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A b s t r a c t  

The paper constructs measures of intra-day realized volatility for 17 European 

and USA stock indices. We utilize a model-free de-noising method by assembling the 

realized volatility in sampling frequency selected according to the volatility signature 

plot which minimizes the micro-structure effects. Having verified the stylized facts of 

realized volatility, the dynamic behavior of correlation between realized volatilities is 

investigated. The correlation among realized volatilities is positive and extremely 

high, although for some periods it decreases dramatically. The correlation of 

volatilities within USA (or Europe) is much higher than the correlation of volatilities 

across USA and Europe. Moreover, we provide evidence that the inter-day adjusted 

realized volatility reduces significantly the underestimation of the true variability. 

 

K e y w o r d s :  correlation of volatilities, intra-day data, model-free de-noising, 

realized volatility, sampling frequency, ultra-high frequency, volatility signature plot. 
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1 .  I n t r o d u c t i o n  

Empirical finance literature provides various methods of refining intra-day 

prices in order to measure the daily volatility. The objective of the paper is to fill the 

gap in the literature between theoretical aspects and empirical applications of 

constructing realized volatility. In particular, we extend the literature by examining a 

long length dataset for 17 European and USA stock indices. We consider a range of 

European and USA indices to be able to extend previous studies which mainly 

consider data from few marketsi. The proposed method of constructing realized 

volatility offers useful findings for practitioners.  

 Following recent papers on realized volatility forecasting and market 

microstructure noise (e.g. Andersen et al., 2011), the paper advocates choosing a 

model-freeii de-noising approach for the construction of intra-day realized volatility 

measures. This method has the advantage of being accurate-to-estimate and, at the 

same time, straightforward to apply (simple in terms of numerical computations). The 

high frequency log-returns are constructed according to the previous tick method, in 

order to get volatility measures which do not converge in probability to zero. In 

addition, the realized volatility measures are assembled in sampling frequency 

selected according to the volatility signature plot by minimizing the noise 

accumulation due to market frictions. 

 The paper provides an extension of the earlier empirical investigations 

reported in Andersen et al. (2001a, 2001b, 2010, 2011), Hansen and Lunde (2005), 

Jungbacker and Koopman (2006), and Thomakos and Wang (2003).  These papers 

provide evidence on the stylized facts of realized volatilities using traditional 

approaches under several assumptions. We extend these studies by explicitly 

accounting for the stylized facts of realized volatilities in a simple form; this is highly 

important for financial decision-makers who deal with high-frequency datasets. 

In particular, we investigate the distributional properties of realized stock 

return volatilities of the major European and USA markets and verify the stylized 

facts noted in financial literature. The results from 17 European and USA markets 

support empirically the notion that inter-day adjusted realized standard deviation is 

highly leptokurtic and skewed to the right, while the daily realized volatility is 

                                                 
i This is important as the current debate on the 2008 financial crisis give emphasis to the domino effect of the major 
stock markets. 
ii By the term model-free we note a de-noising method that does not assume a predefined model configuration for 
microstructure noise. 
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approximately log-normally distributed. The standardized log-returns with the 

realized standard deviation have a 94% lower standard deviation and 69% lower 

kurtosis than the raw log-returns. 

Additionally, the paper provides evidence that the correlation between realized 

volatilities is not constant across time. Although, the correlation between realized 

volatilities is positive and high, for some periods it decreases dramatically. The 

correlation between USA (or European) volatilities is much higher than the 

correlation across USA and European volatilities. Pushing the analysis one step 

further, we confirm that the inter-day adjusted realized volatility reduces significantly 

the underestimation of the true variability (of the integrated variance).  

In the section follows, the theoretical framework of integrated variance and 

the concept of the realized volatility are illustrated. Section 3 describes easy-to-

implement adjustment procedures for the construction of realized volatility 

estimators; the linear interpolation and the previous tick methods for constructing the 

sequence of the calendar time sampling prices, as well as the volatility signature plot 

to identify the bias induced by microstructure frictions. Section 4 applies the proposed 

method to construct the realized volatility for 17 European and USA stock indices. 

Section 5 investigates the variance reduction of integrated volatility due to the inter-

day adjustment. Section 6 investigates the time-varying correlation among the 

realized volatilities. Section 7 provides information for the distribution of inter-day 

adjusted realized standard deviations, whereas section 8 concludes and provides 

insights for future research. 

 

2 .  U l t r a - H i g h - F r e q u e n c y  R e a l i z e d  V o l a t i l i t y  

The time interval  ba,  is partitioned in   equidistance points (sub-intervals) in 

time ,...,2,1j . At each point in time jt , for  bat j , , the asset price is observed. 

The  
1jt j

P  process  is observed at sampling frequency    1 abm , for length 

of each sub-interval 1 jj ttm .iii The 
1

loglog



jjj ttt PPy  denotes the log-return 

over the sub-interval  1 jj tt . The instantaneous prices  tp  represent the latent 

                                                 
iii We denote the sampling frequency m , which lowers as the number of samples increases. On the contrary, the 

notion of ultra-high frequency defines the mean of high number of equidistance points in time  . In the remaining 
of the manuscript, when the points in time, i.e. the size of the sample, increase we will note that the sampling 
frequency increases. 
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efficient prices generated by the true data generated mechanism, i.e. the diffusion 

process      tdWttpd log , where  t  is the volatility of the instantaneous log-

returns process and  tW  is the standard Wiener process. The  
   

b

a

IV

ba dtt
22

,   

denotes the integrated variance over the interval  ba, , which is not observed. 

