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We study games in which multiple principals influence the choice of a privately-informed

agent by offering action-contingent payments. We characterize the equilibrium allocation set

as the maximizers of an endogenous aggregate virtual-surplus program. The aggregate max-

imand for every equilibrium includes an information-rent margin which captures the con-

fluence of the principals’ rent-extraction motives. We illustrate the economic implications of

this novel margin in two applications: a public goods game in which players incentivize a

common public good supplier, and a lobbying game between conflicting interest groups who

offer contributions to influence a common political decision-maker.
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contracts, public goods games, lobbying games.

1. INTRODUCTION

Economists have long been interested in strategic settings in which several interested

parties (perhaps with opposed interests) attempt to influence a common agent to do

their bidding. In the almost three decades that have passed since the seminal strategic

analysis by Bernheim and Whinston (1986), the truthful equilibrium of their complete-

information model of menu auctions and influence games has become a work horse

in a wide range of settings. Applications include international trade (e.g., Grossman

and Helpman (1994, 1995, 2001), Dixit, Grossman and Helpman (1997), Goldberg and

Maggi (1997)), combinatorial auction design (e.g., Milgrom (2007)), industrial organi-

zation (e.g., Bernheim and Whinston (1989)), and political economy and public finance

*An earlier version of this paper was circulated as “Public Contracting in Delegated Agency Games”

(April 2013). The present papers studies a less general set of influence games, but includes a large variety

of applications of the results. We thank numerous seminar participants for their thoughtful comments

on this project. We are especially indebted to John Birge, Philippe Jehiel, Michel LeBreton, Stephano

Lovo, David Rahman, Aggey Semenov and Richard van Weelden.
aParis School of Economics-EHESS, david.martimort@parisschoolofeconomics.eu
bUniversity of Chicago Booth School of Business,lars.stole@chicagobooth.edu
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(e.g., Aidt (1998), Laussel and LeBreton (1998, 2001), Besley and Coate (2001), Persson

and Tabellini (2002), Bellettini and Ottaviano (2005), Felli and Merlo (2006)).

The menu auctions game of Bernheim and Whinston (1986) owes its success, in part,

to the simplicity and robustness of its equilibrium characterization, even in what may

at first glance appear to be very complicated strategic settings. To review, the basic

game consists of n principals and a single common agent. The agent chooses some ac-

tion, q ∈ Q, that has payoff consequences for each of the principals. Prior to taking an

action, however, the principals may each offer the agent enforceable payment sched-

ules – menus of promised payment-action pairs (possibly subject to constraints such

as nonnegativity). After receiving a menu offer from each principal, the agent chooses

an action to maximize utility. Bernheim and Whinston (1986) show that there are a

large number of equilibria to this influence game, but there is always an equilibrium in

which the agent chooses an action which maximizes the collective surplus of the prin-

cipals and the agent. Such a surplus-maximizing equilibrium can be supported with

“truthful” menus in which each principal offers a transfer schedule whose marginal

transfer is equal to the principal’s marginal benefit of action. Furthermore, this truth-

ful equilibrium allocation is also the only one that is immune to a reasonable class of

renegotiations – formally, the equilibrium is a Coaltional-Proof Nash Equilibrium. As

a result, Bernheim and Whinston argue that the surplus-maximizing outcome (relative

to the set of principals and the agent) is a reasonable equilibrium to use for predicting

behavior in general menu auction games with complete information.

The novel contribution of this paper is to reconsider influence games under the as-

sumption that the agent has private information. Although there are a few antecedents

to this approach – Laffont and Tirole (1991), Martimort (1996, 2007), LeBreton and

Salanié (2003) – these papers rely on highly-stylized settings with (sometimes implicit)

equilibrium refinements for their results. In particular, these earlier models ignored the

endogeneity of the principals’ activity sets by either assuming symmetry or assump-

tions which guaranteed full coverage. Our paper provides the first general analysis

of this class of influence games and explicitly characterizes the principals’ activity sets.

The present paper is also related to an earlier common-agency literature with privately-

informed agents which assumes that each principal can only contract over a distinct,

mutually-exclusive subset of the agent’s actions. For example, Martimort and Stole

(2009) assume that the principals are firms selling their output to a common consumer.

Principal 1, however, can only condition its contract only on the consumer’s purchases

of its good, q1; its contract terms cannot directly depend on the consumer’s purchases
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of the rival’s product, q2. This has been referred to as the private contracts assumption,

to distinguish it from the present setting of contracts on public variables. In contrast, by

focusing on settings in which principals contract on the same screening variable, the

current paper reveals a different set of strategic externalities.

Characterizing equilibria in our incomplete-information game of common agency

raises two technical difficulties. First, if principals are allowed to choose discontinu-

ous payment schedules, each individual principal’s optimization problem may itself

be discontinuous. As such, standard control-theory techniques which assume continu-

ity (and typically piecewise differentiability) cannot be applied to the problem. Fortu-

nately, we are able to import results from the mathematics literature on non-smooth op-

timal control to address this problem. A second difficulty introduced from asymmetric

information is that an individual principal may only choose to influence a strict subset

of types in equilibrium. The sets of types on which each principal is active must be de-

termined in order to construct equilibrium tariffs, but the equilibrium tariffs, in turn,

determine the regions of activity. In short, the equilibrium activity sets must be jointly

determined as part of a fixed point of the principals’ best-response correspondences.

Fortunately, we are able to address this difficulty and obtain closed-form solutions by

assuming that each principal has linear preferences over Q.

As in Bernheim and Whinston’s (1986) complete information game, we find an infi-

nite number of equilibria. Rather than propose an equilibrium refinement at the outset,

we instead construct conditions for the set of all equilibria. Our main theoretical con-

tribution, Theorem 1, demonstrates that all equilibria exhibit the same confluence of

information-rent terms and that the θ-type agent’s equilibrium choice q(θ) is identical

across all equilibria in which there is full separation in the neighborhood of θ. We single

out one particular equilibrium allocation – what we call the maximal equilibrium. This

equilibrium has many useful properties. It always exists, is easy to compute, exhibits

maximal separation, and is implemented with continuous contracts. Of particular eco-

nomic interest, the distortions of the maximal equilibrium allocation are entirely driven

by an informational variation of the tragedy of the commons. Additionally, the limit of

the expectation of the marginal tariff in the maximal equilibrium as the game becomes

one of complete information also equals the marginal tariff in the truthful equilibrium

of Bernheim and Whinston (1986). These properties – and the fact that for any equi-

librium in which there is local separation, the equilibrium allocation coincides with

the maximal allocation – motivate us to focus primarily on the maximal equilibrium

allocation in the applications of Section 5. If we were only interested in the tragedy-of-
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the-commons effect, analysis of the maximal equilibrium would be enough. Because

other equilibrium allocations exhibit the additional effect of choice discontinuities, we

also find it useful to provide a recipe for constructing the discontinuous equilibria and

illustrate its use in one of our applications.

Two settings provide motivating applications for our general theory. First, we con-

sider games in which the preferences of all principals reflect a general consensus that

more activity by the agent is desirable, holding the amount of transfers fixed. In this

case, we say that preferences are congruent. As an application, suppose that the n prin-

cipals all value some public good, q, produced by the agent, but the principals value

the good with possibly different intensities (relative to their marginal utility of money).

The agent has private information about the cost of providing the good, q, and so each

principal will individually consider the tradeoff of greater provision against the re-

duction of the agent’s information rent. In a world with one principal, the setting is

analogous to the government regulation of a monopolist with unknown marginal cost,

Baron and Myerson (1982). With multiple principals, however, we will see that there

are additional effects that may generate an allocation that looks considerably different

from either the first-best allocation (which is also the truthful equilibrium of Bernheim

and Whinston’s complete information game) or the Baron-Myerson allocation.

Second, we also consider games in which some principals prefer higher q, and other

principals prefer a lower q. Thus, we can think of there being two “interest groups”

with opposed preferences, although the principals within each group have congruent

preferences and act noncooperatively. A natural application is one where the agent

is a politician with some privately-known ideal policy point, and the principals are

lobbyists offering political contributions as functions of the politician’s policy choice,

q. As in the public good example, each principal will consider the tradeoff between

influencing the agent to choose a more preferred policy against the ability to reduce

the information rents paid to the agent (e.g., total campaign contributions). Unlike the

setting in which all principals are congruent in their preferences, we will find that the

informational-rent distortions of the principals are combined into an interesting and

novel marginal distortion.

In both the public goods game and the lobbying game, we also provide compara-

tive statics on principal preferences and the equilibrium influence the principals exert

on the agent. Among other results, applying Jensen’s inequality to the equilibrium

information-rent confluence function implies that dispersed preferences within an in-

terest group (e.g., small and large stakeholders rather than homogenous stakeholders)
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leads to more influence. We also show that an increase in one principal’s preferences

leads to more influence, but with some crowding out of the contributions of liked-

minded principals. Lastly, we demonstrate that a mean-preserving spread of princi-

pal preferences in the political lobbying game that does not affect the first-best policy

choice, nonetheless leads to a mean-preserving spread in the distribution of equilib-

rium policies.

The basic influence game with incomplete information is presented in Section 2.

In Section 3 we analyze the best-response correspondence of a typical principal and

present our key building block (Lemma 1) for our discontinuous control. Necessary

conditions characterizing the role of information rents in any equilibrium are presented

in Section 4, along with sufficient conditions for the maximal equilibrium. We turn to

applications in Section 5 and analyze the maximal equilibria in both the public goods

and lobbying games. We also further explore discontinuous equilibria in the setting

of lobbying games, illustrating in a concrete example the similarities and differences

between the maximal and discontinuous equilibria. Section 6 concludes.

2. A MODEL OF INFLUENCE WITH INCOMPLETE INFORMATION

Our economic influence game is a setting in which each of n principals simultane-

ously offers a common agent a nonnegative payment schedule that rewards the agent

for the choice of action, q ∈ Q ⊂ R, where Q is convex and compact. Formally, we

allow each principal i to present to the agent any upper-semicontinuous function,

ti : Q → R+, as its contract offer.1,2 In particular, requiring that ti only be upper

semicontinuous allows for the possibility of discontinuities in transfers, possibly sup-

porting equilibria with discontinuities in the allocation function, q(θ).

Each principal has preferences that are linear in both the agent’s choice of q and

1Requiring the schedules be nonnegative is without loss of generality if the agent has the option to

reject any subset of the offered schedules (i.e., if common agency is delegated). When the agent must either

accept of reject the entire set of the n offers, then common agency is intrinsic. The set of equilibria for this

simpler setting is explored in Martimort and Stole (2012). Intrinsic common agency is the appropriate

setting if the principals have some control of the agent’s choice as in the case of public regulation by

different government agencies. When common agency is intrinsic, the activity sets of the principals

always coincide, so equilibrium analysis of these games avoids the difficulties in the present paper.

Nonetheless, intrinsic common agency with public contracts provides an interesting comparison for the

influence games in the current paper, which we discuss in a subsequent section of this paper.
2“Contracts on contracts” are ruled out for verifiability reasons. For instance, in a lobbying context a

given interest group may not have all the relevant information on other groups’ offers to condition his

own contributions. Szentes (2015) analyzes those “contracts on contracts.”
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in monetary transfers. Given a contract ti and a choice of q by the agent, we denote

principal i’s payoff as simply siq − ti(q). We will indicate that a principal has a positive

preference for q, si > 0, by the index set i ∈ A; similarly, a principal with negative

preferences for q, si < 0, will be indicated by i ∈ B. The set of all principals is N =

A∪ B.

