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Abstract

This paper models the dynamic of a sector where firms imitate the technology of
leading firms. While it would seem natural to expect that managers will aim at
producing with the technology that produces the highest benefits, if many other
managers also follow this behavior, the market structure might be modified so
much that the advantage associated with a high-profit technology might be erased
or even reverse. By modeling this imitation process with replicating dynamics, we
find that even if the parameters of the economy are continuous through time and
the economy follows a path of competitive equilibria, endogenous discrete jumps
in technological choices occur.
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1 Introduction

Managers of firms are confronted continuously with the decision of whether
to keep producing with their firm’s existing technology or to shift to other
leading alternatives. It would seem natural for a manager, even under in-
complete information, to observe available technologies and to choose for his
firm the one that gives rise to the highest profits to other firms that already
have it. However, some markets might provide a certain advantage if not too
many producers are using the same technology so that, if too many man-
agers choose it simultaneously, the benefits of this technology might even be
reversed. In other words, if a manager decides to switch to a technology that
is observed to have the highest profits, it could be the case that many other
managers also make the same decision simultaneously.

This paper has two main contributions. On the hand, it proposes a the-
oretical model to study this dynamic game of imitation under incomplete
information. To do so, we propose an approach using replicating dynamics,
extending this way the work of Schlag (1998), Harrington et al. (2005), Ania
(2008), Bergin and Bernhardt (2009), Apesteguia et al. (2010) and Duersch
et al. (2012). On the other hand, and more importantly, we characterize
dynamics along its equilibrium path and find that, under robust conditions,
even being always in equilibrium, endogenous jumps in equilibrium variables
can occur.1 As in (Perla and Tonetti, 2014) we consider a distribution of het-
erogeneous firms producing with heterogeneous technologies, but we consider
the rates of profits as the real engine of the decisions of managers. Indeed,
we do not focus on growth, but instead our main point of attention is on the
characteristic of the equilibrium manifold and the evolution along an equi-
librium path on this manifold, showing that “technological crises” can occur
as a result of rational decisions.

This paper is structured as follows. Section 2 presents the model of a
private-ownership economy, its parameters, and the definition of equilibrium.
In particular, we will define firms, consumers and Walrasian equilibria. Sec-
tion 3 defines the equilibrium set and studies its properties. To do so, we
study excess demand functions, as well as regular and critical economies.

1 It is worth mentioning that there is a vast literature on the evolution of Walrasian
behaviour, although not via imitation, since the seminal work of Vega-Redondo (1997). For
example, Schenk-Hopp(2000), Huang (2003), Ben-Shoham et al. (2004), Huang (2011).
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The dynamical behaviour of pure system is introduced in section 4. We con-
sider that imitation play a significant role when the decision makers have
incomplete information. In section 5 we analyze the stability of the dy-
namical equilibrium using the Liapunov method. In section 6 we consider a
numerical example and finally, some conclusions are given.

2 The economy

In this section, we introduce the model of our economy. We will consider
a competitive market with two goods, two types of firms and two types of
consumers. Within each type, firms will use identical technologies, while
consumers will have identical preferences, and endowments of both goods
and shares in companies. We will assume that markets are competitive in
the sense that every good is traded in the market at a publicly known price,
and consumers trade to maximize their own welfare, while firms produce to
maximize profits. We will formalize the structure of consumers, firms and
equilibria in this section.

Since there are two goods in the economy, the commodity space is R2 while
the consumption set and price set is R2

+ = {x = (x1, x2) ∈ R
2 : x1, x2 ≥ 0}.

We will also use the notation R
2
++ = {x = (x1, x2) ∈ R

2 : x1, x2 > 0}.

2.1 Firms

We consider an economy with a finite but large number N of firms, which
will be indexed by F = {1, . . . , N}. There will be two types j ∈ {1, 2} of
such firms. There are n1 firms of type 1 and n2 of type 2, with n1 + n2 = N .
We will index firms within each type by Fj = {0, ..., nj}, with at least one
firm of one of the two types. The proportion of firms of type j is given by
Nj = nj/N , and one should keep in mind that as N → ∞, Nj takes values
in the continuum [0, 1].

Firms are characterized by their technological set Y1 or Y2, according to
whether they are of type 1 or 2, respectively. Without loss of generality, we
suppose that technology is costless to acquire. That is, in each period each
manager must choose between producing according to the technology repre-
sented by Y1 or Y2 and this choice does not imply any additional cost or loss
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of profit. The set of available technologies will be denoted by T = {Y1, Y2}.
We consider that there is no principal-agent problem, that is, that the inter-
ests of managers are the same of owners, which is to maximize profits. We
assume that technological sets satisfy the following standard properties, for
j = {1, 2}: (i) Yj is closed and convex; (ii) Yj ∩ R

2
+ = {0}; (iii) −R

2
+ ⊂ Yj;

and, (iv) Yj is bounded from above, i.e., there exists some aj ∈ R
2
+ satisfying

y ≤ aj for all y ∈ Yj.
2

If Yj is a production set and p ∈ R
2
++ is a price vector, then the profit

function at price level p is the function πj : Yj → R defined by πj(y) = p · y.
Thus, firm j ’s goal is to solve the problem

max
y∈Yj

p · y, (1)

The function yj : R2
++ → R

2 that solves problem (1) is the supply of a
firm of type j ∈ {1, 2}. When summarising the supply functions of all firms
in the economy we will use the notation y = (y1,y2) ∈ R

2n1 × R
2n2 , where

yj is the vector of supply functions of the nj firms of type j.

2.2 Consumers

The are M consumers in the economy distributed into type 1 or type 2.
We will index consumers by I = {1, . . . ,M}. There are mi consumers of
type i, i ∈ {1, 2}, with m1 + m2 = M . Therefore, the proportion of con-
sumers of type i is Mi = mi/M . We will index consumers in each type by
Ii = {0, . . . ,mi} with at least one consumer of one type. All consumers of
type i have identical C∞ utilities ui : R

2
+ → R and identical initial endow-

ments of goods wi = (wi
1, w

i
2) ∈ R

2
+. We assume utilities satisfy the following

standard properties: (i) the bordered Hessian of ui is non-zero at every x;
(ii) the set {x′ : u(x′) ≥ u(x)} is closed in R

2 for every x ∈ R
2
++.

3

The wealth of a consumers is derived from individual endowments of
commodities but also from ownership claims (shares) of profits of firms, which

2 As is standard, it is sometimes convenient to describe the production set using a
function Fj : R

2 → R such that Yj ⊂ R
2 and Fj(x1, x2) ≤ 0, ∀(x1, x2) ∈ Yj , and

F (x1, x2) = 0 if and only if (x1, x2) is an element of the boundary of Yj . These functions
are called technological functions. See for instance (Mas-Colell, 1989).

3 See Mas-Colell and Nachbar (1991).
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we also assume to be identical within types. Hence, each consumer i ∈ I has
a claim to a non-negative share θij of the profit of each firm j ∈ F in a way

that
∑M

i=1 θij = 1 for each j. This implies that the individual wealth Wi of a
consumer of type i is given by

W i(n1, n2, p) = p · wi + n1θi1π1(p) + n2θi2π2(p).

