribution functions for the latitude, longitude, and the joint distribution
’calculate the values t_x, t_y, and t_xy, tx "2, t_y "2, and t_xy "2
tx=0
ty=0
txy=0
txsqr=0
tiysqr=0
1 [ txysqr=0
L_x =0 ’used for the log L calculation
L_y =0 ’used for the log L calculation
L_xy = 0 "used for the log L calculation
[Fori=2Ton
f_x = ActiveSheet.Cells(i, 4).Value- ActiveSheet.Cells(i, 4).Value * EXP(-1 * lambda_x * ActiveSheet.Cells(i, 1).Value)
F_y = ActiveSheet.Cells(i, 4).Value- ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_y * ActiveSheet.Cells(i, 5).Value)
F_xy = ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_xy * (ActiveSheet.Cells(i, 1).Value+ ActiveSheet.Cells(i, 5).Value)) - _
ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_xy * ActiveSheet.Cells(i, 1)) - _
ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_xy * ActiveSheet.Cells(i, 5)) + -
ActiveSheet.Cells(i, 4).Value
tx=tx+ 1/lambdax * Log (1 /(1 - fx)) / ActiveSheet.Cells(i, 4).Value
toy =ty +1/lambda_y * Log (1 /(1 - F_y)) / ActiveSheet.Cells(i, 4). Value
txy =txy + 1 /lambda_xy * Log (1 / (1 - F_xy)) / ActiveSheet.Cells(i, 4).Value
txsqr=txsqr+ ((n - 1) /lambda_x * Log (1 / (1 - f_x)) / ActiveSheet.Cells(i, 4).Value) "~ 2
tysqr = t_ysqr+ ((n - 1) /lambda_y * Log (1 / (1 - F_y)) / ActiveSheet.Cells(i, 4).Value) " 2
txysqr = t_xysqr + ((n - 1) /lambda_xy * Log (1 / (1 - Fxy)) / ActiveSheet.Cells(i, 4).Value) "~ 2
Lx=Lx+(n-1)*Log (lambda_x * ActiveSheet.Cells(i, 4).Value) - lambda_x * ActiveSheet.Cells(i, 1).Value
Ly=L_y+(n-1)*Log (lambda_y * ActiveSheet.Cells(i, 4).Value) - lambda_y * ActiveSheet.Cells(i, 5).Value
Lxy=Lxy+2*(n-1)*Log (lambda_xy * ActiveSheet.Cells(i, 4).Value) -_
lambda xy * (ActiveSheet.Cells(i, 1).Value+ ActiveSheet.Cells(i, 5).Value)
Next




["calculate the angle of rotations about the axes

Call Angle_of_Rotation(t_xsqr, t_ysqr, t_xy, note, atheta, itheta)
“calculate the deviations on the axes

deltax =0

delta_y =0

[Fori=2Ton

| Next

error_x = Sqr(delta_x / sum_weight) ’standard errors on the x axis
error_y = Sqr(delta_y / sum_weight) ’standard errors on the y axis
’calculate the area and eccentricity

f = Area(n - 1, t_xsqr, t_ysqr, txy)

Call Axes_Length(n - 1, t_xsqr, t_ysqr, t_xy, a, b)

e = Eccentricity(a, b)

area_check2 = Area_Check(a, b)

| End Sub

[Sub Put_ EXPOutput_In_Spreadsheet(AVar)
[With Worksheets(”STATS”)

“center of gravity

.Cells(1, 4).Value = "Exponential Ellipse Statistics”
.Cells(2, 4).Value = "Mean Latitude”
.Cells(3, 4).Value = "Mean Longitude”
.Cells(2, 5).Value = (n - 1) / lambda_x
.Cells(3, 5).Value = (n - 1) / lambda_y

7 | ’rotations about the axes

.Cells(4, 4).Value = "Rotation”

.Cells(5, 4).Value = "Major Axis Rotation”
.Cells(6, 4).Value = "Minor Axis Rotation”
.Cells(4, 5).Value = note

.Cells(5, 5).Value = atheta

.Cells(6, 5).Value = itheta

| End With
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f_x = ActiveSheet.Cells(i, 4).Value- ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_x * ActiveSheet.Cells(i, 1).Value)
F_y = ActiveSheet.Cells(i, 4). Value- ActiveSheet.Cells(i, 4).Value* EXP(-1 * lambda_y * ActiveSheet.Cells(i, 5).Value)
tx_=1/lambdax * Log(l /(1 - fx)) / ActiveSheet.Cells(i, 4).Value

t.y-=1/lambda_y * Log(l /(1 - F_y)) / ActiveSheet.Cells(i, 4).Value

delta_x = delta_x + (t_y- * Sin(atheta / 57.2957795) - t_x_ * Cos(atheta / 57.2957795)) ~ 2 * ActiveSheet.Cells(i, 3).Value
delta_y = delta_y + (t_y_ * Cos(itheta / 57.2957795) - t_x_* Sin(itheta / 57.2957795)) ~ 2 * ActiveSheet.Cells(i, 3).Value
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[*the deltas

.Cells(7, 4).Value = "Delta X”

.Cells(8, 4).Value = "Delta Y”

.Cells(7, 5).Value = error_x

.Cells(8, 5).Value = error_y

"area, axes lengths, eccentricity, likelihood function
.Cells(9, 4).Value = ”Area (F)”

.Cells(10, 4).Value = "Major Axis Length (a)”
.Cells(11, 4).Value = "Minor Axis Length (b)”
.Cells(12, 4).Value = ”Area Check”

.Cells(13, 4).Value = "Eccentricity (e)”

7 | .Cells(14, 4).Value = "’Likelihood Function L(x)”
.Cells(15, 4).Value = "Likelihood Function L(y)”
.Cells(16, 4).Value = "Likelihood Function L(xy)”
.Cells(9, 5).Value = f

.Cells(10, 5).Value = a

.Cells(11, 5).Value =b

.Cells(12, 5).Value = area_check?2

.Cells(13, 5).Value = ¢

.Cells(14, 5).Value = L x

.Cells(15, 5).Value =L_y

.Cells(16, 5).Value = L_xy

LEnd With

_End Sub




CHAPTER 7

THE WEIBULL ELLIPSE

7.1 Latitude Mean Center

Equation (7.1) gives the weighted probability density function for the latitude.
Folwi, i) = 7o (wide) ™™ () exp {= (Aami) ™"}, (7.1)

0<a; <180, Ay >0, 75 > 0.

We need the cumulative distribution function F, (w, x;). Therefore, we integrate
the probability density function f, (w, x;).

EWin[ﬂm@M—

/0 Yo (WAL)" ()" exp (= (Aowi) "} dw =

t
= w7l — = exp {_ ()\It)'Yx} —
0

—u™ exp{— ()}
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Fi(w,t).
The properties of this cummulative distribution function are:
1. Ast — 0, F;, — 0.
2. Ast — 180, Iy — w7=.
3. F} is right continuous.

Ast — 180, F; — w7 = w”* must sum to 1. We choose

1/~

(o)
il Ny —
D i Wi

where w; is the observed value of the random variable for the latitude.

The parameter estimation for the exponential ellipse was straightforward because
there was only one. The Weibull ellipse has two parameters and we have to solve for
these parameters simultaneously. The procedure is similar. The maximum likelihood
estimator for A, occurs at the first derivative of L = [[}"_, f.(w, z;) taken with re-
spect with \,. The maximum likelihood estimator for v, occurs at the first derivative
of L taken with respect with 7,. 1, x9, ..., x,, is the random sample. Equation (7.2)
gives the likelihood function.

Yo—1 n
L(w, z;) = v2 (wAs) (H x1> exp {—)\ZI Z z]” } (7.2)
i=1

(z1, 22, ..., x,) is the minimum set of sufficient statistics. Equation (7.3) gives the
logarithm of the likelihood function.

log L = nlog~, + nv. log(wA,) + Z(% — 1) logx;— (7.3)
i=1

n
¥ Ve
A g ;.
i=1

dlogL

Taking the usual derivatives with respect to the parameters, =——5= = 0, and
% = ( yields the following two equations.
dlog L
=0=
dX;

n”ym z—1 Yz __
oA Y AD Zx =0

Nz — WYL AL Z z]* =0
i=1
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n—wA® Z z]" =0 (7.4)
i=1
and
dlog L
=0=
d Yy

24 nlog(whs) + Y log i (1.5)

Ve i=1

) Z z]" (log Ay +logz;) = 0= L'(w, ;).
i=1
Solving Equation (7.4) for A\, yields

1

n Yax
Ae = (W) ' 70

We must solve for 7y, using numerical algorithms which use Equations (7.3), (7.5),
(7.6). Using [Lee 35, Appendix A], we apply the Newton-Raphson method. Instead
of working with the Jacobian matrix of derivatives, we substitute Equation (7.6) into
Equation (7.5).

Then we wish to iterate through the following expression using the variable k.

- L(w, z;)
V(x,k+1) = V(z,k) — m

An alternative to using the Newton-Raphson method is to apply the Secant method.
This only involves using Equation (7.3). We apply it as follow:

Vk+1) = )

Vk) = V(k—1)
L [)\(k), "Y(k)} - L [)\(kfl)a Vk—1)

Ve — L [Xoc), ”Y(k)]

We need to add an additional subscript x to denote the latitude to identify it from
the longitude y. So, the equation for the Secant method becomes:

V(w,k+1) = V(z,k)— (7.8)

Yz, k) — V(z,k—1)

L [X(x,k), '-Y(ac,k)} — =
L [)\(x,k), '-Y(ac,k)} —L [)\(x,kfl)a Ve, k—1)

where k denotes the iteration.
With the Secant method, we must choose two initial values for 7, instead of one.
The reader will find that working with either method is difficult to work with for
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finding the value of \,. Knowledge of the functions L, log L, and the derivatives
are paramount. The Secant method is the easiest way out of these derivations and
initialization. However, more initial values are required on the reader’s part for the
Secant method. N

The relationship of the parameter estimate )\, in Equations (7.6) and (7.8) to the
weighted mean center is

n
Az

Notice that it depends on the range of \,. This textbook provides Excel 2010 Visual
Basic for Applications (VBA) code to calculate the weighted means based these
derivations. We must state the initial values of 7y, in addition to the maximum number
of iterations. Some trial and error is required to obtain valid results. Other authors’
recommendations include setting the two initial values of -, fairly far apart to obtain
convergence. Both values must be greater than one. If the reader is in doubt about
the number of iterations, then try 1; then 2; then 3; and so on. It only took seven
tries to obtain valid results in the Kentucky example.

T =

(7.9)

7.2 Longitude Mean Center

The longitude data can range from —180° to 180°. The Weibull distribution does not
allow negative numbers. However, if all of the longitude observations are negative,
then it is simple to change the sign to positive to perform parameter estimation.
Afterwards, we can change the sign on the mean center. If this is not the case, some
data are negative, and some are positive, then convert the observations to circular
coordinate system where all of the observations are positive.

Equation (7.10) gives the weighted probability density function for the longitude.

)" exp {— (Ayyi) "} (7.10)

0 <y <360, Ay >0, 7, > 0.

’Yy(

fy(wia i) = Yy (wl)‘y) Yi

We need the cumulative distribution function Fy (w, y;). Therefore, we integrate
the probability density function f, (w, y;).

y(w,y) /fwy

/Ou Yy (U’)‘y)’yy (yi)’yyil exp {— ()‘yyi)’yy} dy =

—w™ exp{=(A\yy)"}

=w" —w” exp{— (A\yu)""} =
0

F,(w,u).

The properties of this cummulative distribution function are:
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1. Asu—0, F, — 0.
2. Asu — 360, F,, — wv.

3. F), is right continuous.

Asu — 360, F,, — w" = w? must sum to 1. We choose

1
o — ( w; ) /Yy
i ~~n
D im1 Wi

where w; is the observed value of the random variable for the longitude.

The parameter estimation for the exponential ellipse was straightforward because
there was only one. The Weibull ellipse has two parameters and we have to solve for
the parameters simultaneously. The procedure is similar. The maximum likelihood
estimator for \,, occurs at the first derivative of L = [\, f,(w, y;) taken with re-
spect with A\, . The maximum likelihood estimator for -y, occurs at the first derivative
of L taken with respect with ~y,. y1, %2, ..., ¥y is the random sample. Equation (7.11)
gives the likelihood function.

n Yy—1 n
L(w, y;) = 7y (wAy)"" (H y) exp {—AZy >y } (7.11)
i=1 i=1

(y1, Y2, .-, Yn) is the minimum set of sufficient statistics.
Equation (7.12) gives the logarithm of the likelihood function.

n

log L = nlog~y, + nvy, log(wAy) + Z(”yy —1)logy; — A} Z yY. (7.12)

=1 =1

. . . . dlogL __ dlogL __
Taking the usual derivatives with respect to the parameters, = N 0,and === =

0 yields the following two equations.

dloglL

0=
d Ay

n
Yy — w”Yynyy Zy;yy =0
i=1

n—wAr >y =0 (7.13)
i=1
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and Jloo L
i — O =
d”Yy
,YE + nlog(wAy) + Z log y; — (7.14)
Y i=1

Ay Zy?y (log A\, +logy;) = 0= L' (w,y;).
i=1

Solving Equation (7.13) for \, yields

1

n Ty
Ay = (W> : (7.15)

vy must be solved numerically using Equations (7.12), (7.14), (7.15). Using [Lee 35,

Appendix A], we apply the Newton-Raphson method. Instead of working with the

Jacobian matrix of derivatives, we substitute Equation (7.15) into Equation (7.14).
Then we wish to iterate through the following expression using the variable k.

P L(w, y;)
Yy k+1) = V(y.k) — L/(’LU yl)

An alternative to using the Newton-Raphson method is to apply the Secant method.
This only involves using Equation (7.12). We apply it as follow:

V(k+1) = V(k) — log L [Xm, V(k)} (7.16)

Yk) = V(k—1)
log LL [X(k), ”Y(k)} —log L [/)\\(kfl)a "Y(kfl)}

We need to add an additional subscript y to denote the longitude to identify it
from the latitude y. So, the equation for the Secant method becomes:

Yy, k+1) = Vy,k) —log L [)\(y,k), "Y(y,k)} (7.17)

Vy.k) — Ny.k=1)
log L [Ny,k), m,,k)} —logL [Ny,kfl), V(y,kfn}

where k denotes the iteration.

With the Secant method, we must choose two initial values for v, instead of one.
The reader will find that working with either method is difficult to work with for
finding the value of \,. Knowledge of the functions L, log L, and the derivatives
are paramount. The Secant method is the easiest way out of these derivations and
initialization. However, more initial values are required on the reader’s part for the
Secant method.
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Equations (7.15) and (7.8) give the relationship of the parameter estimate S\\y to
the weighted mean center.
n
A
Notice that the relationship depends on the range of )\, if we do not use circular

coordinates. If we use circular coordinates, then we can remove the absolute value
operator on the mean center 3.

y= (7.18)

7.3 Joint Distribution

The joint distribution between two weighted Weibull models need to be determined.
Equations (7.1) and (7.10) gives the two probability density functions for the joint
likelihood function L.