 Having considered that each sub-interval has length which tends to zero, 

0m , we assume that 1 jj ttdt . The realized volatility 

   2, 11
loglog




jjjj tttt ppRV  is a consistent estimator for  
 IV

tt jj

2
, 1

 , for each sub-

interval; consequently,  


baRV ,  is a consistent estimator for  
 IV

ba

2
, : 

    







1

2

, 1
loglog

j ttba jj
ppRV .  However,  


1, jj ttRV  is not estimable as the efficient 

prices are not observable. Therefore, we compute realized volatility based on the 

observed prices, for the time interval  ba,   which is partitioned in   equidistance 

points: 

 
     




1

2

, 1
loglog

j tttba jj
PPRVRV . (1) 

As  ,        1,02 42
, NdttdttRV

db

a

b

a
ba 





    . The asymptotic volatility 

of volatility is termed integrated quarticity:  
   

b

a

IQ

ba dtt
42

, 2 . From Barndorff-

Nielsen and Shephard (2004a, 2004b), the finite sample behaviour of the realized 

volatility is    
        1,0loglog32

1

412
,, 1

NPPRV
d

j tt

IV

baba jj





   




 , for 

     



1

4

, 1
loglog

3 j ttba jj
PPRQ  being the realized quarticity; a consistent 

estimator of  
 IQ

ba

2
, . 

 

3 .  M e a s u r i n g  R e a l i z e d  V o l a t i l i t y  

3.1. Equidistance Price Observations 

 Linear interpolated prices between preceding and immediately following 

quotes are computed weighting linearly their inverse relative distance to the desired 

point in time. Hansen and Lunde (2006a) noted that the linear interpolated realized 

volatility measure method converges in probability to zero as the number of sub-

intervals tends to infinity:   0,

p

baRV  , as   or 0m . 
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 Wasserfallen and Zimmermann (1985) proposed the previous tick method 

which is to always use the most recently published price:  

2

11 ,,

,



 ii

j

tasktbid

tpre

PP
P . (2) 

The sequence of the one-minute sampling prices is constructing for this study 

according to the previous tick method, in order to get a volatility measure that does 

not converge in probability to zero, as the number of equidistance points in time tends 

to infinity. 

3.2. Microstructure Frictions 

 Market frictions are anything that interferes with trade, such as transparency of 

transactions, discreteness of the data, transaction costs, taxes, regulatory costs, 

properties of the trading mechanism and bid-ask spreads. Market microstructure noise 

plays significant role in financial markets. Several methods have been proposed to de-

noise the data in the context of volatility estimation. These methods have been 

constructed assuming various assumptions about the microstructure of the markets, 

see for example Andersen et al. (2010), Barndorff-Nielsen et al. (2008), Maheu and 

McCurdy (2002), Aït-Sahalia et al. (2005), Hansen and Lunde (2006a). 

Based on previous studies (e.g. Andersen et al., 2011), we account for micro-

structure noise without assuming a predefined model of estimating the noise. The 

realized volatility is assembled in sampling frequency selected according to the 

volatility signature plot which minimizes the micro-structure effectsiv. 

Andersen et al. (2005) introduced a model-free adjustment procedure 

framework for the calculation of volatility loss functions based on practically feasible 

realized volatility benchmarks. Avoiding a specific framework for the market 

microstructure noise, the realized volatility will be subject to the measurement error; 

named realized volatility error:       
 IV

bababa RVU
2

,,,  . The variance of the realized 

volatility is        
      

  IV

baba

IV

bababa UCovVUVRVV
2

,,
2

,,, ,2   . From Andersen et al. 

(2005) the covariance between realized volatility error and integrated variance is of 

                                                 
iv A number of papers propose accounting for jumps in intra-day log-prices; see Dumitru and Urga (2012) for a 
survey. For example, Fleming and Paye (2011) take into account the issue of jumps by using the bi-power 
variation (Barndorff-Nielsen and Shephard, 2006) measure of RV. A number of methods have been introduced; 
including the two-scale method (e.g. Aït-Sahalia et al., 2005), the kernel method (e.g. Barndorff-Nielsen et al., 
2011), the multiple grid combination method (e.g. Zhang et al., 2005), the quasi-maximum likelihood method (e.g. 
Aït-Sahalia et al., 2010), non-parametric modelling of jumps in asset prices (e.g. Andersen et al., 2007, 2010 and 
Barndorff-Nielsen and Shephard, 2006), etc. 
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order less that 1 . Hence (based on Section 2), we get that 

       1
,,

2  


oRQEUV baba
. Thus: 

 
          1

,,
2

,

2  


 oRQERVVV baba

IV

ba
. (3) 

3.3. Optimal Sampling Frequency 

The accuracy improves as the number of sub-intervals increases, or  . 

On the other hand, as 0m , the market frictions are a source of additional noise in 

the estimate of volatility, as fluctuations in transaction prices over very small time 

intervals (sampling at high sampling frequency) are mainly reflected noise and carry 

no information about underlying return volatility. Thus, the points in time   should 

be as many as the market microstructure features do not induce bias to the volatility 

estimator. 

The sampling frequency, m , should be selected based on a trade-off between 

accuracy and potential biases due to market microstructure frictions. Fang (1996)  and 

Andersen et al. (2000c) proposed the construction of the volatility signature plot, 

which provides a graphical representation of the average realized volatility against the 

sampling frequency. As the number of samples increases, the bias induced by 

microstructure frictions increases too. Thus, in the signature plot one should look for 

the highest frequency where the average realized volatility appears to stabilize. With 

the appropriate manipulations, the inter-day variance can be decomposed into the 

intra-day variance,  
tRV , and the intra-day autocovariances 

jii tt yy


: 

   

  


1

1 1

2 2
 
j ji tttt jii

yyRVy . (4) 

The intra-day autocovariances comprise measurement errors, whose expected values 

are equal to zero,   0
 jii tt yyE , for 0j . The optimal sampling frequency can be 

chosen as the highest frequency for which the autocovariance bias term disappears. 

Corsi et al. (2001) presented a theoretical model that replicates the autocorrelation of 

tick-by-tick returns and the observed anomalous scaling of the volatility captured by 

the volatility signature plotv. 