The agent has heterogeneous preferences, indexed by θ ∈ Θ = [θ, θ], chosen by

nature at the start of the game according to a commonly-known distribution function,

F, with an associated positive, atomless density function f . The agent’s preferences

over action q and monetary transfers t, conditional on θ, is represented by

S0(q)− θq + t,

where S0 is a continuously differentiable, strictly concave function.

We make two additional assumptions on the distribution of types to avoid technical

complications in the arguments which follow. First, in order to guarantee that the so-

lutions to a relaxed program are monotone, we make the familiar assumption that the

distribution function, F, and its complement, 1− F, are log concave. Second, in order to

obtain interior principal activity sets, we assume that each principal’s marginal prefer-

ence, si, is not too large relative to the heterogeneity of agent preferences. Specifically,

we require that there exists an interior type θ̂i such that si = F(θ̂i)/ f (θ̂i) for i ∈ A and

|si| = (1− F(θ̂i)/ f (θ̂i) for i ∈ B.3 The implication of this assumption (yet to be shown)

is that each principal will actively influence a proper subset of agent types.4

The timing of the influence game has three stages. First, nature chooses the agent’s

type. Second, each principal i chooses a transfer function, ti ∈ T , where T is the

set of nonnegative, upper-semicontinuous functions on Q. We will denote T−i(q) ≡
∑j 6=i tj(q) and T(q) ≡ ∑i∈N ti(q) as the associated aggregate transfers of the principals

from this stage. Third, the agent chooses an optimal action given the aggregate trans-

fers offered in the second stage, q0(θ | T). Finally, payments are made by the principals

in accord with their contractual obligations.

Our solution concept is pure-strategy Perfect Bayesian equilibria. We say that the

strategy profile {q0, t1, . . . , tn} is an equilibrium of the influence game if for all θ ∈ Θ

(1) q0(θ | T) ∈ arg max
q∈Q

S0(q)− θq + T(q),

3Given log concavity, an interior type exists if si < 1/ f (θ) for i ∈ A and −si < 1/ f (θ) if i ∈ B.
4It is straightforward to extend the analysis to the case in which principals might be active for every

agent type. Our main characterization theorem, for example, extends to this setting with additional

notation and treatment of additional special cases.
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and for all i ∈ N

(2) ti ∈ arg max
ti∈T

∫

Θ

(

siq0(θ | T−i + ti)− ti(q0(θ | T−i + ti))
)

f (θ)dθ.

For any aggregate equilibrium transfer function, T, we will refer to the equilibrium allo-

cation pair, (q, U), as defined by q(θ) ≡ q0(θ | T) and U(θ) = S0(q(θ))− θq(θ)+T(q(θ))

for all θ ∈ Θ. We will denote the equilibrium range of agent choices by q(Θ) ≡ {q ∈
Q | ∃θ ∈ Θ s.t. q=q(θ)}.

3. PRELIMINARIES

We begin with a consideration of principal i’s best response under the belief that

the other principals will offer the aggregate influence schedule T−i. From principal i’s

vantage point, it is as if he is designing a contract for an agent with residual preferences

given by

S0(q)− θq + T−i(q).

Absent an agreement with principal i, the agent can always secure the following indi-

rect utility with the remaining n − 1 principals:

U−i(θ) ≡ max
q∈Q

S0(q)− θq + T−i(q).

Note that if the agent is offered a nonnegative schedule by principal i, it necessarily

follows that the agent’s indirect utility of contracting with principal i weakly exceeds

U−i. Similarly, if the agent’s indirect utility exceeds U−i, then the agent must choose

an action for which principal i has offered a positive payment. Hence, we can replace

the requirement that ti ≥ 0 with the requirement that U ≥ U−i, where U is the agent’s

utility when contracting with all principals.

Framed in this manner, we can think of principal i as choosing an allocation (q, U)

that is individually rational and incentive compatible for the agent relative to some

outside option, U−i. Because the agent’s preferences are bilinear in q and θ, following

Rochet (1987) we can express these requirements formally as

(3) U(θ) ≥ U−i(θ), for all θ ∈ Θ, (individual rationality)

(4) −q(θ) ∈ ∂U(θ), U(θ) convex, (incentive compatibility).

The notation −q ∈ ∂U(θ) is a general statement of the agent’s first-order envelope

condition. Here, ∂U represents the subdifferential of a convex function, allowing for the
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possibility that for some θ, U may fail to be differentiable. If U is differentiable at θ, then

∂U(θ) = {U′(θ)} and thus −q(θ) = U′(θ), but at points of non-differentiability, an

incentive-compatible choice q will nonetheless lie between the right and left derivatives

at θ (which are always well defined for a convex function). The tandem requirement in

(4) that U is convex is equivalent to the requirement that q is a nonincreasing function.

Given the characterization of implementability, principal i’s problem of choosing an

optimal ti can be reformulated as choosing an allocation (q : Θ → Q and U : Θ → R)

to solve the following program:

Program Pi: max
(q,U)

∫

Θ

{

siq(θ) + S0(q(θ))− θq(θ) + T−i(q(θ))− U(θ)
}

f (θ)dθ,

subject to (3)-(4).5 If T−i is known to be piecewise differentiable and the integrand

is known to be concave, we could apply standard optimal control results to obtain

a characterization of the the optimal contract. Assuming that T−i is continuous and

almost everywhere differentiable, however, imposes an equilibrium refinement that

we should make explicit.6

To provide a general solution to principal i’s program that requires only that T−i

be upper-semicontinuous, we utilize necessary and sufficient conditions for control

programs with type-dependent participation constraints and possibly discontinuous

objective functions that we have developed elsewhere (Martimort and Stole (2014)).

Intuitively, one can show that the solution to the program in which the objective func-

tion is replaced with its concavification is also a solution to the original program. The

concavification, while continuous, is possibly nondifferentiable at points, and so tools

from nonsmooth optimal control can be applied. These tools, fortunately, allow us to

state necessary and sufficient conditions using a distribution of Lagrange multipliers

that is reminiscent of Jullien (2000).7

5Given our definition of U−i, we could have alternatively stated the integrand as siq(θ) − [U(θ) −
U−i(θ)], making explicit that the principal is maximizing i’s benefit of q net of the utility increment

required for implementation.
6Note that in the above description of principal i’s program, we have implicitly allowed the principal

to resolve the agent’s indifference in her favor if the agent’s best-response set is multi-valued. Because

incentive compatibility requires that the agent’s indirect utility function is convex, however, and because

a convex function has at most a countable number of kinks, the set of types who do not have a unique

optimal choice is necessarily of measure zero. Thus, we may arbitrarily assign the agent’s choice in case

of indifference (i.e., we may take any selection satisfying (1)) without any impact on the best-responses

of the players in (2). We thank Thomas Mariotti for this point.
7Jullien (2000) provides necessary and sufficient conditions for control problems with pure type-

dependent state constraints under the assumption that the objective function is continuous and piece-
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Before presenting the solution to Principal i’s program, we introduce one remaining

and important piece of notation – the virtual marginal valuation of principal i:

(5) βi(θ) ≡























max
{

si − F(θ)
f (θ)

, 0
}

i ∈ A,

min
{

si +
1−F(θ)

f (θ)
, 0
}

i ∈ B.

To see foreshadow the usefulness of βi in the analysis that follows, consider a vari-

ant of Baron and Myerson’s (1982) monopoly regulation model with n = 1. Along

this line of inquiry, let s1q + S0(q) > 0 capture the principal-regulator’s social value

of production and let θ reflect the firm’s unit cost of production. The socially-efficient

production level for type θ is given by si + S′
0(q) = θ, but the second-best solution

under incomplete information equates s1 + S′
0(q) = θ + F(θ)

f (θ)
if such a solution exists

and q = 0 otherwise. Using our notation for β1(θ), the latter is more compactly ex-

pressed as choosing q ≥ 0 to maximize β1(θ)q + S0(q). Because β1(θ) < s1 for θ > θ,

the second-best solution exhibits downward distortions in production (except for the

most efficient firm). In the more general analysis which follows, we will include the

possibility that si < 0, and so our notation for βi extends to i ∈ B. With multiple

principals, we will see that the equilibrium may depend upon the virtual marginal

valuation of every principal. One contribution of this paper is determining the precise

manner in which the βi combine to determine the equilibrium allocation.8

We now present the key building block of our analysis.

LEMMA 1 Given the aggregate transfer function, T−i, and the agent’s corresponding outside

option, U−i(θ), the allocation (q, U) is a solution to Principal i’s program if and only if it

satisfies (3)-(4), and for almost every θ ∈ Θ

(6) βi(θ) = 0 ⇐⇒ U(θ) = U−i(θ),

(7) q(θ) ∈ arg max
q∈Q

S0(q) + (βi(θ)− θ)q + T−i(q).

wise differentiable. Martimort and Stole (2014) demonstrate that a slight variation of Jullien’s conditions

can be applied to discontinuous models as well. It is worth noting that the simplicity of these conditions

is a consequence of the assumption that the objective function is linear in the state variable. Because the

preferences of the players are quasi linear in money, this assumption is satisfied in the present setting.
8We can restate our assumption that the distribution of types required that principal preferences are

not too strong relative to the agent heterogeneity using the notation βi: For each principal i, there exists

a θ̂i ∈ (θ, θ) such that θ̂i is the largest (resp., smallest) type such that βi(θ) = 0 for i ∈ B (resp., i ∈ A).
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In words, the Lemma informs us that for any type for which βi(θ) = 0, principal

i finds it optimal not to influence the agent’s choice. Indeed, the optimal transfer ti

which implements (q, U) above will have the property that ti(q(θ)) = 0 for all θ such

that βi(θ) = 0. For these types, we say that principal i is inactive. For any θ for which

principal i is active, βi(θ) > 0, we have U(θ) > U−i(θ) and principal i offers a marginal

payment given by t′i(q(θ)) = βi(θ), wherever ti is differentiable, and (7) gives the so-

lution to the agent’s optimal choice program.

4. EQUILIBRIA

Our influence game is an aggregate game because – after reducing the agent’s choice

to the function q0(θ|T) – principal i’s preferences over strategy profiles can be reduced

to preferences over ti and the aggregate T. Although the influence game has infinite-

dimensional strategies and incomplete information, it also has the convenient property

that it is quasi-linear in strategies (i.e., payoffs are linear in transfer functions), and so

following Martimort and Stole (2012), we can apply the aggregate concurrence principle,

in tandem with Lemma 1, to deduce an immediate necessary condition for the set of

equilibria. In the present context, this is done simply noting that q must solve (7) for

each principal i. Hence, q must also maximize the sum of the objectives from these

individual programs:

q(θ) ∈ arg max
q∈Q

∑
i∈N

S0(q) + (βi(θ)− θ)q + T−i(q)(8)

= arg max
q∈Q

S0(q) + (β(θ)− θ) q + (n − 1)
(

S0(q)− θq + T(q)
)

,

where T implements q and β(θ) ≡ ∑i∈N βi(θ) is the aggregate virtual preferences of

the principals.9

Because T appears in the objective in (8) and it must also implement q, this necessary

condition contains a fixed point: For a given T, there exists a q, which in turn must be

a solution to the program in (8). As we will demonstrate, there are generally an infinite

number of solutions to this program. One solution, however, stands out for special

consideration. Define the allocation qQ as the unique solution to

(9) qQ(θ) = arg max
q∈Q

S0(q) + (β(θ)− θ) q,

and denote T
Q

as the aggregate transfer function which implements qQ. Implementabil-

9The second line follows from ∑i∈N T−i(q) = ∑i∈N(T(q)− ti(q)) = nT(q)− T(q) = (n − 1)T(q).
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ity, in turn, implies that qQ also satisfies

(10) qQ(θ) ∈ arg max
q∈Q

S0(q)− θq + T
Q
(q).