L =1 folw @) fy(w,y:) =
i—1

n

[T (wAe)™ (@) ™" exp {= (\oi) "}

=1

Yy (U’)‘y)’yy (yi)’yyil exp {— ()‘yyi)’yy} .

Let Az = Ay = Mgy, and let vy, = vy = Yz, Then, the joint likelihood function
becomes,

L(’(U, T,y yl) =
H Yoy (WAzy)"™ (xi)%yil exp {— (Aaywi) "}
i=1
Yoy (U’)‘xy)%y (yi)%yil exp {— ()‘xyyi)%y} =
T2, (whey)? (@iys) ™ ™ exp {= Aaywi) ™™ = Naywi) ™},
i=1

Azy >0, 7Yy > 0.

Next, we find the maximum likelihood estimator of A.,.

10g L(’(U, Ly yl) =

2 108 7ay + 2070y log(wey) + (Yoy — 1) > log iy — (7.19)
1=1

=1
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n n
E ’Y E ’Y
acyxl o acyyl o

=1 =1

dlogL o0+ 2nYay
d Aey wWATY

n n
Yoy DAy ™ ™ = Yay D (Aayys) ™ =0,
1=1 1=1

+0 40—

21 Yy — WAL Yy Z )58 — WAL gy Z Vev = ()

Solving for \;, yields the following expressions.

_w%cy)‘%y Z x’Y Y= w%cy)‘%y Z y%y = _2n%cy =

)\zzy [ (i x?’”y + Z y’y’”y)] =2n
1/ (Vay)
Ay = 20 / l (Z o™ + Z y”ﬂ . (7.20)

Equation (7.20) gives the maximum likelihood estimator for )., for the joint
distribution of the latitude and longitude.  Using the Secant algorithm, we find
the maximum likelihood estimates for A., and -, as before. We apply the Secant
algorithm to Equation (7.21) to find 7.

V(wy,k+1) = Vay,k) — 108 L [A@y,k), V(myk)] (7.21)

Vxy,k) — V(zy,k—1)
1OgL |:)\(xy,k)a FY(xy,k):| - 10g L |:)\(xy,kfl)a FY(xy,kfl):|

where £ denotes the iteration, Equation (7.19) gives log L, and Equation (7.20) gives
Azy-
The joint probability density function of the latitude and longitude is

fxy(wi,xi,yi) =

(Vo)® (Wikey) ™ (igs) ™~ exp {= Aay i)™ = Aayyi) ™}

We need to find the cumulative distribution function F, (w;, zi,y;) for the joint
distribution, next. We need the joint distribution function so that we can derive the
Weibull standard deviational ellipse.
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Fx’y(waxay) =

/Ot /Ou(%cy)Q (wAay)2T ()™ x

exp {— (Aay2)"" = (Aeyy) ™™} dy dx =

/ —(Vay) (w)\xy)'“y (x)’)'a:yfl «
0

u

exp {— ()‘xyx)%y - ()‘ryy)%y} dr =
0

/0 () (@hey) ™ (2)7 ™ exp {— (hay) ™™ — (eytr) ™} —
(ey) (wAag) ™™ (2) " exp { = (Agyr) ™} dx =
W’ exp {— (Agy®) ™™ — (Agyu) "™ } —

¢
W’ exp {— (A\gyx) ™} =

0
W’ exp {— (Agyt) "™ — (Agyu)™ } — (7.22)
W’ exp {— (Agyt) ™ } — w7 exp {— (Agyu) "™ } + wev

= Fiy(w, t,u)
Is Equation (7.22) a valid cumulative distribution function?
1. Ast - 0and u — 0, F},, — 0.
2. Ast — 180 and u — 360, F},, — w7=v.
3. Fy, is right continuous.

This is a valid cumulative distribution function only if the weights w?7*v sum to 1
as t — 180 and © — 360. We choose the weights

1/~
[l B T a—
D img Wi

where w; is the observed value of the random variable. It does not change for latitude
and longitude. Then it is a trivial fact that

n

n
Yy wyj
wlmv = E w; = E = = 1.
i1 Dim Wi

=1
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7.4 Weibull Ellipse

This Section will derive the Weibull distributed, weighted, deviational ellipse. The
weighted mean estimates (Z, §) under the general linear means model in Section 5
and the Weibull distribution are exactly the same — except possibly the sign on
the longitude only if 7, and 7, both equal to 1. Generally, this is not the case.
The weighted mean estimates (Z, 7) under the general linear means model and the
Weibull distribution do not equal each other.

Graphically, if the data has a straight line with the following transformation, then
it comes from a Weibull distribution.

logt =log(1/\) + (1/7)log {10g8 [ﬁ] }

[Lee (35), p 167] shows a sheet of graph paper for estimating the parameters for
the Weibull distribution. It is possible to Xerox that page, whiteout her example,
and plot your data. That is what this author did in graduate school. For small data
sets, this may seem plausible at first. It is best to run the VBA code to estimate the
parameters.

The Weibull ellipse uses the following formulas.

1 ty = 1 |+ | = I I e |l 7T~ . 7.23
. ggu H Og{Og [1—Ft(m]} 23

- 1 1
10g Uy = Z 10g + [%] 10g {10ge [m] } . (724)
i=1 ui\T

1 1
+ [%] log {10g8 [71 ~ Pl Ul)] } . (7.25)

The two ellipses differ (Exponential and Weibull) differ between the sums of
squares of the original data (w;x;, w;y;) and the transformed data (log ¢ (5 ), log u(y 4))-
Equation (7.25) gives the mean joint distribution estimate between the weighted lat-
itude and weighted longitude estimates. The estimators for v, 7, , and 7, appear in
Equations (7.8), (7.17) and (7.21). We had to perform Secant iterations to find these.
The \'s are already weighted. Therefore, the term w; is absent from the formulas.
The estimators for A;, Ay, and \;, appear in Equations (7.6), (7.15), and (7.20).
These estimators had closed forms given their respective values for gamma. Thus,
we did not need to perform additional Secant iterations for these values.

L
Ay

. 1
logt,y = Zlog lA—

=1 )\xy

7.4.1 Ellipse Angle

Equation (7) in [Yuill, (67)] is general enough to obtain a weighted, Weibull standard
deviational ellipse. We need to substitute the original sums of squares with the new
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sums of squares and re-calculate the major and minor axes. These axes lengths will
determine the total area from which we can compare the area and number of weighted
points inside the ellipse. Additionally, we can compare the standard deviations and
the eccentricity of the ellipses.

Using equations (7.23), (7.24), and (7.25), we get our Weibull distributed, weighted,
deviational ellipse in Equation (7.26).

(X logt2, — >0 logu? ;)
257" logtyy.

n n 2 n 2
\/(Zi:l log t?c,z‘ = i log U’zz) +4(3 2, logts y)
250 [ logty.y
This textbook provides an Excel 2010 Visual Basic for Applications (VBA) pro-
gram that calculates the weighted, Weibull ellipse. In addition to the angles of rota-

tion, it calculates the mean center, the area, the standard deviations, and the eccen-
tricity.

tanf = — + (7.26)

7.5 Ellipse Properties

Equation (7.27) gives the formula for the deviations on the X axis.

5o =Y [log,(uy.;)sinb, —log,(ts.;) cos 0] w)* (7.27)

WE

1

-
Il

where the subscript a denotes the angle of rotation £ about the major axis. Equation
(7.28) gives the formula for the deviations on the Y axis.

5y =Y [log,(uy.:) cos Oy — log, (tei) sin 6y]% w)” (7.28)

s.
i M:
I,

where the subscript b denotes the angle of rotation § about the minor axis. Equation
(7.27) raises the weights w; to the power ~,. Thus, the weights in Equation (7.28)
differ from those in Equation (7.27) because Equation (7.28) raises the weights to
the power of ~, .

Equation (7.29) gives the formula for calculating the semi-major axis length a.

" logu?,
o2 — 2= 108Uy _ (7.29)

n

n 2
2(D iy logtsy,i)

n n n n n 2
n[-1(3_;—, log t?m- =D ic1 1ogu§7i) + \/(Zi:l 10gt92c,z' =i 1Ogu§,i)2 +4 (3 i, logtsya)]

Equation (7.30) gives the formula for calculating the semi-minor axis length b.
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" logu?
p2 _ izt 08Uy (7.30)

n

n 2
2D 5 logts yi)

n n n n n 2
n[=1(>_;_, log t?m- =D iy log uzl) + \/(Zi:l log t?c,z‘ =i log uzl)Q + 40 = logtay,i)’]
subject to the condition

n n
Z log t?“- > Z log uzl
i=1 i=1

Equation (7.31) gives the formula for calculating the area F.

n n n 2
F== <§ 1ogt92“-> <§ log u2 ) - <§ 10gtx7y7i> (7.31)
- , ,
i=1 1=1 1=1

We can always use the area can always use the formula /' = mwab to check the area.
Finally, Equation (7.32) gives the eccentricity e.

o= YU (7.32)

a

where Equation (7.29) gives the semi-major axis length @ and Equation (7.30) gives
the semi-minor axis length b.

7.6 Kentucky Example

This textbook provides two Secant programs because the likelihood functions for the
joint distribution and the individual distributions are different. The code for the two
individual distributions is general enough so that it will work on both the latitude and
longitude data.

The input parameters to the Secant algorithm are as follow.

Call secantl (variable=1, iterations = 10, gammal=1,
gammazZ=5)

= VARIABLE — either the column number to the latitude or the longitude. Be
sure to use circular coordinates.

= ITERATIONS — the maximum number of iterations to perform.

* GAMMAI — the first guess for «y, or v,. Be consistent when working with
latitude and longitude.
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Table 7.1 Results for the Weibull Model for Kentucky

2003
Center (37.38297005, —86.81297917)
Axes a = 3.749083127, b = 2.34002055
Area 27.56097734 sq. mi.
Standard Deviations | ¢, = 1.774503013, 6, = 1.783855806
Rotation X-Axis
Orientation 0> = 89.89609928°, 6, = —0.103900704°
Eccentricity 0.781298076

Table 7.2  Results for the Weibull Model for Kentucky

2004
Center (37.40588282, —86.80669635)
Axes a = 3.842076104, b = 2.392385246
Area 28.87665946 sq. mi.
Standard Deviations | 6, = 1.78033221, §, = 1.789024565
Rotation X-Axis
Orientation 0> = 89.90357593°, 0, = —0.096424046°
Eccentricity 0.782476324

= GAMMA?2 — the second guess for v, or 7,. Again, be consistent when working
with latitude and longitude.

The input parameters to the Secant algorithm for the joint distribution are very
similar to those for the individual distributions.

Call secant2(latitude =1, longitude =5,
iterations = 4, gammal=1, gamma2=5) ;

The input parameters to the Weibull program are as follow.

This textbook contains the VBA code for the likelihood functions in Section ??.
The Secant programs will return the values for \;, Ay, and \,,. They will also give
the difference between the last two iterations for convergence analysis.

It took much trial and error to find the number of iterations and to set the initial
parameter estimates for the Secant method. Figure 7.1 shows a map of the Weibull
deviational ellipse for the Kentucky data for the year 2003. Tables 7.1 and 7.2 show
the Weibull ellipe statistics for the Kentucky example for the years 2003 and 2004.

Here are some tips on whether the Secant algorithm found credible parameter
estimates.
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Figure 7.1  This figure shows both the Weibull deviational ellipse for the Kentucky data for
the year 2003. The zoom level is 200 miles above the earth. The standard deviational ellipse
and the exponential deviational ellipse were too large to fit on the map. It has the same center
of gravity as the other ellipses. The Weibull ellipse is much smaller than the other two.

1. The literature states to halt the Secant algorithm when two iterations of the
algorithm results in a parameter difference of |log L(\, v, k) — log L(\, v, k —
1)| < €| log L(, 7, k)|. Arbitrarily choose ¢ = 107°.

2. Choose two initial values for v that are not too close to each other.

3. The weighted mean values (Z, §) for the latitude and longitude are functions of
the parameter estimates A, and \,. The values (Z, /) should be within the range
of the sample data. This is a hard, must have rule.

4. When running the Secant programs, begin the iterations slowly, working up to
more interations until convergence occurs. According to the literature, perform-
ing too many iterations may indeed cause the two functions log L(\, 7, k) and
log L(A, v, k — 1) to converge to division by zero.

Should the reader get an error message while running the VBA code, a number of
reasons can cause this.

1. Mouse over the variables L_X and L_X_Minus. Check if the two values are
the same. If so, set the number of iterations to a lower number.

2. We must highlight the cells with the data in the spreadsheet before going into
the VBA Editor.
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Results for the Weibull Model on Violent Crime in the U.S.
2007

Center (36.87659982,-92.11312648)
Axes a = 2.684221693, b = 1.421680712
Area 11.98865122 5q. mi.

Standard Deviations

0, = 1.305334214, §, = 1.320237824

Rotation X-Axis
Orientation 0> = 89.79107974°, 6, = —0.208920244°
Eccentricity 0.848220318
Table 7.4  Results for the Weibull Model on Violent Crime in the U.S.
2008
Center (36.88957315, —92.03222761)
Axes a = 2.653413305, b = 1.407222952
Area 11.73053137 sq. mi.

Standard Deviations

0, = 1.306416749, §, = 1.322062007

Rotation X-Axis
Orientation 0> = 89.78095302°, 6, = —0.219046959°
Eccentricity 0.847782278

7.7 Crime Example

The example in this section comes from violent crime in the U.S. for 2007 and 2008.
Tables 7.3 and 7.4 summarize the results for the weighted standard deviational el-
lipse for violent crime in the U.S. for the years 2007 and 2008. The data includes
the continental U.S. Figure 7.2 shows a graph of both the Weibull ellipse and the
exponential ellipse for the Violent Crime data in the U.S. for the year 2007.

7.8 GDP Example

Tables 7.5 and 7.6 summarize the Weibull ellipse for the GDP data for 2008 and
2009. We notice that the mean center is not exactly the same for the exponential
ellipse and the standard deviational ellipse. This is because the values for the pa-
rameters -, and vy, did not equal to exactly 1. Therefore, we can find some variation
there.
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Figure 7.2 This figure shows both the Weibull deviational ellipse for the Crime data for the
year 2007. The zoom level is 550 miles above the earth. The standard deviational ellipse was
too large to fit on the map. It has the same center of gravity as the other ellipses. The Weibull
ellipse is much smaller than the other two.

Table 7.5  Results for the Weibull Model on Gross Domestic Product

2008
Center (44.95865049, 173.1927484)
Axes a = 1.876920973, b = 1.48828381
Area 8.777 sq. mi.
Standard Deviations | 6, = 1.5549,, = 1.5947
Rotation X-Axis
Orientation 0, = 89.28°,0, = —0.72°
Eccentricity 0.61

Table 7.6  Results for the Weibull Model on Gross Domestic Product

2009
Center (45.10440668, 172.959405)
Axes a = 1.872381589, b = 1.493600132
Area 8.786 sq. mi.
Standard Deviations | 6, = 1.5588,J, = 1.5997
Rotation X-Axis
Orientation 0, = 89.26,0, = —0.74
Eccentricity 0.60
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7.9 Axes Length Comparison

To compare the lengths of the axes to those of the exponential ellipse, we use the
relationships of the mean centers. When the parameters v, = 1 and 7, = 1, then the
mean center (Z,y) are the same for both ellipses. The sums of squares are exactly
the same also.