It is important to highlight that the wealth of an individual depends on
the distribution (n1, n2) of firms in the economy. In the next section, when
we introduce dynamics to our model, this distribution will change endoge-
nously so that the actions of a manager looking to use the most profitable
technologies will have an immediate impact over the wealth of agents.

Now, the budget set Bi of a consumer of type i is given by

Bi(n1, n2, p) = {xi ∈ R
2
+ : p · xi ≤ W i(n1, n2, p)}.

Thus, given the distribution of firms (n1, n2) and price level p, the opti-
mization problem of a consumer of type i is given by

max
x∈R2

+

ui(x) s.t. x ∈ Bi(n1, n2, p). (2)

The function xi : R2
++ → R

2 that solves optimization problem (2) is called
the individual demand function of a consumer of type i. When summarising
the demand functions of all consumers in the economy, we will use the nota-
tion x = (x1,x2) ∈ R

2m1 ×R
2m2 , where xi is the vector of demand functions

of the mi consumers of type i.

2.3 Walrasian equilibrium

As discussed above, a private-ownership economy is determined by the fol-
lowing factors: the number and distribution of firms (n1, n2) and their tech-
nologies (Y1, Y2); the number and distribution of consumers (m1,m2), their
preferences (u1, u2), their initial endowments (w1, w2), and their portfolios of
shares (θ11, θ12, θ21, θ22). This gives rise to the following definition.

Definition 1 (Private-ownership economies): A private ownership economy E
is a choice of parameters (nj, Yj,mi, ui, wi, θij) with i, j = {1, 2}. We will
write

E = E(nj, Yj,mi, ui, wi, θij).
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Now, the notion of a price-taking equilibrium for a competitive private
ownership economy is that of a Walrasian equilibrium, which we now define.

Definition 2 (Walarsian equilibrium): Consider a private-ownership economy

E(nj, Yj,mi, ui, wi, θij).

We say that a vector of demand-supply functions (x∗,y∗) = (x1∗,x2∗,y1∗,y2∗)
and a system of prices p∗ = (p∗1, p

∗

2) constitute a Walrasian equilibrium, or
competitive equilibrium, if:

1. For each firm in F , yj∗ solves the optimisation problem (1) of a firm of
type j;.

2. For each agent in I, xi∗ solves the optimisation problem (2) of a con-
sumer of type i;.

3. Aggregate demand equals aggregate supply. That is,

m1
∑

i=1

x1∗
i +

m2
∑

i=1

x2∗
i = m1w

1 +m2w
2 +

n1
∑

j=1

y1∗j +

n2
∑

j=1

y2∗j .

Note in Definiton (2), that the market-clearing condition can be written
succinctly as

m1

(

x1∗ − w1
)

+m2

(

x2∗ − w2
)

= n1y
1∗ + n2y

2∗. (3)

3 The equilibrium set

Through the rest of the paper, we will suppose (Yj,mi, ui, wi, θij) are all fixed
parameters. That is, we will suppose that the only parameter of the econ-
omy is the distribution of firms (n1, n2) according to its type. Furthermore,
we will also suppose that the total number of firms N is fixed (albeit very
large). With this assumption, n2 is determined once a choice of n1 is made
since n2 = N − n1. To highlight this choice of parameters, we will denote an
economy by E(N,Yj ,mi,ui,wi,θij)(n1) or, if no confusion arises, simply by E(n1).
In other words, speaking of an economy is equivalent to choosing a parameter
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n1.

In this section we will explore the equilibrium set of an economy E(n1).
Recall that the Walrasian corresponde is the set-valued function that assigns
to each economy E(n1) its set of competitive equilibria. This idea gives rise
to the notion of the equilibrium set as the set of all pairs economies-equilibria.
We will show that studying this set is an important first step in our analysis.
Thus, in this section we formalize the notion of excess demand functions,
the equilibrium set and regular and critical economies. Intuitively, a regu-
lar economy n1 is one where equilibrium prices will be determinate (that is,
prices are locally continuous functions of n1, while a critical economy is one
where small perturbations of n1 lead to large perturbations of its equilibirum
price.

3.1 Excess demand functions

The notion of a competitive equilibrium can be rephrased in terms of zeroes
of aggregate excess demand functions. To see this, consider the private-
ownership economy E(n1). For a fixed n1, we say that the individual excess
demand function ζ in1

: R2
++ → R

2 of a consumer of type i is given by

ζ in1
(p) = xi

n1
(p)− wi.

Similarly, for a fixed economy n1 we define the aggregate excess demand
function of this economy, Ψn1

= (Ψ1
n1
,Ψ2

n1
) : R2

++ → R
2, by

Ψn1
(p) = m1ζ

1
n1
(p) +m2ζ

2
n2
(p)− n1y

1(p)− n2y
2(p).

Notice that the aggregate excess demand function Ψn1
of economy E(n1)

satisfies the following properties:

• Ψn1
is homogeneous of degree zero, i.e., Ψn1

(λp) = Ψn1
(p) for all λ > 0;

• Ψn1
satisfies Walras law, i.e., p ·Ψn1

(p) = 0, for all p.

3.2 The equilibrium set

With the introduction of excess demand functions above, we can see that
the set of equilibrium prices of economy E(n1) consists of vectors p such that
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Ψn1
(p) = 0. We denote the equilibrium set of economy E(n1) by

Γn1
= {p ∈ R

2
++ : Ψn1

(p) = 0} ⊂ R
2
++.

Notice that for each equilibrium price, demand and supply functions
(x,y) are fully determined so equilibrium prices also determine fully Wal-
rasian equilibria. Whenever it is convenient to highlight that the parameter
n1 is changing, we will explicitly write this dependence in the excess demand
function by Ψn1

(p) = Ψ(n1, p) and its corresponding equilibrium set by

Γ = {(n1, p) : Ψ(n1, p) = 0}.

Since excess demand functions satisfy homogeneity of degree zero, it al-
lows us to choose a suitable price normalization; thus, we will let prices to
be in the simplex

∆ =
{

(p1, p2) ∈ R
2
+ : p1 + p2 = 1

}

.

Note that, if p is in the simplex and p2 is known, then p1 is also known,
since p1 = 1−p2. Also notice that, from Walras law, p1Ψ

1
n1
(p)+p2Ψ

2
n1
(p) = 0

for all p. Combined, these two facts suggest we can consider a restricted
excess demand function Ψ̂n1

: [0, 1] → R such that Ψ̂n1
(p1) = Ψ1

n1
(p). Hence,

a price p = (p1, p2) is an equilibrium for the economy E(n1) if and only if
Ψ̂n1

(p1) = 0. Thus the set Γn1
can also be represented as

Γn1
=

{

p ∈ ∆ : Ψ̂n1
(p1) = 0

}

⊂ ∆.

