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I. INTRODUCTION

A key issue in the economics of differentiated product markets is how the rela-

tionship between consumer values for different product varieties matters for market

outcomes. Typical discrete choice models of product differentiation assume either

that consumer values for different product varieties are independent (e.g. Perloff and

Salop, 1985) or follow a joint distribution of a specific form (e.g., Anderson, et al.,

1992). Such special cases are insightful but lack the general structure needed for a

more complete understanding of how the correlation of consumer values for alternative

products affects market outcomes.

In this paper, we develop a new approach to discrete choice demand in differen-

tiated product markets that is more general than the familiar approaches. The key

feature of the new approach is to use copulas to separate the marginal distribution

of consumer values for each variety from their dependence relationship. A copula is

a multivariate uniform distribution that “couples” marginal distributions to form a

joint distribution. Furthermore, by Sklar’s Theorem, it is without loss of generality

to represent a joint distribution of consumer values by its marginal distributions and

a copula (Nelsen, 2006). The virtue of the copula approach is that all information

about dependence (or correlation) of values is contained in the copula. Thus the cop-

ula representation of consumer preferences makes it straightforward to analyze how

market outcomes are affected by the distribution of values for each variety holding the

dependence relationship constant, or by the dependence properties among the values

for arbitrary marginal distributions. In this way, the copula approach provides an

elegant and useful representation of consumer preferences for differentiated products.

In Section 2, we present a model of consumer preferences over an arbitrary number

of symmetric varieties of a good. Consumer values for the varieties are assumed

to follow a smooth and symmetric joint probability distribution. We interpret the

mean and variance of the marginal distribution as measures of preference strength

and preference diversity respectively, and let the preference dependence properties of

the copula capture the correlations of values. We define preference dependence using

standard concepts of positive and negative dependence of random variables, and order

copulas accordingly. We apply this approach to investigate two issues.

First, in Section 3, we study how prices and profits change with the degree of pref-
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erence dependence in symmetric multiproduct markets. In discrete choice models

of product differentiation that assume independence between values of different vari-

eties, a higher variance of consumer values (i.e. preference diversity) raises price and

profit under certain conditions, and thus can be interpreted as an indicator of product

differentiation (e.g., Anderson et. al. al, 1992; Johnson and Myatt, 2006; Perloff and

Salop, 1985). A natural question to ask is, when preferences for different varieties are

not independent, how does preference dependence relate to product differentiation?

Intuitively, greater dependence means that more consumers regard the varieties as

closer substitutes, suggesting that product differentiation is less when preference de-

pendence is greater. We find that price and profit decrease in preference dependence

for a symmetric multiproduct monopoly or a symmetric single-product oligopoly un-

der certain conditions. Therefore, preference depedenence can be interpreted as a

distinct indicator of product differentiation, separate from preference diversity.

Second, in Section 4, we examine how prices differ across several market struc-

tures. This issue is relevant in various scenarios: (1) as a result of innovation, a

single-product monopolist introduces new varieties to become a multiproduct mo-

nopolist; (2) as the result of lower entry barriers, such as expiration of a patent,

competing single-product firms enter a previously monopolized market; (3) due to a

change in merger policy, a single-product symmetric oligopoly merges into a multi-

product monopoly. Understanding the price effects in such scenarios is both theoret-

cally interesting and policy relevant. While Chen and Riordan (2008) analyzes the

issue for the special case in which the marginal distribution of consumer values is

exponential, the present paper provides general comparisons for arbitrary marginal

distributions. Specifically, we find that the single-product monopoly price is higher

than the symmetric oligopoly price if the hazard rate of the marginal distribution

is non-decreasing and preferences are positively dependent, but lower if the hazard

rate is non-increasing and preferences are negatively dependent.1 Furthermore, the

symmetric multiproduct monopoly price is higher than the single-product monopoly

price when preferences are uniformly positively dependent or negatively dependent.

1As we can see from this result, the copula approach is more powerful than simply assuming
a particular joint distribution of consumer values for alternative products. The bivariate normal
distribution, for example, does have the virtue of neatly separating preference diversity (variance)
and preference dependence (correlation), but is restrictive in part because the marginal normal
distribution has a particular shape with an increasing hazard rate.
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We make concluding remarks in Section 5, and gather proofs in the Appendix.

II. THE COPULA REPRESENTATION OF PREFERENCES

Consumers are assumed to purchase at most one of n ≥ 2 possible varieties of

a good. A consumer’s value (or willingness to pay) for the ith variety is wi. To

describe consumer preferences, the standard approach is to specify a joint distribution

of w ≡ (w1, ..., wn). The analyses typically proceed by assuming independence or

that the joint distribution has a particular function form, e.g. is a bivariate normal

distribution. For tractability, it is often also assumed that the joint distribution

function is symmetric. The copula approach to discrete choice demand provides a

more general structure for modeling the correlation of consumer values for different

varieties, while remaining tractable in the symmetric case.

The copula representation of preferences is based on Sklar’s Theorem in statistics,

which states that the probability distribution of a vector of random variables can be

represented by a copula and marginal distributions. More specifically, a copula is

a multivariate cumulative distribution function with uniform marginal distribution

functions.2 According to Sklar’s Theorem, if H (w) is a multivariate distribution

function with marginal distribution functions Fi (wi), then there exists a copula C(x)

such that H (w) = C (F1 (w1) , ..., Fn (wn)). Conversely, if Fi (wi) for i = 1, ..., n

are univariate distribution functions and C (x) is a copula, then the composition

H (w) = C (F1 (w1) , ..., Fn (wn)) is a multivariate distribution function with marginal

distribution functions Fi (wi).