1. 0 < v, < 1 (Powers): The exponential ellipse is smaller.

2. 7z > 1 (Roots): The Weibull ellipse is smaller.

7.10 Sample Distribution Fitting

Three underlying distributions have been presented, the normal distribution (the
weighted standard deviational ellipse), the exponential distribution (the weighted ex-
ponential deviational ellipse), and the Weibull distribution (the weighted Weibull
deviational ellipse). We presented three data sets usually over multiple years, the
USDA Kentucky corn example, the Department of Justice violent crime example,
and OECD gross domestic product example. The examples expand from a local to
a global perspective. We can use graphs to show the distribution of the data. What
happens when all of the graphs show a straight line? What is the distribution of the
sample?

We can continue to use the likelihood functions derived in previous sections.
Since we already calculated the parameters for the samples, it is an easy task to
calculate the likelihood function. Using the maximum likelihood theory, the distri-
bution with the maximum value of the likelihood function L (and log L) is the better
fit.
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Example Model 2k —2InL(w,z,y) Comment
KY 2003 Corn Acres SDE -11,436.74 Min AIC
KY 2003 Corn Acres Exp 222,911.00
KY 2003 Corn Acres ~ Weibull 274,909.42
KY 2004 Corn Acres SDE -2,110.16 Min AIC
KY 2004 Corn Acres Exp 235,242.64
KY 2004 Corn Acres  Weibull 291,173.28
US Crime 2007 SDE 5,697.60 Min AIC
US Crime 2007 Exp 64,790.55
US Crime 2007 Weibull 78,359.93
US Crime 2008 SDE 5,707.33 Min AIC
US Crime 2008 Exp 64,623.60
US Crime 2008 Weibull 78,111.50
Global GDP 2008 SDE 4,976.84 Min AIC
Global GDP 2008 Exp 39,282.18
Global GDP 2008 Weibull 47,388.74
Global GDP 2009 SDE 4,906.12 Min AIC
Global GDP 2009 Exp 39,391.99
Global GDP 2009 Weibull 47,560.40

Given the following summary tables, for each of the data sets, the standard devi-
ational distribution usually fits the sample data best.

When comparing the two probability models, the exponential model consistently
outperforms the Weibull model. Adding the shape parameter using the Weibull dis-
tribution did not help in this particular analysis.
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Example Parameter Esimates (Rounded)

KY 2003 Corn Acres & = —1147830.91, B\: 1087263.36

KY 2004 Corn Acres & = —1030547.49, B\ = 1020882.76

KY 2003 Corn Acres A\, = 2.40751, A, = 0.32044, A, = 0.57958

KY 2004 Corn Acres  A\p = 2.45951, A, = 0.33676, sy = 0.59240

KY 2003 Corn Acres A\, = 2.40751, A\, = 0.32044, A, = 0.57958
J2 = 0.76857, 5, = 0.76237, Y., = 1.00000

KY 2004 Corn Acres Ay = 2.45951, X\, = 0.33675, sy = 0.59240

5o = 0.76640, 7, = 0.76018, Jx, = 1.00000
US Crime 2007 a = 42344.54, B = 35730.76
US Crime 2008 a = 41952.14, B = 35152.29
US Crime 2007 o = 1.32875, A, = 0.18291, Ay = 0.32156
US Crime 2008 Ao = 1.38289, A, = 0.18286, Apy = 0.32146
US Crime 2007 Ao = 1.32876, A, = 0.18291, Ay = 0.32156
e = 0.765003, 7, = 0.74781, 7., = 1.00000
US Crime 2008 Ao = 1.32829, A, = 0.18286, Apy = 0.32146
5o = 0.765406, 7, = 0.75763, Jxy = 1.00000
Global GDP 2008 a = 44620.24, B = 13643.50
Global GDP 2009 a = 44258.72, B = 13570.98
Global GDP 2008 o = 0.84687, A, = 0.25678, Agy = 0.39406
Global GDP 2009 e = 0.84915, A, = 0.25969, Apy = 0.39774
Global GDP 2008 o = 0.84687, Ay = 0.25677, Apy = 0.39405

Fe = 0.77847, 7, = 0.76382, Y.y = 1.00000

Global GDP 2009 Ao = 0.84915, A, = 0.25969, Apy = 0.39773

~

Yo = 0.77787, J, = 0.76407, Jay = 1.00000

A word of caution about interpreting the parameters in the above table. For ex-
ample, the parameters under the SDE models for the Violent Crime data survey and
the Global GDP data survey have approximately the same north-south parameter
estimate @, but a vastly different east-west parameter estimate B . Does this mean
that the United States capital (money) went east-ward, while the crime stayed in the
U.S? No, because the two data surveys intentionally represent two different levels of
geography to illustration the calculations.

7.11 Exercises

1. Show that > | w;* = 1 where

i
/ 1/7vy
. w; -1
CENELe) T
i=1 Wi
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Solution: Let >, w/ = w. Then,

1/~ 1/, n

/ Y / v

o ’ZU,L- o ’ZU,L- Yy

e e = | — = w; " =
D1 Wi w =1

n /
wi_w

= —=1.
L~ w
=1
2. Show that
,\ﬁ = 7 in Chapter 5.
Az
Solution:
N n /e
A= — , 0<ux; <180.
(/ZU Z’L:l TZT) -
Let w = <&
Zi:l Wi
1/%a
3\\ _ n
2zt (—zrl v )
3. Show that
,\E = gy in Chapter 5.
Ay

4. For what value of 7, and ~y, in the Weibull ellipse makes it equal to the expo-
nential ellipse [special case]? Show this algebraically.



VBA CODE 109

7.12 VBA Code

The function Log10 (X) calculates and returns the logarithm with the base 10 of
the variable X. By default, VBA calculates natural logarithms. The programmer
must write his own function for non-natural logarithms.

ThewWeibull () subroutine (15) calculates the remaining measures for the Weibull
ellipse. The first two FOR-NEXT loops (16, 17) calculate the weights and save
them to columns D, F, and G in the active spreadsheet. The source code that
estimates j\\x, Xy, /)\\my, Jzs Yy, and 7, need these values initialized. The subrou-
tines secantl () and secant2 () onlyneeded two iterations of a single weight
initialized.

The FOR-NEXT loop (19) calculates the sums used in Equation (7.26), the axes
lengths, the area, and the eccentricity.

The subroutine Angle_of _Rotation () determines which axis to rotate the
ellipse. Since # from Equation (7.26) contains a plus and minus sign, both values
are calculated. If 377" log#2 ; > Y71 logu? ;, then rotate the ellipse about the
Y-axis. Otherwise, rotate the ellipse about the X-axis.

The subroutine Area () calculates the sums used for the area. The program
calculates the area, I, in Equation (7.31) and saves it in the variable f .

We use Equation (7.27) to calculate the sums for the standard error for the X-axis.
We use Equation (7.28) to calculate the sums for the standard error for the Y-axis.
The VBA statements following the FOR-NEXT loop finish the calculations and save
the results in the variables error_x and error_y.

The subroutine Axes_Length () determines the major and minor axis lengths.
If Y70 logts ; > >0 logug ;, then we can calculate the semi-major axis length
directly with Equation (7.29) and the semi-minor axis length with Equation (7.30).
Otherwise, we must reverse the roles of the sums in the two equations.

We calculate the eccentricity using the subroutine Eccentricity (). Ifthe
axis length @ > b, then the formula in Equation (7.32) can be used directly used.
Otherwise, we reverse the roles of a and b so that we do not take the square root of a
negative number.

The set of VBA statements inside the WITH-END-WITH (20) save the results to
the spreadsheet called STATS in column L (column 12). We write appropriate text
documentation to column K (column 11).
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[Sub secantl (iterations, variable, Gammal, gamma2)
j=1
dx =1 ’trivial value
condition = 0 ’trivial value
While (j <= iterations)And (dx > condition)
’set the weights
n = Selection.Rows.Count
sum_weightl =0
sum_weight2 =0
[Fori=2Ton
sum_weightl = sum_weightl + (ActiveSheet.Cells(i, 3).Value)
sum_weight2 = sum_weight2 + (ActiveSheet.Cells(i, 3).Value)
| Next
ActiveSheet.Cells(1, 4).Value = "Lambda 1 Weights”
ActiveSheet.Cells(1, 6).Value = "Lambda 2 Weights”
[Fori=2Ton
ActiveSheet.Cells(i, 4).Value = ((ActiveSheet.Cells(i, 3).Value) / sum_weightl) ~ (1 / Gammal) "previous iteration
ActiveSheet.Cells(i, 6).Value = ((ActiveSheet.Cells(i, 3).Value) / sum_weight2) ~ (1 / gamma?2) ’next iteration
| Next
’end of setting the weights

sumwx2 =0

sumwx1=0

sumx2=0

sumx1=0

sum_logx =0

[Fori=2Ton

sumw _x2 = sumw_x2 + ( ActiveSheet.Cells(i, 6) ~ gamma2 * ActiveSheet.Cells(i, variable).Value ) © gamma?2 ’weighted
sumw _x1 = sumw_x1 + ( ActiveSheet.Cells(i, 4) ~ Gammal * ActiveSheet.Cells(i, variable).Value ) ~ Gammal ’weighted
5 | sum_x2 = sum_x2 + ActiveSheet.Cells(i, variable).Value ~ gamma2 'unweighted

sum_x1 = sumx1 + ActiveSheet.Cells(i, variable).Value ~ Gammal 'unweighted

sum_logx = sum_logx + Log(Abs( ActiveSheet.Cells(i, variable).Value )) 'unweighted

Next

lan_lbda2 =((n-1)/sumwx2) " (1 / gamma?2) 'weighted

lambdal = ((n - 1) / sumw_x1) ~ (1 / Gammal) *weighted

Lx=0

L X Minus =0

Lx=Lx+(n-1)*Log(gamma2)+ (n- 1) * gamma?2 * _

Log(sum_weight2 * lambda2) + (gamma2 - 1) * sum_logx - lambda2 ~ gamma?2 * sum_x2
L_X Minus = L_X_Minus + (n - 1) * Log(Gammal) + (n - 1) * Gammal * _

| Log(sum_weightl * lambdal) + (Gammal - 1) * sum_logx - lambdal ~ Gammal * sum_x1
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gamma3 = gamma?2 - L_x * (gamma?2 - Gammal) / (L_x - L_X_Minus)
Gammal = gamma?2 ’correct assignment
gamma2 = Abs(gamma3) ’correct assignment, must be positive
2 | dx = Abs(L_x - L_X_Minus)
condition =10 " (-6) * Abs(L_x)
j=j+1
| Wend
['With Worksheets(”STATS”)
.Cells (1, 7).Value = ’Secant Algorithm”
.Cells (2, 7).Value = ’dx”
.Cells (2, 8).Value = dx
.Cells (2, 9).Value = condition
.Cells (3, 7).Value = "Lambda”
.Cells (3, 8).Value = lambda2
.Cells (4, 7).Value = ”"Gamma”
.Cells (4, 8).Value = gamma2
.Cells (5, 7).Value = "Mean”
.Cells(5, 8).Value = (n - 1) / lambda2
| End With
| End Sub
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—Sub secant2(iterations, Gammal, gamma?2)

j=1

dx =1 ’trivial value

condition = 0 ’trivial value

—While (j <= iterations) And (dx > condition)

’set the weights

n = Selection.Rows.Count

sum_weightl =0

sum_weight2 =0
Fori=2Ton
sum_weightl = sum_weightl + (ActiveSheet.Cells (i, 3).Value )
sum_weight2 = sum_weight2 + (ActiveSheet.Cells (i, 3).Value )
Next

ActiveSheet.Cells (1, 4).Value = "Lambda 1 Weights”

ActiveSheet.Cells (1, 6).Value = "Lambda 2 Weights”

Fori=2Ton
10 ActiveSheet.Cells (i, 4).Value = ((ActiveSheet.Cells (i, 3).Value ) / sum_weightl) ~ (1 / Gammal) "previous iteration
7 ActiveSheet.Cells (i, 6).Value = ((ActiveSheet.Cells (i, 3).Value ) / sum_weight2) ~ (1 / gamma?2) ’'next iteration
Next

8 | ’end of setting the weights
sumw x2 =0
sumw_y2 =0
sumx1=0
sumyl =0
log_gammal =0
log_gamma2 =0
logxyl=0
logxy2=0
sum_lambdax2 =0
sum_lambdax1 =0
sum_lambday2 =0
sum_lambdayl =0
sumw_lambda2 = 0
sumw_lambdal = 0

’calculate the sums used in the Secant Method
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Fori=2Ton

sumw _x2 = sumw_x2 + (ActiveSheet.Cells (i, 6).Value ~ gamma?2 * ActiveSheet.Cells (i, 1).Value ) ~ gamma?2 *weighted
sumw_y2 = sumw._y2 + (ActiveSheet.Cells (i, 6).Value ~ gamma?2 * Abs(ActiveSheet.Cells (i, 2).Value )) ~ gamma2 *weighted
sumw _x1 = sumw_x1 + (ActiveSheet.Cells (i, 4).Value ~ Gammal * ActiveSheet.Cells (i, 1).Value ) ©~ Gammal ’weighted
sumw_y1 = sumw_y1 + (ActiveSheet.Cells (i, 4).Value ~ Gammal * Abs(ActiveSheet.Cells (i, 2).Value )) ~ Gammal *weighted
log_gamma2 = log_gamma?2 + 2 * Log(gamma2)

log_gammal = log_gammal + 2 * Log(Gammal)

log_xy2 =log_xy2 + (gamma?2 - 1) * Log(ActiveSheet.Cells (i, 1).Value * Abs(ActiveSheet.Cells (i, 2).Value ))

logxyl =logxyl + (Gammal - 1) * Log(ActiveSheet.Cells (i, 1).Value * Abs(ActiveSheet.Cells (i, 2).Value ))

Next

lam‘t_)da2 =2*(@n-1)/(sumwx2 + sumw_y2)) ~ (1 / gamma2) *weighted

lambdal = (2 * (n - 1) / (sumwx1 + sumw_y1)) ~ (1 / Gammal) 'weighted

’calculate the sums invloving lambda

12

[Fori=2Ton

sum_lambdax2 = sum_lambdax2 + (lambda2 * ActiveSheet.Cells (i, 1).Value ) ~ gamma2

sum_lambdax 1 = sum_lambdax1 + (lambdal * ActiveSheet.Cells (i, 1).Value ) ~ Gammal

sum_lambday2 = sum_lambday2 + (lambda2 * Abs(ActiveSheet.Cells (i, 2).Value )) © gamma2
sum_lambday1 = sum_lambday1 + (lambdal * Abs(ActiveSheet.Cells(i, 2).Value )) ~ Gammal
sumw_lambda2 = sumw_lambda2 + 2 * (n - 1) * gamma2 * Log(ActiveSheet.Cells(i, 6).Value * lambda?2)
sumw_lambdal = sumw_lambdal + 2 * (n - 1) * Gammal * Log(ActiveSheet.Cells(i, 4).Value * lambdal)

| Next

’estimate gamma using the Secant Method
Lx=0
LX Minus=0

13

Fori=2Ton

Lx =Lx +log_gamma2 + sumw_lambda2 + log_xy2 - sum_lambdax2 - sum_lambday?2

L_X_Minus = L_X_Minus + log_gammal + sumw_lambdal + log_xy1 - sum_lambdax1 - sum_lambday1
Next

gamma3 = gamma2 - L_x * (gamma?2 - Gammal) / (L_x - L_X_Minus)