                                                 
v Awartani et al. (2009) propose a test that statistically deals with the optimal selection of sampling frequency. In 
order to avoid market microstructure frictions without lessening the accuracy, the majority of the studies propose a 
sampling frequency of 5-minutes or 30-minutes, i.e. Andersen et al. (2000a), Andersen et al. (2001b). 
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3.4. Inter-day Adjustment 

 Hansen and Lunde (2005) combined intraday volatility during the open-to-

closed period with the closed-to-open inter-day volatility: 

 
 

        
 

 
 1

2

2

2

11, 11
loglogloglog

j ttttHLbaHLt jj
PPPPRVRV . (5) 

The advantage of  
 


HLt

RV   measure is that minimizes the squared distance between 

realized volatility measure and integrated volatility devoid of necessitate to define a 

specific relation for efficient prices and market microstructure noise. The parameters 

1  and 2  are estimated such as 
    

 
 
  22
,,, 21

min IV

baHLba
RVE 


 . As  

 IV

ba

2
,  is 

unobservable, Hansen and Lunde (2005) proposed to solve 
    

  




HLba
RVV

,, 21

min .vi The 

analytical estimates of 1  and 2  are presented in Table 2.  

 

4 .  I n t r a - D a y  R e a l i z e d  V o l a t i l i t y  f o r  1 7  E u r o p e a n  a n d  U S A  

S t o c k  I n d i c e s  

 The dataset considers major EU and US stock market indices with the longest 

continuous history. The selection is based on i) the indices’ market capitalization and 

ii) the fact that they are the most publicly quoted stock market indices. In addition, 

most indices are considered as benchmark indices for stocks (e.g. Nasdaq, S&P500) 

traded internationally as they contain about 70-80% of the value of their individual 

stocks. Moreover, the list includes world’s top stock exchanges by value shares traded 

as reported by World Federation of Exchanges Industry Association. Table 1 presents 

information for the one-minute intra-day data for the 17  indices: S&P500, S&P100, 

Dow Jones Industrial Average, Nasdaq100, Russell2000, S&P400 Midcap, FTSE100, 

AEX25, IBEX35, DJ Euro Stoxx 50, DAX30, CAC40, DJ Stoxx 50, FTSE Euro Top 

300, FTSE MIB Index, Swiss Market Index and Euronext100.  

[Insert Table 1 about here] 
 The proposed realized volatility measures assume that i) a very high sampling 

frequency is available for the data (section 2), ii) the sequence of the sampling prices 

is constructing according to the previous tick method (section 3.1), and iii) the intra-

day autocovariance comprises the measurement errors due to market frictions (section 

3.2). The optimal sampling frequency is chosen as the highest frequency for which the 
                                                 
vi Hansen and Lunde (2005) noted that, for Y  denoting a real random variable and for X , for   , being a 

class of real random variables, if   YYXE | , for  , then 
 

 
 

 





XVYXE minargminarg
2  . 
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autocovariance bias term disappears. Therefore, the sampling frequency, m , is 

selected based on a trade-off between accuracy and potential biases due to market 

microstructure frictions. As Andersen et al. (2006) noted "Recognizing that the bid-

ask spread (and other frictions) generally bias the realized volatility measure, this 

suggests choosing the highest frequency possible for which the average realized 

volatility appears to have stabilized".vii 

[Insert Figure 1 About here] 
 To conserve space, in Figure 1, the volatility signature plot is presented for 4 

indices, indicatively. All the Figures for each of the 17 stock indices are available 

from the authors upon request. The Figure provides a graphical representation of the 

average intra-day autocovariances,   



 




T

t j ji tt jii
yyT

1

1

1 1

12
 

, against the sampling 

frequency, 40,...,2,1m . The last column of Table 1 presents the highest sampling 

frequency for which the autocovariance bias term minimizes. 

 The interday adjustment proposed by Hansen and Lunde (2005) is taken into 

consideration.The 1  and 2  estimates are extremely sensitive to the outliers of both 

closed-to-open interday volatility,  21loglog
1  tt PP , and intra-day volatility, 

   




1

2

1
loglog

j tt jj
PP . Therefore, we compute the 1  and 2  estimates, for 200 

iterations, excluding at each iteration either the highest value of the closed-to-open 

interday volatility or the highest value of the intra-day volatility. Figure 2 plots for 4 

indices, indicatively, the 1  and 2  estimates for 200 iterations, excluding at each 

iteration the most extreme value. We should note that the extreme outliers are 

excluding form the computation of  the 1 , 2 , 1 , 2 , 0 , 1 , 2  and 12  

estimates, but not from the construction of the realized volatility measure, i.e. the 

realized volatility is constructed for the trading days that the extreme outliers are 

observed. The number of extreme outliers varies across indices. We remove as many 

outliers as necessary in order to stabilize the 1  and 2  estimates. Table 2 presents 

the parameter estimates of the inter-day adjusted realized volatility,  
 


HLt

RV . The last 

column presents the required number of excluding trading days in order to compute 

1  and 2  estimates which are not sensitive to the outliers. On average, 1.1% of the 

                                                 
vii The program codes that carry out the necessary computations for constructing the realized volatility measures 
are available from the authors upon request. 
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observations as outliers are required for the estimates of the scaling parameters to be 

stabilized. However, there are cases, i.e. AEX25 and FTSE MIB, that require less than 

0.5% of outliers, and cases, i.e. FTSE Eurotop300 and S&P400 Midcap, that require 

around 2.5% of outliers. 

[Insert Figure 2 About here] 
[Insert Table 2 about here] 

 The ratio of closed-to-open interday volatility and open-to-close intra-day 

volatility is not stable across indices. On average, %1401   of the volatility 

occurs during the inactive period. The stock indices are grouped into two categories. 

The first group mainly contains leading European and USA stock indices such as 

Euro Stoxx 50, DJStoxx50, DowJones, FTSE100, FTSE EuroTop300, Russell2000, 

S&P100, S&P400 MidCap and S&P500, whereas the second group mainly comprises 

from secondary European and USA indices such as AEX25, CAC40, DAX30, 

Euronext100, IBEX35, MIB, Nasdaq100, SMI. In the case of the leading stock 

indices about 4% of daily volatility occurs during the inactive period. As concerns the 

second group, the 25%, on average, of daily volatility occurs during the inactive 

period. Hansen and Lunde (2005) have found, for the 30 equities of the Dow Jones 

Industrial Average (during the period January 2001 to December 2004), that about 

20% of daily volatility occurs during the inactive period. Therefore, the proportion of 

volatility that occurs during the inactive period ranges i) from equities to indices, ii) 

across time, as well as iii) from market to market. Figure 3 illustrates the annualized 

inter-day adjusted realized standard deviation,  
 


HLt

RV252 , for 4 indices, 

indicatively. 