As a consequence, qQ maximizes any objective which is a linear combination of the

maximands in programs (9) and (10), and therefore qQ is a solution to (8). Indeed, as

we show below in our main characterization result, qQ is an equilibrium allocation. It

has the additional properties that it is continuous, strictly decreasing over any interval

in which some principal is active, and it is implemented by an almost everywhere

differentiable aggregate transfer function. That said, we emphasize that there are an

infinity of solutions to (8) that are equilibria but do not satisfy (9).10 Fortunately, all

equilibria have a similar structure, which we now characterize in one of this paper’s

main theoretical contributions.

THEOREM 1 If q is an equilibrium allocation, then

(11) q(θ) ∈ arg max
q∈q(Θ)

S0(q) + (β(θ)− θ)q, for all θ ∈ Θ.

Moreover, the allocation qQ satisfying

(12) qQ(θ) ∈ arg max
q∈Q

S0(q) + (β(θ)− θ) q,

is an equilibrium allocation.

The difference between the two conditions is subtle, but significant. The sufficient

condition in (12) is stronger than the necessary condition (11) since it requires optimal-

ity over the whole set of possible actions, Q; on the contrary, the necessary condition

in (11) requires optimality relative to the (typically) smaller range of equilibrium al-

locations, q(Θ). It is for this reason that we denote the solution to (12) with a Q as

superscript to indicate the optimization is taken over the whole of Q rather than the

equilibrium range, q(Θ) ⊆ Q, and accordingly we will refer to such an equilibrium

as maximal. We will demonstrate below that there are equilibrium allocations which

satisfy (11) but do not satisfy (12), and so the latter condition implicitly refines the

equilibrium set. When, for instance, S0 is strictly concave, this restriction implies that

q is in fact continuous. Instead, condition (11) is a priori compatible with the existence

of discontinuities in the output profile. In fact, the equilibrium set is shown to contain

an infinite number of discontinuous equilibria.

10Note that although any solution that satisfies (9) and (10) must also satisfy (8), there exist allocations

which satisfy (8) and (10), but fail to satisfy (9).
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Although the domains of optimization differ in (11) and (12), it is worth emphasiz-

ing that the fundamental character of both conditions is similar. Theorem 1 makes it

clear that in any equilibrium – and in particular in the continuous maximal equilibrium

– there is an information-rent distortion generated by the presence of n principals each

trading off the cost of bilateral inefficiency against the gain of surplus extraction. The

manner in which these information-rent margins combine to generate departures from

efficiency is the same across all equilibria and involves the comparison of the princi-

pals’ collective margins under full information,

∑
i∈N

si

versus their collective virtual margins under incomplete information,

∑
i∈A

max

{

si −
F(θ)

f (θ)
, 0

}

+ ∑
i∈B

min

{

si +
1 − F(θ)

f (θ)
, 0

}

.

This universal comparison is possibly the most compelling reason to refine the set of

equilibria and focus on qQ, although we remain largely agnostic. It is also worth noting

that although any equilibrium allocation q may differ from qQ, if for some θ it is the case

that q(θ) is fully separating over the neighborhood of θ, then q and qQ must coincide.

Formally,

COROLLARY 1 For any equilibrium allocation, q, and for any θ ∈ Θ,

q(θ) ∈ int q(Θ) =⇒ q(θ) = qQ(θ).

Hence, any differences between two equilibrium allocations arise at the boundaries

of the equilibrium range. It is worth emphasizing that the distortion that arises in the

maximal equilibrium for any type θ is present in all equilibria in which θ is not pooled

with other types. In this sense, the distortions in the maximal equilibrium are robust.

The economic interest of non-maximal equilibria is in the additional discontinuities

and pooling distortions that they generate. Given the simplicity in computing maximal

equilibrium allocations for applications, it will serve as the focus for most of our appli-

cations in Section 5, though we will illustrate the additional effect of discontinuities in

our lobbying application. Accordingly, we provide here a complete characterization of

the corresponding maximal equilibrium tariffs. The nature of these tariffs is established

in the constructive proof to (12) in Theorem 1.

COROLLARY 2 The maximal equilibrium allocation

qQ(θ) ≡ arg max
q∈Q

S0(q) + (β(θ)− θ)q,
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is supported by the continuous equilibrium tariffs which satisfy, for each i,

(a) t
Q
i (q) = 0 if either q 6∈ qQ(Θ), or q = qQ(θ) and βi(θ) = 0, and

(b) d
dq t

Q
i (q) = βi(ϑ

Q
(q)), where θ = ϑ

Q
(q) is the inverse of q = qQ(θ).11

A typical feature of non-maximal equilibrium allocations are the presence of discon-

tinuities in q (or equivalently, gaps in the equilibrium range q(Θ)) and the bunching

of types. For equilibrium allocations that are discontinuous, Theorem 1 imposes addi-

tional structure for the points at which there must be bunching.

COROLLARY 3 If q is an equilibrium allocation with a discontinuity at θ0, then

(13) S0(q1) + (β(θ0)− θ0)q1 = S0(q2) + (β(θ0)− θ0)q2,

where q1 = limθ→θ+0
q(θ) and q2 = limθ→θ−0

q(θ) > q1. Moreover, there exist θ1 > θ2 such

that q1 = qQ(θ1) and q2 = qQ(θ2), and

q(θ) =























q1 = qQ(θ1), for θ ∈ (θ0, θ1]

q2 = qQ(θ2), for θ ∈ [θ2, θ0).

The above characterization bears strong similarities with the literature on mecha-

nism design without transfers in monopolistic screening environments.12 In that lit-

erature, much effort has been devoted to characterize possible actions implementable

in a context with asymmetric information when the preferences of the principal and

the agent differ. The basic lesson there is that any implementable action may either be

flat over some range and not responsive to the agent’s private information or corre-

spond to the latter’s ideal point. In light of this literature, everything happens as if,

over a range Q, the equilibrium output q were chosen by a surrogate principal who

aggregates the behavior of all principals and maximizes their aggregate virtual sur-

plus as defined in (11). Of course, the objective of this surrogate principal differs from

what would be optimal had principals merged; the difference being related to the fact

that in a non-cooperative context, each principal introduces output distortions for rent

extraction reasons.

11This inverse is a priori a correspondence which is single-valued at any point where t
Q
i (q) is differ-

entiable.
12See Holmström (1984), Melumad and Shibano (1991), Martimort and Semenov (2006) and Alonso

and Matoushek (2008), among others.
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We complete our equilibrium analysis in this section by demonstrating that one can

take any equilibrium allocation and add an additional discontinuity to create a new

equilibrium allocation, provided the discontinuity is not too large.

PROPOSITION 1 Let q be any equilibrium allocation and let (θ̂, q̂) be any point on this al-

location around which there in a neighborhood such that q is continuous, strictly decreasing,

and two or more principals are active. Then there exists an open interval, (q1, q2), containing

q̂ such that the following is also an equilibrium allocation:

(14) q̃(θ) ∈ arg max
q∈q(Θ)\(q1,q2)

S0(q) + (β(θ)− θ)q.

In addition, every agent type weakly prefers the original equilibrium allocation, U(θ) ≥ Ũ(θ),

with strict preference for some positive measure of types.

The Proposition demonstrates that an arbitrary number of discontinuities may be

introduced into any equilibrium allocation by restricting the domain of optimization

(14) to exclude an appropriately small interval of Q, creating a downward jump in q̃(θ)

from q2 to q1. We also show in the constructive proof to this proposition that if types are

uniformly distributed, the equilibrium tariffs which implement q̃ are simply t̃i(q) = 0

for q ∈ (q1, q2) and t̃i(q) = ti(q) otherwise.13 In Section 5.2 we will explicitly construct

such a discontinuous equilibrium in the context of a lobbying game and demonstrate

that even large gaps can be introduced.

5. APPLICATIONS

We have chosen two classes of games to illustrate the equilibrium characterization

in Theorem 1 that we believe are of particular interest as applications. In the first sec-

tion, our focus is on settings in which all principals exhibit congruent preferences (e.g.,

A = N and B = ∅), and our particular application is the provision of a public good

by citizen-principals employing a privately informed agent-supplier. In the subsequent

section, our focus shifts to environments in which principals disagree about the pre-

ferred direction of action, and we apply our framework to games in which principal-

lobbyists attempt to influence the policy choice of a privately informed agent-legislator.

Our focus in both games is on the maximal equilibrium allocations as these equilibria

are simple to compute and afford us sharp comparative statics. As we emphasized

13More generally, when types are not uniformly distributed, the constructed tariff for each active

principal i must have a change in constant at either q1 or q2, but the aggregate tariff still satisfies T̃(q) = 0

for q ∈ (q1, q2) and T̃(q) = T(q) otherwise.
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above, the distortions in the maximal equilibrium are present for any non-pooling

type in any equilibrium. That said, we recognize that non-maximal equilibria have ad-

ditional implications due to their discontinuities, and also characterize non-maximal

equilibria in the context of the lobbying game.

5.1. Congruent Preferences – Private Provision of Public Goods

In the public-good game we consider, there are n principal-citizens and a privately-

informed supplier of a public good. Each principal values the public good, but the

principals may differ in the intensities of their preferences. Formally, we order the n

principals such that s1 ≥ ... ≥ sn > 0 and will denote a configuration of principal

preferences by the vector s ≡ (s1, . . . , sn). Each principal offers the common agent a

contribution schedule, ti, which promises a payment ti(q) to the agent for q units of

public good. In this context, we take agent’s type to be an unknown, positive marginal

cost of production, θ > 0, and the domain of public goods to be Q = [0, qmax], with qmax

larger than the first-best level of public good. The agent’s known cost of production

is captured by a decreasing benefit function, S0(q), with S0(0) = 0. Without loss of

generality, we normalize θ such that S′
0(0) = 0.

5.1.1. Properties of the maximal equilibrium allocation

Specializing (12) from Theorem 1 to the public goods setting, the maximal equilib-

rium allocation satisfies

(15) qQ(θ) = arg max
q∈Q

S0(q)− θq +

(

∑
i∈N

max

{

si −
F(θ)

f (θ)
, 0

}

)

q.

There are two natural benchmarks for comparison. Under complete information, the

first-best, full-information allocation satisfies

q f b(θ) = arg max
q∈Q

S0(q)− θq +

(

∑
i∈N

si

)

q,

and so we have the immediate (and familiar) result that the presence of incomplete in-

formation results in a downward distortion in activity except at the most efficient type,

θ. In the present setting, however, there are two distinct reasons for this downward

distortion.