Gammal = gamma?2 ’correct assignment

gamma2 = Abs(gamma3) ’correct assignment, must be positive

dx =

Abs(L_x - L_X_Minus)

condition =10 " (-6) * Abs(L_x)
j=j+1
| Wend
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15

[ With Worksheets("STATS”)
.Cells(1, 7).Value = "Secant Algorithm”
.Cells(2, 7).Value = ”dx”
.Cells(2, 8).Value = dx
.Cells(2, 9).Value = condition
.Cells(3, 7).Value = "Lambda XY”

1 .Cells(3, 8).Value = lambda2
.Cells(4, 7).Value = "Gamma XY”
.Cells(4, 8).Value = gamma?2
.Cells(5, 7).Value = "Mean XY”
.Cells(5, 8).Value = (n - 1) /lambda2

| End With

LEnd Sub

Sub Weibull(gamma_x, gamma_y, gamma_xy, lambda_x, lambda_y, lambda_xy)
’set the weights
n = Selection.Rows.Count
m=n-1
sum_weightl =0
sum_weight2 =0
sum_weight3 =0
Fori=2Ton
sum_weightl = sum_weightl + (ActiveSheet.Cells(i, 3).Value) ’single x
16 | sum_weight2 = sum_weight2 + (ActiveSheet.Cells(i, 3).Value) ’single y
sum_weight3 = sum_weight3 + (ActiveSheet.Cells(i, 3). Value) ’joint xy
Next
ActiveSheet.Cells(1, 4).Value= "Lambda X Weights”
ActiveSheet.Cells(1, 6).Value= "Lambda Y Weights”
ActiveSheet.Cells(1, 7). Value= "Lambda XY Weights”
Fori=2Ton
ActiveSheet.Cells(i, 4).Value= ((ActiveSheet.Cells(i, 3).Value) / sum_weightl) ~ (1 / gamma_x) lambda_x
17 | ActiveSheet.Cells(i, 6).Value= ((ActiveSheet.Cells(i, 3).Value) / sum_weight2) ~ (1 / gamma_y) 'lambda_y
ActiveSheet.Cells(i, 7).Value= ((ActiveSheet.Cells(i, 3).Value) / sum_weight3) ~ (1 / gamma_xy) 'lambda_xy
Next
’end of setting the weights
fx=0
Fy=0
Fxy=0
L_xy = 0 used for the log L calculation
logtx=0
logt.y =0
logtxy =0
logt_xsqr=0
logt_ysqr=0

logt_xysqr=0
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Fori=2Ton

f_x = ActiveSheet.Cells(i, 4).Value” gamma_x - ActiveSheet.Cells(i, 4).Value” gamma_x * _

EXP(-1 * lambda x * (ActiveSheet.Cells(i, 1).Value) ~ gamma_x)

F_y = ActiveSheet.Cells(i, 6).Value” gamma_y - ActiveSheet.Cells(i, 6). Value* _

EXP(-1 * lambda_y * Abs(ActiveSheet.Cells(i, 2).Value) ~ gamma_y)

F_xy = ActiveSheet.Cells(i, 7).Value~ gamma_xy * _

EXP(-1 * lambda xy * ActiveSheet.Cells(i, 1).Value” gamma xy - lambda_xy * Abs(ActiveSheet.Cells(i, 2).Value) ~ gamma xy) _
- ActiveSheet.Cells(i, 7).Value” gamma xy * EXP(-1 * lambda_xy * ActiveSheet.Cells(i, 1).Value” gamma_xy) - _
-ActiveSheet.Cells(i, 7).Value” gamma_xy * EXP(-1 * lambda_xy * Abs(ActiveSheet.Cells(i, 1).Value) ~ gamma_xy) + _
ActiveSheet.Cells(i, 7).Value”™ gamma xy

logt_x =logt_x + (Log10(1 / lambda_x) + (1 / gamma_x) * _

Log10(Log(1 /(1 - fx)))) * ActiveSheet.Cells(i, 4).Value” gamma x

logt_y =logt_y + (Log10(1 / lambda_y) + (1 / gamma_y) * _

Log10(Log(1/(1 - F_y)))) * ActiveSheet.Cells(i, 6).Value” gamma_y

logt_xy = logt_xy + (Log10(1 / lambdaxy) + (1 / gamma_xy) * Log10(Log(1 /(1 - Fxy)))) * _

ActiveSheet.Cells(i, 7).Value”™ gamma xy

logt_xsqr = logt_xsqr + ((m * (Log10(1 / lambda x) + (1 / gamma_x) * Log10(Log(1 /(1 - fx)))) * _
ActiveSheet.Cells(i, 4).Value” gamma x)) ~ 2

logt_ysqr = logt_ysqr + ((m * (Log10(1 /lambda_y) + (1 / gamma_y) * Log10(Log(1 /(1 - F_y)))) * _
ActiveSheet.Cells(i, 6).Value~ gamma_y)) ~ 2

logt_xysqr = logt_xysqr + ((m * (Log10(1 / lambda_xy) + (1 / gamma_xy) * Log10(Log(1/ (1 - Fxy)))) * _
ActiveSheet.Cells(i, 7).Value~ gamma._xy)) ~ 2

Lxy=L_xy+2 *Log(gammaxy)+2 * (n- 1) * gamma_xy * Log(lambda_xy * _

ActiveSheet.Cells(i, 4).Value) + (gamma_xy - 1) * (Log(ActiveSheet.Cells(i, 1).Value* _

ActiveSheet.Cells(i, 2).Value)) - (lambda_xy * ActiveSheet.Cells(i, 1).Value) ~ (gamma xy) - (lambda_xy * _
ActiveSheet.Cells(i, 2).Value) ~ (gamma_xy)

Next

’caléulate the area statistics for the Weibull Ellipse

Call Angle_of_Rotation(logt_xsqr, logt_ysqr, logt_xy, note, atheta, itheta)

’calculate the deltas

deltax =0
delta_y =0
eFx=0

[eFy=0
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[Fori=2Ton

eF_x = ActiveSheet.Cells(i, 4).Value” gamma x - ActiveSheet.Cells(i, 4).Value” gamma _x * _
EXP(-1 * lambda_x * (ActiveSheet.Cells(i, 1).Value))

eF_y = ActiveSheet.Cells(i, 6).Value” gamma_y - ActiveSheet.Cells(i, 6).Value” gamma_y * _
EXP(-1 * lambda_y * Abs(ActiveSheet.Cells(i, 2).Value))

elogt_x = Log10(1 /lambda_x) + (1 / gamma_x) * Log10(Log(1/ (1 - eFx)))

elogt_y = Log10(1 /lambda_y) + (1 / gamma_y) * Log10(Log(1/ (1 - eF_y)))

delta_x = delta_x + (elogt_y * Sin(atheta / 57.2957795) - elogt_x * Cos(atheta /57.2957795)) ~ 2 * _
ActiveSheet.Cells(i, 4).Value~ gamma _x

delta_y = delta_y + (elogt_y * Cos(itheta / 57.2957795) - elogt_x * Sin(itheta / 57.2957795)) ~ 2 * _
ActiveSheet.Cells(i, 6).Value”™ gamma_y

| Next



15

VBA CODE

—error_x = Sqr(delta_x)

error_y = Sqr(delta_y)

“calculate the area, eccentricity, and axes lengths

f = Area(m, logt_xsqr, logt_ysqr, logt_xy)

Call Axes_Length(m, logt_xsqr, logt_ysqr, logt_xy, a, b)
e = Eccentricity(a, b)

Area2 = Area_Check(a, b)

"write the stats to the STATS spreadsheet

With Worksheets(”STATS”)

.Cells(1, 11).Value="Weibull Ellipse Statistics”
.Cells(2, 11).Value= "Mean Latitude”

.Cells(3, 11).Value="Mean Longitude”
.Cells(2, 12).Value= (n - 1) / lambda_x
.Cells(3, 12).Value= (n - 1) / lambda_y
.Cells(4, 11).Value= "Rotation”

.Cells(5, 11).Value="Major Axis Rotation”
.Cells(6, 11).Value= "Minor Axis Rotation”
.Cells(4, 12).Value= note

.Cells(5, 12).Value= atheta

.Cells(6, 12).Value= itheta

.Cells(7, 11).Value= "Delta X”

.Cells(8, 11).Value="Delta Y”

20 | .Cells(7, 12).Value= error_x

.Cells(8, 12).Value= error_y

.Cells(9, 11).Value="Area (F)”

.Cells(9, 12).Value = f

.Cells(10, 11).Value = "Major Axis Length (a)”
.Cells(11, 11).Value = "Minor Axis Length (b)”
.Cells(10, 12).Value = a

.Cells(11, 12).Value =b

.Cells(12, 11).Value = ”Area Check”

.Cells(13, 11).Value = "Eccentricity (e)”
.Cells(14, 11).Value = "’Likelihood Function L(x,y)”
.Cells(12, 12).Value = Area2

.Cells(13, 12).Value = e

.Cells(14, 12).Value = L_xy

L End With

_End Sub
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CHAPTER 8

SPHERICAL STATISTICS

8.1 Introduction

So far, we have used the latitude and longitude coordinate system found in most
geography literature. The statistical estimates gave meaningful results (e.g., the mean
center landed in the survey area, the expected standard errors followed a known
distribution, and two methods for calculating the area matched). In this Chapter, we
introduce the concept of spherical statistics. For these analyses to work, we must
convert the data from latitude and longitude coordinates to the Cartesian coordinate
system (i.e. having an X, Y, and Z-axes each extending to infinity with a single pole
at the point (0, 0, 0)).

This Chapter gives another view of the approach to spatial analysis. The spherical
statistics may not match the other Chapter statistics, exactly. These are presently
because they give additional information such as the “shape” of the data. The deriva-
tions and calculations of the spherical mean centers and standard deviations may not
align well with previous Chapters. We follow mathematical and statistical theory
carefully.

These calculations are unweighted, which means that we are analyzing the latitude
and longitude observations in the absense of the random variable. Given this, muliple

Random Variables, Their Properties, and Deviational Ellipses. 119
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year survey statistics give the same results since the latitudes and longitudes have
been augmented to the data sets. New information not atainable before, will be
presented.

This Section covers the multiple ellipses from a single population. The data shows
more than one value with a high a frequency (probability) occurring in the survey.
In directional statistics, we define the mode as the maximum a value of a given
distribution and we define the anti-mode as the minimum of the distribution. For
example, if we construct a histogram of a distribution for categorical ranges of the
sample data and count the number of observations that fall into each category, then
the category with the largest number of observations is the mode. The category with
the smallest number of observations is the anti-mode.

The literature on multi-modal ellipses divides the techniques for measuring the
ellipses into several broad categories:

= Multiple variable statistics.
= Multivariate statistics.

= Multi-modal statistics.

Multiple variable statistics includes such techniques as linear regression with
one random variable and multiple explanatory variables [B. L. Bowerman and R.
T. O’Connell, (2)]. We estimate the parameters using least squares. On the other
hand, multivariate statistics linear regression with two or more random variables and
can include one or more explanatory variables for each random variable [R. Khattree
and D. N. Naik, (33)]. There may be correlation among the random variables. [R.
G. Petersen (50); E. T. Lee, (35)] discuss more general analysis of variance models
(ANOVA models) and specifically the distributions discussed in preceding Chapters
for the univariate cases. [R. Khattree and D. N. Naik, (33)] give analogous multi-
variate analysis of variance models (MANOVA models).

Multimodal statistics is a property of a particular distribution albeit a univariate
distribution or a multivariate distribution. [L. Cobb, P. Koppstein, and N. H. Chen
(7)] contains a discussion on multimodal distributions for the exponential distribu-
tion, the normal distribution, and the beta distribution. The paper also contains a test
for multimodality [(7, page 128]. Although the paper seems relevant, after some cor-
respondence with L. Cobb, the paper does not discuss random variables or random
distributions. [Mardia, (45)] contains extensive discussions on univariate and mul-
tivariate sampled distributions. Of interest in this text is [Mardia, (45), page 221],
which shows how to calculate the mean center of gravity, using sins and cosines. The
author has a simple test for multimodality [Mardia (45), page 209]. The author gives
other, advanced tests also.

[D. J. Steffensmeier, E. A. Allan, M. D. Harer, and C. Streifel, (59)] provide an
in-depth example of crime data linking crime type and age. This article discusses
two distinct issues.

= Committing crime as a person ages (supported by Sociological studies).
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= Shift in the age distribution by the type of crime (supported by the data).

The authors rely on percentages and quantiles throughout the paper for statistical
comparisons. To show multimodality, the authors show the shift in the age dis-
tribution using quantiles of committing a specific type of crime over a period from
1940 to 1980. They also provide the usual skewness and kurtosis calculations for the
shape of the distributions as well as chi-square tests.

8.2 Concepts

Directional statistics models probability densities and angles. In prior chapters, our
data came in the triplet (x;, y;, w;) for the latitude, the longitude, and the random
variable and mapped onto the Earth’s surface. In this chapter, the data comes from
the sample of size n of points on a sphere P(¢;,0;). The latitude ¢; is the verti-
cal line running north and south parallel of the Prime Meridian and has the range
[90°,90°]. The longitude 6; is the horizontal line running east and west parallel
of the Equator and has the range [—180°,180°]. We define the Equator as having
latitude of 0°. We define the Prime Meridian as having longitude of 0°. We will need
to convert decimal degrees into radians often in this Chapter because the calcula-
tions rely heavily on trigonometry functions. [Shelby (57), pages 389-392] gives an
excellent discussion of projecting coordinates from the Earth onto a circle.

How do we convert our latitude and longitude data to directional data? The Equa-
tor divides the Earth in half into the Northern and Southern Hemispheres each having
the same mass. The latitude of the Equator is ¢° = 0°.
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Figure 8.1  This figure shows a map of the U.S. relative to the Equator (represented by the
black line).

To obtain a scatter diagram in two dimensions on the surface of a sphere, use a
projection on the sphere. Consider the polar coordinates (p, 1)) where p is the polar
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distance and 1) is the polar angle. [Mardia, (45)] defines the stereographic equal-
angle projection as p = tan(%) ,and ¢ = ¢owhere 0 < p < land 0 < ¢ <
2m. [Mardia, (45)] calls the plot a Wulff-net or stereographic-net. It is an “area
preserving” plot compared to other plots.