[Insert Figure 3 About here] 
 
5 .  V a r i a b i l i t y  o f  I n t e g r a t e d  V a r i a n c e  

 The inter-day adjusted realized volatility reduces significantly the 

underestimation of the true variability. True integrated volatility,
  

 IV

ba

2
,  , is known 

only in simulation experiments, but we are able to estimate from the actual data the 

variance of the realized volatility measure,   baRVV , , as well as, the expected mean 

estimate of realized quarticity   baRQE , . Based on equation (3), the ratio 
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         bababa RQERVVRVV ,
1

,, 2    defines an indexviii of the overestimation of the 

true variability of the integrated variance when the ex post  baRV ,  is used in place of 

the latent  
 IV

ba

2
, . Table 3 presents the index for the unadjusted realized volatility, 

 
tRV , as well as for the inter-day adjusted realized volatility,  

 


HLt
RV . For example, 

for the AEX25 index, the  
tRV  overestimates the true variability of the integrated 

variance by 1.212, whereas the index of overestimation for the  
 


HLt

RV  is reduced to 

1.109. The overestimation of the true variability of the  
 IV

ba

2
,  when the  

 


HLt
RV  is 

used in place of the latent  
 IV

ba

2
,  is reduced in all the cases. 

Various adjustments on the construction of the realized volatility estimator 

have been investigated. Kalman filtering to  
 


HLt

RVlog , similar to Hansen and Lunde's 

(2005) smoothing of realized volatility estimates, has been applied. However, the ratio 

         bababa RQERVVRVV ,
1

,, 2  
 
is much higher for the Kalman filtered  

 


HLt
RV , 

mainly because of the reduction of realized volatility's variability due to the filtering.ix 

[Insert Table 3 about here] 
 
6 .  R e a l i z e d  V o l a t i l i t i e s  T i m e - V a r y i n g  C o r r e l a t i o n s  

An analysis of the time-varying correlation among the realized volatilities 

would provide useful insights about the relation of volatilities across European and 

USA markets. We estimate an asymmetric Diag-VECH modelx for the vector 

 
 

 
   


17,1,
252log...252log

HLtHLtt RVRVy . The ty  is regressed on a vector of 

constantsxi. The innovation process, tε , has a conditional covariance matrix tH , such 

                                                 
viii Andersen et al. (2005) note that the (feasible) R2 from the Mincer-Zarnowitz regression will underestimate the 
true predictability as measured by the (infeasible) R2 from the regression of the latent integrated volatility on the 

same set of predetermined regressors by the multiplicative factor          
bababa

RQERVVRVV
,

1

,,
2   . 

ix The filtered inter-day adjusted realized volatility for the 17 stock indices are available from the authors upon 
request. 
x For technical details about Bollerslev's et al. (1988) Diag-VECH model, see Xekalaki and Degiannakis (2010). 
xi The 

t
y  is highly predictable, suggesting to model the conditional mean as a Vector AutoRegressive process 

(VAR); i.e. 
t

k

i

ktkt
εyBβy  




1

. However, according to Degiannakis et al. (2013), in the Diag-VECH model, 

the non-diagonal elements of 
t

H  express the time-varying correlations of the de-mean log-returns. On the 

contrary, in the case of modelling the conditional mean as a VAR(k) process, the non-diagonal elements of 
t

H  

would express the time-varying correlation of the unexplained part of the realized volatilities. 
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as ttt zHε 2/1 , or  ttt NI Hε ,0~| 1 . For   denoting the Hadamard product, the tH
 