Consider a population of consumers whose size is normalized to 1, and assume for

simplicity that the joint distribution of w in the population is symmetric, and also

that the marginal distribution function for each variety can be inverted to obtain a

strictly-increasing continuous function wi = w (xi). Then, by construction, xi is dis-

2A copula C (x) is an n-increasing function, defined for all x ≡ (x1, ..., xn) ∈ [0, 1]
n
, satisfying

C(x, 1, ...1) = .... = C (1, ...1, x) = x

and
C(x1, ...xn−1, 0) = ... = C(0, x2, ...xn) = 0.

See Nelsen (2006).
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tributed uniformly on the unit interval I ≡ [0, 1]. Conversely, by Sklar’s Theorem, the

symmetric joint distribution of consumer values for the n varieties is fully described

by a continuous strictly-increasing valuation function w (xi) and a symmetric copula

C (x). A consumer’s type can be thought of as a point in the unit cube, x ∈ In, with

the copula describing the population of types. Finally, assume for further simplicity

that w (xi) and C (x) are twice differentiable functions.

The copula approach to representing consumer preferences models the strength and

dispersion of consumer tastes for individual varieties separately from the correlation

of tastes for different varieties. Under the simplifying symmetry, monotonicity, and

smoothness assumptions, the inverse of the valuation function defines the marginal

distributions of consumer values, while the copula contains all of the information

about the correlation of values. The approach enables a general treatment of how

correlation (or dependence) matters, based on the properties of the symmetric copula,

while still maintaining a tractable analysis, and without unduly restricting the smooth

symmetric distribution functions under consideration.

The advantage of the copula representation of consumer preferences over the stan-

dard approach is to separate cleanly the dependence properties of the joint distri-

bution of values from the properties of the marginal distributions. This enables

us to investigate how the correlation of consumer values matters for market out-

comes for a wider class of joint distributions, since different marginal distributions

generate different joint distributions for a given copula. As noted above, the cop-

ula determines the statistical dependence of consumer values for the varieties. In

particular, C (x) = Πi=1,...,nxi is the independence copula, and C (x) is positively

(negatively) orthant dependent if C (x) > (<) Πi=1,...,nxi for all x ∈ (0, 1)
n. Further-

more, C1 (x) ≡ ∂C (x) /∂x1 is the conditional distribution of (x2, ..., xn) given x1, and

C11 (x) ≡ ∂2C (x) /∂x21 < (>) 0 for all x ∈ (0, 1)n indicates positive (negative) sto-

chastic dependence.3 Because marginal distribution functions are monotonic, these

properties of the copula translate directly into corresponding dependence properties

of the joint distribution of consumer values. For example, positive orthant depen-

dence means that the probability that a randomly drawn consumer’s values for all

varieties are high (or low) is greater than if the values were independent, and posi-

3By symmetry, these stochastic dependence properties can also be defined using Ck (·) and Ckk (·)
for k = 2, ..., n.
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tive stochastic dependence means that a high realization of w1 shifts the conditional

distribution of (w2, ..., wn) according to first-order stochastic dominance. In what fol-

lows, we shall say simply that consumer values are positively dependent or negatively

dependent when both the appropriate orthant and stochastic dependence conditions

are satisfied.

It is convenient for our purposes to consider an arbitrary family of copulas indexed

by a parameter θ. The copula family is ordered by increasing orthant dependence if

a higher θ indicates greater orthant dependence, i.e. Cθ (x) ≡ ∂C (x;θ) /∂θ > 0 for

interior x. Similarly, the copula family is ordered by increasing stochastic dependence

if C11θ (x;θ) ≡ ∂C11 (x;θ) /∂θ < 0 for interior x. Roughly speaking, greater orthant

dependence means that there is a lower probability that consumers have low values

for some products and high values for the others, while greater stochastic dependence

means that a higher value for one variety makes low values for the others more

likely. We will refer to the orthant dependence and stochastic orders collectively

as increasing dependence.4

We use the properties of the valuation function and the copula to measure con-

sumer preferences along three dimensions: preference strength, preference diversity,

and preference dependence. Preference strength refers to how much consumers on av-

erage value each variety, while preference diversity refers to the heterogeneity of those

values. The mean and variance of consumer values for each variety are, respectively,

µ ≡
∫ 1
0
w (x) dx and σ2 ≡

∫ 1
0
[w (x)− µ]2 dx. We interpret µ to measure preference

strength and σ to measure preference diversity. Both are properties of the marginal

distribution, and σ has been considered an indicator of the degree of product differ-

entiation under the assumption that consumer values are independent (Perloff and

Salop, 1985). Preference dependence refers to the correlation of consumer values for

different varieties, and is measured by a parameter θ, indexing an ordered family of

copulas. A higher value of θ indicates that the values for different varieties are more

positively dependent or less negatively dependent. We argue below that θ can be

interpreted as a distinct indicator of product differentiation.

Given the copula representation of preferences, it is straightforward to derive con-

4If n = 2, then C11θ (x) < 0 implies Cθ (x) > 0 (Nelsen, 2006). Nelsen (2006) discusses various
copula families and their dependence properties for the case of n = 2; see also Joe (1997) for related
discussions.
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sumer demand. Denote the price for good 1 by p, and the prices for the rest of the

n − 1 goods by ri. It is convenient to normalize the consumer values and the prices

by defining

ui ≡
wi − µ

σ
; µ̄ ≡

µ

σ
; p̄ ≡

p− µ

σ
; r̄i ≡

ri − µ

σ
.