Steps to mimic the previous chapters:

1. Convert the spatial data to circular data.

2. Calculate the quantities (l_o, Mo, ). These calculations result in radians when
using Excel 2010 spreadsheets.

3. Convert the results back to degrees from radians.

4. Convert the mean latitude and mean longitude back to spatial coordinates.

8.3 X -Axis Mean Center and Resultant Length

To find the mean direction North-South using directional statistics, we first calculate
the cosines in Equation (8.1).

ng = inl = iCOS(bi. (81)
i=1 i=1

where P(¢;, 6;) is a point on the Earth; ¢; equals to the latitude and 6; equals to the
longitude for observation 7. To find the average of ny, we divide by the quantity R

to obtain )
X =7, = =n, (8.2)
n

where we define R next.

2 2 2
_ 1 < 1 < 1 & _
= —E li —E i —E il s <1 .
R <”i_1 ) +<”i_1m> +<”i_1n> 0<R (8.3)

where n is the sample size and [;, m;, and n; are defined in this Section and the next.
For now it suffices to say that R is between 0 and 1.

The diagram in Figure 8.2 shows the triangle with the longitude 6. It has a right
angle (90°), the angle 6 identified, the hypotenuse R and the two sides 1o and my.
We will define my in Section 8.4.

Equation (8.4) gives the weighted cosines and average latitude using the random
variable W.

. wmn 2w Cos ¢

> _ i i i

Xw:n’wo:Zni_:Zni_- (8.4)
i=1 i Wi i=1 i Wi

Accordingly, Equation (8.5) gives the weighted resultant length R.
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8.4 Y and Z-Axis Mean Centers

To find the means in the Y and Z-axis directions using directional statistics, we need
both the latitude (¢;) and the longitude (6;) observations for the points P(¢;, 6;) on
the Earth. We calculate the sums for the Y -axis in Equation (8.6) and the sums for
the Z-axis in Equation (8.7).

lo = i ll = i sin (bl CcOs 91', (86)
i=1 i=1
mgo = i m; = i sin (bl sin 91 (87)
i=1 i=1

P(¢;,0;) is a point on the Earth. ¢; is called the latitude and 6; is called the
longitude for observation . To find the average of [y and mg, we need the mean
resultant length R, which was difined in Section 8.3. For now, it suffices to say that,
Equations (8.8) and (8.9) gives the means for [y and my.

_ 1
Y =1ly=—l. (8.8)
n
1
Z = mo = —my. (89)
n

Equations (8.10) and (8.11) give the weighted averages for the Y and Z axes.

_ - - sm(blcosﬁ
=l = ) 8.10
; S (8.10)

- sm(bl sin 6;
=1 . 8.11
e g i=1 Wi e

8.4.1 Spherical Variance

[Mardia and Jupp, (46)] give two definitions for the sample spherical variance. The
first sample spherical variance is defined in Equation (8.12). This definition mini-
mizes a matrix of the arithmetic mean of the Euclidean distances.

S*=2(1-R),0<S* <1 (8.12)
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where R is the resultant length. For small S*, the data is uniform. There is no
preferred direction. For large S*, the data is directional and may be clustered or may
not be clustered. When R ~ 1, the data are heavily concentrated. R measures
clustering around the mean direction.

A second measure of the sample spherical variance is given in Equation (8.13).
This definition is an analogue from a derivation of the matrix 7. The matrix 7" will
be used later.

S*=1—-R?0<S*<1. (8.13)

8.5 Test and Characterizations

The spherical distributions can have one of three visual characteristics:

= Uniform: The points have a uniformly dispersed pattern and have no “pre-
ferred” direction.

= Bimodal: The points have a clustered pattern about the ends of an axis (e.g.
the north and south poles). The axis joins the two modes as well as the two
anti-modes.

= Girdle: The points have a dispersed, elliptic pattern. The mode(s) are on a
plane.

To detect which distribution we have, define the matrix B as:
B=nl-T= (8.14)
n=Yin =X lme =30 Lina | (D
- Z?:l lim; n— Z?:l mi - Z?:l M1 ba
=il = ming =30t | \bs

We find the eigenvalues of matrix B to determine the visual shape of the data. We
define the vector b, as the first row times the vector of unknowns:

Ql -
n—= Z?:l 11'2 - Z?:l Limi - Z?:l lin; by

- Z’?:l llml n— Z’?:l Tn’L2 - Z’?:l m;n; b2 =

- Z?:l lini — Z?:l min; n— Z?:l ny bs

—bs >y lin

Vector b, corresponds to row 2 and vector b, corresponds to row 3.
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Finding the eigenvalues of B involves two steps:

1. Find the roots A to the determinant Det(B — AI) where the matrix I is the 3 x 3
identity matrix. There may be at most three unique roots to the determinant.

2. For each eigenvalue )\, solve the system (B — A\;I)v = 0.

Equation (8.15) gives the determinant for B — \; 1.

Det(B — \;I) = (8.15)
(n—le —)\J> (n—Zm?—)\J> (n—Zn?—)\J> —
i=1 i=1 i=1

n n n n n n
1=1 1=1 1=1 1=1 1=1 1=1

i=1 i=1 i=1
imini imini (n — i 11-2 — )\j> +
i=1 i=1 i=1

i=1 i=1 i=1

Arrange the eigenvalues A1, Ao, and A3 in ascending order such that 0 < \; <
A2 < A3 < n where n is the sample size and Zle A; = n. The trace of matrix B
sums to 2n. As in [Mardia (45), page 223-224], we interpet the diagonal elements of
B and the eigenvectors.

Bi, © = 1,2, 3 equal to the diagonal elements of B where 3y = by1, B2 = bao,
and (33 = bs3. Working with the matrix 7, we define the following eigenvalues and
eigenvectors.

)\i:n—ﬁi, 21291,121,2,3 ,)\1+)\2+)\3:TL.

The terms large and small are subjective. The reader may ask whether there is a
statistical test to differentiate between the values for \;? [Mardia (45), pages 276-
283] shows such a test statistic. Let the null hypothesisbe Hp : A1 = Ay = A3 = 7,
which states that the eigenvalues have equal values. The test statistic is Sy

15 1\°
Sy =— Ai—z=n) ~x*(5). 8.16
v %E( 3n> X*(5) (8.16)

Equation (8.16) is asymptotically a chi-square distribution with five degrees of
freedom. For large n, the chi-square test works best. For sufficiently large sample
sizes, this should not be an issue. Sy tests for uniform \}s. Other statistical tests test
for girdle and rotational symmetry using the \,s.
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90°

] 6

Mg

Figure 8.2  This figure shows the diagram of a triangle with the quantities for the longitude
0, no, and the resultant length R.

Table 8.1

Interpretation of the Eigenvalues

Eigenvalues

Condition

Distribution

Build

)\1 ~ )\2 ~ )\3

Small A1, A2. Large A3

Small A1, A2. Large A3

Small A;. Large A2, and As.

Small A;. Large A2, and As.

A # A

A2 # A3

)\2 ~ )\3

Uniform

Unimodal for large R. Bimodal
otherwise.

Unimodal for large R. Bipolar oth-

erwise.

Girdle

Symmetric girdle

Axes having no orientation

If unimodal, the concentration at end of the
eigenvector ¢,. Otherwise, concentration at
both ends of the eigenvector t.

Rotational symmetry about ¢.

Girdle plane spanned by the the eigenvectors
t, and t,.

Rotational symmetry about the eigenvector

ty-
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8.5.1 Finding the Eigenvalues

This section presents a simple Netwon algorithm for finding the eigenvalues J;,
7 = 1,2, 3. The Gaussian elimination algorithm must be run to find the eigenvectors
for each \;. The subroutine must be run mutiple times. The routine needs to find the
three values in the determinant of the matrix B :

where the constants a, b, ¢, d, e, f, g, h,and i are given. The cubic equation must be
solved for \ :

(a=AN)(b—=XN(c—A) +dgh+efi— (8.17)

he(b—X) —ig(a —\) — fd(c —N).

The derivative of Equation (8.17) with respect to A is given in Equation (8.18).

—b=Nc—=XN)—(a=N(c—=A) —(a—=N)(b—X) +eh+ig+ fd. (8.18)

[Cheney and Kincaid, (5), pages 83-90] give an introduction and an algorithm for
Newton’s method. We wish to apply the method to find the eigenvalue \;, j = 1,2
or 3. The recursive definition of Netwon’s method is

)
(k)

Algl = A

where k£ = 0,1, 2, ... represents the iteration (also called the index in the sequence).
We use Equation (8.17) to calculate the function f(\). We use Equation (8.18) to
calculate the function f’(Ag).

8.5.2 Finding the Eigenvectors

This book comes with a Gaussian elimination algorithm that performs row reduction
on a3 x 3 matrix. The subroutine only needs to be run once foreach \;, j = 1,2, 3.
There is no trial and error as there was in finding the eigenvalues. [Grossman, (23),
pages 277-281] gives the theory behind eigenvalues and eigenvectors and the strategy
for finding each. Keep in mind that we are only solving a 3 x 3 matrix in Spherical
Statisitics and the code given reflects this simplicity. Setting the initial value for v3 to
back solve the system of equations is the reader’s prerogative as stated in [Grossman,
(23)]. There are an infinite number of solutions to the equations.
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Figure 8.3  This figure shows the histogram for the Kentucky 2003 data.

Kentucky 2003 Spherical Data

45

Figure 8.4  This figure shows the Kentucky 2003 converted data.

8.6 Kentucky Example

Figure 8.3 shows the histogram for the Kentucky 2003 data. There does not appear
to be any one or two observations with a disproportional weight. This data looks
fairly random. Figure 8.4 shows the Kentucky 2003 converted data. The Y; and Z;
observations have been interchanged in the graph. This is because the Z-axis points
directly at the reader. Had the the data not been interchanged, only one circle would
have been shown. The 91 data markers, shown as circles, would lay on top of each

other since the data is fairly linear.
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We run the Newton () subroutine in Excel to calculate the eigenvalues. Since
the equation of the determinant of B is triadic, we expect to find three roots to the
determinant. The Newton () subroutine will find two of the three. The third A3
can be deduced by the equation A3 = n — A\; — A2 where A\; and Ay are known
eigenvalues that have been found using the Newton () subroutine. Using a value
close to n is a good guess for A\3. Here, there is no implied ordering between Aq, Ao,
and \3. Table 8.2 gives the eigenvalues and eigenvectors for the Kentucky data.

Matrix B for the 2003 Kentucky data is as follow:

33.58777584  —3.351383372 43.36764038
B = | —3.351383372  89.77014071  2.59054283
43.36764038 2.59054283  56.64208345

The reader can verify that the diagonal elements sum to 2n = 180. Matrix 7" for the
2003 Kentucky data is as follow:

56.41222416  3.351383372 —43.36764038
T = | 3.351383372  0.229859286  —2.59054283
—43.36764038 —2.59054283  33.35791655

Table 8.2  Eigenvalues and Eigenvectors for the 2003 Kentucky Data

Value Eigenvector £/
A1 0.006629744 (0.734788415, 0.573334304, 1.0)
Az 0.034874073 | (0.944911442, —2.955186475, 1.0)
Az 89.95849618 | (—1.300507805, —0.077445098, 1.0)

The reader can verify that the property Tv” = X\;v7 where the vector v is the
eigenvector corresponding to the eigenvalue \; for ¢ = 1,2, 3. Just looking at the
magnitude of the values of A1, A2, and A3 we can conclude that the eigenvalues are
not equal. Hence, at a minimum the data is directional. We will calculate the test
statistic Sy for illustrative purposes.

15 < 1 2
0= g7 0 (% 3100)) =

15
180 ((0.006629744 —30)% 4 (0.034874073 — 30)*+
(89.95849618 — 30)?) = 449.378.
The cut-off value is x?(5) = 11.07 at the 95% confidence level and x?(5) = 15.09
at the 99% confidence level. Since 449 > 15.09, we reject the hypothesis that the
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Table 8.3  Results for the Spherical Model for Kentucky

2003
Center (45.35963106, 2.701085798, —34.87836501)
(lo, mo,m0) (4082.366795, 243.0977218, —3139.052851)
Resultant Length R = 0.999769376
Sample Size n =90
Data Type Directional
Data Shape Bipolar

Spherical Variance | S = 0.000461194

eigenvalues are equally valued. Thus, the data is directional. We need the resultant
length R to determine the visual distribution of the points. This Section covers the
derivation of R.

To obtain the results in Table 8.3, we ran the Spherical Dev_Ellipse ()
routine. It does not have any input parameters, but does assume that the first three
columns in the spreadsheet have the following values:

= Column 1 contains the latitude values.
= Column 2 contains the longitude values.

= Column 3 contains the weight values (random variable). This is not used in the
computations.

In Table 8.2, we notice we have two small eigenvalues and one large eigen-
value. According to Table 8.1, these observations have a bipolar distribution be-
cause A3 is large; A\; and Ay are small. The concentration of the spherical data
is at both ends of the vector ¢;. We knew the data originated from a bipolar co-
ordinate system with a north and south pole. The vector ¢; in radians is t; =
(—1.300507805, —0.077445098, 1.0).

8.7 Crime Example

We look at the histogram in Figure 8.5 and notice three states with approximately the
same mode — California, Texas, and Florida. California accounts for approximately
13.6% of the total violent crime, Texas 8.7%, and Florida 9.4%. These three obser-
vations weigh the calculations dispropotionately. One is on the west coast, one in
the south west, and the other in the south. Figure 8.6 shows a graph of the converted
data. The data is symmetric. One ball is separated from the rest of the data.

We need to determine the visual distribution of the data. To accomplish this, we
first find the eigenvalues of matrix 7" (uses the 2007 data). The matricies B and T’
are as follow:
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Figure 8.5  This figure shows the histogram for the Violent Crime 2008 data. Three possible
modes appear at California, Texas, and Florida.

2008 Crime Spherical Data

2 30

Figure 8.6  This figure shows the 2008 US Crime converted data.

19.82660121

B =] 0.299933647
22.9389611
29.17339879

T = | —0.299933647

—22.9389611

0.299933647
47.65668036
—0.234303397

—0.299933647
1.343319644
0.234303397

22.9389611
—0.234303397
30.51671843

—22.9389611
0.234303397
18.48328157
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Table 8.4 gives the eigenvalues and eigenvectors.

Table 8.4 Eigenvalues and Eigenvectors for the 2008 Vilonent Crime Data

Diagonal Value Eigenvector ¢/
A1 0.27486963 (0.793812871, 0.003545129, 1.0)
A2 1.340181802 | (—0.649158203, —136.7206467, 1.0)
A3 47.38494857 | (—1.259802117, 0.013295803, 1.0)

We test the hypothesis that the eigenvalues are equal versus they are not equal
using Equation (8.16) using the test statistic S.

15 < 1 2
s =i 2 (509 -

15
o5 [(0-27486963 — 16.33)° + (1340181802 — 16.33)"+

(47.38494857 — 16.33)] = 221.46.

We reject the null hypothesis Ho : \; = %, i = 1, 2, 3 since 221.46 > 15.09 at
the 99% confidence level. We also reject the hypothesis that the 2008 crime data is
uniform. The usual statistics for the sphere are given in Table 8.5.

Next, we determine the data shape by examining the \;s. Using the As in Table
8.4 and the interpretation in Table 8.1, we most likely have a unimodal distribution
because A3 is large; A\; and A, are small; R is close to 1. Since this is a unimodal
distribution, the concentration of the data is at one end of the vector ¢, where t; =
(—1.259802117, 0.013295803, 1.0).

