
Munich Personal RePEc Archive

Return on Universal Education: SSA

Case Study on Bihar

Dinda, Soumyananda

Department of Economics, The University of Burdwan, Department

of Economics, Sidho-Kanho-Birsha University

25 January 2015

Online at https://mpra.ub.uni-muenchen.de/64831/

MPRA Paper No. 64831, posted 07 Jun 2015 04:16 UTC



Return on Universal Education: SSA Case Study on Bihar 
 

 

Soumyananda Dinda 

 

Department of Economics, University of Burdwan, West Bengal, India  

 

Email: sdinda2000@yahoo.co.in  

 

Abstract 

Mass universal education is a necessary condition for initiation of economic development in 

underdeveloped and backward state like Bihar in India. The Govt. of India has taken initiative for 

universal mass education and prime focus is on Sarbha Shikhsha Abhijan (SSA). This study attempts 

to assess the impact of universal education programme such as SSA in Bihar. The difference –in- 

difference (DD) approach is used here to measure the impact of SSA treatment on unorganised sector 

in Bihar. This study finds that literate people earn Rs. 43 higher than that of illiterate, and SSA is 

giving additional return nearly more than Rs. 600 Crore per annum only from small and tiny 

enterprise in urban Bihar.  

 

Key Words: DD, Difference –in-Difference, Control group, Treatment, SSA, Universal Mass 
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1. Introduction 

Education is the cornerstone of economic growth and social development. Schooling is 

desirable for individual as well as for society. At macro level, a better-educated workforce 

enhances a nation’s stock of human capital that is crucial for raising productivity and 

economic development (Barro, 1996; Romer, 1986; Lucas, 1988; Ravallion and Chen, 1997).  

One of the crucial problems of economic development is the problem of accounting for 

income pattern and related other social issues; one of them is the educational externality 

(Lucas 1988). There are different opinions regarding the presence of external effect of human 

capital. However, it is difficult to capture the externality of human capital. In Lucas (1988), 

human capital is found to have positive external effect on aggregate production function. In 

the presence of external effect, the social and private return to human capital differs. There 

exists a substantial empirical literature relating human capital accumulation to economic 

growth. In 50s and 60s Gary Becker, Jacob Mincer, T.W. Schultz and other economists focus 

on the role of education on economic development. Recently, Lucas (1988), Barro (1991), 

Mankiw, Romer and Weil (1992) link education to economic growth and findings of 
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education externalities improve literature on it. The positive externalities associated with 

human capital are given importance in the new growth theories, and in most of these dynamic 

models externality result in the returns to scale in the production sector. Basic question here 

is: How do we measure the educational externalities? Applying difference in difference (DD) 

approach, this paper attempts to assess the impact of education, especially measuring the 

returns of education. 

Truly, acquiring education is an investment in the sense that one gives up something now in 

the hope of getting more back in future. For that reason, education is often described as 

‘human capital’, the title of a famous book by Gary Becker. So, spending on education should 

be considered as the investment. Like all investments, how the future gain compares to the 

current sacrifice is critical in determining whether education is a good investment or not.  

What is the factor motivating individual to determine for acquiring education. The basic 

assumptions are (i) earning of individual depends on year of schooling; i.e., one individual 

has s year of (post compulsory) schooling, earning is W(s). (ii) Assume there is no direct cost 

but cost of education is only forgone earnings. (iii) Assume everyone lives forever. So, 

present discount value (PDV) of s years of education is:   

 

 

Taking log of both sides of the above equation can be written as  

 

 

First order condition can be written as  

 

Acquiring education up to the point where the increase in log earnings is equal to the rate at 

which future earnings are discounted.  

Suppose all individuals are identical and require different levels of education in equilibrium, 

then must be the case that 

is equalised for different levels of s. The coefficient on s is the measure of r – rate of return to 

education1. 

Economics scholars have invested much energy in identifying the value of educational 

investment, to determine whether governments and individuals are investing optimally. Much 

of this work stems from the work of Becker (1962) that introduced the concept of treating 

investment in education as a capital investment. Since then research scholars mainly focus on 

                                                           
1 From empirical findings it is clear that typical OLS estimates from an earnings function are about 2.2 – 12.8 

percent which suggests that education is a good investment. 
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estimation of the return to education investment2. However, estimates of the return vary 

significantly, depending on the data sets used, the assumptions made and the estimation 

techniques.  