Moreover, denoting the marginal distribution of ui =
w(xi)−µ

σ
by F (ui), by the Sklar’s

Theorem, the joint distribution of normalized values is C (F (u1) , ..., F (un)). A type

x consumer will purchase good 1 under the following condtions:

x1 ≥ F (p̄) ;

F (u (x1)− p̄+ r̄i) ≥ xi, i = 2, ..., n.

Therefore, defining u (xi) ≡ F
−1 (xi), the demand for good 1 is

Q (p̄, r̄2, ..., r̄n) =

∫ 1

F (p̄)

C1 (x1, F (u (x)− p̄+ r̄2) , ..., F (u (x1)− p̄+ r̄n)) dx1. (1)

The demand for other goods is derived similarly. It follows that any two goods are

always substitutes because, for j = 2, ..., n,

∂Q (p̄, r̄2, ..., r̄n)

∂r̄j

=

1∫

F (p̄)

C1j (x, F (u (x)− p̄+ r̄2) , ..., F (u (x)− p̄+ r̄j)) f (u (x)− p̄+ r̄j) dx > 0,

where f (ui) is the density function. If only a single good is offered, then its demand

is simply Q(p̄) = 1− F (p̄).

We conclude this section by introducing the Farlie-Gumble-Morgenstern (FGM)

copula family. Its general form for n ≥ 3 is given in Nelsen (2006). When n = 2, it

becomes

C (x1, x2) = x1x2 + θx1x2(1− x1)(1− x2).

Our results in the next two sections can be illustrated with examples that combine an
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FGM copula for n = 2 with the exponential marginal distribution F (ui) = 1−e
−ui−1.

We shall refer to this as the FGM-exponential case. More details of these illustrative

examples are contained in Chen and Riordan (2011).

III. IMPACT OF DEPENDENCE ON PRICE AND PROFIT

In this section, we consider how preference dependence affects price and profit.

We maintain three additional simplifying assumptions for this and the next section.

First, the average cost of production for each variety is constant, and without loss of

generality normalized to zero. An appropriate interpretation of the normalization is

that consumers reimburse the firm for the cost of producing the product in addition

to paying a markup p. Consequently, µ can be interpreted as mean value minus

constant average variable cost, and thus can be either positive or negative. Second,

at least some consumers have positive values so that there are gains from trade, i.e.

w (1) > 0. Third, equilibrium prices exist uniquely and are interior under all market

structures, and they are symmetric under multiproduct monopoly or oligopoly when

n ≥ 2.5

As a benchmark, we first note that the single-product monopoly (gross) profit

function is πm(p̄) = σ(p̄ + µ̄) [1− F (p̄)] . The profit-maximizing normalized price

(p̄m) satisfies the first-order condition

(p̄m + µ̄)λ (p̄m) = 1 (2)

and the second-order condition

(p̄m + µ̄)λ′ (p̄m) + λ (p̄m) > 0

at an interior solution, where λ (u) ≡ f(u)
1−F (u)

is the hazard rate determining the

elasticity of demand. A standard regularity condition, for which an increasing hazard

rate (λ′(u) ≥ 0) is sufficient but not necessary, guarantees a unique interior maximum:

5For convenience, we refer to optimal prices under monopoly as equilibrium prices. An interior
price satisfies p ∈ (w(0), w(1)), so the market is neither shut down nor fully covered. Consequently,
profit functions are differentiable at equilibrium prices. Given the symmetry of C (·) , the symmetric
price assumption is quite natural; it is satisfied, for example, in our FGM-uniform case.
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d [(u+ µ̄)λ (u)] /du > 0.

Next, we consider a price-setting multiproduct monopoly producing n ≥ 2 sym-

metric varieties of the good. Its profit function for a symmetric price is

πmm (p) = σ(p+ µ) [1− C (F (p), ...F (p); θ)] . (3)

The profit-maximizing normalized price p̄mm satisfies

(p̄mm + µ̄)λC(p̄mm; θ) = 1 (4)

and

(p̄mm + µ̄)
dλC(p̄mm; θ)

du
+ λC(p̄mm; θ) > 0 (5)

where

λC(u; θ) ≡
nC1(F (u) , ..., F (u) ; θ)

1− C(F (u) , ..., F (u) ; θ)
f (u) (6)

is the hazard rate corresponding to the cumulative distribution function FC(u) ≡

C(F (u) , ..., F (u) ; θ) on support [u (0) , u (1)]. It is exactily as if the monopolist

is selling to consumers a choice of varieties. An appropriate regularity condition,

satisfied for example in our FGM-exponential case, plays the same role as for single-

product monopoly:
d (u+ µ̄)λC(u; θ)

du
> 0.

A useful property of a copula family ordered by increasing orthant dependence is

that the conditional copula C1 (x, ..., x; θ) increases (decreases) in θ when x is small

(large). This implies that greater positive dependence shifts up the hazard rate for

the multiproduct monopolist when market coverage is high enough

Lemma 1 Given increasing orthant dependence, there exists some u∗ ∈ (u(0), u (1)]

such that ∂λ
C(p̄;θ)
∂θ

> 0 if p̄ ≤ u∗.