A second benchmark allows us to decompose this further. Suppose that there is a

single principal who has linear preferences for the public good given by ∑i si; alterna-

tively, one can think of a cooperative formed with all principals designing their com-
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pensation schedule to maximize their collective surplus. In this case, the optimal al-

location coincides with familiar allocation of Baron and Myerson (1982) in which the

government regulates a monopolist with unknown marginal cost. Formally, the solu-

tion is

qbm(θ) = arg max
q∈Q

S0(q)− θq + max

{(

∑
i∈N

si

)

− F(θ)

f (θ)
, 0

}

q.

Close inspection reveals that

q f b(θ) ≥ qbm(θ) ≥ qQ(θ)

for all θ with strict inequality for a positive measure of types. The difference between

the first-best allocation and the Baron-Myerson solution is well understood as the out-

come of a tradeoff between surplus extraction and inefficient output. The additional

downward distortion between the Baron-Myerson allocation and the maximal alloca-

tion in the non-cooperative game can be understood as a tragedy of the commons in

which each individual principal “over harvests” the agent’s information rent. This is

clearest to see when the principals have symmetric preferences, si = s for all i, and an

agent type is active for all principals. For such a type,

qbm(θ) = arg max
q∈Q

S0(q) + nsq − θq − F(θ)

f (θ)
q,

but in the noncooperative setting

qQ(θ) = arg max
q∈Q

S0(q) + nsq − θq − n
F(θ)

f (θ)
q.

Evidently, the information-rent term is magnified by a factor of n as each principal

attempts to extract a margin of rents from the agent. The noncooperative public-goods

game induces an n-fold marginalization that is in the same spirit as the problem of

double marginalization that arises in vertical sales relationships.

It is worth noting that this over harvesting of the agent’s information rent disappears

as one takes the limit of the maximal allocation as information becomes complete. Un-

like the classic public-goods game which does not include a common agent and in

which each principal contributes a fixed level of output to the public good, under com-

plete information the presence of a common agent and the use of nonlinear prices al-

lows the first-best allocation to arise in equilibrium. The noncooperative nature of the

game introduces additional distortions only because of the presence of incomplete informa-

tion.
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5.1.2. Comparison with Intrinsic Common-Agency Games

In this paper, we require that each principal offers nonnegative transfers to the agent,

which is formally equivalent to allowing the agent to accept only a subset of contract

offers. Elsewhere in Martimort and Stole (2012), we considered the simpler setting in

which the principals could offer negative transfers but the agent was restricted to either

accept or reject to entire set of offers. As an example, a privately-informed agent-firm

may be subject to multiple principal-regulators; the agent may choose not to partici-

pate, but participation necessarily entails submitting to all principals. In this case of

intrinsic common agency in which acceptance or rejection must be uniform across all

principals, every principal is active for the same set of agent types. If the principals’

preferences are congruent, then the analogue14 of the maximal equilibrium in the case

of intrinsic common agency is

(16) qI(θ) = arg max
q∈Q

S0(q)− θq + max

{

∑
i∈N

(

si −
F(θ)

f (θ)

)

, 0

}

q.

Comparing (16) to (15), we see that the fact that only a subset of principals may be

active for a given type results in a higher (more efficient) level of activity compared to

the game in which the agent must either accept or reject the entire set of contract offers.

In the case of intrinsic common agency, if the agent is active, then the information term

F(θ)/ f (θ) necessarily has a weight of n attached to it, while in the case of our influence

game in which transfers are nonnegative, there will be a lower coefficient attached to

the rent term for some less-efficient types if not all principals are simultaneously active.

5.1.3. Comparative statics on principals’ preferences

The fact that the cooperative allocation is weakly higher than the noncooperative

allocation (and strict for some types) is actually a special case of a more general phe-

nomena and follows from an application of Jensen’s inequality to the characterization

in (15), which is convex in the principals’ preference configuration.

PROPOSITION 2 In the public goods game, consider two configurations of principal prefer-

ences, s = (s1, . . . , sn) and s̃ = (s̃1, . . . , s̃n), where s̃ is a mean-preserving spread 15 of s. The

14 The analogue is found by specializing (13) in Martimort and Stole (2012) to the present setting.
15To be clear, given two configurations s and s̃ with the same mean (i.e., ∑i si = ∑i s̃i), we define the

associated discrete distributions on the combined domain ∪isi ∪j s̃j. If the distribution for s second-

order stochastically dominates the distribution for s̃, then we say that s̃ is a mean-preserving spread of

s.
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associated maximal allocations in each game have the property that for all θ

qQ
s̃
(θ) ≥ qQ

s
(θ),

with a strict inequality for some positive measure.

As an illustration, consider the case of full principal integration; this is equivalent

to one principal having preferences s̃1 = ∑i si and the other (n − 1) principals having

preferences s̃j = 0 for j 6= 1. It follows that s̃ is more disperse than s and therefore, from

Proposition 2, the Baron-Myerson outcome with a collective of principals generates a

higher allocation than in the noncooperative setting.

More generally, Proposition 2 makes clear that the equilibrium allocation is not in-

variant with respect to redistributions of the principals’ preferences, keeping the ag-

gregate ∑i si constant. Thus, a unit tax on principal 1’s use of the public good that is

exactly offset by a unit subsidy on principal 2’s use could have a real impact on the

equilibrium allocation of public goods if this policy changed the set of active princi-

pals for some types.16 The conduit for how mean-preserving variations in the princi-

pals’ preferences can have real impacts in the final allocation is reminiscent of findings

in the public finance literature on voluntary contribution games (see, e.g., Bergstrom,

Blume and Varian (1986), et al.). This literature, which has focused on complete in-

formation games in which players’ strategies are scalar contributions (as opposed to

schedules of contributions), demonstrates that neutrality arises in simple public goods

games precisely when the set of contributors is unaffected by a variation in preferences

or incomes; when the set of contributors is affected, however, the level of public good

provision is typically altered. Similarly, we find in our richer incomplete-information

setting with a privately-informed agent that the key source of non-neutrality is that

an underlying variation can impact the set of principals who are actively influencing

some type.

As a final comparative static, consider the case in which n symmetric principals have

marginal benefit si = S/n (for some exogenous S). Using (15) , it follows that an in-

crease in the number of principals, holding S fixed, reduces public good provision.

Specifically, we have

qQ(θ) = arg max
q∈Q

S0(q)− θq + n

(

max

{

S

n
− F(θ)

f (θ)
, 0

})

q,

16This is not the case in models of intrinsic common agency, as shown in Martimort and Stole (2012),

because in such games all principals are active on the same type set and the allocation is unchanged by

mean-preserving variations in the principals’ preferences.
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which for n → ∞ converges pointwise to

qQ(θ) = arg max
q∈Q

S0(q)− θq.

Thus, given S0(q) is nonpositive and decreasing, in the limit no public good is pro-

vided. Note that this asymptotic inefficiency result arises from a very different source

than the asymptotic inefficiency result in the public goods game of Mailath and Postle-

waite (1990). In our setting, inefficiency arises because each principal attempts to ex-

tract the agent’s marginal rent, ignoring the externality this has on the others; in Mailath

and Postewaite’s setting, each principal has private information about their willingness

to pay (the agent’s preferences are known), and the probability that any individual

principal is pivotal goes to zero as the number of players increases.17

In the context of interest groups, the finding in Proposition 2 formalizes the ideas of

Olson (1965) and Stigler (1974) that a group is more likely to be influential if the group’s

preferences are heterogeneous (e.g., a combination of small and large stakeholders,

rather than a group of equal stakeholders). This idea has also been formalized in a

simple setting of binary actions and preferences by LeBreton and Salanié (2003). The

present paper shows that this result remains prominent in a richer setting.

Another political effect noted by Olson (1965) is that an increase in the stake of one

interest group member raises that person’s contribution, possibly lowers the contribu-

tion of others, but on net raises the total contribution (i.e., crowding out may arise, but

it is never complete). We can find a similar result in the case of public goods where

the increase in stake is modeled by an increase in si, and we can ask what happens to

the maximal equilibrium allocation (and the marginal transfers of all principals) in this

case.

PROPOSITION 3 In the public goods game, consider two principal preference configurations,

s and s̃, in which s̃i = si + ∆i, ∆i > 0, but s̃j = sj for j 6= i. Then the associated maximal

equilibrium allocations satisfy

qQ
s̃
(θ) ≥ qQ

s
(θ),

with strict inequality for some positive measure of types.

17The fact that the allocation decreases as the benefit S is distributed across a larger number of prin-

cipals can also be derived as a corollary to Proposition 2. Suppose there exist N principals, of which

n < N have marginal benefit si = S/n and the remaining N − n principals have marginal benefit si = 0.

Viewed as a distribution on N, as one increases n to N, the average benefit across N principals is fixed,

but dispersion decreases. Thus, increasing n can be framed as a mean-preserving contraction.
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Furthermore, both the marginal aggregate payment function and the marginal payment func-

tion of principal i weakly increase over the set of equilibrium choices (and strictly so for a subset

of outputs), while the marginal payment functions of the other principals, j 6= i, weakly decrease

over the set of equilibrium choices (and strictly so for a subset of outputs). Crowd out is less

than perfect.

This result follows directly from an application of (15): Because qQ(θ) is weakly in-

creasing in si (and strictly increasing in si for some positive measure of types), it follows

that the maximal equilibrium allocation must weakly increase (strictly over the same

measure of types). Hence, the aggregate marginal contribution schedule, T
Q′(q), can-

not decrease for any q ∈ qQ(Θ) and must strictly increase for at least some range of

q that are chosen in equilibrium by the agent. Next consider the marginal payments

made by principals j 6= i (whose stakes have remained constant). From Corollary 2,

the marginal transfer of principal j is given by

t
Q
j
′(q) = βi(ϑ(q)) = max

{

sj −
F(ϑ(q))

f (ϑ(q))
, 0

}

,

where θ = ϑ(q) is the inverse function of q = qQ(θ) and is uniquely defined at every

point of differentiability of t
Q
j (q). For any region of types for which qQ is decreasing

and strictly higher, it follows that ϑ(q) is also decreasing and strictly higher. From the

marginal payment equation, t
Q
j
′(q) must be lower following the change in principal

i’s preferences for these q. Of course, we know that T
Q′(q) is strictly higher for this q,

so it follows that t
Q
i
′(q) must be increase more than the reduction of ∑j t

Q
j
′(q). Hence,

crowd out occurs, but it is less than perfect.

5.1.4. A worked example

We conclude our study of the public goods game with a worked example to illustrate

the properties of the maximal equilibrium. To this end, we assume that n = 2, S0(q) =

− 1
2 q2, Q = [0, qmax] with qmax sufficiently large18, and that θ is distributed uniformly

on [0, θ]. As benchmarks, the efficient output is q f b(θ) = max{s1 + s2 − θ, 0}, and the

cooperative Baron-Myerson allocation is qbm(θ) = max{s1 + s2 − 2θ, 0}. We use (15) to

obtain a closed-form solution for the maximal allocation:

qQ(θ) = max

{

2

∑
i=1

max

{

si −
F(θ)

f (θ)
, 0

}

− θ, 0

}

.

18It suffices that qmax ≥ −θ + ∑i∈N si to prevent bunching at qmax.
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In our setting with n = 2, we can alternatively characterize qQ as the pointwise maxi-

mum of

q1(θ) ≡ max

{

s1 − θ − F(θ)

f (θ)
, 0

}

,

q2(θ) ≡ max

{

s2 − θ − F(θ)

f (θ)
, 0

}

,

and

q{1,2}(θ) ≡ max

{

s1 + s2 − θ − 2
F(θ)

f (θ)
, 0

}

,

where we can think of qi as the allocation that principal i would implement in isolation,

and q{1,2} as the allocation that arises whenever principals 1 and 2 are both actively

influencing the agent with double marginalizations. Thus,

q f b(θ) ≥ qbm(θ) ≥ max{q1, q2, q{1,2}} = qQ(θ).