Furthermore, attempts at estimating a single rate of return may not be very informative if 

returns to education differ by education level, or differ across populations (including by 

social strata). This may be particularly important for policy responses, but ironically gets 

masked by methodological debates. Similarly, economists often fail to take into account the 

risk associated with education investment decisions. Risk may play an important role in an 

individual’s education investment decision, and indeed a government’s educational 

investment level, and should be taken into consideration when testing rationality and 

optimality of education investment (see Heckman, Lochner, and Todd 2008) and the 

comprehensive review in Heckman et al. (2006)). In addition, as most cogently argued by 

Oreopoulos and Salvanes (2011), the return to education may be much wider than the private 

financial returns that is the focus of so much of the economics literature, and perhaps 

economics as a profession has allowed a major body of research on the non-pecuniary returns 

(which may create private returns through externalities that are as great – if not greater – than 

the direct effect of education on earnings) to become dominated by the other social sciences. 

Education is the key treatment that may remove major hindrance of social development and 

economic growth. Educated workforce enhances a nation’s stock of human capital which 

increases productivity and economic development (Barro 1996; Romer 1986; Lucas 1988; 

Ravallion and Chen 1997). Education is associated with high rates of return, both private and 

social. So, schooling is desirable for all. There is an increasing focus on achieving universal 

primary education in developing countries like India. In this context, primary education has 

the highest social rates of return in developing countries (Psacharooulos and Patrinos 2004). 

Is it true in India? How far is it true in backward state like Bihar also? This study attempts to 

answer this question focusing on universal primary education in Bihar.   

The government of India has launched the Sarbha Shikha Avijan (SSA) to improve the 

literacy level and endeavours to achieve universal primary education since 1987-88. Across 

states this SSA programme is more or less successful. In this context, especially this paper 

focuses on Bihar, which is one of the least developed states in India. Recently a high rate of 

                                                           
2 See, for example, the reviews by Card (1999), Harmon, Oosterbeek, and Walker (2003), and the meta analysis 

of Ashenfelter, Harmon, and Oosterbeek (1999) for research on private returns to schooling; la Fuente and 

Ciccone (2003) for research addressing the impact of education on the so-called ‘knowledge economy’ through 
growth models; and Acemoglu and Angrist (2001) or Oreopoulos and Salvanes (2011) for research on wider 

externalities associated with education. 



growth is observed and consequently speedy development starts to gain momentum in Bihar. 

Basic question what is the reason behind it. There are several reasons but one of them is the 

improvement of education level in Bihar. Has any impact of education on Bihar economy? In 

other word, what is the return of education in Bihar? How do we measure it? 

This study attempts to answer the above questions especially in the context of Bihar. This 

paper is organised as follows: Section 2 explains the methodological issues. Section 3 

describes data. Section 4 analyses results, and finally concludes.  

2. Methodology: Difference in Difference Approach 

Recently the most popular identification strategy in applied work is the difference in 

difference (DD) methodology (see Dinda 2015 for details). Application of DD is a very 

simple random assignment with treatment and comparison. One group is treated with 

intervention and other is control group. DD is the application of two-way fixed effects model 

having cross sectional and time series data. So, basically we have pre and post data for group 

receiving intervention. Suppose treatment intervention occurs at ti and we observe outcome 

Yt1 at t1 and post treatment outcome Yt2 at t2. Fig 1 (Fig 1a & Fig 1b) show the treatment 

effect. Using time series data, true effect is the difference between pre and post observed 

outcome, i.e., (Yt2 –Yt1) but actual estimated effect of the treatment is (Yb –Ya).  

 

Fig 1a: Pre and Post effects
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We use time series of untreated group to establish what would have occurred in the absence 

of the intervention. Here, the key concept is the control (c) and treatment (t). Table 1 display 

the simple calculation of DD approach to measure the impact of treatment.  

 



Table 1: Difference in Difference approach

Difference in Difference

Before After

Difference

Group 1

(Treat)

Yt1 Yt2 ΔYt 

= Yt2-Yt1

Group 2

(Control)

Yc1 Yc2 ΔYc

=Yc2-Yc1

Difference ΔΔY

ΔYt – ΔYc

 
 

Control group identifies the time path of outcomes that would have happened in the absence 

of the treatment. In this example, Y changes by (Yc2 – Yc1) even without the intervention. 

Treatment group identifies the time path of outcomes that would have happened in the 

intervention of the treatment. In this case, Y changes by (Yt2 – Yt1) with the intervention. 

Here, impact measurement is the difference in the change in outcomes, i.e., (Yt2 –Yt1) –(Yc2 –Yc1), 

or, treatment effect is ( ∆∆Y = ) ∆Yt - ∆Yc . 

Fundamental assumption that trends (slopes) are same in treatments and controls. It is true for 

sometimes. Truly we need minimum three time point observations as depicting in fig 2. 