Figure 1 shows the intuition behind the equilibrium sets Γ and Γn1
. First,

notice that the horizontal axis consists of the set of economies. Similarly, the
vertical axis shows the possible values of prices p which is isomorphic to the
set [0, 1]. Now, for a fixed economy n1 as depicted, its equilibria (three in
this case) form the set Γn1

. All pairs economies-equilibria together form the
set Γ.

3.3 Regular and critical private-ownership economies

The previous figure showed the intuition behind the equilibrium set Γ.4 If
this diagram were a true representation of our model, one could see that there

4 See also Accinelli and Puchet (2011) and Balasko (2009).
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Fig. 1: The equilibrium set Γ.

are two types of economies. On the one hand, there are economies such as n1

where each price equilibrium has the property that small (i.e. infinitesimal)
perturbations to n1 would be accompanied by small changes in this equilib-
rium price. A price with this property will be called a regular price. Notice
that, under this intuition, all equilibrium prices of n1 are regular. When this
is the case, the economy (that is, n1) will be called a regular economy.

On the other hand, notice that economy n′

1 has a different structure.
While the lower equilibrium is regular (since an infinitesimal perturbation
of n′

1 leads to a small perturbation in this equilibrium price), the upper
equilibrium is different. In this case, a perturbation n′

1 − ǫ of n′

1 would be
accompanied by a continuous change of the price along one of the branches,
but a perturbation n′

1+ ǫ of n′

1 would lead to a jump of the equilibrium price
to the lower branch. An equilibrium price with these features will be called
a critical price. An economy that has at least one critical price will be called
a critical economy. In other words, an economy will be called regular if and
only if all of its prices are regular prices, or otherwise a critical economy. We
formalise these ideas in the following definition.
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Definition 3 (Regular and critical prices): Consider a private ownership econ-
omy E(n1), with its corresponding excess demand function Ψn1

: ∆ → R
2,

and equilibrium price set Γn1
= {p ∈ ∆ : Ψn1

(p) = 0}. Then, we say that an
equilibrium price p is a regular price if and only if the rank of the Jacobian
of the excess demand function evaluated at p is equal to 1. Otherwise, we
say p is a critical price.

Definition 4 (Regular and critical economies): We say that an economy E(n1)
is regular if all of its equilibrium prices are regular. If at least one if its
equilibrium prices is critical, we say the economy is critical.

As a consequence of the Sard-Smale Theorem it follows that the set of
regular economies form an open and dense subset of the set of economies.
This means that if a regular economy suffers a perturbation on its funda-
mentals the perturbed economy remains regular. This, however, stops being
true if the economy is singular. Nevertheless, the set of critical economies is
“ meager” in the set of economies, that is, it is a subset of Lebesgue-measure
zero.

4 Dynamical behaviour

Suppose that in equilibrium at time t, the distribution of firms is given by
N(t) = (N1(t), N2(t)) and that the share profits of a firm of type Yi are
revealed to be higher than profits of a firm of type Yj. Then, rational behav-
ior would suggest a manager to produce with technology Yi. But if, at any
given time other managers also decide to change the technology under which
their firms produce, certain characteristics of markets associated with each
technology -including profits- can also be modified. Moreover, it is possible
that if a large enough number of managers decide to migrate to the branch
that is currently offering higher benefits, this advantage can be reversed in
the future and the branch that currently has the greatest benefits might be-
come the one that will offer the lowest level of profits. In this case, the best
individual response to the decision of others, would be to not change the
technology or branch.
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The key question is then based on which factors will managers make the
decision of changing technologies used, given that until now they do not
know what others are doing. Regardless of the answer to this question, it
seems natural to assume that the number of firms producing according to
the technology that in each time appears to be the most successful increases.
Equivalently, at each time, the share of firms producing according with the
technology with the highest profits increases. Such evolutionary process can
be modeled by replicating dynamics. In this way, this dynamical behaviour
becomes a good tool to describe and understand the evolution of the econ-
omy. This section introduces this dynamical behaviour to a private-ownership
economy, first as a static game, and then by an evolutionary process.

As in previous Sections, we suppose there is a a finite (albeit very large)
number of firms N . We suppose this number remains constant (i.e., no en-
tries or exits), although each firm will endogenously change its type through
time. At each time period t, the number of firms of type j ∈ {1, 2}, is given
by nj so that N = n1(t) + n2(t), ∀t. The proportion of firms of type j at
each t is thus given by Nj(t) = nj(t)/N .

4.1 Static game

Consider the private-ownership economy E(n1). The distribution of firms is
thus given by (N1, N2). In this situation, the manager of each company must
choose between changing its existing technology or to keep it. It is possi-
ble to model this situation as a N−population normal form game, where
each firm has two available strategies T = {Y1, Y2}. Recall that the sup-
ply of a firm of type j ∈ {1, 2} is the function yj : R

2
++ → R

2, and its
profit function is given by πj : Yj → R. The function π∗

i : ∆ → R defined
by π∗

i (N1, N2) = πi(y
∗i(N1, N2)) represents the profits in equilibrium of a

firm operating according with the technology Yj. Consequently we will let
Π∗

i (N1, N2) = Πi(y
∗i(N1, N2)) to symbolize the rate of profits of a firm of

type i ∈ {1, 2} under equilibrium conditions. The two definitions below will
establish a firm’s best response. Indeed, a firm’s best response is naturally a
choice of technology Yj with higher rate of profits. Furthermore, a distribu-
tion of firms is a equilibrium distribution if and only if the rate of profits of
all firms is the same.
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Definition 5: We say that to produce according with Yj is a best response
given the distribution N = (N1, N2), if the rate of profits producing according
with technology Yj is greater than or equal to the percentage obtained when
produced according to the technology Yi. That is,

Πj(y
∗j(N)) ≥ Πi(y

∗i(N)).

Definition 6: A distribution N∗ = (N∗

1 , N
∗

2 ) is an equilibrium distribution (or
an equilibrium in mixed strategies) for this game if and only if

Πj(y
∗j(N∗)) = Πi(y

∗i(N∗)) (4)

for all i, j ∈ {1, 2}.

Therefore, a Nash equilibrium for the N − population game

G = {Yi, Ni, i ∈ {1, 2, }}

is a distribution N∗ verifying equation 4.

4.2 Evolution

When introducing time to the static game defined above, dynamic competi-
tion increases difficulties for managers. Indeed, they know that from time to
time they will have to make sudden decisions even if they do not feel ready
to act, because otherwise one or more competitors will come up with a bet-
ter solution, pushing a firm to exit. Certainly, if owners lack information or
sufficient time to perform calculations, some mistakes in decisions can hap-
pen. In this framework to imitate the behavior of the agents considered most
successful can be a good strategy. So, a bounded rational vision of the top
competent team set the direction of the firm and define the competence of
the owner or manager involved. One of the fundamental issue in evolutionary
game theory concerns the relationship between predictions as consequence of
myopic decisions made by simple agents and those provided by traditional
rationality-based concepts.