An illustration makes clear these orderings.

qbm(θ)

qfb(θ)qQ(θ)
q1(θ)

q{1,2}(θ)

q

θ

Figure 1: Voluntary provision of a public good. Figure is drawn for the case of θ uniformly

distributed on [0, 5
2 ], s1 = 7

2 > s2 = 3
4 , and S0(q) = − 1

2 q2.

This example illustrates how distortions in delegated common agency games with

congruent principals manifest themselves in two dimensions. First, because each active

principal contributes less than his marginal valuation, inefficient provision arises at the

intensive margin arises. The equilibrium output is lower than the cooperative solution

and features the same two-fold distortion that is present in intrinsic common-agency

games. A second distortion, novel to delegated agency games, emerges from limited

participation by the weaker principal; output is also distorted at the extensive margin.

In this example, there exists a non-empty interval of types, s2 ≤ F(θ)
f (θ)

≤ s1, such that
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only principal 1 is active under asymmetric information while both principals would

be active as a cooperative or if information was complete.

The fact that output is inefficiently low in the noncooperative setting relative to the

cooperative Baron-Myerson outcome may suggest that the familiar free-riding prob-

lem in classic public-goods contributions games is also present in public-goods games

with more complex strategy spaces. While this is true in a sense, we again emphasize

that the source of this multi-principal problem is incomplete information. If informa-

tion were complete (which is tantamount to eliminating the inverse-hazard terms from

the equation), the maximal equilibrium leads to full efficiency: each principal offers

the marginal tariff t′i(q) = si. This is the same efficient equilibrium outcome that arises

in Bernheim and Whinston’s (1986) “truthful equilibrium.” Thus, free riding need not

arise in complete-information public-goods games if the principals have the ability to

offer nonlinear tariffs to a common agent rather than making direct, one-dimensional

contributions to the public good. When incomplete information is present, however,

each principal has a private incentive to distort the agent’s output choice to extract

additional information rent. Because each principal ignores the negative externality

that this imposes on others, from a collective viewpoint, the principals inefficiently ex-

tract too much rent. The public goods free-riding problem present in our setting more

closely fits the narrative of a “tragedy of the commons” in which each principal over

harvests the common resource – the agent’s information rent.

Another interpretation of the limited participation that may arise under asymmet-

ric information is that some form of exclusive contracting emerges endogenously even

if exclusivity clauses cannot be enforced at the outset. This is so even if both prin-

cipals would otherwise have contracted with the agent under complete information.

This finding is reminiscent of an important insight developed by Bernheim and Whin-

ston (1998) in their study of vertical relationships between manufacturers and retail-

ers. They showed that exclusive dealing in marketing practices arises when the agency

costs of a common representation are too large compared with those under exclusive

dealing. There is, however, an important difference between their result and ours. They

assume that the possibility of exclusive representation arises ex ante, i.e., before the re-

alization of uncertainty. Although their general contracting model is thus consistent

with hidden actions or hidden information, it cannot account with the possibility of

exclusivity arising for some realization of shocks and not for others. In this regard, our

model, where contracting takes place once the agent is already informed, generates

richer patterns of behaviors.
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5.2. Conflicting Preferences – Lobbying for Influence

We next turn to settings in which the principals can be divided into two “interest”

groups – A and B – with opposed objectives. In short, in games with conflicting pref-

erences, it is as if there are two influence groups, each composed of principals who

are contributing to the public good of their own group. Thus, previous results in the

context of public goods that illustrated how changes in preferences affect influence

continue to hold provided the comparative static is taken over one group in isolation.

In the present section, we will see that there is an additional role of conflict between

groups that generates non-nested sets of influence, and that an increase in dispersion

across all principals can easily generate an increased dispersion of policies relative to

the first best. Throughout this section, we model interest-group lobbying by assum-

ing that a lobbyist can offer a credible contribution menu, ti, paid as a function of the

politician’s choice.19

5.2.1. A simple n = 2 model of conflict

We begin with the simplest setting of two principal-lobbyists with conflicting pref-

erences s1 > 0 > s2. As a motivation, principal 1 prefers a higher tax rate, q, whereas

principal 2 prefers a lower tax rate. The decision-maker (agent) has some ideal policy

he would like to pursue in the absence of any influence by lobbying groups. For sim-

plicity, we model the politician’s preferences by taking S0(q) = − q2

2 where q ∈ Q =

[−qmax, qmax] with qmax being large enough to ensure interior solutions to (9) allowing

us to focus on first-order conditions. We will assume also that the agent’s ideal point

q0(θ) = −θ is symmetrically distributed over [−δ, δ] with δ < 1.20

5.2.2. The maximal allocation

Applying the general methodology developed in Theorem 1, we obtain:

PROPOSITION 4 The maximal equilibrium allocation of the lobbying game with s1 > 0 > s2

is

(17) qQ(θ) = max

{

s1 −
F(θ)

f (θ)
, 0

}

+ min

{

s2 +
1 − F(θ)

f (θ)
, 0

}

− θ,

19 This approach is used by a number of influential papers. See, for example, Groseclose and Snyder

(1996), Grossman and Helpman (1994, 2001) and Besley and Coate (2001). An alternative, complemen-

tary approach to modeling interest-group influence assumes that such groups provide credible informa-

tion to policy makers, as in Austen-Smith and Wright (1994).
20Choosing this bliss point gives a status quo payoff U0(θ) =

θ2

2 to the agent.
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and the equilibrium marginal tariffs are given by

(18) t
Q
j
′(q) = βi(ϑ(q)) =























max
{

sj − F(ϑ(q))

f (ϑ(q))
, 0
}

i ∈ A,

max
{

sj − F(ϑ(q))

f (ϑ(q))
, 0
}

i ∈ B,

where θ = ϑ(q) is the inverse function of q = qQ(θ).

If θ is uniformly distributed, the activity sets of the principals are

(19) Θ1 = [−δ, min{s1 − δ, δ}) and Θ2 = (max{δ + s2,−δ}, δ].

If type heterogeneity is small relative to the strength of the principals’ preferences,

δ <
s1 + |s2|

2
,

then the principals commonly influence a positive measure of intermediate-type agents; other-

wise, each principal has a separate domain of influence.

The lobbying model shows that decision-makers with mild preferences receive con-

tributions from both interest groups; unchallenged influence arises in our model en-

dogenously for the decision-makers who are the most “ideologically” oriented.21,22

This is, of course, a much richer pattern of influence and contributions than what

is predicted by complete-information lobbying games as in Grossman and Helpman

(1994) or Dixit and al. (1997). In those models, group i enjoys exclusive influence on

policy only when other potential interest groups are just indifferent between that pol-

icy induced by group i and other policies that they may induce with positive con-

tributions. The absence of heterogeneity in the decision-maker’s preferences in those

models makes it impossible to generate different patterns of contributions and thus it

remains a puzzle in that literature as to why some groups target some legislators and

not others.

21Restricting attention to a continuous equilibrium, Martimort and Semenov (2008) derive further

results on the patterns of contributions in a lobbying game with a different objective function for the

agent.
22Such a finding is loosely consistent with empirical work by Kroszner and Stratmann (1998) who

document situations in which political action committees (PACs) representing rival constituents in the

financial services industry contribute similar amounts to the same legislators, providing that they are

not on the House Banking Committee.
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q

3(1−δ)

−3(1−δ)

1−δδ−1

θ

qQ(θ) = −3θ

qQ(θ) = δ − 1− 2θ

qQ(θ) = 1− δ − 2θ

qfb(θ)

s1 = −s2 = 1

Figure 2: Maximal equilibrium allocation in a symmetric lobbying game, s1 =−s2 = 1, with

δ ∈ ( 1
2 , 1). Common influence arises for types θ ∈ (δ − 1, 1 − δ).

5.2.3. A competitive nonlinear pricing reinterpretation

Interestingly, the lobbying model can be transposed mutatis mutandis to an industrial

organization setting to study how a consumer having private information on his most

preferred bundle mixes between two goods marketed by two competing sellers. Sup-

pose that this consumer wants to acquire one total unit of a good, but possibly desires

to split the purchase across two sellers. The consumer is located at a point θ ∈ [0, 1] on

a unit line, with one seller’s product being located at each extreme. The consumer has

a valuation v for the good and incurs a quadratic loss of − 1
2(q − θ)2 when consuming

something that differs from his ideal of q0(θ) = θ from principal 1 and 1 − q0(θ) from

principal 2. Up to some normalizations, the consumer and the sellers’ profits are simi-

lar to those of the lobbying model above when the sellers’ marginal costs are constant.

Our previous results can be reinterpreted as giving conditions under which a share of

the market is always covered by both sellers. When type-heterogeneity is sufficiently

high, mixed bundling arises in the maximal equilibrium. Hoernig and Valletti (2011)

have independently derived a similar insight but, at the outset, restricted their anal-

ysis to smooth tariffs. As we will see below when studying discontinuous equilibria

in the (similar) lobbying game, this restriction may indeed be justified because such
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smooth equilibrium may have attractive welfare properties among a much larger class

of equilibria allowing for discontinuities. Nevertheless, there are discontinuous equi-

libria worth consideration. The approach in the present paper can also be applied to

the more general issue of firms offering discounts to their customers based on their

consumption mix, as in the recent debate over Intel’s use of market-share discounts

with electronics manufacturers who are also (potential) customers of AMD.23

5.2.4. Discontinuous equilibria in the lobbying game.

Thus far, our focus has been on the maximal equilibrium allocation to emphasize the

“over-harvesting” of information rents which happens for any fully-separating type in

any equilibrium. The maximal allocation, however, masks the possibility of disconti-

nuities and pooling, and so we turn to the larger set of equilibria in the lobbying con-

text. To this end, we establish the existence of discontinuous equilibria by applying the

arguments used in the proof of Proposition 1 to construct arbitrary discontinuous allo-

cations and then verifying that they are supported by equilibrium transfer functions.

To illustrate the approach, we assume a uniform and symmetric distribution around

zero, and we introduce a single discontinuity to the maximal (continuous) allocation

at θ = 0. The following proposition provides an exact upper bound on the size of the

equilibrium discontinuity; this bound makes clear that such discontinuity gaps may be

significant.

PROPOSITION 5 Suppose that s1 = −s2 = 1 < 2δ, S0(q) = − q2

2 and that θ is uniformly

distributed on Θ = [−δ, δ]. For any q0 ∈ (0, (1 − δ)
√

3], there exists an equilibrium with

a discontinuity at θ0 = 0 and such that q(0−) = −q(0+) = q0. Both the agent’s rent and

the principals’ expected payoffs in such discontinuous equilibria are lower than at the maximal

equilibrium.