Time
Treatment

Outcome

Treatment Group

Control Group

Average 

Treatment 

Effect

First

observation

Second

observation

Third

observation

 
Fig 2: Pre and Post Observations  

Following Dinda (2015), We evaluate the impact of treatment or program on an outcome Y 

over population individuals. 

 

Model 

Suppose there are two groups indexed by treatment status T = 0, 1; where 0 and 1 indicate 

individuals who do not receive treatment (i.e., the control group) and individuals who receive 

treatment (i.e., treatment group), respectively. Assume that we observe individuals in two 

time periods, t = 0, 1 where 0 indicates a time period before the treatment group receives 

treatment (i.e. pre-treatment), and 1 indicates a time period after the treatment group receives 

treatment (i.e. post-treatment). Every observation is indexed by the letter i = 1,...,N; 



individuals will typically have two observations each, one pre-treatment and one post-

treatment. For the sake of notation let 𝑌0𝑇̅̅̅̅  and 𝑌1𝑇̅̅̅̅  be the sample averages of the outcome for 

the treatment group before and after treatment, respectively, and let 𝑌0𝐶̅̅̅̅  and 𝑌1𝐶̅̅̅̅  be the 

corresponding sample averages of the outcome for the control group. Subscripts correspond 

to time period and superscripts to the treatment status. 

2.2 Modelling the Outcome 

The outcome Yi is modelled by the following equation 𝑌𝑖 = 𝛽0 + 𝛽1 𝑇𝑖 + 𝛽2 𝑡𝑖 + 𝛽3 (𝑇𝑖 ∗ 𝑡𝑖) + 𝜀𝑖                                      (1) 

where the 𝛽0, 𝛽1, 𝛽2, 𝛽3, coefficients are all unknown parameters and εi is a random, 

unobserved "error" term which contains all determinants of Yi which the model omits. By 

inspecting the equation we should observe the coefficients and have the following 

interpretation  𝛽0 = constant term, 𝛽1 = treatment group specific effect (to account for average permanent 

differences between treatment and control), 𝛽2 = time trend common to control and treatment 

groups, 𝛽3 = true effect of treatment 

The purpose of the program evaluation is to find a “good” estimate of δ, 𝛿, given the data that 

we have available. 

2.3 Assumptions for an Unbiased Estimator 

A reasonable criterion for a good estimator is that it be unbiased which means that "on 

average" the estimate will be correct, or mathematically that the expected value of the 

estimator   𝐸[𝛽3̂] = 𝛽3 

The assumptions we need for the difference in difference estimator to be correct are given by 

the following 

1) The model in equation (Outcome) is correctly specified. For example, the additive 

structure imposed is correct. 

2) The error term is on average zero: E [εi] = 0. Not a hard assumption with the constant 

term 𝛽0 put in. 

3) The error term is uncorrelated with the other variables in the equation: 

                  Cov (εi, Ti) = 0 

                  Cov (εi, ti) = 0 

                  Cov (εi, Ti* ti) = 0 



the last of these assumptions, also known as the parallel-trend assumption, is the most 

critical. 

Under these assumptions we can use equation (Outcome) to determine that expected values 

of the average outcomes are given by 

                                                                   𝐸[𝑌0𝑇] = 𝛽0 + 𝛽1 

                                                             𝐸[𝑌1𝑇] = 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 

                                                             𝐸[𝑌0𝐶] = 𝛽0 

                                                                  𝐸[𝑌1𝐶] = 𝛽0 + 𝛽2 

These equations are helpful to identify the estimated impact of a treatment. 

2 The Difference in Difference Estimator 

Before explaining the difference in difference estimator it is best to review the two simple 

difference estimators and understand what can go wrong with these. Understanding what is 

wrong about as an estimator is as important as understanding what is right about it. 

2.1 Simple Pre versus Post Estimator 

Consider first an estimator based on comparing the average difference in outcome Yi before 

and after treatment in the treatment group alone3. 𝛿1̂ = 𝑌̅1𝑇 − 𝑌̅0𝑇                                                                           (D1) 

Taking the expectation of this estimator we get 

                                                                   𝐸[𝛿1̂] = 𝐸[𝑌̅1𝑇] − 𝐸[𝑌̅0𝑇] 
                                                                  = [𝛽0 + 𝛽1 + 𝛽2 + 𝛽3] – [𝛽0 + 𝛽1] 

                                                                  = 𝛽2 + 𝛽3 

which means that this estimator will be biased so long as 𝛽2 ≠ 0, i.e. if a time-trend exists in 

the outcome Yi then we will confound the time trend as being part of the treatment effect. 