has the form            111111
~~~~~
  ttttt vechvechvechvechvechvech εεΓεεAAH 0   

   11

~
 tvechvech HB  . The non-diagonal elements of 1

~
,

~
AA0 , 1

~Γ  and 1

~
B  are time 

varying. Such a specification has the flexibility to estimate time-varying covariances. 

Otherwise, in case of constant non-diagonal elements of 1

~
,

~
AA0 , 1

~Γ  and 1

~
B , a time-

varying correlation due to the time-varying standard deviations would lead to an 

increase (decrease) in correlations in less (more) volatile periods. The th
i  diagonal 

element of tH  is 2
1,,1,

2
1,,

2
1,,,

2
,

~~
  tiiititiiitiiiiiti bdaa  , whereas the th

i , th
j  non-

diagonal elements are 1,,,1,1,1,1,,1,1,,,,,

~~
  tjijitjtjtitijitjtijijitji bddaa  , 

where 11, tid  if 01, ti , and 01, tid  otherwise. The time-varying correlations 

between th
i  and th

j  markets are estimated as   2/12
,

2
,,,,,


 tjtitjitji  . 

The appropriateness of the asymmetric Diag-VECH specification for modeling the 

conditional covariance matrix has been tested for residuals’ serial correlation and for 

presence of ARCH effects in the residuals. Bollerslev and Wooldridge’s (1992) robust 

quasi-maximum likelihood standard errors are also consideredxii.  

Figure 4 plots, indicatively, the dynamic correlation among the realized 

volatility of the DAX30, FTSE100, Nasdaq100 and S&P500 indices. In general the 

correlation across realized volatilities is positive and high. There are periods, i.e. July, 

2002 - May, 2003 and October, 2008 - June, 2009, that the correlation across realized 

volatilities is even higher than 85%. However, for some periods the correlation 

decreases dramatically - i.e. during December 2007 - January 2008, the correlation 

between DAX30 and S&P500 volatilities is almost equal to zero. The same case holds 

for the correlation between FTSE100 and Nasdaq100 for December 2003. 

Undoubtedly, the correlation between realized volatilities is not considered constant 

across time. The correlation between USA (or European) volatilities is much higher 

than the correlation across USA and European volatilitiesxiii. Interestingly, the 

                                                                                                                                            
 
xii A model-free analysis of dynamic correlation among realized volatilities was also considered, according to the 
J.P. Morgan’s (1996) multivariate Riskmetrics framework, which provides qualitatively similar results. The 
multivariate Riskmetrics model does not require the estimation of 

t
H , but the assumption of imposing the same 

dynamics on every component is difficult to justify. Thus, we rely our analysis on the parametric quasi-maximum-
likelihood estimated model. 
xiii The time varying correlations among the 17 realized volatilities are available from the authors upon request. 
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increase or decrease of correlation between volatilities is not related with a specific 

trend (either upward or downward) of equity markets. In other words, during the 

October, 2008 - June, 2009 period of extremely high correlation (financial crisis of 

2008), the trend of DAX30 and S&P500 indices was descending for the first half, 

whereas it was ascending for the second half. 

[Insert Figure 4 About here] 
 
7 .  D i s t r i b u t i o n a l  P r o p e r t i e s  o f  R e a l i z e d  V o l a t i l i t y  

  Figure 5 represents, for 4 indices, the distributions of inter-day adjusted 

realized standard deviations, based on Kernel bandwidths method. The distributions 

are highly leptokurtic and skewed to the right. Figure 6 interprets the estimated 

density of the inter-day adjusted realized daily logarithmic standard deviations. The 

distributions of logarithmic standard deviations are approximately Gaussian. Figure 7 

plots the estimated density of the standardized log-returns; the standardization of the 

log-returns with the realized standard deviation reduces kurtosis and skewness 

significantly.   

[Insert Figure 5 About here] 
[Insert Table 4 about here] 

 According to Table 4, the average value of the annualized standard deviation 

for the 17 stock indices is 17.5%. However, there is considerable variation among 

stock markets. In particular, the maximum annualized volatility is observed for the 

S&P100 index to 206%, for the day next of Black Monday on October 19th, 1987. The 

median value of annualized volatility across the 17 stock markets, ranging from 

10.7% for S&P500 to 20.9% for Nasdaq100.  

 Barndorff-Nielsen and Shephard (2004b) studied the finite sample behaviour 

of the logarithmic realized variance: 

    
          1,02loglog

2/12
,,

12
,, NRVRQRV

d

baba

IV

baba 
 , and provided theoretical and 

simulated evidence in favour of the logarithmic realized variance. Τhe asymptotic 

approximation to the distribution of   baRV ,log  works well even for moderately small 

values of  , while the finite sample behaviour of  baRV ,  requires much higher value 

of   to be empirically reliable. Table 5 provides the descriptive statistics of the 

annualized inter-day adjusted realized daily logarithmic standard deviations. The 

sample skewness is positive in all the cases. On average, the skewness of log-standard 

deviations, across the 17 stock indices, is reduced to 0.33 compared to 3.06 for the 
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realized standard deviations. As concerns the kurtosis, the average value of kurtosis 

for the log-volatilities, across the 17 stock indices, is 3.25 compared to 22.81 for the 

realized standard deviations; the assumption of normality is much closer in the 

logarithmic transformation case.  

 According to Tables 6 and 7, on average, the standardized log-returns have a 