In the proof of Proposition 5, we provide a construction of the tariffs supporting the

discontinuous allocation and show that indeed the tariffs comprise an equilibrium to

the common-agency game. The tariffs have a very natural structure. If t
Q
i is principal

i’s equilibrium tariff in the maximal equilibrium, and if the hypotheses of Proposition

23Calzolari and Denicolo (2013) study a market-discount game and characterize one differentiable

equilibrium in which the firms coordinate on extracting the customer’s preference for variety; a general

analysis of the larger set of equilibria is not undertaken. As in our analysis, the presence of two firms

trying to extract the information rent of the consumer leads to greater distortions in consumption.
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5 are satisfied, then the modified tariffs

ti(q) =























0 for q ∈ (−q0, q0),

t
Q
i (q) otherwise,

support the discontinuous equilibrium.

To sustain those equilibria, principals design their contracts with “non-serious” out-

of-equilibrium offers. For instance, principal 2 stipulates zero payments for outputs

within the discontinuity gap [q(θ+0 ), q(θ−0 )] which are such that principal 1 is just indif-

ferent to inducing the agent with type θ0 to produce any output within that range. This

construction makes it possible to sustain the discontinuity in the agent’s choice.24 Im-

portantly, we demonstrate in the Appendix that a discontinuity can only be sustained if

the equilibrium schedules lie below the maximal ones on the discontinuity gap. On the

range of equilibrium outputs corresponding to those discontinuous equilibria, princi-

pals offer schedules which have the same margin as the maximal equilibria. So doing

ensures that the agent still chooses the maximal output on any connected set in that

range.

Consider our previous example of a symmetric lobbying game. One such discon-

tinuous equilibrium which has a natural appeal exhibits extreme polarization: both

lobbyists offer sufficiently strong incentives for their own cause such that no politician

chooses an action in the middle of the policy space.

24By the same token, such construction could be replicated to sustain equilibria with multiple discon-

tinuities.
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δ

3(1−δ)

−3(1−δ)

1−δδ−1

q(θ) = −3θ

q(θ) = δ − 1− 2θ

q(θ) = 1− δ − 2θ

θ

qFB(θ) {{policy outcomes gap

1−δ

Figure 3: Discontinuous, “polarized” equilibrium in a symmetric lobbying game with s1 =

−s2= 1, δ ∈ ( 1
2 , 1). Moderate policies, q ∈ (−(1 − δ)

√
3, (1 − δ)

√
3), are not chosen.

The comparison of the players’ payoffs across equilibria in the lobbying context

shows that the maximal equilibrium Pareto dominates, making it of focal interest. Not

only the agent but also principals lose from coordinating on a discontinuous equilib-

rium. From Proposition 1, this result is clear for the agent since aggregate payments

in those discontinuous equilibria are lower than at the maximal one. To explain the

principals’ preferences, observe that not paying the agent for policy choice within the

discontinuity gap has two effects. First, it increases polarization since types nearby the

discontinuity now pool at the boundaries of that discontinuity gap. This corresponds

to more extreme policies than under the maximal equilibrium. Because principals have

opposite preferences, this reallocation effect has no impact on their aggregate gross

surplus. Second, those types who pool on decisions on each side of the policy gap end

up being paid excessively compared with the maximal equilibrium. This is costly for

the principals. That said, the polarization that arises in the discontinuous equilibrium

does not seem inappropriate as a model of political lobbying. The fact that the equilib-

rium is inefficient relative to the maximal allocation does not persuade us to reject its

relevance a priori. Indeed, experimental work by Kirchsteiger and Prat (2001) is sug-

gestive that in complete information settings, the truthful (and efficient) equilibrium is

not typically played and that instead a polarized, “natural”equilibrium is more focal

for players, even though it is not as efficient. Our discontinuous equilibrium allocation
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has the flavor of the natural equilibrium in the complete information game.

5.2.5. The impact of preference dispersion in lobbying games.

The final issue we wish to address is the effect of a mean-preserving spread in prin-

cipal preferences on the distribution of policies in our original framework of an arbi-

trary number of n principals (rather than n = 2). We maintain our assumption that

S0(q) = − 1
2 q2, though the results below will generalize to any symmetric benefit func-

tion for the agent. For any configuration of principal preferences, we again order the

preferences from highest to lowest, s1 ≥ · · · ≥ sk > 0 > sk+1 ≥ · · · ≥ sn, where

A = {1, . . . , k} and B = {k + 1, . . . , n}. With a slight abuse of notation, we will denote

s = (sA, sB) to highlight the two separate vector components. The argument establish-

ing our previous result in Proposition 2 directly extends to questions of preferences

changes within one of the groups, A or B, while holding the preferences of the other

group fixed.

PROPOSITION 6 Consider two configurations of principal preferences, s = (sA, sB) and

s̃ = (s̃A, s̃B). If s̃A is a mean-preserving spread of sA and s̃B = sB, then the associated

maximal allocations in each game have the property that for all θ

qQ
s̃
(θ) ≥ qQ

s
(θ),

with a strict inequality for some positive measure. Similarly, if s̃A = sA and s̃B is a mean-

preserving spread of sB, then

qQ
s̃
(θ) ≤ qQ

s
(θ),

with a strict inequality for some positive measure.

We may immediately conclude that if the stakes of the players in group A, for exam-

ple, become more disperse, the equilibrium influence of group A on the distribution

of policy increases to the detriment of group B. More generally, more heterogeneous

groups (holding mean preferences constant) have more influence.

Our result in Proposition 3 also has an immediate generalization that provides in-

sight for the lobbying game. Suppose that some principal i ∈ A has an increased

stake, but all remaining principals continue with the same stakes as before. Then it

follows that qQ must weakly increase pointwise (in accord with the positive objectives

of group A), and this happens in spite of crowd out of contributions from other prin-

cipals j 6= i, j ∈ A and in spite of reduced marginal contributions by principals j ∈ B
in equilibrium.
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PROPOSITION 7 Consider two principal preference configurations, s and s̃, in which s̃i =

si + ∆, ∆ > 0, but s̃j = sj for j 6= i. Then if i ∈ A (resp., i ∈ B), the associated maximal

equilibrium allocations satisfy

qQ
s̃
(θ) ≥ (resp.,≤) qQ

s
(θ),

with strict inequality for some positive measure of types.

Furthermore, if i ∈ A (resp., i ∈ B) both the marginal aggregate payment function and the

marginal payment function of principal i weakly increase (resp., decrease) over the set of equi-

librium choices (and strictly so for a subset of outputs), while the marginal payment functions

of the other principals, j 6= i, weakly decrease (resp., increase) over the set of equilibrium choices

(and strictly so for a subset of outputs). Crowd out is less than perfect.

We want to conclude our analysis of dispersion by considering the effects of an

increase in preference heterogeneity across all principals (not just within influence

groups). In order to generate crisp predictions, we restrict our attention to situations

in which the opposing interest groups are symmetric. Specifically, we assume that S0

is a symmetric loss function around q = 0, that the density of types, f , is symmetric

on Θ = [−δ, δ], and that the principals’ preference configuration is symmetric between

interest groups, sA = (s1, . . . , sk) and sB = (−s1, . . . ,−sk). We have reordered the pref-

erences of B ranging from largest in absolute value to smallest in absolute value, so

that we can speak of the ith pair of principals to mean the pair in which i ∈ A has

preference si and i ∈ B has preference −si. Observe, however, that we allow for ar-

bitrary heterogeneity within groups. As a benchmark, note that under this symmetric

specification of the influence game, aggregate principal preferences are zero and the

first best policy outcome is q f b(θ) = −θ.

We consider a special form of a mean-preserving spread which preserves the original

symmetry between interest groups so that s̃A = −s̃B. In particular, we say that s̃ is

a pairwise mean-preserving spread if there exists a vector of positive increments, ∆ =

(∆1, . . . , ∆k) such that s̃A = sA + ∆ and s̃B = sB − ∆.25 For a given configuration of

preferences, s, we can compute the maximal allocation qQ
s

, and the implied distribution

of policy choices:

G(q | s) ≡ Probθ

[

qQ
s
(θ) ≤ q

]

,

25Technically, we have assumed a special case of a symmetric mean-preserving spread in that we

require that the spread can be decomposed as k separate pairwise spreads. This makes the proof of

Proposition 8 straightforward. We conjecture that a more general result is available for any symmetric,

mean-preserving spread.
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The following result is derived from (9).

PROPOSITION 8 Consider two configurations of principal preferences, s and s̃, which are

symmetric between interest groups. If s̃ is a pairwise mean-preserving spread of s, then G(q | s̃)

is a mean-preserving spread of G(q | s).

In general, a symmetric mean-preserving spread applied to a preference configu-

ration that is itself symmetric between interest groups results in an increase in the

dispersion of policy outcomes. As a reference point, notice that the distribution of

first-best policies depends only upon the aggregate preferences of the principals and,

therefore, is invariant to mean-preserving spreads. In our particular setting in which

q f b(θ) = −θ, the first-best distribution is simply G f b(q) = 1 − F(−q).

To illustrate this phenomena, consider a simple stylized setting for n = 2, symmetric

preferences s1 = −s2 = s and θ uniformly distributed on [−δ, δ] as before. For any

preference parameter s, we can determine qQ
s

and, in tandem with the original distri-

bution over types θ, construct the implied equilibrium distribution of policies, G(q|s),
and its associated density, g(q | s). Below, we plot the density g(q|s) for various values

of s and also plot the first-best distribution of policies, which coincides with the uni-

form distribution of θ.

g(q|s = 2δ)

g(q|s = 3

2
δ)

gfb(q) gfb(q)

gfb(q) gfb(q)

q = −δ q = δ q = −δ q = δ

q = −δ q = δ q = −δ q = δ

g(q|s = δ)g(q | s = 1

2
δ)

Figure 4: Equilibrium probability distributions of policies. g f b(q) is the probability density

of the first-best policies; g(q | s) is the equilibrium density of (maximal) equilibrium policies,

where s varies from least-dispersed preferences, s = 1
2 δ (exclusive spheres of influence), to

most dispersed preferences at s = 2δ (both principals actively influence all types).

In accord with the proposition, the greater the dispersion in preferences, the more
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disperse the distribution of policies.26

6. CONCLUSION

We have taken a large class of influence games with a privately-informed agent and

shown a common feature of all equilibria is a confluence of the principals’ marginal

virtual valuations. If one is prepared to focus on maximal equilibria, their properties

can easily be computed and comparative statics on underlying preferences yield a rich

set of predictive relationships. One goal for this paper was to illustrate the simplicity

of using the influence game with incomplete information, especially if one is prepared

to impose the refinement of maximal equilibria. To this end, we have focused on two

work horses – public goods games and lobbying games – but other applications such

as nonlinear pricing are equally natural in this framework.

Of course, discontinuous equilibria also exist, but they are also straightforward to

compute (once an assumption is made about where the discontinuities arise). The po-

larization in the discontinuous equilibrium of the lobbying game – though inefficient

relative to the maximal equilibrium from the view of every player – has its own appeal

and may naturally arise for similar reasons as the “natural” equilibrium in the experi-

ments of Kirchsteiger and Prat (2001). For now, we remain agnostic about the selection

of equilibria, though we again emphasize that in any equilibrium in which a type is

locally separated, the type’s equilibrium allocation is “maximal” and a tragedy of the

commons is present.
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A. APPENDIX – OMITTED PROOFS

A.1. Proof of Lemma 1

The proof of Lemma 1 proceeds in three steps. First, using a result in Martimort and Stole

(2014), we provide a set of conditions that are necessary and sufficient for the solution to prin-

cipal i’s relaxed program (ignoring the convexity constraint on U). Second, we demonstrate the

adjoint equations in these conditions can be further simplified given that the principal’s pref-

erences are linear in q. Third, we show that the solution to the relaxed and simplified program

is a solution to the original program.