Table 8.5 Results for the Spherical Model for 2008 Crime

2008
Center (44.11484743, —0.535389408, —35.03421925)
(lo, mo,m0) (2161.627524, —26.23408097, —1716.676743)
Resultant Length R = 0.983257676
Sample Size n =48
Data Type Directional
Data Shape Unimodal

Spherical Variance | S = 0.033204342
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Figure 8.7  This figure shows the histogram for the GDP 2008 data. The U.S. accounts for
approximately 25% of the total GDP and China accounts for approximately 14%.
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Figure 8.8  This figure shows the 2008 Gross Domestic Product converted data.

8.8 GDP Example

We begin by looking at the histogram of the observations in Figure 8.7. Two bars
appear longer than the rest. These indicate modes in the distribution of the data. The
United States accounts for approximately 25% of the total GDP and China accounts
for approximately 14%. This will influence the shape of the data. Figure 8.8 shows
the converted data. The data is spread out into the eight quandrants of the X, Y, and
Z planes.
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Table 8.6 Eigenvalues and Eigenvectors for the 2008 Gross Domestic Product

Diagonal Value Eigenvector ¢
A1 3.728832776 | (—0.187814653, 0.00927436, 1.0)
A2 6.216179462 | (5.008334449, —6.400592894, 1.0)
A3 29.05498776 | (5.546422255, 4.496198733, 1.0)

The matricies B and 7" for the GDP 2008 data is

19.35173834  —10.96157833 —2.888240385
B =] -10.96157833 23.90143271 —1.953298019
—2.888240385 —1.953298019  34.74682895

The diagonal of B sums to 2n = 2 x 39 = 78.

19.64826166 10.96157833 2.888240385
T =110.96157833 15.09856729 1.953298019
2.888240385 1.953298019 4.253171052

The diagonal of 7" sums to n = 39. We test the hypothesis that the eigenvalues are
equal versus they are not equal using Equation (8.16) using the test statistic Sy/.

15 < 1 2
= g 2 (4 =50 -

15
=5 [(3.728832776 — 13)° + (6.216179462 — 13)*+

(29.05498776 — 13)] = 74.95.

We reject the null hypothesis Hy : A\; = 5, ¢ = 1, 2, 3 since 74.95 > 15.09 at
the 99% confidence level. We also reject the hypothesis that the 2008 crime data is
uniform. The usual statistics for the sphere are given in Table 8.7. Table 8.6 shows
the eigenvalues and eigenvectors for the 2008 GDP example.

Since the eigenvalue A3 is larger relative to A2 and A3, and since R is not close to
1, this may be a bimodal distribution. The concentration is at both ends of the vector

ty = (5.546422255, 4.496198733, 1.0).
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Table 8.7  Results for the Spherical Model for GPD
2008

Center

(27.14815799, 24.99879834, 6.46609507)

(lo, mo, no)

(1058.778161, 974.9531353, 252.1777077)

Resultant Length

R = 0.653921742

Sample Size n =39
Data Type Directional
Data Shape Bimodal

Spherical Variance

S = 0.572386356
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8.9 VBA Code for Spherical Statistics

Dim n As Integer ‘number of observations

Dim 1.0, m_0, n_0, 10_sqrd, m0_sqrd, n0_sqrd, Im_sum, In_sum, mn_sum As Double
Dim 1_sum, m_sum, n_sum As Double

Dim R_length, R_length2 As Double

Dim bar_x, bar_y1, bar_y2 As Double

Dim TempSecSin As Double

Dim SumWeights As Double ’sum of the weight column

Dim R_zPrime As Double ’test statistic for the resultant R

Dim F_Theory As Double

[Sub SphereSetWeights(AVar)

n = Selection.Rows.Count

title the columns

[With ActiveSheet

.Cells (1, 4) = "Latitude (Radians)”

.Cells (1, 5) = ”Abs Longitude (Radians)”

.Cells (1, 6) = ’Sin Latitude”

.Cells (1, 7) = ”Cos Latitude”

.Cells (1, 8) = ”Sin Longitude”

Cells (1,9) ="11"

Cells (1, 10) ="m_i"

Cells (1, 11) ="ni”
End With

SumWeights = 0

’sum the weight column

1 —For i=2Ton

3 | SumWeights = SumWeights + ActiveSheet.Cells(i, 3).Value 'unweighted calculations
Next

:For i=2Ton

[With ActiveSheet
.Cells (i, 4) = Abs(ActiveSheet.Cells(i, 2). Value) * WorksheetFunction.Pi() / 180 ’convert longitude to radians
.Cells (i, 5) = Abs(ActiveSheet.Cells(i, 1).Value) * WorksheetFunction.Pi() / 180 ’convert latitude to radians
.Cells (i, 6) = Sin(ActiveSheet.Cells(i, 4).Value) ’sin of longitude in radians
.Cells (i, 7) = Cos(ActiveSheet.Cells(i, 4).Value) ’cos of longitude in radians

ik .Cells (i, 8) = Sin(ActiveSheet.Cells(i, 5).Value) ’sin of latitude in radians
.Cells (i, 9) = ActiveSheet.Cells(i, 8).Value * ActiveSheet.Cells(i, 7).Value ’1_i
.Cells (i, 10) = ActiveSheet.Cells(i, 8).Value * ActiveSheet.Cells(i, 6).Value 'm_i
.Cells (i, 11) = Cos(ActiveSheet.Cells(i, 5).Value) 'n_i
End With
_Ne_xt

| End Sub
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[Sub Spherical Dev_Ellipse()

Dim trace As Double ’trace of the matrix T. use this instead of n.

Dim AVar As Integer ’hides procedure names in pick list

Call SphereSetWeights(AVar)

Call Calculate B(1.0, m_0, n_0, 10_sqrd, Im_sum, In_sum, m0_sum, mn_sum, n0_sqrd)
Call Calculate_T(1.0, m_0, n_0, 10_sqrd, m0_sqrd, n0_sqrd, Im_sum, In_sum, mn_sum)
Rength=Sqr(10 " 2+m.0"2+n0 " 2)

S =(n-1-Rlength)/(n- 1) ’spherical variance

I_sum = 1.0 / R_length

m_sum = m_0 / R_length

n_sum =n_0 / R_length

bar_x = WorksheetFunction.Acos(n_sum) ’longitude mean
TempSecSin = Sin(bar_x)

bar_yl = WorksheetFunction.Acos(l_sum / TempSecSin) ’latitude mean
bar_y2 = WorksheetFunction.Asin(m_sum / TempSecSin) ’latitude mean
’statistical testing

barx_degrees = bar_x

‘put the stats in an excel worksheet
6 [With Worksheets("STATS™)
.Cells (1, 14).Value = ”"Modal Ellipse Statistics”
.Cells (2, 14).Value = "Mean Latitude”
.Cells (3, 14).Value = "Mean Longitude 1 (+/-)”
.Cells (4, 14).Value = "Mean Longitude 2 (+/-)”
.Cells (5, 14).Value = ”1.0 (degrees)”
.Cells (6, 14).Value = "m_0 (degrees)”
.Cells (7, 14).Value = "n_0 (degrees)”
.Cells (8, 14).Value = "Spherical Variance”
7 | .Cells (9, 14).Value = "Resultant Length (R)”
.Cells (18, 14).Value = "Matrix T”
.Cells (2, 15).Value = bar_x * 180 / WorksheetFunction.Pi()
.Cells (3, 15).Value = bar_y1 * 180 / WorksheetFunction.Pi()
.Cells (4, 15).Value = bar_y2 * 180 / WorksheetFunction.Pi()
.Cells (5, 15).Value = 1_sum * 180 / WorksheetFunction.Pi()
.Cells (6, 15).Value = m_sum * 180 / WorksheetFunction.Pi()
.Cells (7, 15).Value = n_sum * 180 / WorksheetFunction.Pi()
.Cells (8, 15).Value=S
L-Cells (9, 15).Value = R_length
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[*matrix T

.Cells (19, 15).Value = 10_sqrd
.Cells (19, 16).Value = Im_sum
.Cells (19, 17).Value = In_sum
.Cells (20, 16).Value = m0_sqrd
7 | .Cells (20, 15).Value = Im_sum
.Cells (20, 17).Value = mn_sum
.Cells (21, 17).Value = n0_sqrd
.Cells (21, 15).Value = In_sum
.Cells (21, 16).Value = mn_sum
| End With

L End Sub
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8.10 VBA Code for Numerical Techniques

Sub Gauss(Lambda)
’this subroutine performs simple row elimination as in Gaussian elimination
Dim T_Prime(1 To 3, 1 To 3) As Double

n=3
“initialize the data structures A and B; the results get saved to X
[Fori=1Ton
[Forj=1Ton
T_Prime(i, j) = Worksheets("STATS”).Cells(i + 18, j + 14).Value
9 110 Ifi = j Then
T_Prime(i, j) = Worksheets("STATS”).Cells(i + 18, j + 14).Value - Lambda
End If
| Next
| Next

‘row reduction
T_Prime(2, 2) = T_Prime(2, 2) / T_Prime(2, 1)
T_Prime(2, 3) = T_Prime(2, 3) / T_Prime(2, 1)
T_Prime(2, 1) =1
T_Prime(3, 2) = T_Prime(3, 2) / T_Prime(3, 1)
8 | T_Prime(3, 3) = T_Prime(3, 3) / T_Prime(3, 1)
T_Prime(3, 1) = 1 ’substract row 1 from rows 2 and 3
[Fori=1To3
T_Prime(2, 1) = T_Prime(2, 1) * T_Prime(1, 1)
T_Prime(3, i) = T_Prime(3, i) * T_Prime(1, 1)
| Next
[Fori=1To3
T_Prime(2, 1) = T_Prime(2, i) - T_Prime(1, 1)
T_Prime(3, i) = T_Prime(3, i) - T_Prime(1, 1)
| Next
’end of subtraction
T_Prime(2, 3) = T_Prime(2, 3) / T_Prime(2, 2)
T_Prime(3, 3) = T_Prime(3, 3) / T_Prime(3, 2)
T_Prime(2,2) =1
T_Prime(3,2) =1
’subtract row 2 from 3
Fori=1To3
13 | T_Prime(3, i) = T_Prime(3, i) - T_Prime(2, i)
Next

11

12
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[“reduce row 1

T_Prime(1, 1) = T_Prime(1, 1) / T_Prime(1, 2)
T_Prime(1, 3) = T_Prime(1, 3) / T_Prime(1, 2)
T_Prime(1,2) =1

’subtract row 2 and row 1 to give row 1

[Fori=1To3
14 | T_Prime(1, i) = T_Prime(1, i) - T_Prime(2, i)
Next

’end_ of subtraction and row reductions

Worksheets(”STATS”).Cells(26, 14).Value = T minus Lambda (I) row reduced”

[Fori=1Ton

Forj=1Ton

15 | 16 | Worksheets("STATS”).Cells(25 + i, 14 + j).Value= T_Prime(i, j)

Next ’j

| Next ’i

Worksheets("STATS”).Cells(30, 15).Value = "The reader will have to determine the eigenvector from here.”

17

| End Sub

[Function fx(Lambda)

’the determinate of the matrix T

Dim a, b, ¢, d, e, g As Double

’matrix T is symmetrix. not all of it needs to be read in.

a = Worksheets("STATS”).Cells(19, 15).Value ’sum 1.i"2

d = Worksheets("STATS”).Cells(19, 16).Value ’sum l_i m_i

e = Worksheets("STATS”).Cells(19, 17).Value ’sum 1. n_i

b = Worksheets(”STATS”).Cells(20, 16).Value ’sum m_i"2

g = Worksheets("STATS”).Cells(20, 17).Value ’sum m_i n_i

¢ = Worksheets("STATS”).Cells(21, 17).Value ’sum n_i"2

f=d

i=g

h=e

’fx_old = (a - Lambda) * (d - Lambda) * (g - Lambda)+2 *b *e *c - _
¢”2%(d-Lambda)-e "~ 2 * (a-Lambda)-b "~ 2 * (g - Lambda)

fx = (a - Lambda) * (b - Lambda) * (c - Lambda)+d * g *h+e*f*i-h*e* (b- Lambda) - _
i*g*(a-Lambda)-f*d* (c-Lambda)

| End Function
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18

Function gx(Lambda)

’the derivative of the determinate of matrix T

Dim a, b, ¢, d, e, g As Double

a = Worksheets("STATS”).Cells(19, 15).Value ’sum 1.i"2

d = Worksheets(”STATS”).Cells(19, 16).Value ’sum 1_i m_i

e = Worksheets(”STATS”).Cells(19, 17).Value ’sum 1_i n_i

b = Worksheets(”STATS”).Cells(20, 16).Value ’sum m_i"2

g = Worksheets("STATS”).Cells(20, 17).Value ’sum m_i n_i

¢ = Worksheets("STATS”).Cells(21, 17).Value ’sum n_i"2

f=d

i=g

h=e

gx =-1* (b - Lambda) * (c - Lambda) - (a - Lambda) * (c - Lambda) - (a - Lambda) * _
(b-Lambda)+e*h+i*g+f*d
‘ex=-1*a*d-a*g+2*Lambda*a-d*g+2*Lambda*d-2%*Lambda* g+ _
3%Lambda"2+c " 2+e”"2+b" 2

End Function
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[Sub Newton(Lambda)

Dim lambda0 As Double old value of lambda
Dim diff As Double’termination condition
Dim i As Integer

diff = 1

i=1

f_x = fx(Lambda)

While (diff > 0.0000000001)
lambda0 = Lambda

Lambda = Lambda - f_x / gx(Lambda)
f_x = fx(Lambda)

diff = Abs(lambda0 - Lambda)
i=i+l

| Wend

—With Worksheets(”STATS”)
.Cells(23, 14).Value = "Eigenvalue”
.Cells(24, 14).Value = "Newton Iterations”
.Cells(23, 15).Value = Lambda
.Cells(24, 15).Value = i

.Cells(20, 20).Value = Lambda

| End With

LEnd Sub

143






APPENDIX A

STANDARD DEVIATIONAL ELLIPSE VBA
DRIVER

The code for calculating the weighted standard deviational ellipse resides in the De-
veloper Environment under the module named Ch4StandardDeviationalEllipse. In
the Excel spreadsheet environment, only highlight the observations themselves us-
ing the <shift> | key combination, not the entire column by clicking on the col-
umn headings. It is important that the reader only use columns 1 — 3 for his or
her data. The VBA code in module Ch4StandardDeviationalEllipse uses the driver
Standard-Dev_Ellipse () to calculate the following statistics.

* The weighted mean center (Z, i) from Equation (5.9).
= The angle of rotation on the axes 0., and ¢, from Equation (5.10).
= The error terms on the axes ¢, and d,, from Equations (5.11) and (5.12).

= The semi-major a and semi-minor b axes lengths from Equations (5.15) and
(5.16).
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= The area I from Equation (5.17).

= The eccentricity of the ellipse e from Equation (5.18).
To run the SDE code, follow these steps. Select and highlight the data.