95% lower standard deviation than the raw log-returns. The sample kurtosis of the 

standardized log-returns is, on average, 77% lower than the kurtosis of the 

unstandardized log-returns. The sample kurtosis for all of the 17 cases does not 

exceed the normal value of three. 

[Insert Figure 6 About here] 
[Insert Figure 7 About here] 

 We, therefore, provide evidence from the 17 stock market indices that i) the 

daily realized volatility constructed from high-frequency data is approximately log-

normally distributed, as well as ii) the log-return series standardized with the realized 

standard deviation is approximately unconditionally normally distributed. The 

findings are in line with the literature (i.e. Thomakos and Wang, 2003). Andersen et 

al. (2001b), for Deutschemark and Yen returns against the Dollar, found that the 

distributions of the realized daily variances,  
tRV , and standard deviations ,  

tRV , 

are skewed to the right and leptokurtic, but the distributions of the logarithmic daily 

standard deviations,  
tRVlog , are approximately normal. In general the empirical 

analyses on realized volatility conclude that i) the distribution of log-returns scaled by 

the realized standard deviation is approximately Gaussian and ii) the realized 

logarithmic standard deviation is also nearly Gaussian. The innovative studies of the 

exploration of the distributional properties of realized volatility include Andersen et 

al. (2000b, 2001a, 2001b, 2003). 

 [Insert Table 5 about here] 
[Insert Table 6 about here] 
[Insert Table 7 about here] 

 
8 .  C o n c l u s i o n  a n d  S u g g e s t i o n s  f o r  F u r t h e r  R e s e a r c h  

The studies of Hansen and Lunde (2006b) and Patton (2011) showed that the 

use of a volatility proxy can lead to an evaluation appreciably differing from what 

would be obtained if the true volatility were used. The noisier the proxy is, the less 

precise evaluation would have been obtained. The realized volatility is computed in 

sampling frequency that minimizes the noise accumulation due to market frictions. 
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The presence of market microstructure noise makes it optimal to sample less often 

than would otherwise be the case in the absence of noise. The sample frequency that 

minimizes the micro-structure noise is estimated according to the volatility signature 

plot, avoiding of need to define a specific relation for efficient prices and market 

microstructure noise. The sequence of the one-minute sampling prices is constructing 

according to the previous tick method, which provides realized volatility measure that 

does not converge in probability to zero, as the number of sub-intervals tends to 

infinity. Moreover, we take into consideration the inter-day adjustment that minimizes 

the distance between realized volatility measure and integrated volatility. 

The empirical findings obtained from the 17 stock market indices suggest that: 

i) The proportion of volatility that occurs when the markets are closed ranges from 

market to market; for the leading (secondary) stock indices about 4% (25%) of daily 

volatility occurs during the inactive period. ii) The distribution of inter-day adjusted 

realized standard deviation is highly leptokurtic and skewed to the right. iii) The daily 

realized volatility constructed from high-frequency data is approximately log-

normally distributed. iv) There is considerable variation among stock markets; the 

median annualized volatility across the 17 stock markets, ranging from 10.7% for 

S&P500 to 20.9% for Nasdaq100. v) The log-return series standardized with the 

realized standard deviation is approximately unconditionally normally distributed. vi) 

The standardization of the log-returns with the realized standard deviation reduces 

kurtosis and skewness significantly. The standardized log-returns have a 94% lower 

standard deviation and 69% lower kurtosis than the raw log-returns. vii) The 

correlation among realized volatilities is positive and high, but for some periods it 

decreases dramatically.  viii) The correlation of volatilities within USA or Europe is 

much higher than the correlation of volatilities across USA or Europe. Overall, our 

empirical results provide a guidance regarding the construction of realized volatility 

measures based on a model-free de-noising approach. The reported findings are useful 

in financial decision-making, and are recommended to financial analysts and 

modelers dealing with European and USA stock markets.  

Future research may focus on the use of all the data along with the modeling 

of the noise; as in Ait-Sahalia et al. (2005). Additionally, the range-basedxiv realized 

volatility (proposed in Christensen and Podolskij, 2007), Andersen’s et al. (2010) 

                                                 
xiv

 Under the assumption that the sample path of the process is available, the range-based realized volatility is 
consistent and has five times greater precision than that of the realized volatility. 
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event-time or financial-time return seriesxv and Christensen’s et al. (2010) quantile-

based realized variance may be compared to the realized volatility measures, in order 

to exploit possible advantages and drawbacks of each method. It is an interesting topic 

for further investigation: whether or not, in real world data, the sampling at the 

highest frequency (which comes along with the increase of microstructure noise), 

provides more accurately volatility estimates. When we use all the available data 

(irregularly sampled tick-by-tick data), which alternative estimate (range-based 