2.2 Simple Treatment versus Control Estimator 

Next consider the estimator based on comparing the average difference in outcome Yi post-

treatment, between the treatment and control groups, ignoring pre-treatment outcomes4. 𝛿2̂ = 𝑌̅1𝑇 − 𝑌̅1𝐶                                                                                   (D2) 

Taking the expectation of this estimator we get 

                                                             𝐸[𝛿2̂] = 𝐸[𝑌̅1𝑇] − 𝐸[𝑌̅1𝐶] 
                                                                  = [𝛽0 + 𝛽1 + 𝛽2 + 𝛽3] – [𝛽0 + 𝛽2] 

                                                           
3 This would be the estimate one would get from an OLS estimate on a regression equation of the form 

on the sample from the treatment group only. 
4 This would be the estimate one would get from an OLS estimate on a regression equation of the form 

on the post-treatment samples only. 



                                                                  = 𝛽1 + 𝛽3 

So, this estimator is biased so long as 𝛽1 ≠ 0, i.e. there exist permanent average differences 

in outcome Yi between the treatment groups. The true treatment effect will be confounded by 

permanent differences in treatment and control groups that existed prior to any treatment. 

Note that in a randomized experiments, where subjects are randomly selected into treatment 

and control groups, β1 should be zero as both groups should be nearly identical: in this case 

this estimator may perform well in a controlled experimental setting typically unavailable in 

most program evaluation problems seen in economics. 

2.3 The Difference in Difference Estimator 

The difference in difference (or "double difference") estimator is defined as the difference in 

average outcome in the treatment group before and after treatment minus the difference in 

average outcome in the control group before and after treatment5 : it is literally a “difference 

of differences”. 𝛿𝐷𝐷̂ = (𝑌̅1𝑇 − 𝑌̅0𝑇) − (𝑌̅1𝐶 − 𝑌̅0𝐶)                                                 (DD) 

Taking the expectation of this estimator we will see that it is unbiased 

                                        𝐸[𝛿𝐷𝐷̂] = 𝐸[𝑌̅1𝑇] − 𝐸[𝑌̅0𝑇] − (𝐸[𝑌̅1𝐶] − 𝐸[𝑌̅0𝐶]) 

                                                   =( [𝛽0 + 𝛽1 + 𝛽2 + 𝛽3] – [𝛽0 + 𝛽1]) – ([𝛽0 + 𝛽2]- 𝛽0) 

                                                   = [𝛽2 + 𝛽3] – (𝛽2) 

                                                   = 𝛽3 

This estimator can be seen as taking the difference between two pre-versus-post estimators 

seen above in (D1), subtracting the control group’s estimator, which captures the time trend 𝛽2, from the treatment group’s estimator to get 𝛽3. We can also rearrange terms in equation 

(DD) to get 𝛿𝐷𝐷̂ = (𝑌̅1𝑇 − 𝑌̅1𝐶) − (𝑌̅0𝑇 − 𝑌̅0𝐶) in which it can be interpreted as taking the 

difference of two estimators of the simple treatment versus control type seen in equation 

(D2). The difference estimator for the pre-period is used to estimate the permanent difference 

β1, which is then subtracted away from the post-period estimator to get 𝛽3. 

Now, in this context, simple econometrics model is Yit = β0 + β1Tit + β2Ait + β3TitAit + εit , 

where Tit is individual treated and Ait is in the period when treatment occurs. TitAit is the 

interaction term, treatment individual after the intervention.  

  

                                                           
5 This would be the estimate one would get from an OLS estimate of a regression equation of the form given by 

(Outcome) on the entire sample. 



Table 2: 

Yit = β0 + β1Tit + β2Ait + β3TitAit + εit

Before After

Difference

Group 1

(Treat)

β0+ β1 β0+ β1+ β2+ β3 ΔYt

= β2+ β3

Group 2

(Control)

β0 β0+ β2 ΔYc

= β2

Difference ΔΔY = β3

 
 

This DD methodology is used in several studies. Here, we also use the DD for a case study on 

the return on education in Bihar. For this purpose we collect primary data from a field survey.  

Data  

We have collected data on unorganised sector focusing on the small and tinny enterprises 

covering major urban Bihar during January – July, 2010. The small and tinny enterprises are 

mostly self-employed (including street vendors) and do their own business as their livelihood. 

They provide service to the municipal people and contribute to the urban economy. Total 

number of business unit (population) in this specific unorganised sector in urban Bihar is 

nearly than 3.5 lakhs. It mainly covers major municipal areas of towns and cities in Bihar. 