1. Click in the spreadsheet tab that contains the data you wish to analyze.

2. Ensure that the first three columns of data (and only the data) are highlighted
(selected). If not, follow these steps:

(a) Click on cell Al.

(b) While holding down the <SHIFT> key, arrow over to Column C. The
headings of the data should be highlighted and selected.

(c) While still holding down the <SHIFT> key, hold down the <CRTL>
key.

(d) Touch the down arrow key once. This should take you to the bottom of the
data.

Figure A.2 shows the VBA environment for module Ch4StandardDeviationalEllipse.
To enter the VBA environment and run the standard deviational ellipse code:

1. Click on the Developer ribbon.

2. Clickon the Visual Basic button on the left side.

3. Click on Ch4StandardDeviationalEllipse on the left-side pane.
This module calls the following subroutines.

= Set_Weights (sum_weight) — This subroutine calculates the weights and
saves them to the spreadsheet in the fourth column.

= SDE_Stats (AVar) — This subroutine calculates the following statistics:

The mean latitude, Z, and the mean longitude, 3.

The major axis rotation and minor axis rotation. The sum of the absolute
value of both will always sum to 90°.

The 0, for the latitude and the J,, for the longitude.

The major axis length, minor axis length, the area, and the eccentricity.

» SDE_Likelihood (AVar)— This subroutine calculates the log likelihood
function for the weighted regression model.

= Put_SDEOutput_In_Spreadsheet (AVar) — This subroutine saves the
results to the STATS spreadsheet in columns A and B.
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O% File Edit View Insert Format Debug Run Tools Add-Ins Window Help - 8 x
H&E-d # you o K FY @ | 1n65, Col 1
Project - VBAProject x| [(General) v [Standard_ev_Ellipse ~|

'Random Variables, Their Properties, and Deviational Ellipses, In Map Point and Excel, v 4.0
¥ Modules - 'Roger L. Goodwin
. "Copyright 2015

ChdStandardDeviationalEllpse »]
. e T T DT
-4 Ch6WelbullDeviationalElipse 'program name: standard deviational ellipse.vba

¥ Ch7NewtonGaussRoutines ‘author: roger 1. goodwin

-4 Ch7SphericalStatistics ‘date: august 13, 2010

] Class Modules ~ 'programming language: vba for excel

L r—
. 'purpose: this program calculates the statistics for the weighted standard deviational ellipse.
Properties - ChdStandardDeviat "the statistics include: the mean center, the deviations along the axes, the area including an
|ch4standardDe' Module - 'area check, the rotation about the x and y axes, and the eccentricity of the ellipse.

Alphabetic | Categorized |

'required columns: column A = latitude
[T chestandardoeviationalEllpse

‘column B = latitude
'column C = random variable (weight)

'instructions:

'l. row 1 must contain column headings for &, B, and C.
'2. must highlight the data in the columns.

‘output:
'1l. the output statistics are put in STATS.

'2. do not put your data in STATS.
T T T DT

'programmer notes:

| | ;H

Figure A.1  In Excel, double click on the module named Ch4StandardDeviationalEllipse on
the left-hand pane circled in red to display the VBA code for the Standard Deviational Ellipse.
The subroutine called Standard_Dev_Ellipse () runs the programs to calculate the
statistics in Chapter 5.

% Fle Edit View Insert Format Debug Run Tools Add-lns Window Help Z 8
BEE~d 3 ) Pouoa A E 4@ |65 ol
Jroject - VBAPraject x| (General) e — v
2= @ Macros - - =
= E '"Random Vj _ _ In Map Point and Excel, v 4.0 3
§ Modules 'Roger L. Il
"Copyrighf| Macro Name:
Standard_Dev_Elipse] Run 1L
i | R e R
E. 5 Cancel
w2t cheweibullbeviationalElpse ' program |
&t ch7newtonGaussRoutines ' auth ot
W} ch7sphericalstatistics 'date: Step Into |

1 Class Modules - ' progranm| =
‘ [ i » 4
. = 'purpose : jted standard deviaticnal ellipse.
Jroperties - ChdStandardDeviati x| 'the stat] g the axes, the area including an
ChaStandardDe' Module - 'area chel el Intricity of the ellipse.

elete

Alphabetic | Categorized |

'required)
[T chastandardoeviationalklipse

Macros In: [vBAProject (Goodwin 2015 v4.0sm) v |
'instructy

"1. row I must contain column headings for &, B, and C.
'2. must highlight the data in the columns.

'output:

'1. the output statistics are put in STATS.
'2. do not put your data in STATS.
R R R E g R e e e R e

'programmer notes:

| of

|Lu

Figure A.2 This figure shows the VBA environment for the module named
Ch4StandardDeviationalEllipse. It also highlights the driver subroutine
Standard_Dev_Ellipse() .
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NETWORKDAYS  ~ [~ ® « f| =MOD(360,B3)

A B S

1 Standard Deviational Ellipse Statistics

2 Latitude Mean Value = 37.38297399
'3 |longitude Mean Value= | 273.1870486 ~MOD(360,53)|
4 Rotation Rotate on Y-Axis

5 Major Axis Rotation 70.36257022

6 Minor Axis Rotation -19.63742978

7 DeltaX 1.29151776

8 Deltay 1.625551351

9 Area(F) 30336.30686

10 |Major Axis Length (a) 134.8734659

11 Minor Axis Length (b) 52.23219209

12 |Area Check 30336.30686

13 |Eccentricity (e) 0.959258636

14 Likelihood L{x,y) 181,824,055.41

15

16

Figure A.3 This figure shows the STATS worksheet and the results from the
Standard_-Dev_Ellipse() subroutine.

The Standard.-Dev_Ellipse () subroutine(1)drives the standard deviational
ellipse subroutines. The weighted standard deviational ellipse is one of the simplest
concepts to implement, and thus, does not require input from the user. A circular co-
ordinate system is not required, either. The Standard-Dev_Ellipse () routine
will return the same results with either data set.

To run the Standard_-Dev_Ellipse () subroutine, make sure you are in the
upper-left corner of the VBA Editor (Line 1, Column 1).

1. Select the menu option Run.

2. Select the sub-menu item Run Sub/UserForm.

The subroutines called inthe Standard_Dev_Ellipse () subroutinerun quickly.
As stated several times, the results will appear in the STATS spreadsheet.

Upon clicking on the STATS tab, the Standard-Dev_Ellipse () results
appear in columns A and B. See Figure A.3. The SDE statistics and their loca-
tions in the STATS spreadsheet are as follow:
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Dim n, m As Integer ’sample size
Dim sum_weight As Double ’sum of the weights
Dim mean_latitude, mean_longitude As Double 'mean latitude and longitude
Dim atheta, itheta As Double ’axes rotations
Dim x, y, xy As Double ’intermediate calculations used to calculate the area F
Dim lambda_x, lambda_y, lambda_xy As Double ’parameter estimates
Dim t_x, t_y, t_xy, t_xsqr, t_ysqr, t_xysqr As Double ’exponential distribution ellipse variables
Dim a, b As Double ’semi-major and semi-minor axes
Dim note As String ’note on axis of rotation of ellipse
Dim delta_x, delta_y As Double ’deltas on the x and y axis
Dim f As Double "area
Dim e As Double "eccentricity
Dim area_check2 As Double ’area check
Dim L_reg As Double regression likelihood function value
[Sub Standard_Dev_Ellipse()
run the routines that calculate the standard deviational ellipse statistics
Dim AVar As Integer ’hides procedure names in pick list
Call Set_Weights(sum_weight)
Call SDE _Stats(AVar)
Call SDE_Likelihood(AVar)
Call Put_SDEOutput_In_Spreadsheet(AVar)
| End Sub

» The weighted mean center from Equation (5.9), (Z,¥), T appears in cell B2,
and ¥ appears in cell B3 .

= The axis of rotation in Equation (5.10) appears in cell B4 .
= The major axis angle of rotation # appears in cell B5.
= The minor axis angle of rotation # appears in cell B6 .

= The standard error from Equation (5.11) in the latitude direction = appears in
cell B7.

= The standard error from Equation (5.12) in the longitude direction y appears in
cell BS.

= The area F' of the weighted standard deviational ellipse from Equation (5.17)
appears in cell B9 .

= The semi-major axis length a from Equation (5.15) appears in cell B10 .
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= The semi-minor axis length b from Equation (5.16) appears in cell B11 .
= The area check using the formula F' = 7ab appears in cell B12 .

= The eccentricity e of the standard deviational ellipse from Equation (5.18) ap-
pears in cell B13 .

= The logarithm of the likelihood function of the regression model from Equation
(5.8) appears in cell B14 . This will be discussed in Section 7.10.

This application does not write in column C. Use column C to transform the
mean center coordinates, if needed using Equation (3.3) or (3.5). See Figure A.3.

Implementation Issue 1: The implementation of the modulo function mod ()
differs in the VBA application versus the Excel spreadsheet. The VBA function
returns an integer. The spreadsheet function returns a real number. Because of this
difference, it is the responsibility of the user to convert the latitude and the longitude
observations to circular coordinates on the input data set. This applies to every data
set. It becomes more important for our global GNP data. If in doubt, it is never
wrong to apply the formulas in Section 3.7 to the input coordinates and the output
statistics for the mean center.

Implementation Issue 2: The implementation of the modulo function mod ()
differs in the VBA application versus the Excel spreadsheet. The VBA function
returns an integer. The spreadsheet function returns a real number. Because of this
difference, it is the responsibility of the user to convert the mean latitude and the
mean longitude from circular coordinates to the original coordinate system.



APPENDIX B
EXPONENTIAL VBA DRIVER

The module Ch5ExponentialDeviationalEllipse provides an Excel 2010
VBA program to calculate the statistics for the weighted, exponential deviational el-
lipse. The VBA code calculates the following statistics.

To run the exponential ellipse code, follow these steps.

1. Click in the spreadsheet tab that contains the data you wish to analyze.

2. Select and highlight the data first. Follow these steps to select and highlight the
data.

(a) Click oncell A1 .

(b) While holding down the <SHIFT> key, arrow over to column C. The
headings of the data should be highlighted and selected.

(c) While still holding down the <SHIFT> key, hold down the <CRTL>

key.
(d) Touch the down arrow key once. This should take you to the bottom of the
data.
Random Variables, Their Properties, and Deviational Ellipses. 151
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Figure B.1 This  figure shows the VBA environment for the module
Ch5ExponentialDeviationalEllipse. It also highlights the driver subroutine
Exponential_Dev_Ellipse() .

Standard_Dev_Eli pse

Weibull_Dev_Ellipse Step Into.
Edit
Create

Delete
side,

S o

=t

Figure B.1 shows the VBA environment for the module Ch5ExponentialDeviationalEllipse.
To enter the VBA environment and run the exponential ellipse code:

1. Click on the Developer ribon.
2. Click onthe Visual Basic button on the left side.

3. Click on the module Ch5ExponentialDeviationalEllipse on the
left-side pane.

This module calls the following subroutines.

= Set_Weights (sum-weight) — This subroutine calculates the weights and
saves them to the active data spreadsheet.

= EXP_Stats (AVar) — This subroutine calculates the parameter estimates,
the major axis length, minor axis length, the area, and the eccentricity. It also
writes the log likelihood value to the STATS spreadsheet.

= Put_EXPOutput_-In_Spreadsheet (AVar) — This subroutine puts the
results of the calculates with lables for the weigted standard deviational ellipse
to the STATS spreadsheet. The subroutine writes the results columns D and E.
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D F
Exponential Ellipse Statistics |
Mean Latitude 37.38297399

|Mean Longitude (Abs) | 273.1870486 =MOD({360,E3)
Rotation Rotate on Y-Axis
Major Axis Rotation 89.9986581 |
Minor Axis Rotation -0.001342193
Delta X 3.084687614
Delta ¥ 3.084707388
Area (F) 32450.8332
Major Axis Length (a) 274.7A53265
Minor Axis Length (b} 37.59636008
Area Check 32450.90232
Eccentricity (e) 0.990593092
Likelihood Function L{x} -44211.86328
Likelihood Function L{y} -50300.24289
Likelihood Function L{xy) -111454,5019

Figure B.2
Exponential_Dev_Ellipse ()

The Exponential Dev_Ellipse ()

This figure shows the STATS worksheet and the results from the
subroutine.

subroutine drives the exponential devi-

ational ellipse subroutines. The weighted exponential deviational ellipse is another
one of the simplest concepts to implement, and thus, does not require input from the
user. A circular coordinate system is required.

To run the Exponential Dev_Ellipse () subroutine, make sure you are in
the upper-left corner of the VBA Editor (Line 1, Column 1).

1. Select the menu option Run.

2. Select the sub-menu item Run Sub/UserForm.

The subroutines called in the Exponential Dev_El1lipse () subroutinerun
quickly. As previous stated, the results will appear in the STATS spreadsheet.

Upon clicking on the STATS tab, the Exponential Dev_Ellipse () results
appear incolumns D and E. See Figure B.2. The Exponential Dev_Ellipse ()
statistics and their locations in the STATS spreadsheet are as follow:

= Using Equations (6.12) and (6.13) for the weighted mean center (Z, 7), T ap-
pears in cell E2, and y appears in cell E3 .

= Using Equation (6.17), the axis of rotation appears in cell E4 .

= Using Equation (6.17), the major axis angle of rotation 6 appears in cell E5.
The plus and minus operator gives two values.
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Using Equation (6.17), the minor axis angle of rotation 6 appears in cell E6 . The
plus and minus operator gives two values.

Using Equation (6.18), the standard deviation in the latitude direction x appears
incell E7.

Using Equation (6.19), the standard deviation in the longitude direction y ap-
pears in cell E8 .

Using Equation (6.20), the semi-major axis length a appears in cell E10 .

Using Equation (6.21), the semi-minor axis length b appears incell E11 .

Using Equation (6.22), the area F' of the weighted exponential deviational el-
lipse appears in cell E9 .

The area check using the formula F' = 7ab appears in cell E12 .

Using Equation (6.23), the eccentricity e of the exponential deviational ellipse
appears in cell E13 .

Using Equation (6.2), the logarithm of the likelihood function of the exponetial
model for the latitude = appears in cell E14 .

Using Equation (6.6), the logarithm of the likelihood function of the exponetial
model for the longitude y appears in cell E15.

Using Equation (6.9), the logarithm of the likelihood function of the exponetial
model for the joint distribution of the latitude and longitude (x, y) appears in
cell E16.

This application does not write in column F . If either of the mean center coor-
dinates need to be transformed via Equation (3.3) or (3.5), then the reader can use
column F for those calculations. See Figure B.2. Notice that the two values for the
area (with-in the exponential ellipse statistics are equivalent). Also notice that the
mean center for the exponential ellipse and for the standard deviational ellipse are
the same.