We start this section by introducing a replicating dynamical system in
Definition 7 below. Recall that equilibrium supply functions depend on the
distribution of firms so that y∗i = y∗i (N1, N2).
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4.2.1 The replicator dynamical system

The degree of competition in a given economy depend on the variance on the
profit rates, the larger the spread the grater the degree of dynamic competi-
tion will be. In equilibrium essentially all the firms are obtaining the same
result. I the next definition we introduce a function that measure the degree
of dynamical competition in an economy, from the difference in profit rates.

Definition 7: (Augmented replicating dynamical system) Consider an
economy n1 where prices are given by p∗(n1) ∈ Γn1

. Let φ : R → R be a
continuous, increasing function such that φ(0) = 0. Then, the (augmented)
replicating dynamical system is given by

d
dt
Ni =

{

φi

(

Πi (y
∗

i (N))− Πj

(

y∗j (N)
))}

Ni, (i)

d
dt
Nj = − d

dt
Ni, (ii)

N(t0) = (N1(t0), N2(t0)) >> 0, (iii)

(5)

A few remarks regarding Definition 7 are in order:

• In condition (i), the function φi : R → R represents the growth rate in
the share of each technology per unit time,

Ṅi

Ni

= lim
∆t→0

∆Ni

Ni

1

∆t
= φi((Πi(y

∗

i (N)))− Πj(y
∗

j (N)))].

Here by Ṅi(t) we symbolize the derivative of Ni(t) we respect to time
t i.e.; d

dt
Ni(t) = Ṅi(t). To simplify the notation we do not write the

variable t.

• To guarantee that this system of differential equations induces a well
defined dynamics on the state-space given by the simplex, i.e,

∆ =
{

(N1, N2) ∈ R
2
++ : N1 +N2 = 1

}

,

φi : R+ → R, i ∈ {1, 2} are Lipschitz continuous functions in (0,∞).

• Recall that N2(t) = 1−N1(t) at all t. Therefore, condition (ii) is auto-
matically satisfied. This forces no creation or destruction of firms and
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instead allows us to focus on the redistribution of firms according to
their type. Furthermore, as mentioned before, this fact also allows us
to assume that y∗i depends only on N1.

• Condition (iii) establishes initial conditions. We assume that at time
t = t0, the proportion of both types of firms is positive, since if at
time t0 either n1 or n2 = 0, then the evolution given by the system (5)
makes no sense. Equivalently, we could have asked for N(t0) to be in
the interior of the simplex ∆.

• Finally, recall that under the assumptions of our model, the following
identity is always verified,

m1(x
1∗(N1(t))−w1)+m2(x

2∗(N1(t))−w2) = n1(t)y
1∗(N1(t))+n2y

2∗(N2(t))

which implies that market clearing conditions always hold.

Note that if equilibrium prices at time t0 are regular, then immediately
after a perturbation on the distribution of firms, these prices will not change
much and therefore the benefits of firms will suffer only small modifications.
Conversely, if these prices correspond to a critical economy, a small pertur-
bation on the distribution of firms can give place to large and discontinuous
changes in the behavior of the economy. Thus, the assumption of the exis-
tence of Liptchitz-continuous functions φj can be considered only if prices
are regular.5

Notice that a migration process of firms to technologies with higher ex-
pected benefits, will lead to changes in the excess demand function, and
therefore also in equilibrium prices. Moreover, the whole economy En1

is
changing along this process; that is, for each t there is a different economy.
Furthermore, note that even at time t = t0 the inequality Πi(y

∗i(N1)) >
Πj(y

∗j(N1)) i 6= j holds, but this does not mean that every manager will
choose the technology Yi, because profits at time t > t0 depend on the future

5 This was also the main reason behind the need for the lengthy discussion of continuous
random selections in the previous Section.
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distributions of the firms over technology types, and these future distribu-
tions are unknown at time t0, or because not necessarily every manager will
know the profits of other firms.

A distribution (N e
1 , N

e
2 ) defines a dynamical economic equilibrium in the

sense of the replicator dynamics (5), if and only if Π(y∗1(N e
1 )) = Π(y∗2(N e

1 )).
Under these hypothesis of our model, a Walrasian equilibrium does not verify
necessarily this equality. Moreover, a Walrasian equilibrium (p, x̄, ȳ) ∈ Eqn1

is at the same time a dynamical equilibrium, if and only if the rate of profits
of the firms are the same regardless the technology used. So, if in t = t0
this equality on the profits holds, then, the economy will not change in the
future, unless it happens some perturbation in its fundamentals for reasons
exogenous to the model. (The stability in the Lyapunov sense of this equi-
librium will be considered in the next section). In other case, the economy
is evolving in a transition process corresponding to a trajectory defined by
the dynamical system (5), along this trajectory the economy is always in
a Walrasian equilibrium. Along this trajectory the economy is always in a
Walrasian equilibrium. Certainly these equilibria change according with the
evolution of the distribution of the firms on the set of available technologies.
This means that, in each time, prices, allocations and plans of production
correspond to a Walrasian equilibria. More specifically, for each t > t0 and
n1(t) such that n1(t) = nN1(t), p

∗(n1(t)) ∈ Eqn1
(t).

If the dynamical equilibrium (N e
1 , N

e
2 ) is an attractor and if in time t = t0

the initial distribution (N1(t0), N2(t0)) is in the basin of attraction of this
equilibrium, then (N1(t), N2(t))t→∞ → (N e

1 , N
e
2 ) and so

En1(t),n2(t) → Ene
1
,ne

2
.

This evolution will takes place along a trajectory of economies En1(t),n2(t)

in equilibrium. Along this trajectory only smooth changes can occur if the
economies are regular. Then the trajectory is a continuous path. Big changes
necessarily take place if this trajectory crosses a singular economy.

Definition 8: Let N(N0, ·) : R+ → ∆ be the solution of the equation (5) where
N(N0, t0) = N0, being N0 ∈ ∆0 the initial distribution (percentage) of the
firms, then the transition path will be defined by the trajectory:

T (t) = {(t, N(N0, t)) ∈ [t0,∞)×∆} .
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This is a Walrasian equilibrium trajectory, meaning that for each t and
N(N0, t) for each n(t) = nN(N0, t) the corresponding p

∗(n1(t)) ∈ Eqn1(t) ∀t ≥
t0.

To simplify the notation, from now on we write Π∗(N1) to represent
Πi(y

∗i) i = 1, 2.
It is easy to see that the trajectory remains in the simplex if the condition

˙N1 +N2 = Ṅ1 + Ṅ2 =

= φ1 (Π1(N1)− Π2(N1))N1 + (φ2 (Π2(N1)− Π1(N1)) (1−N1) = 0.

is verified in all time t ≥ t0, this means that the simplex is invariant under
this dynamic, and it is true because the population remains constant.