Data are collected in different (three) rounds for cross checking and verifications. So, here, 

we have a cross section data including thin and densely populated area. Using stratified 

random sampling technique we have collected data taking several parameters. Finally, our 

sample size is 2588. These data represent whole urban Bihar covering all districts towns 

which are consist of words, roads, streets, lane and bye lanes etc.  

Our main focus is to measure the impact of Sarbha Sikhsha Avijan (SSA) applying difference 

in difference (DD) approach. Here, we consider that SSA is a treatment which has applied in 

Bihar since early 1990s. We can apply DD methodology to assess the impact of SSA only 

having control and treatment groups in pre and post SSA. In this context, we identify and set 

up illiterate and literate as control and treatment groups, respectively. Individual has reported 

their age in year. Now, using the ‘age’ variable we can identify individual weather he/she has 

received the treatment of SSA or not, and hence we have pre and post SSA groups. SSA 

starts in early 1990s in Bihar. Hence, individual did not receive SSA treatment if he /she was 

born before 1988, otherwise, his/her age is more than 22 years and they belong to pre SSA; 

otherwise belong to post SSA (i.e., age less than 22 years).  Literate (treatment) and illiterate 



(control) individual can be divided into sub-groups according to their age more than 22 years 

or less such as pre and post control and pre and post treatment SSA. Thus, as per treatment 

(SSA) and its availability during their childhood we formulate minimum 2x2 groups, i.e., pre 

and post control as well as pre and post treatment groups in Bihar. Now, we investigate the 

impact of SSA treatment in Bihar focusing different variables such as income, inequality, etc.   

Results 

Income of individual is considered here as outcome. For our purpose, we measure the return 

of SSA treatment. There is a huge income difference between literate and illiterate. Fig 3 

shows the monthly income difference between educated and illiterate.  

 

 

Fig 3: Income difference 
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Income also varies among literate people as per their education level. Fig 4 shows the 

monthly income differences among educated people.  

 

Fig 4: Income difference among educated people 
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Primary results suggest that literacy drive (or education) has impact on income, but question 

arises weather impact is significant or not. Now, we examine pair wise t-test for income. First 



we examine alpha t- test for income of literate versus illiterate and the alpha t is 4.46 and 

statistically significant. Table 4 displays pair wise alpha t-test and their significance levels. 

Economic returns of secondary and higher education are higher than that of primary 

education. 

Table 4: Alpha t- test 

Education Level Illiterate Primary Upper Primary Secondary 

Educated 4.46***    

Illiterate -    

Primary 2.08**    

Upper Primary 2.69*** 0.61   

Secondary 7.46*** 3.71*** 2.3**  

Higher Education 5.36*** 2.06** 1.17 -0.39 

 

 

Table 5: Difference in Mean Income (daily) 

 Age>22years Age≤22years  

 Before After Difference 

Treatment 

(literacy) 

128.005 151.15 23.145 

Control 

(Illiterate) 

132.26 112.47 -19.79 

Difference -4.225 38.68 42.935 

 

Table 5 presents the mean daily income differences using DD approach.  Before SSA 

treatment, average income of literate and illiterate are Rs. 128.0 and Rs. 132.26, respectively.  

Post SSA treatment, average income of literate and illiterate are Rs. 151.15 and Rs. 112.47, 

respectively. Mean daily income of literate is Rs. 38.68 more compare to illiterate in the post 

SSA period. It suggests that on an average daily income of literate people earn Rs. 38.68 

more compare to illiterate in the post SSA treatment period. Average daily income of literate 

people rises by Rs. 23.15 due to SSA treatment. Applying DD approach, average daily 

income of literate people is higher than that of illiterate due to SSA treatment. Literate people 

earn on an average daily income of Rs. 42.93 or Rs 43 more than illiterate. Literate people 

earn more annually Rs 12900 to Rs. 14200 compare to illiterate and estimated additional 

annual income of Bihar is nearly Rs.645 Crore.  Hence, literacy has positive impact on 

income level of self employed people in the small and tiny enterprise sector in urban 

economy of Bihar.  

 

Conclusion 



This paper attempts to assess the impact of mass universal education programme such as 

Sarbha Shiksha Abhijan (SSA) in Bihar. Applying difference –in difference (DD) approach, 

this paper attempts to measure the returns of SSA mass education in Bihar. SSA is giving 

return more than Rs. 600 per annum only from small and tiny enterprise in urban Bihar. Now, 

the govt. of Bihar realises the importance of universal primary education and has taken 

initiative to improve education level, and automatically Bihar economy starts to growth with 

overall development.   
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