Furthermore, it is straightforward that the market is fully covered, or nearly so,

if demand is sufficiently great.6 This consideration leads to the conclusion that

6Let µ̄o = 1
f(u(0))− u(0). Then the market is fully covered for µ̄ ≥ µ̄o and almost fully covered

for µ̄ = µ̄o − ε and ε a small positive number. Our maintained interiority assumption implicitly
assumes µ̄ < µ̄o.
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prices under multiproduct monopoly decrease with preference dependence if prefer-

ence strength is high. The profit of the multiproduct monopolist, πmm ≡ πmm (p̄mm),

however, always decreases with greater dependence, whether or not price increases,

because of the resulting downward shift in demand. Formally:

Proposition 1 Given increasing orthant dependence : (i) there exists µ̄∗ such that

pmm > u (0) when µ̄ = µ̄∗ and dpmm

dθ
< 0 if µ̄ ≥ µ̄∗; and (ii) dπmm

dθ
< 0.

Therefore, a multiproduct monopolist would prefer that consumer values for its

n products are less positively (more negatively) dependent. This is intuitive, since

the more similar are product varieties the less valuable is choice. Thus a higher θ

reduces quantity at any given price and hence reduces equilibrium profit, while the

effect of θ on equilibrium price is more subtle. The lower quantity under a higher

θ motivates the firm to lower price, but the slope of the demand curve also changes

with θ, possibly having an opposing effect on price. Both effects work in the same

direction if demand is sufficiently strong. It is possible, however, that pmm increases

with θ if demand is sufficiently weak. For example, in the FGM-exponential case,

numerical analysis shows that pmm increases in θ if µ̄ is below a critical value.

Now suppose that the n products are sold by n symmetric single-product oligopoly

firms. Given that all other firms charge price r, the profit function of Firm 1 is

πn (p, r) = σ(p+ µ)Q (p, r..., r̄) .

From (1),

∣∣∣∣
∂Q

∂p̄ p̄=r̄

= −C1 (F (p̄) , ..., F (p̄)) f (p̄) +

∫ 1

F (p̄)

(n− 1)C12 (x, ..., x) f (u (x)) dx.

In equilibrium, p = r = pn, satisfying

(p̄n + µ̄)h(p̄n; θ) = 1, (7)

where we define the adjusted hazard rate for oligopoly competition

h(u; θ) ≡ λC (u; θ) + n (n− 1)

∫ 1
F (u)

C12 (x, ..., x; θ) f (u (x)) dx

1− C (F (u) , ..., F (u) ; θ)
, (8)
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which is equal to the hazard rate under multiproduct monopoly plus an extra term.

The extra term is the diversion ratio used in contemporary merger analysis (Shapiro

1996, Farrell and Shapiro, 2010), that is, the percentage demand increase from a price

cut resulting from customers who change allegiance. A modified regularity condition,

once again satisfied in the FGM-exponential case, guarantees a unique symmetric

equilibrium:
d (u+ µ̄)h(u; θ)

du
> 0. (9)

Assuming the regularity condition for multiproduct monopoly holds, the regularity

condition for symmetric oligopoly additionally requires that the diversion ratio does

not fall too quickly as price rises. Each firm’s equilibrium profit is

πn ≡ σπ̄n =
1

n
σ (p̄n + µ) [1− C (F (p̄n) , ..., F (p̄n) ; θ)] . (10)

It is intuitive to expect that oligopoly competition intensifies with more preference

dependence, as more consumers regard any two varieties to be close substitutes. In

general, however, the effect of preference dependence on prices and profits is am-

biguous. As under multiproduct monopoly, the regularity condition is not enough

to ensure that prices monotonically decrease with θ. For while a higher θ shifts de-

mand downward, motivating a lower price (market share effect), it also may affect the

slope of the residual demand curve, potentially providing an incentive to raise price

(price sensitivity effect). Under oligopoly, a unilateral marginal reduction in price

impacts a firm’s residual demand on both an extensive margin (market expansion)

and the intensive margin (business stealing). The ambiguity of the price sensitivity

effect on the extensive margin explains why more substitutability between goods (e.g.

C12θ (x, ...x; θ) ≥ 0) may not be sufficient to conclude that p
n decreases with θ.

We next identify sufficient conditions under which pn and πn do decrease with θ.

The lemma below provides technical conditions that are sufficient for ∂h(p̄;θ)
∂θ

> 0

Lemma 2 Given increasing dependence, h(p̄; θ) decreases in θ if

h(u; θ) +
f ′(u)

f(u)
≥ 0 (11)
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and
d2 ln f (u)

du2
≥

nf2 (u (x))

Cθ (x, ..., x; θ)
C11θ(x, ..., x; θ). (12)

Using the technical lemma, the next proposition identifies sufficient conditions on

the copula and marginal distribution under which price and profits under symmetric

oligopoly decrease in the degree of preference dependence: dp
n

dθ
< 0 and dπn

dθ
< 0. Part

(i) invokes positive stochastic dependence and limited log-curvature of the marginal

density (e.g. when f is approximately uniform or exponential). Part (ii) invokes

stronger log-curvature restrictions on the marginal density (e.g. when f is approxi-

mately uniform) without imposing restrictions on the copula.

Proposition 2 If regularity condition (9) holds at pn, then, given increasing depen-

dence, pn and πn decrease in θ if either of the following conditions hold: (i) C11 < 0

and
∣∣∣d

2 ln f(u)
du2

∣∣∣ is sufficiently small; or (ii) d ln f(u)du
and d2 ln f(u)

du2
both are not too negative.

Propositions 1 and 2 suggest that preference dependence is a useful measure of

product differentiation, disentangled from preference diversity. In fact, profits actually

increase in preference diversity σ when µ is relatively small (Johnson and Myatt, 2006;

Chen and Riordan, 2011), whereas profits always monotonically decrease in θ under

multiproduct monopoly, and profits also monotonically decrease in θ under oligopoly

for all µ when f is approximately uniform or when f is approximately exponential

and C is positively dependent.