Let p∗(n̄1) = (p∗1(n̄1), p
∗

2(n̄1)) be the equilibrium price of a regular econ-
omy En̄1,n̄2

. As we already shown in section (??) the equilibrium prices are
smooth, functions of the distribution of the firms. There exist a neighborhood
Vn̄1,n̄2

⊂ R2 of (n̄1, n̄2) such that for all (n1, n2) ∈ Vn̄1,n̄2
∩ ∆ p∗(n̄1 ∈ Eqn1

.
Let us now introduce de definition of regular transition path:

Definition 9: Let N(t) = N(N0, t) be the solution of the dynamical system:
(5). Let Ψ : (0, 1) × ∆ → R2 be the generalized excess demand function,
then a transition path, will be regular if and only if rankJpΨ(N1(t), p) = 1

for all (N1(t), p) : Ψ(N1(t), p) = 0, where n1(t)
n

= N1(N0, t) i.e. if and only for
each N1(t) along a trajectory defined by a solution of the dynamical system
(5) the economy En1(t),n2(t) is regular.

Note that if the economy in time t0 is regular, then after a small pertur-
bation on the distribution of the firms, the economy will continuous being
regular, so there exist some interval [t0, t1] such that

T (t0, t1) = {(t, N(N0, t)) ∈ [t0, t1]×∆}

is regular restricted transition path, because all economy En1(t),n2(t) is regular.
We can summarize this assertion by the next proposition:

Proposition 1: The restricted transition path in a neighborhood of a regular
equilibrium price is smooth.

The existence of such continuous transition paths, is a local property
verifiable only in a neighborhood of a regular equilibrium prices. Recall that
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there is a maximal interval (α, β) containing t0 where a solution N(t) with
N(t0) = N0 exists. The solutions corresponding to two intervals containing
t0 are the same in the intersection of both. In some cases α = −∞, β =
∞ or both, however,in general, it is not guaranteed that the solution of a
differential equation can be defined for all t. For details see [11].

Contrarily, in the neighborhood of a singularity we can not ensure the
existence of a solution for the dynamical system. The transition path in
the neighborhood of a singularity can show discontinuous. If the economy
is singular, then small perturbation in the distribution of the firms can give
place to large changes in the behavior of the future economies, respect to
the behavior of the actual, i.e, some equilibrium prices and consequently the
corresponding profits can suffer larger changes, just as the distribution of the
wealth between the consumers and so, their respective demands can can be
altered. Most of these changes will be unpredictable an the consequence of a
small perturbation in de distribution of the firms. Certainly, after and before
that this perturbation occurs, we can describe the evolution of the economy
by a dynamical system similar to the one given in (5), but it is not possible
in the moment of when the trajectory attain a equilibrium price. The future
evolution will start in a (previously) unforeseeable initial conditions. So, if
we understand an economic crisis like an abrupt and unexpected change in
the behavior of the economy, as the result of arbitrarily small changes in its
fundamentals, then we can say that singular economies are thresholds of the
economic crises.

4.3 Evolution by an imitative process

Now, we introduce a model of economic evolution where the engine of this
process, is the imitative behavior of the owners or managers of the firms,
looking for the most profitable technology. We imagine that these agents,
acting strategically, stick to a given technology for a while, and occasionally,
looking for technologies with higher profits, at least some of them and from
time to time, review their previous decisions of production.

There are two particular elements characterizing this process. The first
one is the specification of the time rate at which managers or owners review
the technology under which their firms are producing. The second element
is the probability that a reviewer, producing according with the technology
Yi, change effectively, to the technology Yj. This probability is written pij.
Certainly the probability that a reviewer change effectively, depends on his
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believes on the future behavior of the others. By pii we denote the proba-
bility that a reviewing manager using the i−technology does not change the
technology.

In a finite but large population of firms, following [20], one may imagine
that the review times of an agent (an owner or a manager) are the arrival time
of a Poisson process with arrival time ri(Π

∗), where Π∗ = (Π∗(N1),Π
∗

2(N2)).
Then, if the agent become a reviewer, he selects the technology to produce in
the next period, he decides to change from technology i to technology j with
probability pij or he decides to maintain the previous election with probability
pii. Assuming that all agents’ are random variables, statistically independent,
the aggregate of reviewing of each subset of firms is itself a Poisson process
with arrival rate (normalized) Niri(Π

∗). So, the aggregate Poisson process of
switches form technology Yi to technology Yj is Niri(Π

∗)pij.
Now, imagine a large number of firms, by the law of large number we can

model the aggregate stochastic process as a deterministic flows, where the
outflow from the subset of firms using the technology Yi is Niri(Π

∗)pij(Π
∗),

and the inflow is Njrj(Π
∗)pji(Π

∗), then we obtain:

Ṅi = Njrj(Π
∗)pji −Niri(Π

∗)pij (6)

Each individual actor look at the world through his or her, ex-ante expe-
rience, so, it is natural to assume that less successful manager, on average,
review their behavior at a higher rate than manager using more successful
technologies. Then we consider that ri is a decreasing function with respect
to profits Π∗

i obtained by the firm.

ri(Π
∗) = ρi(Π

∗

i ). (7)

where ρi is a Lipschitz continuous function, decreasing in it argument. Note
that this assumption does not presume that the agent knows the expected
profits associated with the technology currently in use.

So equation (6) can be rewritten as:

Ṅi = −Ni

[

ρj(Π
∗

j)pji + ρi(Π
∗

i )pij
]

+ ρj(Π
∗

j)pji. (8)

Moreover we can consider that the average review rate is linearly decreas-
ing in the profit’s rate

ρi(Π
∗

i ) = α− βΠ∗

i (Ni). (9)
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Then equation (8) become:

Ṅi = −Ni

[

(α− βΠ∗

j(Nj))pji + (α− βΠ∗

i (Ni))(Π
∗

i )pij
]

+
[

α− βΠ∗

j(Nj)
]

pji.
(10)

Suppose that each reviewing manager or owner, observe profits difference
between her own profit and the profit associate with the other technology
with some noise, and that the reviewer agent switches the technology if and
only if Π∗

j(N1) > Π∗

i (N1)+ ǫ where ǫ is a random variable, with a probability
distribution φi : R → [0, 1] continuous and differentiable. Then

pij = φi(Π
∗

j(N1)− π∗

i (N1)). (11)

As a special case, assume that the error term is uniformly distributed
with a support containing the range of all possible profits differences. Then
φi is an affine function function over the relevant interval, φi(z) = ai + biz
for some ai, bi ∈ R and bi > 0 then (10) becomes:

Ṅi = −Ni

[

(α− βΠ∗

j)(ai − bi(Π
∗

j − Π∗

i ) + (α + βπ∗

i )(aj − bj(Π
∗

i − Π∗

j)
]

+

+
[

(α− βΠ∗

j)(aj − bj(Π
∗

i − Π∗

j))
]

.
(12)

The imitative behavior: Under conditions of incomplete information,
the evolution of the economy depends on the perception that owners or man-
agers have, over the future benefits associated with each technology available.
This perception depends on the skills and potential of managers to predict
the future actions of others. We can assume that, under incomplete informa-
tion, each owner or manager, to choose the future strategy, takes account the
behavior of the nearest competitors or that followed by those he considered
leaders or most successful. These types of behaviors can be called imitative,
and each one gives place to a different dynamic.