realized volatility, quantile-based realized variance, etc.) is superior to the realized 

volatility? Future research may also include the examination of the predictability of 

models that capture the properties of the constructed realized volatility measures. 
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Figure 2. The 1  and 2  estimates (for inter-day adjustment of realized volatility), for 200 iterations, 

excluding at each iteration either the highest value of the closed-to-open interday volatility or the 
highest value of the intra-day volatility. 
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Figure 3. The annualized one-trading-day inter-day adjusted realized standard 

deviation,  
 


HLt

RV252 . 

CAC 40 realized standard deviation, from 13th June 2000 to 12th January 2011. 

0%

20%

40%

60%

80%

100%

120%

140%

160%

annualized one-trading-day inter-day adjusted realized standard deviation

 
EURONEXT 100 realized standard deviation, from 12th February 2001 to 19th 

January 2011. 

0%

20%

40%

60%

80%

100%

120%

140%

02/2001 02/2002 02/2003 02/2004 02/2005 02/2006 02/2007 02/2008 02/2009 02/2010

annualized one-trading-day inter-day adjusted realized standard deviation  
IBEX35 realized standard deviation, from 21st September 1999 to 12th January 2011. 

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

annualized one-trading-day inter-day adjusted realized standard deviation  
S&P 500 realized standard deviation, from 1st February 1983 to 12th January 2011. 

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0
2

/1
9

8
3

0
2

/1
9

8
4

0
2

/1
9

8
5

0
2

/1
9

8
6

0
2

/1
9

8
7

0
2

/1
9

8
8

0
2

/1
9

8
9

0
2

/1
9

9
0

0
2

/1
9

9
1

0
2

/1
9

9
2

0
2

/1
9

9
3

0
2

/1
9

9
4

0
2

/1
9

9
5

0
2

/1
9

9
6

0
2

/1
9

9
7

0
2

/1
9

9
8

0
2

/1
9

9
9

0
2

/2
0

0
0

0
2

/2
0

0
1

0
2

/2
0

0
2

0
2

/2
0

0
3

0
2

/2
0

0
4

0
2

/2
0

0
5

0
2

/2
0

0
6

0
2

/2
0

0
7

0
2

/2
0

0
8

0
2

/2
0

0
9

0
2

/2
0

1
0

annualized one-trading-day inter-day adjusted realized standard deviation  



21 of 26 

 
Figure 4. The dynamic correlation among the realized volatilities of the DAX30, 
FTSE100, NASDAQ100 and S&P500 indices. 
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Figure 5. The estimated density of annualized one-trading-day inter-day adjusted 

realized daily standard deviations,  
 


HLt

RV252 . 

CAC 40 index EURONEXT index 

.00

.01

.02

.03

.04

.05

-40 0 40 80 120 160

D
e

n
si

ty

STDEV_CAC40

 
.00

.01

.02

.03

.04

.05

.06

-20 0 20 40 60 80 100 120 140

D
e

n
si

ty

STDEV_EURONEXT100

 
IBEX35 index S&P 500 index 

.00

.01

.02

.03

.04

.05

-40 0 40 80 120 160

D
e

n
si

ty

STDEV_IBEX35

 
.0

.1

.2

.3

.4

.5

.6

.7

.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

D
e

n
si

ty

LOG_STDEV_SP500

 



22 of 26 

Figure 6. The estimated density of annualized inter-day adjusted realized daily 

logarithmic standard deviations,  
 


HLt

RV252log . 
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Figure 7. The estimated density of standardized log-return series, standardized with 
the annualized one-trading-day inter-day adjusted realized standard deviation, 

 
 


HLtt RVy 252 . 
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Table 1. Information for the intra-day data. 

Index 

Number of 
intra-day 

(1 minute) 
observations 

Number 
of trading 

days 
First day Last day 

Optimal 

sampling 
frequency 

AEX 25 1,502,405 2,968 28th April 1999 12th January 2011 6 minutes 
CAC 40 1,403,509 2,708 13th June 2000 12th January 2011 7 minutes 
DAX 30 1,433,751 2,806 3rd January  2000 12th January 2011 13 minutes 

DJ EURO STOXX 50 1,550,392 2,794 14th January 2000 12th January 2011 7 minutes 
DJ STOXX 50 1,540,749 2,791 17th January 2000 12th January 2011 7 minutes 
Dow Jones Ind  1,743,684 4,481 1st April 1993 12th January 2011 9 minutes 

EURONEXT 100 1,376,389 2,532 12th February 2001 19th January 2011 7 minutes 
FTSE100 1,576,347 3,128 20th August 1998 12th January 2011 7 minutes 

FTSE EURO TOP 300 1,498,756 2,693 2nd August 2000 31st January 2011 7 minutes 
IBEX35 1,456,892 2,854 21st September 1999 12th January 2011 5 minutes 

FTSE MIB INDEX 1,314,690 2,646 8th August 2000 12th January 2011 6 minutes 
NASDAQ 100 1,373,948 3,532 2nd January 1997 12th January 2011 9 minutes 

RUSSELL 2000 1,377,229 3,531 2nd January 1997 12th January 2011 16 minutes 
SWISS MARKET INDEX 1,312,897 2,638 24th July 2000 12th January 2011 3 minutes 

S&P 100 2,363,072 6,060 2nd January 1987 12th January 2011 15 minutes 
S&P400 MIDCAP 1,277,416 3,278 2nd January 1998 12th January 2011 16 minutes 

S&P 500 2,754,688 7,045 1st February 1983 12th January 2011 16 minutes 
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Table 2. Estimation of the inter-day adjusted realized volatility,  
 


HLt

RV . 

Index 
1  2  107

1  107
2  107

0  1011
1  1011

2  1011
12  

# of 
outliers 

AEX 25 0.571 1.169 515.1 1,304.7 1,819.8 1,676.6 3,549.5 721.8 11 
CAC 40 0.467 1.186 507.4 1,451.3 1,958.7 1,180.7 2,770.6 584.6 19 
DAX 30 0.559 1.072 275.8 1,679.2 1,955.0 710.3 4,620.5 425.0 22 

DJ EURO STOXX 50 0.903 1.007 98.9 1,385.1 1,484.0 98.7 2,237.5 76.0 44 
DJ STOXX 50 0.676 1.024 80.0 1,101.4 1,181.4 96.4 1,397.5 39.8 44 
Dow Jones Ind 0.798 1.002 9.6 834.7 844.3 6.1 945.6 6.1 31 

EURONEXT 100 0.620 1.166 500.3 1,148.4 1,648.7 1,187.1 2,439.8 562.1 16 
FTSE100 0.522 1.014 27.5 934.0 961.5 31.1 825.0 8.4 55 

FTSE EURO TOP 300 0.992 1.001 13.8 773.3 787.1 7.1 573.1 3.2 61 
IBEX35 0.584 1.144 415.5 1,201.9 1,617.4 673.1 1,460.7 196.1 48 

FTSE MIB INDEX 0.481 1.213 494.2 1,205.5 1,699.8 1,235.6 2,269.1 526.0 13 
NASDAQ 100 0.379 1.162 643.7 2,467.7 3,111.4 2,530.2 8,940.6 1,647.4 25 

RUSSELL 2000 0.426 1.036 74.0 1,186.2 1,260.1 58.7 2,338.3 124.8 20 