Thus the effects of preference dependence (θ) on prices and profits offer a new way

to think about product differentiation. Both σ and θ can be interpreted as indica-

tors of the degree of product differentiation: higher σ indicates more heterogeneity of

consumer values for each product, while higher θ indicates greater similarity of these

values between products for a randomly chosen consumer. They have rather differ-

ent economic meanings and the copula approach to modeling consumer preferences

disentangles their effects in a general way. Proposition 2 loosely suggests that two

competing single-product firms have a mutual incentive to coordinate the design or

promotion of their products so that consumer values are less positively dependent or

more negatively dependent.
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IV. MARKET STRUCTURE AND PRICE

The copula approach also enables us to derive new results on how prices differ across

market structures, relating them to properties of the marginal distributions and the

dependence relationship. This provides new insights on how market structure affects

firm conduct. Specifically, we compare pm, pn, and pmm, motivated by the scenarios

in Section 1.

We start with comparing the equilibrium oligopoly price with the single-product

monopoly price. While Chen and Riordan (2008) find sufficient conditions for pm T
pn when n = 2 and the marginal distribution is exponential (i.e. λ′ (·) = 0), it has

been an open question how the prices compare for arbitrary marginal distributions

and for any n ≥ 2. We can now answer with the following result:

Proposition 3 If C11 < 0 (positive dependence) and λ
′(p) ≥ 0, then pm > pn; and if

C11 > 0 (negative dependence) and λ
′(p) ≤ 0, then pm < pn.

Thus positive dependence and a non-decreasing hazard rate for the marginal distribu-

tion ensures that competition from other products lowers prices; conversely, negative

dependence and a non-increasing hazard rate ensures that oligopoly competition raises

price.7

This result can be understood as follows. An oligopolist sells less output at the

monopoly price, pm, and thus a slight price reduction at pm is less costly to the

oligopolist since it applies to a smaller output. This "market share effect" is a stan-

dard reason why one expects more competition to lower price. However, as Chen and

Riordan (2008) discuss in the context of a duopoly, there is a potentially offsetting

"price sensitivity effect" when products are differentiated. Since an oligopolist sells

on a different margin from a monopolist, the slope of an oligopolist’s (residual) de-

mand curve differs from the slope of the single-product monopolist’s demand curve.

Furthermore, greater negative dependence makes it more difficult for the oligopolist

to win over marginal consumers who value its own product less but its rival’s product

more. Similarly, a non-increasing hazard rate tends to put less consumer density

7Chen and Riordan (2007) and Perloff, Suslow, and Sequin (1995) present more specific models
of product differentiation in which entry can result in higher prices.
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on the oligopolist’s intensive margin, further reducing price sensitivity.8 Together,

negative dependence and a non-increasing hazard rate are sufficient for the price sen-

sitivity effect to dominate the market share effect, resulting in a higher price under

oligopoly competition.9

Although preference dependence and the number of firms are different economic

concepts, our analysis suggests a common theme between their effects on equilibrium

prices. Both greater preference dependence and more firms represent increased com-

petition. Each has a market share effect–lower output– that favors lower prices,

but each may also have a price sensitivity effect–potentially steepening the residual

demand curve–that favors higher prices. Propositions 2 and 3 give the respective

sufficient conditions for the net effect to lower prices.

Next, we compare the prices for the multiproduct monopoly with those under

single-product monopoly and symmetric oligopoly.

Proposition 4 If either C11 (x, ..., x) ≥ 0 for all x ∈ (0, 1) or C11 (x, ..., x) ≤ 0 for

all x ∈ (0, 1), then pmm > pn and pmm > pm .

As one might expect, pmm > pn, or prices for n substitutes are higher under

monopoly than under competition, extending the result for n = 2 in Chen and Rior-

dan (2008). The familiar intuition is that a multiproduct monopolist internalizes the

negative effects of reducing one product’s price on profits from the other products.

The comparison of prices under multiproduct monopoly (pmm) and single-product

monopoly (pm) is more subtle. The multiproduct monopolist has higher total output

at pm than the single-product monopolist, which motivates it to raise its symmet-

ric price above pm. But, as with the oligopoly comparison, the marginal consumers

of the multiproduct monopolist differ from those of the single-product monopolist,

which can potentially make the slope of the multiproduct monopolist’s demand curve

steeper than that of the single-product monopolist. Interestingly, the market share

8When n = 2, the argument in the proof of Proposition 3 can be adapted to show more formally
that, with λ′ (·) ≤ 0, the (residual) demand curve of a duopolist is indeed steeper than that of
the monopolist if C (·, ·) is negatively dependent, independent, or has sufficiently limited positive
dependence.

9Note that due to more varieties under oligopoly, a higher price under oligopoly does not imply
that consumer welfare is lower under oligopoly competition than under single-product monopoly.
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effect unambiguously dominates, provided that C (x, ...x) exhibits uniform positive

or negative stochastic dependence.

Under general preference distributions, Propositions 3 and 4 largely settle the issue

of how prices in symmetric multiproduct industries compare to the single-product

monopoly price.