Assuming that all review rates are constantly equal to one, i.e.; ri(Π
∗) = 1

we obtain the following dynamics:

Ṅi = −Ni

[

(aj + ai) + (bj + bi)(π
∗

j − π∗

i )
]

+
[

(aj + bj)(π
∗

j − π∗

i )
]

. (13)

The difference Π∗

i − Π∗

j corresponds to the true difference, because

pij = P (Π∗

i + ǫ < Π∗

j) = P (ǫ < Π∗

j − Π∗

i ) = φ(Π∗

j − Π∗

i ).
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If in addition, we consider that along the time the difference between
profits remain constant, then the solution of this dynamical system is given
by:

Ni(t) =
A

B
+

[

Ni0 −
A

B

]

e−B(t−t0) ∀t ≥ t0,

where A = (aj + bj)(Π
∗

j −Π∗

i ), B = (aj + ai) + (bj + bi)(Π
∗

j − Π∗

i ) and N10 =
N1(t0).

Note that if the difference Π∗

j − Π∗

i remains constant and positive along

the time, then the solution converges to the stationary state Ni =
A
B
. This

means that following this particular imitative process, even in the case when
the rate of profits associate with the technology Yj remain, along the time,
higher than the profits associate with the technology Yi, even in the long run,
will be possible to find in the market some firms producing according with
the technology Yi.

5 Stability of the dynamical equilibrium

Both the social or natural world, the only dynamic equilibria we can see are
those that are stable. In the previous section, we describe the evolution of an
economy along a path of Walrasian equilibria. Once that the modification of
the economy (i.e, the modification of the distribution of firms in the set of
available technology) is permanent, the modification of equilibria prices will
be also permanent, unless that the distribution correspond to a stable steady
state of the dynamical system, only in these cases prices will remain constant.
These changes will be continuous, at least until such time that a singularity
appears, if such is the case, then after this moment, a discontinuity in prices
or, in general in the economic behavior, can be observed.

Let us now introduce some considerations on the stability of the stationary
state of the dynamical system considered in (5). A solution N e = (N e

1 , N
e
2 ) ∈

∆ of this system (5) is a dynamical equilibrium, or steady state, if and only
if

[φi

(

Πi(y
∗

i (N
e
1 ))− Πj(y

∗

j (N
e
1 ))

)

]N e
1 = 0 ∀ i = 1, 2.

i.e if and only if the payoffs corresponding to each technology are the same:

1. Πi(y
∗

1) = Πj(y
∗

2) or if

2. N e
i = 0 for some i ∈ {1, 2} because in this case all firms use the same

technology and earn the same payoff.
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3. In both cases N(t) = N e, ∀t and so Ṅ = (Ṅ1, Ṅ2) = 0.

Each dynamical equilibrium, have associated a Walrasian equilibrium price,
denoted by

p(N e
1 , N

e
2 ) = (p1(N

e
1 , N

e
2 ), p2(N

e
1 , N

e
2 )) ∈ Eqne

1
.

The corresponding profits and the optimal plan for firms using the technology
Yi are respectively π∗

i and y∗i . The rates of profits are the same when they are
evaluate at these prices. Recall that, N e = 1

n
(ne

1, n
e
2) then, in addition, we

can say that, each dynamical equilibrium has associated an economy Ene
1
,ne

2
.

Let us consider the function g : ∆2 → R2

gi(N) = φi

(

Πi(y
∗

i (N1))− Πj(y
∗

j (N1))
)

, i = 1, 2.

The differential equations system (5) can be written as:

Ṅi = gi(N)Ni, i = 1, 2. (14)

It is clear that a population state N ∈ ∆0 is an stationary state if and only
if gi(N) = 0, i = 1, 2.

The following theorem provides a sufficient condition for asymptotic sta-
bility and instability in the Liapunov sense.

Theorem 1: Let N e a fixed point of the system (14) then if there exists some
neighborhood U ⊂ R2 of N e such that;

(a) g(M)N e = g1(M)N e
1 + g2(M)N e

2 > 0 for all distribution M 6= N e in U
then N e is asymptotically stable in 14).

(b) g(M)N e = g1(M)N e
1 + g2(M)N e

2 < 0 for all M 6= N e, then N e is
unstable.

Proof: (Case (a)) We will show that the function

HNe(M) = N e
1 log

(

N e
1

M1

)

+N e
2 log

(

N e
2

M2

)

is a Liapunov function for the system (14).

1. It is straightforward that HNe(N e) = log(1) = 0
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2. IfM ∈ ∆ then the inequalitiesHNe(M) ≥ −N e
1

(

1− M1

Ne
1

)

−N e
2

(

1− M2

Ne
2

)

≥

0 hold6. Thus we conclude that there is a neighborhood U ∩∆ of N e

where the function HNe(M) is positive.

3. Finally, since HNe(M) ≥ ḢNe(M) =
(

Ne
1

M1
Ṁ1 +

Ne
2

M2
Ṁ2

)

from condition

given in item (a) the inequality

ḢNe(M) = −

(

N e
1

M1

g1(M)M1 +
N e

2

M2

g2(M)M2

)

= −g(M)N e < 0

holds

4. The claim set out in item (b), follows similarly.

A geometrical interpretation of the asymptotic stability: First note that,
since

Ṅ1 + Ṅ2 = g1(N)N1 + g2(N)N2 = g(N)N = 0 (15)

so, the vector field g(N) remain orthogonal toN. Thus, the condition g(M)N <
0 used in the theorem (1) said that in a neighborhood of N the vector field
g form an obtuse angle with N. So if N e is asymptotically stable equilibrium
for the system (14) then g(N) drift locally to N e. On the other hand, note
that the identity (15) show that if at time t = t0 N(t0) = N0 ∈ ∆ then the
trajectory N(N0, t) ∈ ∆ ∀ t ≥ t0.

Under the assumption of regularity, equilibrium prices are continuous
functions of the firms see theorem (??).

1. The analysis of the stability in the Liapunov sense of the first type
of equilibria, give place to the following 4 different cases, see figure
(2). Let N ′ = (N ′

1, N
′

2) be the distribution after a perturbation in the
equilibrium distribution of the firms:

(i) Consider the case where: (N e
1 , N

e
2 ) >> 0 if there exists a neigh-

borhood Vne ⊂ R2 ∩ ∆n of (ne
1, n

e
2) such that Πi(y

∗

i (n1, n2)) <
Πi(y

∗(ne
1, n

e
2)) i ∈ {1, 2} ∀(n1, n2) ∈ Vne then the dynamical equi-

librium is asymptotically stable, see theorem (1) .

(ii) In the others three cases, where πi(y
∗

i (n
′

1, n
′

2)) > πi(y
∗

i (n
e
1, n

e
2)) for

at least one i ∈ {1, 2} the dynamical equilibrium is unstable, see
theorem (1) .