SWISS MARKET INDEX 0.276 1.294 392.1 965.9 1,358.0 642.9 1,029.5 307.5 24 

S&P 100 0.548 1.015 27.1 801.8 828.9 16.9 785.7 17.8 54 
S&P400 MIDCAP 0.951 1.001 18.5 905.4 923.9 10.9 692.9 3.9 90 

S&P 500 0.538 1.010 15.6 697.0 712.6 7.7 705.1 11.8 52 

The estimates of the parameters have been computed as: 
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Table 3. The          bababa RQERVVRVV ,
1

,, 2    index of the overestimation 

of the true variability of the integrated variance when the ex post realized 

volatility is used in place of the latent  
 IV

ba

2
, . 

Index 

Index of overestimation of the true 
variability of the integrated 

volatility when the ex post  
t

RV  

is used in place of the latent  
 IV

ba

2

,
  

Index of overestimation of the true 
variability of the integrated volatility 

when the ex post 
 






 

HLt
RV  is used in 

place of the latent  
 IV

ba

2

,
  

AEX 25 1.212 1.109 
CAC 40 1.143 1.081 
DAX 30 1.221 1.163 

DJ EURO STOXX 50 1.246 1.213 
DJ STOXX 50 1.281 1.229 
Dow Jones Ind 1.132 1.129 

EURONEXT 100 1.129 1.062 
FTSE100 1.330 1.314 

FTSE EURO TOP 300 1.356 1.350 
IBEX35 1.100 1.035 

FTSE MIB INDEX 1.157 1.082 
NASDAQ 100 1.106 1.064 

RUSSELL 2000 1.222 1.140 
SWISS MARKET INDEX 1.117 1.065 

S&P 100 1.168 1.144 
S&P400 MIDCAP 1.222 1.176 

S&P 500 1.169 1.101 
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Table 4. Descriptive statistics of annualized one-trading-day inter-day adjusted realized daily 

standard deviations,  
 


HLt

RV252 . 

Index Mean1 Median1 Maximum1 Minimum1 Std.Dev1 Skewness Kurtosis 
AEX 25 19.6 16.3 167.1 3.1 13.0 2.8 17.3 
CAC 40 20.6 17.8 148.1 4.1 12.5 2.5 14.6 
DAX 30 20.4 17.0 136.2 3.3 13.3 2.6 14.3 

DJ EURO STOXX 
50 

18.6 15.4 173.9 2.8 12.7 3.1 23.2 

DJ STOXX 50 16.6 13.8 165.9 2.6 11.1 3.0 22.1 
Dow Jones Ind 13.7 11.7 133.8 3.3 8.5 3.5 25.7 

EURONEXT 100 18.3 14.9 132.7 2.6 12.3 2.4 12.9 
FTSE100 15.4 13.3 166.9 2.9 10.2 3.5 29.7 

FTSE EURO TOP 
300 

14.6 12.1 151.1 1.3 10.2 3.1 23.6 

IBEX35 19.4 17.2 153.3 3.1 11.9 2.4 16.2 
FTSE MIB INDEX 18.9 16.0 128.1 4.3 12.3 2.5 14.7 

NASDAQ 100 25.5 20.9 199.9 4.5 16.0 2.4 14.6 
RUSSELL 2000 16.3 13.7 117.4 1.6 10.9 2.8 17.0 

SWISS MARKET 
INDEX 

17.4 15.0 126.1 7.4 9.0 2.9 18.7 

S&P 100 14.0 11.7 206.5 2.6 9.5 4.7 55.3 
S&P400 MIDCAP 15.9 13.2 113.3 1.3 10.5 3.0 17.4 

S&P 500 12.9 10.7 185.3 1.8 9.3 4.8 50.4 
1The numbers are expresses in percentages. 

 

Table 5. Descriptive statistics of annualized inter-day adjusted realized daily logarithmic 

standard deviations,  
 


HLt

RV252log . 

Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
AEX 25 2.82 2.79 5.12 1.12 0.55 0.35 3.22 
CAC 40 2.88 2.88 5.00 1.40 0.52 0.27 3.01 
DAX 30 2.85 2.83 4.91 1.18 0.55 0.34 3.16 

DJ EURO STOXX 
50 

2.75 2.74 5.16 1.04 0.57 0.23 3.05 

DJ STOXX 50 2.64 2.62 5.11 0.97 0.56 0.26 3.00 
Dow Jones Ind 2.49 2.46 4.90 1.19 0.48 0.56 3.71 

EURONEXT 100 2.73 2.70 4.89 0.94 0.58 0.22 2.93 
FTSE100 2.58 2.59 5.12 1.05 0.54 0.29 3.18 

FTSE EURO TOP 
300 

2.51 2.50 5.02 0.26 0.58 0.19 3.17 

IBEX35 2.81 2.84 5.03 1.12 0.56 0.00 2.85 
FTSE MIB INDEX 2.78 2.77 4.85 1.45 0.55 0.32 2.79 

NASDAQ 100 3.09 3.04 5.30 1.51 0.54 0.32 2.93 
RUSSELL 2000 2.62 2.62 4.77 0.44 0.58 0.02 3.37 

SWISS MARKET 
INDEX 

2.76 2.70 4.84 2.00 0.41 0.84 3.72 

S&P 100 2.50 2.46 5.33 0.94 0.51 0.55 3.68 
S&P400 MIDCAP 2.61 2.58 4.73 0.25 0.53 0.36 3.65 

S&P 500 2.39 2.37 5.22 0.59 0.54 0.43 3.88 
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Table 6. Descriptive statistics of daily log-returns, ty . 

Index Mean1 Median1 Maximum1 Minimum1 Std.Dev1 Skewness Kurtosis 
AEX 25 -0.016 0.044 9.714 -8.818 1.6 -0.1 8.8 
CAC 40 -0.019 0.007 10.507 -8.405 1.5 0.1 8.1 
DAX 30 0.002 0.073 11.868 -10.340 1.6 0.1 8.7 

DJ EURO 
STOXX 50 

-0.019 0.013 10.663 -8.615 1.6 0.0 7.7 

DJ STOXX 50 -0.020 0.018 9.259 -8.835 1.4 0.1 8.5 
Dow Jones Ind 0.027 0.052 10.561 -8.591 1.1 -0.1 11.0 

EURONEXT 100 -0.012 0.049 10.308 -8.948 1.5 0.0 8.7 
FTSE100 0.002 0.040 9.485 -8.926 1.3 -0.1 8.2 

FTSE EURO 
TOP 300 

-0.013 0.039 9.644 -8.072 1.4 -0.1 8.6 

IBEX35 0.002 0.073 13.143 -9.609 1.5 0.1 8.5 
FTSE MIB 

INDEX 
-0.030 0.040 9.896 -8.131 1.4 0.0 8.8 

NASDAQ 100 0.029 0.108 17.243 -10.435 2.1 0.1 7.3 
RUSSELL 2000 0.023 0.088 8.706 -12.465 1.5 -0.3 7.7 

SWISS 
MARKET 

INDEX 
-0.007 0.042 8.911 -7.797 1.3 -0.1 8.2 

S&P 100 0.026 0.056 10.696 -23.668 1.2 -1.3 32.7 
S&P400 

MIDCAP 
0.031 0.088 9.688 -11.620 1.5 -0.3 8.6 

S&P 500 0.031 0.059 10.714 -22.926 1.2 -1.3 33.1 
1The numbers are expresses in percentages. 

 
 

Table 7. Descriptive statistics of standardized log-returns, standardized with the annualized 

one-trading-day inter-day adjusted realized standard deviation,  
 


HLtt RVy 252 . 

Index Mean1 Median1 Maximum1 Minimum1 Std.Dev1 Skewness Kurtosis 
AEX 25 0.004 0.003 0.204 -0.177 0.07 0.06 2.61 
CAC 40 0.003 0.001 0.189 -0.177 0.06 0.08 2.56 
DAX 30 0.006 0.005 0.227 -0.190 0.07 0.09 2.60 

DJ EURO STOXX 
50 

0.004 0.001 0.222 -0.193 0.07 0.07 2.49 

DJ STOXX 50 0.004 0.001 0.203 -0.246 0.07 0.08 2.53 
Dow Jones Ind 0.007 0.005 0.254 -0.207 0.07 0.07 2.82 

EURONEXT 100 0.004 0.004 0.186 -0.224 0.07 0.02 2.42 
FTSE100 0.005 0.003 0.236 -0.265 0.07 0.08 2.75 

FTSE EURO TOP 
300 

0.006 0.004 0.246 -0.250 0.08 0.10 2.63 

IBEX35 0.005 0.005 0.200 -0.180 0.07 0.03 2.48 
FTSE MIB INDEX 0.004 0.003 0.197 -0.179 0.06 0.04 2.64 

NASDAQ 100 0.006 0.006 0.249 -0.195 0.07 0.14 2.79 
RUSSELL 2000 0.009 0.008 0.229 -0.212 0.08 0.03 2.24 

SWISS MARKET 
INDEX 

0.003 0.003 0.194 -0.179 0.06 0.02 2.81 

S&P 100 0.006 0.005 0.219 -0.210 0.07 0.06 2.71 
S&P400 MIDCAP 0.008 0.008 0.323 -0.227 0.08 0.06 2.46 

S&P 500 0.007 0.007 0.283 -0.215 0.07 0.05 2.54 
1The numbers are expresses in percentages. 

 

 