V. CONCLUSION

Using copulas to describe the distribution of consumer preferences is a convenient

and intuitive approach to discrete choice demand. The approach enables us to

identify preference dependence as a distinct indicator of product differentiation in

multiproduct industries, disentangled from the effects of preference diversity, in the

sense that greater correlation of consumer values for alternative products leads to

lower prices and profits under certain conditions. The approach also leads to new

results in price theory. The entry of symmetric differentiated competitors into an

initial single-product monopoly lowers (raises) price if preferences are positively (neg-

atively) dependent and the hazard rate of the marginal distribution is non-decreasing

(non-increasing). Moreover, under a uniform dependence condition, price rises when

a single-product monopolist adds symmetric differentiated varieties to its product

line.

There are several directions for further research for which the copula approach is

likely to be useful. One is to examine further the effects of entry into differentiated

product markets. Whereas we have found that entry into an intitial monopoly raises

or lowers price depending on preference dependence and the hazard rate, it is impor-

tant additionally to determine the conditions under which the symmetric oligopoly

price is decreasing or increasing in the number of firms. Similarly, it is important to

understand the conditions under which a product line expansion by a multiproduct

monopolist results in higher or lower prices. Also, relaxing symmetry is important,

even though this is likely to challenge tractability. For example, a symmetric model

seems inappropriate for understanding conditions under which generic entry results

in higher or lower branded drug prices (Perloff, Suslow, and Seguin, 1995).

The copula representation of consumer preferences may be valuable for studying

other applied microeconomics topics. Chen and Riordan (2013) applies the copula
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approach to study the profitability of product bundling, and further applications

might shed more light on the positive and normative economics of bundling. Chen

and Pearcy (2010) uses a specific class of copulas to model intertemporal dependence

of consumer values. Other promising topic areas include the economics of search

(e.g., Anderson and Renault 1999; Schultz and Stahl 1996; Bar Isaac, Caruana, and

Cunat 2010), and the endogenous determination of market structure (e.g., Shaked and

Sutton, 1990). Furthermore, the copula approach to discrete choice demand, and its

potentially rich set of predictions about market structure, conduct, and performance,

might open interesting new directions for empirical industrial organization research.10
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APPENDIX: PROOFS

The appendix contains proofs for Lemma 1, Proposition 1, Lemma 2, Propositions

2, 3, and 4.

Proof of Lemma 1. Given increasing orthant dependence,

C (F (p̄), ..., F (p̄); θ) = n

∫ F (p̄)

0

C1 (x, ..., x; θ) dx

increases in θ for any p̄ > F−1 (0) , which is possible only if C1θ (x, ..., x; θ) > 0 for all

θ when x is close to zero. Similarly, C1θ (x, ..., x; θ) < 0 for all θ if x is sufficiently
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close to 1. Thus there must exist x′ > 0 such that, for all θ, C1θ (x
′, ..., x′; θ) = 0 and

C1θ (x, ..., x; θ) > 0 if x < x
′.11 Since

∂λC (p̄; θ)

∂θ

= n

[
C1θ (F (p̄) , ..., F (p̄) ; θ)

1− C (F (p̄) , ..., F (p̄) ; θ)
+
C1 (F (p̄) , ..., F (p̄) ; θ)Cθ (F (p̄) , ..., F (p̄) ; θ)

[1− C (F (p̄) , ..., F (p̄) ; θ)]2

]
f (p̄) ,

there exists some u∗ ∈ [F−1 (x′) , u (1)] such that ∂λC (p̄; θ) /∂θ > 0 for all θ if p̄ ≤ u∗

Proof of Proposition 1. (i) From (4), for any θ, let µ̄∗ be such that [u∗ + µ̄∗]λC (u∗; θ) =

1, where u∗ ≥ F−1 (x′1) > u (0) is defined in Lemma 1. Then, p̄mm = u∗ > u (0) if

µ̄ = µ̄∗. If µ̄ ≥ µ̄∗, then p̄mm ≤ u∗ and Lemma 1 implies ∂λC(p̄mm;θ)
∂θ

> 0. It follows

from (4) and (5) that dp̄mm

dθ
< 0 and hence dpmm

dθ
< 0. (ii) holds from application of

the envelope theorem to (3) and Cθ > 0.

Proof of Lemma 2. Notice that (suppressing the argument θ to simplify notation),

dC1 (x, ..., x)

dx
= C11 (x, ..., x) + (n− 1)C12 (x, ..., x) ,

or

(n− 1)C12 (x, ..., x) =
dC1 (x, ..., x)

dx
− C11 (x, ..., x) .

Thus,

h (p̄) = λC (p̄) + n (n− 1)

∫ 1
F (p̄)

C12 (x, ..., x) f (u (x)) dx

1− C (F (p̄) , ...F (p̄))

=
nC1 (F (p̄) , ....F (p̄)) f (p̄)

1− C (F (p̄) , ..., F (p̄))
+ n

∫ 1
F (p̄)

[
dC1(x,...,x)

dx
− C11 (x, ..., x)

]
f (u (x)) dx

1− C (F (p̄) , ..., F (p̄))

=
nC1 (F (p̄) , ..., F (p̄)) f (p̄)

1− C (F (p̄) , ..., F (p̄))
+n

∫ 1
F (p̄)

dC1(x,...,x)
dx

f (u (x)) dx−
∫ 1
F (p̄)

C11(x, ..., x)f (u (x)) dx

1− C (F (p̄) , ..., F (p̄))
.