STEP 1: THE RELAXED PROGRAM. Consider the relaxed program, (P r
i ), that ignores the con-

vexity constraint in (4):

(P r
i ) : max

(U,q)

∫

Θ

(

siq(θ) + S0(q(θ)) + T−i(q(θ))− θq(θ)− U(θ)
)

f (θ)dθ
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subject to U(θ) ≥ U−i(θ) and −q(θ) ∈ ∂U(θ) for all θ.

We rewrite this program using a change of variables in order to get it into a more useful

format for applying a result from non-smooth control. Specifically, define the net utility that

principal i’s contract provides to the agent: ∆i(θ) = U(θ)−U−i(θ). It follows that, a.e., q−i(θ)−
q(θ) ∈ ∂∆i(θ) for q−i(θ) ∈ arg maxq∈Q S0(q)− θq + T−i(q).

We use ∆i as the state variable and q(θ)− q−i(θ) as the control variable in our new optimal

control problem. Because q−i(θ) is data to this given program, q(θ) is effectively the control

variable of principal i. Now we can state principal i’s relaxed program in net payoffs as

max
(∆i ,q)

∫

Θ

(

si(q(θ)−q−i(θ)) + S0(q(θ)) + T−i(q(θ))− θq(θ)− U−i(θ)− ∆i(θ)
)

f (θ)dθ

subject to q(θ)− q−i(θ) ∈ −∂∆i(θ), ∆i(θ) ≥ 0.

Because the domain of (q, U) is the set of incentive compatible, individually rational alloca-

tions, U is convex on a compact set and q is monotone. It follows that q is measurable and U

is absolutely continuous. As such, we may focus our attention on this domain, we may apply

Theorem 1 from Martimort and Stole (2014) and conclude that for any transfer T−i offered by

rival principals, the rent-output profile (U, q) is a solution to (P r
i ) if and only if (U, q) satisfies

U(θ) ≥ U−i(θ) and −q(θ) ∈ ∂U(θ) for all θ, and there exists a probability measure µi defined

over the Borel subsets of Θ with an associated adjoint function, Mi : Θ → [0, 1], defined by

Mi(θ) = 0 and for θ > θ,

Mi(θ) ≡
∫

[θ,θ)
µi(dθ),

such that the following two conditions are satisfied:

(20) supp {µi} ⊆
{

θ |U(θ) = U−i(θ)
}

,

(21) q(θ) ∈ arg max
q∈Q

siq + S0(q) + T−i(q) +

(

Mi(θ)− F(θ)

f (θ)
− θ

)

q, a.e.

STEP 2: CHARACTERIZATION OF ADJOINT, Mi . We prove the following simplifying lemma.

LEMMA 2 In the linear common-agency game, if (q, U) is an equilibrium allocation, then for each

principal i, (q, U) satisfies conditions (20) and (21) using the adjoint function

(22) Mi(θ) =























max{F(θ)− si f (θ), 0}, i ∈ A, ∀ θ ∈ (θ, θ],

min{F(θ)− si f (θ), 1}, i ∈ B, ∀ θ ∈ (θ, θ],

such that Mi(θ) = 0.
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Proof of Lemma 2: We present the proof for i ∈ A; the case for i ∈ B proceeds accordingly.

1. Define θ̂i as the unique solution to si f (θ̂i) = F(θ̂i). Two properties are immediately im-

plied for the region (θ̂i, θ]. First, the monotone hazard rate property implies that

(θ̂i, θ] = {θ | F(θ)− si f (θ) > 0}.

Moreover, the slope of F(θ)− si f (θ) is positive if f (θ) > si f ′(θ); because the monotone

hazard rate condition also requires f ′(θ)/ f (θ) ≤ f (θ)/F(θ), it follows that F − si f is

increasing if F(θ)/ f (θ) > si. We conclude a second property of (θ̂i, θ] is that F(θ)− si f (θ)

is strictly increasing on this interval.

2. We next show that the set of types for whom principal i is active (i.e., U(θ) > U−i(θ)) is

a lower interval, Θi = [θ, θ0) where θ0 ≤ θ̂i.

Suppose that on [θ0, θ1] ⊆ intΘ we have U(θ) = U−i(θ), but for ε > 0 sufficiently small

we have U(θ) > U−i(θ) on the adjacent neighborhoods, θ ∈ (θ0 − ε, θ0) ∪ (θ1, θ1 + ε).

Because U(θ) > U−i(θ) on (θ1, θ1 + ε) and those rent functions are continuous, convex

with q(θ1) ∈ ∂U(θ1) and q−i(θ1) ∈ ∂U−i(θ1), it must be that q(θ) < q−i(θ) on this re-

gion for ε sufficiently small. For this inequality to be satisfied, (21) requires that Mi(θ) <

F(θ) − si f (θ) for all θ ∈ (θ1, θ1 + ε). Because the participation constraint is slack on

(θ1, θ1 + ε), Mi(θ) is constant equal to Mi(θ1), and we have also Mi(θ1) < F(θ)− si f (θ).

Because Mi(θ) ≥ 0, it follows that F(θ) − si f (θ) > 0 on this interval which implies

θ1 ≥ θ̂i. Because F − si f is increasing for all θ > θ̂i, we can also conclude that

(23) si f (θ) + Mi(θ1)− F(θ) ≤ si f (θ1) + Mi(θ1)− F(θ1) < 0 ∀θ ∈ (θ1, θ].

Suppose now that the participation constraint is binding on a second interval [θ2, θ3]

(possibly reduced to a point) with ǫ small enough so that θ1 + ǫ < θ2 − ǫ. On the inter-

val (θ1, θ2), the fact that the participation constraint remains slack implies that Mi(θ) =

Mi(θ1) on that interval. Because the participation constraint binds at θ2, it must be that

q(θ) > q−i(θ) on (θ2 − ǫ, θ2) which, using (21), would mean si f (θ) + Mi(θ1)− F(θ) > 0

on that interval. A contradiction with (23). Thus, there is at most one region of binding

participation, [θ0, θ1].

Suppose now that the participation constraint is binding on [θ0, θ1], θ1 < θ and the partic-

ipation constraint is slack in the right-neighborhood of θ1. Because U and U−i are convex

functions and U−i is a lower envelope of U on [θ0, θ1], it follows that there is a neigh-

borhood, (θ1, θ1 + ε) such that q(θ) < q−i(θ) for all θ ∈ (θ1, θ1 + ε) for ε > 0 sufficiently

small.
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Suppose that principal i uses ti to implement the conjectured equilibrium allocation.

Then there exists a variation of this transfer, t̃i that creates a strict improvement. Define

t̃i(q) =











max{ti(q)− η, 0} if q ≤ q−i(θ1)

ti(q) otherwise.

We take η > 0 sufficiently small such that the allocation becomes q̃(θ) = q−i(θ) for all

θ ∈ (θ1, θ1 + ε) and q̃(θ) = q(θ) otherwise. The principal first gains from increasing

quantity over θ ∈ (θ1, θ1 + ε) and not paying anything for that but he also gains from

reducing payments by η for all q ≤ q−i(θ1).

Therefore, we conclude that the participation constraint U(θ) ≥ U−i(θ) is binding on an

interval
[

θ0, θ
]

.

3. Because the activity set is of the form [θ, θ0), (21) implies Mi(θ) = 0 on that interval.

4. We now establish that θ0 ≤ θ̂i.

Because the activity set is of the form [θ, θ0), U(θ) ≥ U−i(θ) and thus necessarily q(θ) >

q−i(θ) for θ ∈ (θ0 − ε, θ0) for ε small enough. Moreover, the structure of the activity set

implies that Mi(θ) = 0 on that interval.

Note also that over such interval, it is almost surely true that q−i(θ) is the unique max-

imizer of S0(q) + T−i(q) − θq; this is because the convexity of U−i implies that almost

everywhere the best-response correspondence q−i(θ) = ∂U−i(θ) is single-valued.

Using (21) and from the previous item Mi(θ) = 0 on (θ0 − ε, θ0), we thus get for such θ :

(

si −
F(θ)

f (θ)

)

(q(θ)− q−i(θ)) ≥

S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)−
(

S0(q) + T−i(q)− θq
)

≥ 0

where the last inequality follows from the definition of q−i(θ). Thus

(

si −
F(θ)

f (θ)

)

(q(θ)− q−i(θ)) ≥ 0

where the last inequality follows from the definition of q−i(θ). Furthermore, the last

inequality is thus strict almost everywhere on (θ0 − ε, θ0). Thus, we deduce that 0 >

F(θ)− si f (θ) almost everywhere on that interval and therefore by continuity everywhere.

Thus, we conclude that 0 ≥ F(θ0)− si f (θ0) and thus θ0 ≤ θ̂i.

5. We have now established that θ̂i lies in the inactive region
[

θ0, θ
]

. On
[

θ̂i, θ
]

, we may as

well choose Mi(θ) = F(θ) − si f (θ). This choice of the adjoint function indeed satisfies

conditions (20) (from item 1. Mi(θ) is increasing over
[

θ̂i, θ
]

) and (21).
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We next characterize Mi over the (possibly empty interior) interval [θ0, θ̂i) where θ0 < θ̂i.

An implication of (21) is that there exists an adjoint Mi(θ) such that:

si +
Mi(θ)− F(θ)

f (θ)
∈ ∂co{S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)}.

Because Mi ≥ 0 and θ < θ̂i, over the interval [θ0, θ̂i), we have

si +
Mi(θ)− F(θ)

f (θ)
> 0.

Moreover, by definition of q−i(θ), we have also:

0 ∈ ∂co{S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)}.

Because ∂co{S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)} is an interval and thus convex, si − F(θ)
f (θ)

which is a convex combination of si +
Mi(θ)−F(θ)

f (θ)
and 0 also satisfies:

si −
F(θ)

f (θ)
∈ ∂co{S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)}.

In other words, there would be no loss of generality in taking Mi(θ) = 0 over the interval

[θ0, θ̂i). We have now completely characterized the adjoint as in Lemma 2. (Incidentally,

because ∂co{S0(q−i(θ)) + T−i(q−i(θ))− θq−i(θ)} is almost everywhere single-valued, it

follows that si +
Mi(θ)−F(θ)

f (θ)
= 0, which implies that Mi(θ) has to be a negative number, a

contradiction to the existence of θ0 < θ̂i.) �

STEP 3: THE SOLUTION TO THE RELAXED PROGRAM IS CONVEX. What remains is to demon-

strate that the solution q to the relaxed program is weakly decreasing (equivalently, that U is

convex). Given Lemma 2, we can replace (20) and (21) with the conditions (6) and (7). The latter

requires that

q(θ) ∈ arg max
q∈Q

S0(q) + (βi(θ)− θ)q + T−i(q).

Given that βi(θ) − θ is strictly decreasing in θ, it follows that q is weakly decreasing in θ for

any upper semi-continuous T−i. Hence, the solution to the relaxed program is a solution to the

original program. �

A.2. Proof of Theorem 1

NECESSITY. Lemma 1 must hold for any equilibrium allocation. Adding up (7) across all n

principals, we obtain the condition, for almost every θ, the allocation satisfies

(24) q(θ) ∈ arg max
q∈Q

S0(q) + (β(θ)− θ)q + (n − 1)(S0(q)− θq + T(q)),

where T implements (q, U). Simple revealed preference arguments show that q(θ) is necessarily

non-decreasing since β(θ)− θ is itself non-increasing.
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Define the value function of this program by

V(θ) ≡ max
q∈Q

S0(q) + (β(θ)− θ)q + (n − 1)(S0(q)− θq + T(q)).