6 Recall that for x > 0, log x ≤ (x− 1).
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Fig. 2: Figure at the top and left, the only case of asymptotically stable
equilibrium

2. For the cases on the second type, the dynamical equilibrium is asymp-
totically stable if, being

(iii) (N e
1 , N

e
2 ) = (1, 0) the inequality Π2(y

∗

i (n
′

1, n
′

2)) < Π1(y
∗

i (n
′

1, n
′

2)) is
verified, or if,

(iv) being (N e
1 , N

e
2 ) = (0, 1) the inequality Π2(y

∗

i (n
′

1, n
′

2)) > Π1(y
∗

i (n
′

1, n
′

2))
is verified.

Note that for the last case considered in section (4.3) we have that
gj(N) = aj+bj(π

∗

j (N)−π∗

i (N), j 6= i ∈ {1, 2} and then if π∗

j (N)−π∗

i (N) > 0
it follows that g(N)N e > 0. Then the asymptotical stability of the stationary
point N e

i = A
B
, N e

j = 1− A
B
holds.

6 An example

This example is inspired in ([3]).
Consider a neoclassical private ownership production economy with com-

modity space R2 having m consumer divided in two types, m1 of type 1 and
m2 of type 2, the set F1 = {1, ...m1} symbolize the consumers of type 1, and
F2 = {(m1+1), ...,m} we symbolize the consumers of type 2. Having n firms
of two types n1 of type 1 and n2 of type 2, with the following characteristics:

• Consumers type 1: Initial endowments wi =
1
m1

(1, 3) and utility func-
tion ui(x, y) = xy, i ∈ {1, ...,m1}
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• Consumers type 2: Initial endowments wi =
1
m2

(2, 3) and utility func-

tion ui(x, y) = xy2, i ∈ {(m1 + 1), ...,m}.

• Firms type 1: Production set Y1 =
{

(x, y) ∈ R2 : x < 1, and y ≤ x
x−1

}

.

• Firms type 2: Production set Y2 = {(x, y) ∈ R2 : x < 1, and y ≤ g(x)}
where:

g(x) =







1− ex if x ≤ 0

ln(1− x) if 0 < x < 1

• Shares: Type 1 consumers have own one third of type 1 firms, and two
thirds of type 2, the rest is owned by the consumers of type 2. Within
each type, individuals have the same share of firms, i.e:

θi1 =
1

3m1
, ∀ i ∈ F1 and θi2 =

2
3m1

, ∀i ∈ F2, i = 1, ....m1;

θi1 =
2

3m2
, ∀ i ∈ F1 and θi2 =

1
3m2

, ∈ F2, i = m1 + 1, ...,m.

We start considering the supply function of a firms of type 1: The tech-
nological set Y1 is strictly convex and the efficiency frontier is

EFF (Y1) =

{(

x,
x

x− 1

)

, x < 1

}

.

So the profit function of a firm of this type is given by:

π1(x) = p1x+ p2
x

x− 1
. (16)

The supply of a firm of type 1, is: x1(p) = 1 −
√

p2
p1
. Writing t =

√

p2
p1

we

obtain that the output input vector is given by

y1(t) =

(

1− t, 1−
1

t

)

.

Substituting x = y2(t) in (18) we obtain that the profit for a firm of type 1
is: π1(t) = p1(1− t)2.

Remark 1: Note that the rate of profits is given by

Π1(t) =











π1(t)

−p2(1−
1

t
)
= −1 + 1

t
0 < t < 1

π1(t)
−p1(1−t)

= 1− t 1 < t

(17)
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For a firm of type 2, we obtain

EFF (Y2) = {(x, 1− ex), x ≤ 0} ∪ {(x, ln(1− x), 0 < x < 1} .

The profit function is given by:

π2(x) =







p1[x+ t2(1− ex)] x ≤ 0

p1[x+ t2 ln(1− x)] 0 < x < 1
(18)

since π′′

2(x) < 0 in both cases, then the supply of a firm of type 2 is:

y2(t) =







(1− t2, 2 ln t) if 0 < t < 1,

(

−2 ln t, 1− 1
t2

)

if t ≥ 1.

Substituting x = y2(t) in (18) we obtain that the profit for a firm of type 2
is:

π2(t) =







p1[(1− t2) + 2t2 ln t] if 0 < t < 1,

p1[−2 ln t+ t2 − 1] if t > 1.

Remark 2: Note that the rate of profits of a firm of type 2 is given by:

Π2(t) =







−1+t2

2t2 ln t
+ 1 if 0 < t < 1,

−2 ln t+t2−1
2 ln t

if t > 1

(19)

The demand of each consumer of type 1, is given by:

x1(t) =
W1(t)

2p1

(

1,
1

t2

)

(20)

and the demand of each consumer of type 2, is given by:

x2(t) =
W2(t)

3p1

(

1,
2

t2

)

(21)

Where Wi(t) denotes the income of a consumer of type i at prices p =
p1(1, t

2). We shall compute:

Wi(t) = pwi + n1θi1π1(t) + n2θi2π2(t), i ∈ {1, 2}
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W1(t) =
p1
3m1







(9 + n1 + 2n2)t
2 − 2n1t+ 3 + n1 − 2n2 − 4n2 ln t if t ≥ 1

(9 + n1 − 2n2)t
2 − 2n1t+ 4n2t

2 ln t+ (3 + n1 + 2n2) if 0 < t < 1
(22)

W2(t) =
p1
3m2







(9 + 2n1 + n2)t
2 − 4n1t+ 6 + 2n1 − n2 − 2n2 ln t if t ≥ 1

(9 + 2n1 − n2)t
2 − 4n1t+ 2n2t

2 ln t+ 6 + 2n1 + n2 if 0 < t < 1
(23)

Substituting in (20) we obtain the demand for each consumer of type 1:

x1(t) =







































(

(9+n1+2n2)t2−2n1t+3−n1−2n2−4n2 ln t,

6m1

(9+n1+2n2)t2−2n1t+3+n1−2n2−4n2 ln t

6m1t2

)

if t ≥ 1,

(

(9+n1−2n2)t2−2n1t+3+n1+2n2+4n2t
2 ln t

6m1
, (9+n1−2n2)t2−2n1t+3+n1+2n2+4n2t

2 ln t

6m1t2

)

if 0 < t < 1.
(24)

and substituting in (21) we obtain the demand for each consumer of type
2:

x2(t) =































(

(9+2n1+n2)t2−4n1t+6+2n1−n2−2n2 ln t

9m2
, 2 (9+2n1+n2)t2−4n1t+6+2n1−n2−2n2 ln t

9m2t2

)

if t ≥ 1

(

(9+2n1−n2)t2−4n1t+2n2t
2 ln t+6+2n1+n2

9m2
, 2 (9+2n1−n2)t2−4n1t+2n2t

2 ln t+6+2n1+n2

9m2t2

)

if 0 < t < 1
(25)

The aggregate excess demand function will be:

ζ(t) = m1(x1(t)− w1) +m2(x2(t)− w2)− n1y1(t)− n2y2(t).
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ζ1(t) =
1
18