11Similarly, there exists x′′ ≥ x′ such that C1θ (x, ..., x; θ) < 0 if x > x
′. For the FGM family with

n = 2, x′′ = x′ = 1/2.
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Since

∫ 1

F (p̄)

dC1 (x, ..., x)

dx
f (u (x)) dx

= f (u (1))− C1 (F (p̄) , ..., F (p̄)) f (p̄)−

∫ 1

F (p̄)

C1 (x, ..., x)
f ′ (u (x))

f (u (x))
dx,

we have

h (p̄) = n
f (u (1))−

∫ 1
F (p̄)

C1 (x, ..., x)
f ′(u(x))
f(u(x))

dx−
∫ 1
F (p̄)

C11(x, ..., x)f (u (x)) dx

1− C (F (p̄) , ...F (p̄))

= n
f (u (1)) +

∫ 1
F (p̄)

f ′(u(x))
f(u(x))

1
n

d[1−C(x,...,x)]
dx

−
∫ 1
F (p̄)

C11(x, ..., x)f (u (x)) dx

1− C (F (p̄) , ..., F (p̄))

= −
f ′ (p̄)

f (p̄)
+n
f (u (1))− 1

n

∫ 1
F (p̄)

[1− C (x, ..., x)]
d
f ′(u(x))
f(u(x))

dx
−
∫ 1
F (p̄)

C11(x, ..., x)f (u (x)) dx

1− C (F (p̄) , ..., F (p̄))
.

Therefore, if (11) holds, then

∂h (p̄)

∂θ
=

1∫

F (p̄)

[
Cθ(x,...x)
f(u(x))

d2 ln f(u)
du2

− nC11θ(x, ..., x)f (u (x))
]
dx+

[
h (p̄) + f ′(p̄)

f(p̄)

]
Cθ (F (p̄) , ...F (p̄))

1− C (F (p̄) , ..., F (p̄))
> 0

because Cθ > 0 and C11θ < 0 by increasing orthant dependence and increasing sto-

chastic dependence respectively.

Proof of Proposition 2. First, observe that dp
n

dθ
has the same sign as dp̄

n

dθ
. Second,

observe that πn decreases in θ when dp̄n

dθ
< 0 because

dπn

dθ
=

∂πn

∂θ
+
∂πn

∂p̄n
dp̄n

dθ

= −
1

n
(p̄nσ + µ)Cθ

(
F
(
p̄d
)
, ..., F

(
p̄d
)
; θ
)
+
∂πn

∂p̄n
dp̄n

dθ
< 0,

where Cθ
(
F
(
p̄d
)
, ..., F

(
p̄d
)
; θ
)
> 0 from increasing orthant dependence, and ∂πn

∂p̄n
> 0

by the envelope theorem and by the fact that a firm’s demand increases in the other

firm’s price. Given these observations we focus on sufficient conditions for dp̄d

dθ
< 0.
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Since ∂h(p̄;θ)
∂θ

> 0 and the regularity condition imply dp̄

dθ
< 0, it is sufficient to verify

the conditions for Lemma 2.

(i) If d
2 ln f(u)
du2

→ 0 and C11(x...x; θ) < 0, then

h (p̄) +
f ′ (p̄)

f (p̄)
→ n

f (u (1))−

1∫

F (p)

C11(x, ..., x; θ)f (u (x)) dx

1− C (F (p̄) , ..., F (p̄) ; θ)
> 0

and d2 ln f(u)
du2

> 2f2(u(x))
Cθ(x,...x)

C11θ(x, ..., x; θ) since C11θ(x, ...x; θ) < 0, thus satisfying Lemma

2.

(ii) If d ln f(u)
du

and d2 ln f(u)
du2

both are not too negative, then h (u) + f ′(u)
f(u)

≥ 0 and
d2 ln f(u)
du2

> 2f2(u(x))
Cθ(x,...,x)

C11θ(x, ..., x) by increasing stochastic dependence, thus satisfying

Lemma 2.

Proof of Proposition 3. It suffices to show that (i) h (p̄) > λ (p̄) if C11 < 0 and

λ′ (p̄) ≥ 0; and (ii) h (p̄) < λ (p̄) if C11 > 0 and λ
′ (p̄) ≤ 0.

(i) Suppose that λ′ (p̄) ≥ 0. Then, since

dC1 (x1, ..., x1)

dx1
− C11 (x1, ..., x1) = (n− 1)C12 (x1, ..., x1) > 0,

h (p̄) =
nC1 (F (p̄) , ..., F (p̄)) f (p̄)

1− C (F (p̄) , ..., F (p̄))
+ n

∫ 1
F (p̄)

(1− x) (n− 1)C12 (x, ..., x)
f(u(x))

1−F (u(x))
dx

1− C (F (p̄) , ..., F (p̄))

=
nC1 (F (p̄) , ..., F (p̄)) f (p̄)

1− C (F (p̄) , ..., F (p̄))
+ n

∫ 1
F (p̄)

(1− x)
[
dC1(x,...,x)

dx
− C11 (x, ..., x)

]
f(u(x))

1−F (u(x))
dx

1− C (F (p̄) , ..., F (p̄))

≥
nC1 (F (p̄) , ..., F (p̄)) f (p̄)

1− C (F (p̄) , ..., F (p̄))
+ n

f (p̄)

1− F (p̄)

∫ 1
F (p̄)

(1− x)
[
dC1(x,...,x)

dx1
− C11 (x, ..., x)

]
dx

1− C (F (p̄) , ..., F (p̄))
.