Should the reader wish to calculate un-weighted exponential deviational ellipses,
set the weight column to 1.0.
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Dim wx, wy As Double
Dim lambda_x, lambda_y, lambda_xy As Double ’parameter estimates
Dim t_x, t_y, t_xy, t_xsqr, t_ysqr, t_xysqr As Double ’intermediate calculations
Dim sum_weight As Double ’sum of the weights
Dim atheta, itheta As Double "angles of rotation
Dim L_x, L_y, L_xy As Double ’log likelihood functions
Dim n, m As Integer
Dim a, b As Double ’semi-major and semi-minor axes
Dim note As String ’note on axis of rotation of ellipse
Dim error_x, error_y As Double ’deviations on the x and y axis
Dim f As Double "area
Dim e As Double "eccentricity
Dim area_check2 As Double ’area check
[Sub Exponential Dev_Ellipse()
Dim AVar As Integer ’hides procedure names in pick list
Call Set_Weights(sum_weight)
Call EXP_Stats(AVar)
Call Put_EXPOutput_In_Spreadsheet(AVar)
LEnd Sub







APPENDIX C
WEIBULL VBA DRIVER

Running the Weibull ellipse takes considerable more interaction and time than that
for the previous two ellipses. The secant algorithm finds three parameters. Two ini-
tial guesses for each parameter must accompany each run. Two secant algorithms
have been programmed — one for the individual, weighted variables (x;, w;) and
(yi, w;) called Secantl () and a second algorithm for the joint distribution of
(2, yi, w;) called Secant2 () .  This was necessary because the likelihood func-
tions are different.

Figure C.1 shows the VBA environment for the module Ch6 Weibull Deviational
Ellipse. This module has five subroutines.

= Weibull Dev_Ellipse () — This subroutine is the driver that calls the
other subroutines.

= Secantl () — This subroutine calculates the point estimates for the latitude
A and 7, from Equation (7.8). It can also be used to calculate the point esti-
mates for the longitude \,, and 7, from Equation (7.17)

Random Variables, Their Properties, and Deviational Ellipses. 157
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Figure C.1 This  figure shows the VBA environment for the module Ché6
Weibull Deviational Ellipse. [t also highlights the driver subroutine
Weibull_Dev_Ellipse() .

= Secant2 () — This subroutine calculates the point estimates for the joint
distribution A\, and 7., from Equation (7.21).

= Logl0 (X) — This subroutine calculates the logarithm of the given number
X using base 10.

= Weibull () — This subroutine calculates all of the statistics for the Weibull
ellipse. These statistics include the mean center (Z, ), the axis of rotation, the
rotations 0, and ¢, the standard deviations on the axes d, and d,,, the major and
minor axes lengths a and b, the area F', the eccentricity e, and the log likelihood
function log L.

The Secant1 () algorithm has the following parameters:

= Tterations — This parameter is a termination condition. This is the maxi-
mum number of iterations that the secant algorithm should perform.

= Variable — This parameter is the column number of the variable (not the
name in row 1). This will be either column 1 or column 2.

= Gammal — This parameter is the first initial guess at 7y, or .

= Gamma2 — This parameter is the second initial guess at 7, or 7,. Note that
Gammal < Gamma2 .

The Secant1 () algorithm returns the values 7, and Xm, or 7, and Xy, depend-
ing on if Variable =1 or Variable = 2. All four point estimates have to
be saved or recorded where they will not be over-written.
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The Secant2 () algorithm has the following parameters:

= Iterations — This parameter is a termination condition. This is the maximum
number of iterations that the secant algorithm should perform.

* Gammal — This parameter is the first initial guess at 7y, or .

= Gamma2 —This parameter is the second initial guess at -y, or 7,. Note that
Gammal < GammaZ2.

Since the Secant?2 () subroutine returns the values %y and j\\xy, there is no need
to specify the latitude or longitude variable. Save the point estimates so that they will
not be over-written.

After finding the six point estimates of the parameters, run the Weibull () sub-
routine.

= 7, — The point estimate for the latitude for the shape parameter.
= 7, — The point estimate for the longitude for the shape parameter.

= 3y — The point estimate for the joint distribution for the shape parameter.

. B\\x — The point estimate for the latitude for the scale parameter from Equation
(7.9).

. B\\y — The point estimate for the longitude for the scale parameter from Equation
(7.18).

* \zy — The point estimate for the joint distribution for the scale parameter.

Upon clicking on the STATS tab, the Weibull () results appear in columns
K and L. See Figure C.2. The Weibull () statistics and their locations in the
STATS spreadsheet are as follow:

= Using Equations (7.9) and (7.18), for the weighted mean center (T, 3), T appears
incell L2, and ¥ appears in cell L3 .

= Using Equation (7.26), the axis of rotation appears in cell L4 .

= Using Equation (7.26), the major axis angle of rotation 6 appears in cell L5 .
The plus and minus sign in Equation (7.26) gives two values.

= Using Equation (7.26), the minor axis angle of rotation 6 appears in cell L6 . The
plus and minus sign in Equation (7.26) gives two values.

= Using Equation (7.27), the standard deviation in the latitude direction x appears
incell L7.

= Using Equation (7.28), the standard deviation in the longitude direction y ap-
pears in cell L8 .
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1 K | L M 7

‘Weibull Ellipse Statistics

Mean Latitude 37.38297399
Mean Longitude (Abs) 273.1870490
Rotation I Rotate on X-Axis
Major Axis Rotation 89.89385427
Minor Axis Rotation -0.10614571]
Delta X 1.77010417
DeltayY 1.779642002
Area (F) 27.11384518
Major Axis Length (a) 3.720699854
Minor Axis Length (b} 2.319618704
Area Check 27.11384518
Eccentricity (e) 0.781874284
Likelihood Function L{x,y) -137452.7083

Figure C.2  This figure shows the STATS worksheet and the results from the Weibull ()
subroutine.

= Using Equation (7.31), the area F' of the weighted standard deviational ellipse
appears in cell 1.9 .

= Using Equation (7.29), the semi-major axis length a appears in cell L10 .

= Using Equation (7.30), the semi-minor axis length b appears incell L11 .

= The area check using the formula F' = 7ab appears in cell 12 .

= Using Equation (7.32), the eccentricity e of the standard deviational ellipse ap-
pearsincell L13.

= The logarithm of the likelihood function of the regression model for the joint
distribution of the latitude and longitude (z, y) appears in cell L14 .
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Dim iterations As Integer

Dim Gammal, gamma?2, gamma3 As Double

Dim variable As Integer

Dim n, m As Integer

Dim logt x, logt_y, logt_xy, logt_xsqr, logt_ysqr, logt_xysqr As Double ’intermediate calculations
Dim L_xy As Double ’likelihood function

Dim a, b As Double ’semi-major and semi-minor axes

Dim atheta, itheta As Double ’axes rotations

Dim note As String ’note on axis of rotation of ellipse

[Sub Weibull_Dev _Ellipse()

"latitude for 2003 kentucky data

’Call secant1(9,1, 1, 10)

"longitude for 2003 kentucky data

’Call secant1(9,5, 1, 10)

’joint distribution for 2003 kentucky data

’Call secant2(9, 1, 11)

‘new data set

’Call Weibull(0.768572408,0.762370962, 1, 2.407513111, 0.329444607, 0.579579441)
’old data set

’Call Weibull(0.768634929,0.762451336,0.999998427,2.434263513, 0#, 0.586020077)
"latitude for 2004 kentucky data

1 | ’Call secantl1(9,1, 1, 10)

"longitude for 2004 kentucky data

’Call secant1(12,5, 1, 12)

’joint distribution for 2004 kentucky data

’Call secant2(14, 1, 13)

’Call Weibull(0.766401461,0.760180292, 1, 2.459505837,0.336757843, 0.592403275)
"latitude for 2007 crime data

’Call secant1(7,1, 1, 11)

"longitude for 2007 crime data

’Call secant1(9,5, 1, 14)

’joint distribution for 2007 crime data

’Call secant2(10, 1, 17)

| "Call Weibull(0.765003479,0.747808984, 1, 1.328755906,0.182913031, 0.321560844)
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[“latitude for 2008 crime data

’Call secant1(10, 1, 1, 13)

"longitude for 2008 crime data

’Call secant1(15,5, 1, 17)

’joint distribution for 2008 crime data

’Call secant2(10, 1, 17)

’Call Weibull(0.765405522,0.757628441, 1, 1.328288608, 0.18285781, 0.321461829)
"latitude for 2008 GDP data

’Call secantl(4,1, 1, 10)

"longitude for 2008 GDP data

’Call secant1(10,2, 1, 16)

’joint distribution for GDP data

’Call secant2(12, 1, 18)

"Call Weibull(0.778466889,0.763823411, 1, 0.846866662, 0.256765441, 0.394055395)
"latitude for 2009 GDP data

’Call secantl(4,1, 1, 10)

"longitude for 2008 GDP data

’Call secant1(10,2, 1, 16)

’joint distribution for GDP data

’Call secant2(12, 1, 18)

’Call Weibull(0.777870853,0.764074484, 1, 0.849145918, 0.259687836, 0.397738372)
"latitude for 2010 GDP data

’Call secantl(4,1, 1, 10)

"longitude for 2010 GDP data *Call secant1(10, 2, 1, 16)

’joint distribution for GDP data

’Call secant2(12, 1, 18)

Call Weibull(0.777297498, 0.764470918, 1, 0.848898928, 0.260064435, 0.398152775)

End Sub

To obtain the results in this Section, this textbook provides three VBA programs
for Excel 2010. Two of the programs perform the Secant estimation for the param-
eters vy, 7y, and v;,. The other program calculates the usual statistics associated
with an ellipse such as the mean center, the area and so on. The program main in
ChéWeibullDeviationalEllipse calculates the parameters \;, Ay, 7, and
y- The program Weibull () in Ch6WeibullDeviationalEllipse calculates the pa-
rameters Ay, and ..

Double click on the module Ch6 Weibull Deviational Ellipse todis-
play the VBA code for the Secant code and the Weibull Deviational Ellipse in Excel.
The subroutines called Secantl (), Secant2 (), and Weibull_ Dev_Ellipse()
run the programs to calculate the statistics in this chapter. As the reader may have
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guessed, calculating the statistics in this chapter is more complex than those in pre-
vious chapters.






APPENDIX D

NEWTON AND GAUSSIAN ELIMINATION
DRIVER

The statistics associated with the spherical distribution in Chapter 8 are complicated.

They usually begin with finding the some statistic of a 3 X 3 matrix from either B

or T This Section describes the VBA code in Ch7NewtonGaussRoutines and

Ch7 Spherical Statistics. It is best to start with Ch7 Spherical
Statistics. Figure D.1 shows a screen capture of the VBA environment for

Ch7 Spherical Statistics. ThesubroutinesinCh7SphericalStatistics
calculate the matrix 7" and find the eigenvalues to matrix 7. Since there are an infinite
number of eigenvectors, some interaction and verification on the reader’s part is re-

quired when finding the eigenvectors. Ch7 Spherical Statistics contains

the following six subroutines:

1. NewtonGauss () — This is a driver subroutine.

2. Spherical Dev_Ellipse () — Thisis a driver subroutine.

Random Variables, Their Properties, and Deviational Ellipses. 165
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NEWTON AND GAUSSIAN ELIMINATION DRIVER
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3. Calculate_B() — This subroutine calculates the matrix B from which the
diagonal elements 1, O3> and 33 are determined. We can re-use the subroutine
in Ch7SphericalStatistics for calculating this matrix.

4. Calculate_T () — This subroutine calculates the matrix 7". The upper left-
hand corner of the matrix resides in cell 019 in the STATS spreadsheet and
cell 021 in the lower-right corner.

The FOR-NEXT loop (10) calculates the matrix 7" using Equation (8.14) where
T =nl—B. The WITH-END-WITH statement (11) saves the matrix 7" below
matrix B inthe STATS spreadsheet. The upper-left corner is cell 019 and the
lower-right corner is cell 021 .  The remaining code writes descriptive labels
to the STATS spreadsheet for the eigenvectors in columns R and V.

5. Gauss (Lambda) — This subroutine performs row elimination on matrix 7'
given the eigenvalue Lambda. This finds a possible eigenvector and puts
itinto cells V19, v20, and Vv21. The value in cell v21 will always be
equal to 1. This allows the reader to scale the other values in the vector up or
down (usually be a factor of 10).

The FOR-NEXT loop (12) reads the matrix 7" into the array T_prime.  Since
T will always be a 3 x 3 matrix, the code in the Gauss () subroutine performs
row reduction as one would do on paper.

6. fx (Lambda) — This subroutine finds the determinant of matrix 7' given the
eigenvalue Lambda .

7. gx (Lambda) — This subroutine finds the derivative of the determinant of
matrix 7' given the eigenvalue Lambda .

8. Newton (Lambda) — This subroutine finds the eigenvalues of matrix 7' us-
ing the subroutines £x () and gx (). It puts the eigenvalue in cell T20.

When trying to find the eigenvalues and the eigenvectors, the reader only needs to
run the Spherical Dev_Ellipse () subroutine and ensure that it contains the
proper calls and parameters to the Newton () and Gauss () subroutines. Order-
ing is important. The subroutines in Ch7SphericalStatistics, particularly
the Netwon () subroutine, must be run before the Gauss () can be run. The
statements in the Spherical Dev_Ellipse () subroutine clearly show the or-
dering of the other subroutine calls.



168 NEWTON AND GAUSSIAN ELIMINATION DRIVER

Dim Lambda As Double ’1 to 3 possible eigenvalues
Dim 1.0, m_0, n_0, 10_sqrd, m0_sqrd, n0_sqrd, Im_sum, In_sum, mn_sum As Double
Dim 1_sum, m_sum, n_sum As Double
—Sub NewtonGauss()

Dim AVar As Integer ’hides procedure names in pick list

’syntax

’Sub Newton(Lambda)

’Sub Gauss(Lambda)

’sub Calculation_T()

Call SphereSetWeights(AVar)

Call Calculate B(1.0, m_0, n_0, 10_sqrd, Im_sum, In_sum, m0_sum, mn_sum, n0_sqrd)
Call Calculate_T(1.0, m_0, n_0, 10_sqrd, m0_sqrd, n0_sqrd, Im_sum, In_sum, mn_sum)
"kentucky 2004

’lambda_2

’Call Newton(0)

’Call Gauss(0.006533004)

’lambda_1

’Call Newton(2)

’Call Gauss(0.035928191)

"final step — round the chosen shape to an integer for interpretation
’Call Newton(92)

’Call Gauss(91.95753881)

“crime 2008

’lambda_1

’Call Newton(1)

’Call Gauss(0.047899513)

’lambda_2

’Call Newton(30)

’Call Gauss(0.27486963)

’lambda 3

’Call Newton(50)

’Call Gauss(47.38494857)

"final step — round the chosen shape to an integer for interpretation
’Call Gauss(100)

‘testing

’Call Newton(30)
_’Call Gauss(8.58033582016791E-02)
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[*GDP 2010

’lambda 1

’Call Newton(0)

’Call Gauss(3.728832776)
’lambda 2

’Call Newton(10)

’Call Gauss(6.216179462)
’lambda 3

Call Newton(39)

Call Gauss(29.05498776)
| End Sub
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data, graph it, 16
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transformed data, 67, 71, 98
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trend of the system, xxv
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93
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weighted joint distribution, 80

weighted latitude, 66, 67, 71

weighted longitude, 69, 71, 80

weighted mean, 78, 79

weighted mean center, xxv, 45, 46, 49, 95,
145, 149, 153, 159

weighted mean estimate, 71
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