(45 + 7n1 + 8n2)t
2 + 4n1t− 33− 11n1 − 8n2 − 20n2 ln t if t ≥ 1

(45 + 7n1 + 10n2)t
2 + 4n1t− 54 + 16n2t

2 ln t if 0 < t < 1

ζ2(t) = − 1
18t2







(45 + 7n1 + 8n2)t
2 + 4n1t− 33− 11n1 − 8n2 + 20n2 ln t if t ≥ 1

(45 + 7n1 + 10n2)t
2 + 4n1t− 54 + 16n2t

2 ln t if 0 < t < 1

The equilibrium prices are the solution of the equation ζ(t) = 0. To find
the solutions of this equation we consider the following functions:

f : (0,∞) → R and g : (0, 1) → R

defined by:

f(t) = (45 + 7n1 + 8n2)t
2 + 4n1t− 33− 11n1 − 8n2 − 20n2 ln t, (a)

g(t) = (45 + 7n1 + 10n2)t
2 + 4n1t− 54 + 16n2t

2 ln t. (b)
(26)

Note that f ′(t) = 2(45 + 7n1 + 8n2)t + 4n1 − n2
20
t

> 0 ∀t ≥ 1 and
n1, n2 ≥ 0 this means that f(t) is strictly increasing in the interval [1,∞).
Since f(1) = 12 it follows that ζ(t) 6= 0 for each t > 1, and then there is not
an equilibrium with t > 1.

On the other hand, since limt→0 g(t) < 0, and g(1) > 0, ∀(n1, n2) ∈ ∆
there exists at least one equilibrium such that t∗ < 1.

Note that Π1(t̄) = Π2(t̄) if and only if t̄ =≈ 0.516691803. This means

that a Walrasian equilibrium is a dynamical equilibrium if and only if
√

p∗
2

p∗
1

=

t∗ = t̄ ≈≈ 0.516691803. This equilibrium corresponds (approximatelly) for
instance to an economy with n2

1 = 1 and ne
2 = 40.

6.1 The dynamics

Assuming that the number n of firms remains fixed, but they can choose
technology, we obtain for this example, that the evolution of the economy is
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given by the following dynamical system:

Ṅ1 = φ (π1(y
∗

1(N1))− π2(y
∗

2(N1)))N1

Ṅ2 = −Ṅ1

N(t0) ∈ ∆0.

(27)

Hereafter, to avoid confusions we use t to symbolize time, and p =
√

p1
p2
.

So the dynamics along an equilibrium path is given by the

Ṅ1 = N1φ(Π1((N))− Π2((N)), 0 < t < 1

in our case

Ṅ1 = N1φ

(

−2 +
1− p2(N1)

2p2(N1) ln p(N1)
+

1

p(N1)

)

Note that this equation is decreasing in the interval (0, 1) and φ(t̄) ≈ φ(0.516691803) =
0.

So, if for a distribution N of the firms over the available technologies the
inequality t(N) < 0.516691803 then Π1(N1) − Π2(N) > 0 and the quantity
of firms of type 1 increase and then this difference decrease. Contrarily, if
t(N) > 0.516691803 then Π1(N1)− Pi2(N) < 0 and the quantity of firms of
type 2 increase and then this difference increase.

6.2 The transition path

Let us now characterize the trajectory of the economy of our example along
a Walrasian equilibrium trajectory.

Consider a regular economy such that in time t = t0

n(t0) = n0 = (n10, n20)

i.e, En10,n20
. It is possible to choose a neighborhood and a correspondence

p∗ : ∆ ∪ Un0
→ 2R

2
+ ,

such that p∗(n1,n2) = Eqn1
.

Let p∗(n0) = (p∗1(n10), p
∗

2(n20)) ∈ p∗(n10, n20) such that p0 =
√

p∗
1
(n10)

p∗
2
(n10)

<

0.516691803
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From the correspondence p∗ choose a continuous selection p∗, such that
p∗(n0) = p∗(n10, n20).

There exists a neighborhood Vn0) ⊂ ∆ ∩ Un0
such that for all for all

(n1, n2) ∈ Vn0
, p∗(n1) verify that p(n1) =

√

p∗
1
(n1)

p∗
2
(n1)

< 0.516691803.

From the implicit function theorem p : Vn0
→ Up0 is a smooth function

verifying

dp∗

dn1

(n10) = p
′

n1
(n10) =

−3p0 + 4− 16p0lnp0
−4n1(p0)3 + 108p−2016(n− n10)

.

The economy En1(t0),n2(t0) evolves along the transition path to an sta-
tionary state, (ne

1, n
e
2) ∈ De being

lim
(n1,n2)→(ne

1
,ne

2
)
p∗(n1, n2) = p∗(ne

1, n
e
2) ≈ 0.516691803.

Along this transition path a economy En1
the share of economies of type

1 increases and the economies of type 2, decreases in equal proportion.

An economy En1
is singular if and only if for some p0,

−4n1(p0)
3 + 108p−2

0 + 16(n− n10) = 0.

Given that the initial economy is regular, then all economy in the neigh-
borhood Vn0

is regular.

Analogously, it follows that, if the equilibrium for the initial economy,
verify that 0.516691803 < p0 < 1 then we will observe a contrary evolution,
i.e, the share of firms of type 1 decreases, and increases the share of firms of
type 2.

Note that, a Walrasian equilibrium price p∗(n1, n2) will be, at the same
time, an stationary equilibrium if and only if, there exists a distribution
n = (n1, n2) for which the equalities

π1(p
∗(n1, n2)) = π2(p

∗(n1, n2)) and ζ(p∗(n1, n2)) = 0

are verified.
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7 Conclusions

In this paper, we have shown that a dynamical process based on imitation
leads to the economy over a trajectory of Walrasian equilibria. Since the
equilibrium prices and the corresponding profits depend on the distribution
of the firms over the set of available technologies, the hypothesis of rationality
implies that each manager (with identical interest than the owner), try to
anticipate the behavior of their competitors. This occurs because the future
profits will depend on the joint choice of the managers on the set of available
technologies.

One of the main questions, that we attempt to answer in this paper,
is how or based in what arguments, managers, looking for more profitable
investments, decide to maintain or change the actual technology under which
their firms are producing. We considered that, under incomplete information,
managers follow an imitation process.

As this process imitative process continues, the economy changes, more
specifically, the set of Walrasian equilibria changes. The economy evolves
along a transition path, which reflects the evolution of the distribution of
the firms over the set of available technologies. In this process, the wealth
of consumers changes, because their shares on firms change, and thereby the
excess demand functions change. Consequently, the economy changes. So,
the set of Walrasian equilibria depends on the distribution of the firms, and
so, this distribution determines the characteristics of the economies, i.e, if
they are regular or singular. The changes in the economy along the transition
path, will no longer be continuous in a neighborhood of a singular price. It
is for these reasons, that we consider singular economies as the thresholds of
economic crises. Only singular economies have associate singular equilibria.
Big changes can be expected when the distribution of the firms determines
that the economy is in a neighborhood of a singular economy. Therefore, the
possibility that an economic crisis happens is a structural phenomenon, that
lies at the basis of the model itself, particularly in the assumed rationality
of the agents.
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