Substituting

∫ 1

F (p̄)

(1− x)

[
dC1 (x, ..., x)

dx
− C11 (x, ..., x)

]
dx

= |(1− x)C1 (x, ..., x)
1
F (p̄) +

∫ 1

F (p̄)

C1 (x, ..., x) dx−

∫ 1

F (p̄)

(1− x)C11 (x, ..., x) dx
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= − (1− F (p̄))C1 (F (p̄) , ..., F (p̄))+
1

n
(1− C (F (p̄) , ..., F (p̄)))−

∫ 1

F (p̄)

(1− x)C11 (x, ..., x) dx,

and simplifying, we obtain

h (p̄) ≥ λ (p̄)

[

1− n
f (p̄)

1− F (p̄)

∫ 1
F (p̄)

(1− x)C11 (x, ..., x) dx

1− C (F (p̄) , ..., F (p̄))

]

.

Hence h (p̄) > λ (p̄) if in addition C11 < 0.

(ii) Suppose that λ′ ≤ 0. By analogous derivations, we have

h (p̄) < λ (p̄)

[

1− n
f (p̄)

1− F (p̄)

∫ 1
F (p̄)

(1− x)C11 (x, ..., x) dx

1− C (F (p̄) , ..., F (p̄))

]

.

Hence h (p̄) < λ (p̄) if in addition C11 (x, ..., x) > 0.

Proof of Proposition 4. (i) Since h (p̄) > λC (p̄) from (8), comparing (4) and (7)

leads to p̄n < p̄mm.

(ii) It suffices to show that λC (p̄) < λ (p̄) for all p̄ ∈ (u (0) , u (1)) if C11 (x, ..., x) ≤

0, C11 (x, ..., x) = 0, or C11 (x, ...x) ≥ 0 for all x ∈ (0, 1) .

First,

λC(p̄)

λ (p̄)
=

nC1(F (p̄),...,F (p̄))
1−C(F (p̄),...,F (p̄))

f (p̄)

f(p̄)
1−F (p̄)

=
nC1(F (p̄) , ..., F (p̄))

1− C(F (p̄) , ..., F (p̄))
[1− F (p̄)] .

If C11 ≥ 0 or if C11 = 0, then, since

∫ 1

F (p̄)

(1− x) dC1 (x, ..., x) = − (1− F (p̄))C1 (F (p̄) , ..., F (p̄))+
1

n
[1− C (F (p̄) , ..., F (p̄))]

20



and C1k (x, ..., x) = C12 (x, ..., x) > 0 for x ∈ (0, 1) and for all k 6= 1,

λC(p̄)

λ (p̄)
=

[1− C (F (p̄) , ..., F (p̄))]− n
∫ 1
F (p̄)

(1− x) dC1 (x, ..., x)

1− C(F (p̄) , ..., F (p̄))

=
[1− C (F (p̄) , ..., F (p̄))]− n

∫ 1
F (p̄)

(1− x) [C11 (x, ..., x) + (n− 1)C12 (x, ..., x)] dx

1− C(F (p̄) , ..., F (p̄))

= 1− n

∫ 1
F (p̄)

(1− x) [C11 (x, ..., x) + (n− 1)C12 (x, ..., x)] dx

1− C(F (p̄) , ..., F (p̄))
< 1.

Next, suppose C11 (x, ..., x) ≤ 0 for all x ∈ (0, 1) , so that there is positive stochastic

dependence. Then, C1 (x, ..., x) ≤
C(x,...,x)

x
for all x ∈ (0, 1) since

C (x, ..., x) =

x∫

0

C1 (t, x, ..., x) dt ≥

x∫

0

C1 (x, ..., x) dt = C1 (x, ..., x) x.

Hence, letting x = F (p̄) ,

λC (u (x))

λ (u (x))
=
n (1− x)C1 (x, ..., x)

1− C (x, ..., x)
≤
n (1− x)C (x, ..., x)

x [1− C (x, ..., x)]
.

Now, suppose to the contrary thatλ
C(u(x))
λ(u(x))

= n(1−x)C1(x,...,x)
1−C(x,...,x)

≥ 1. Then n(1−x)C(x,...,x)
x[1−C(x,...,x)]

≥

1. We will show that this leads to a contradiction. First, notice that

lim
x→1

n (1− x)C (x, ..., x)

x [1− C (x, ..., x)]
= n lim

x→1

−C (x, ..., x) + (1− x)nC1 (x, ..., x)

1− C (x, ..., x)− nxC1 (x, ..., x)
= 1.

Next, letting x = (x, ...x) to simplify notation, we have

d
[
(1−x)C(x,...,x)
x[1−C(x,...,x)]

]

dx

=
[−C (x) + n (1− x)C1 (x)] {x [1− C (x)]} − (1− x)C (x) [1− C (x)− nxC1 (x)]

{x [1− C (x)]}2

=
n (1− x)C1 (x) x [1− C (x)]− C (x) [1− C (x)] + (1− x)C (x)nxC1 (x)

{x [1− C (x)]}2
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=
n (1− x)C1 (x) x− C (x) [1− C (x)]

{x [1− C (x)]}2
≥
[1− C (x)]x− C (x) [1− C (x)]

{x [1− C (x)]}2

=
[1− C (x)] [x− C (x)]

{x [1− C (x)]}2
> 0 for x ∈ (0, 1) ,

where the first inequality is due to n(1−x)C1(x,...,x)
1−C(x,...,x)

≥ 1 by assumption, and the second

inequality holds because x > C (x) . It follows that, for any interior x,

n [1− x]C (x, ...x)

x [1− C (x, ...x)]
< 1,

which is a contradiction. Therefore n[1−x]C1(x,...,x)
1−C(x,...,x)

< 1 for any x ∈ (0, 1) , or λ
C(p̄)
λ(p̄)

< 1

for any p̄ ∈ (u (0) , u (1)) .
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