From the fact that the maximand above is absolutely continuous in θ, upper semi-continuous

in q and Q is compact, it follows that V(θ) is absolutely continuous. Moreover, given that (q, U)

is an incentive-compatible allocation which solves this program,

V(θ) = S0(q(θ)) + (β(θ)− θ)q(θ) + (n − 1)Ū(θ).

Because V is absolutely continuous, it is almost everywhere differentiable and for any pair

(θ, θ′),

V(θ)− V(θ′) =
∫ θ

θ′
(β′(x)− n)q(x)dx.

Because U is implementable, it is absolutely continuous and therefore for any pair (θ, θ′) we

have

U(θ)− U(θ′) = −
∫ θ

θ′
q(x)dx.

Note that

S0(q(θ)) + (β(θ)− θ)q(θ)−
[

S0(q(θ
′)) + (β(θ′)− θ′)q(θ′)

]

= V(θ)− V(θ′)− (n − 1)
[

U(θ)− U(θ′)
]

or more simply

(25) S0(q(θ)) + (β(θ)− θ)q(θ)−
[

S0(q(θ
′)) + (β(θ′)− θ′)q(θ′)

]

=
∫ θ

θ′
(β′(x)− 1)q(x)dx.

Using the relationship

((β(θ)− θ)− (β(θ′)− θ′))q(θ′) =
∫ θ

θ′
(β′(x)− 1)q(θ′)dx,

and the fact that β and q are both weakly non-increasing, we obtain:

S0(q(θ)) + (β(θ)− θ)q(θ)−
[

S0(q(θ
′)) + (β(θ)− θ)q(θ′)

]

=
∫ θ

θ′
(β′(x)− 1)(q(x)− q(θ′))dx ≥ 0.

Because any q′ ∈ q(Θ) can be identified with some θ′ ∈ Θ, the inequality implies q(θ) satisfies

(11) pointwise in θ.

SUFFICIENCY. Suppose that qQ satisfies (12). Because β(θ)− θ is decreasing, qQ is non-increasing.

Define the inverse of qQ as the correspondence

ϑ
Q
(q) ≡

[

min{θ|q = qQ(θ)}, max{θ|q = qQ(θ)}
]

.
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Because qQ is non-increasing, this correspondence is monotone and almost everywhere single

valued. Abusing notations, we will use ϑ
Q
(q) as an arbitrary non-increasing selection from this

correspondence when integrating.

We construct the individual tariffs of each principal i ∈ N as follows:

t
Q
i (q) =

∫ q

qQ(θ̂i)
βi(ϑ

Q
(x))dx.

Note that t
Q
i is nonnegative by construction and t

Q
i (q) = 0 for q = qQ(θ̂i). Because βi and

ϑ
Q
(q) are non-increasing mappings, each constructed tariff is convex by construction. Denote

the aggregates by T
Q
= ∑i∈N t

Q
i (q) and T

Q
−i = ∑j 6=i t

Q
j (q). It follows that the aggregates are also

convex. What remains to be shown is (i) the aggregate transfer T induces the agent to choose q,

and (ii) each principal i, facing the rivals’ aggregate T−i, finds it optimal to implement q.

Incentive compatibility. Consider the agent’s problem when facing aggregate payment, T
Q

. For

any pair (θ, q), the following conditions hold:

S0(q
Q(θ)) + T

Q
(qQ(θ)) + (β(θ)− θ)qQ(θ) ≥ S0(q) + T

Q
(qQ(θ)) + (β(θ)− θ)q

≥ S0(q) + T
Q
(q) + β(ϑ

Q
(q))(qQ(θ)− q) + (β(θ)− θ)q

where the first inequality follows from the definition of qQ(θ) and the second uses the convexity

of T
Q

. Simplifying further, we obtain

S0(q
Q(θ)) + T

Q
(qQ(θ))− θqQ(θ) ≥ S0(q) + T

Q
(q)− θq +

[

(β(ϑ
Q
(q))− β(θ))(qQ(θ)− q)

]

.

Because β(ϑ
Q
(q)) is non-increasing in q, the bracketed difference is always non-negative. In-

centive compatibility is implied, as desired.

Principals’ optimality. Consider principal i’s program in light of Theorem 1 and Lemma 2. qQ is

an optimal allocation for principal i if and only if

(26) qQ(θ) ∈ arg max
q∈Q

S0(q) + T
Q
(q)− t

Q
i (q) + (βi(θ)− θ)q, a.e.

Remember that each tariff t
Q
i is convex and therefore T

Q
−i is convex. Now observe that for all

pairs (θ, q), the following sequence of relationships holds:

S0(q
Q(θ)) + T

Q
−i(q

Q(θ)) + (βi(θ)− θ)qQ(θ)

= S0(q
Q(θ)) + T

Q
−i(q

Q(θ)) + (β(θ)− β−i(θ)− θ)qQ(θ)

≥ S0(q) + (β(θ)− θ)q + T
Q
−i(q

Q(θ))− β−i(θ)q
Q(θ)

≥ S0(q) + (β(θ)− β−i(θ)− θ)q + T
Q
−i(q) +

[

(β−i(ϑ(q))− β−i(θ))(q
Q(θ)− q)

]

= S0(q) + (βi(θ)− θ)q + T
Q
−i(q) +

[

(β−i(ϑ(q))− β−i(θ))(q
Q(θ)− q)

]

≥ S0(q) + (βi(θ)− θ)q + T
Q
−i(q).
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Both of the equalities above follow from the definition of βi. The first inequality uses the fact

that qQ(θ) solves (12), while the second inequality follows from the convexity of T
Q
−i. The final

inequality follows from the fact that, β(ϑ(q)) is non-increasing in q, and therefore the bracketed

difference is always non-negative. This proves that (26) holds and that principal i desires to im-

plement qQ when facing a rival aggregate of T
Q
−i. Because t

Q
i is zero for qQ(θ̂i), the constructed

tariff t
Q
i is the least-cost (nonnegative) transfer that accomplishes this end. �

A.3. Proof of Corollary 3

Let θ0 be a point of discontinuity of q. Such point is isolated because q is non-increasing and

thus almost everywhere differentiable. Moreover q admits right- and left-hand side limits at θ0,

denoted respectively by q(θ+0 ) and q(θ−0 ) with q being continuous and differentiable both on a

right- and a left-neighborhoods of θ0. We also deduce from monotonicity that q(θ−0 ) > q(θ+0 ) by

incentive compatibility. The optimality conditions (11) at θ0 imply that (13) must hold. Because

S0 is strictly concave, S0(q) + (β(θ0)− θ0)q has a unique maximum at qQ(θ0), and we thus have

q(θ−0 ) > qQ(θ0) > q(θ+0 ).

It was established in the necessity proof of Theorem 1 that

S0(q(θ)) + (β(θ)− θ)q(θ) = V(θ) + (n − 1)U(θ)

is absolutely continuous itself and thus almost everywhere differentiable. Using (25), the fol-

lowing condition holds at any point of differentiability of q:

(27) q̇(θ)
(

S′
0(q(θ)) + β(θ)− θ

)

= 0.

From this, it follows that q̇(θ) = 0 whenever q(θ) 6= qQ(θ) at a point of differentiability.

Using (27) on the right- and a left-neighborhoods of θ0, we deduce that q̇(θ) = 0 on such

neighborhoods. By assumption, q(Θ) ⊂ qQ(Θ). Therefore, there exist θ1 and θ2 such that θ2 <

θ0 < θ1 and q(θ−0 ) = qQ(θ2) = q2 and q(θ+0 ) = qQ(θ1) = q1. Because the allocation q must be

non-decreasing, it can only be constant on the whole intervals [θ2, θ0) and (θ0, θ1]. �

A.4. Proof of Proposition 1

We shall prove this result by choosing an interval (q1, q2) containing q̂ and constructing equi-

librium tariffs (t̃1, . . . , t̃n) that induce the agent to select q̃. There are six steps.

STEP 1: CHARACTERIZATION OF MARGINAL TARIFFS FOR A SMALL NEIGHBORHOOD. We choose

the open interval (q1, q2) sufficiently small, q2 − q1 = ε, such that each principal is either

inactive for all q ∈ (q1, q2) in the original allocation, or is active over the entire interval,

q ∈ (q1, q2). By hypothesis, there are at least two active principals over any sufficiently small

interval (q1, q2). For any such interval, (q1, q2), define the corresponding type interval (θ2, θ1)
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such that in the original allocation q1 = q(θ1) and q2 = q(θ2). By hypothesis, we can choose

ε sufficiently small such that q is continuous and strictly decreasing over (θ2, θ1). As a result,

Theorem 1 provides that q(θ) = qQ(θ) for all θ ∈ (θ2, θ1).

Because q(θ) = qQ(θ) is strictly decreasing and continuous over the interval (θ2, θ1), Corol-

lary 2 implies that T−i is differentiable on (q1, q2). From here, it follows that for each i ∈ N, for

θ ∈ (θ2, θ1)

βi(θ) = t
′
i(q(θ)).

Using again the fact that q(θ) = qQ(θ) on (θ2, θ1), we can use the inverse function of qQ, de-

noted ϑ
Q
(q), and integrate to obtain the result

(28) ti(q2)− ti(q1) =
∫ q2

q1

βi(ϑ
Q
(x))dx.

STEP 2: CONSTRUCTION OF TARIFFS. For an arbitrary open interval (q1, q2), we construct the

following tariffs:

t̃i(q) =























ti(q) + τ1,i q ≤ q1

0 q ∈ (q1, q2)

ti(q) + τ2,i q ≥ q2,

where

τ1,i =











0 i ∈ A

−βi(θ̂)(q2 − q1) +
∫ q2

q1
βi(ϑ

Q
(x))dx i ∈ B

and

τ2,i =











βi(θ̂)(q2 − q1)−
∫ q2

q1
βi(ϑ

Q
(x))dx i ∈ A

0 i ∈ B.27

By construction, these tariffs satisfy a few key properties. First, the constructed tariffs are

nonnegative. To see this for i ∈ A, note that we have t̃i(q1) = ti(q1) ≥ 0 and

t̃i(q2) = ti(q2) + τ2,i

= ti(q1) +
∫ q2

q1

βi(ϑ
Q
(x))dx + τ2,i (by (28))

= ti(q1) + βi(θ̂)(q2 − q1)

≥ 0 (because ti(q1) ≥ 0 and βi ≥ 0 for i ∈ A),

with strict inequality for every principal i that is active over the interval (q1, q2) in the original

equilibrium.

27In the case in which types are uniformly distributed, τ1,i = τ2,i = 0 for every i, and the construction

is simple:

t̃i(q) =











ti(q) q 6∈ (q1, q2)

0 q ∈ (q1, q2).
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A similar argument establishes nonnegativity for i ∈ B.

A second property is that the constructed tariffs weakly increase over the interval for i ∈ A
(i.e., t̃i(q2) ≥ t̃i(q1)) and weakly decrease for i ∈ B (i.e., t̃i(q2) ≤ t̃i(q1)). This follows for i ∈ A
from the third line in the above nonnegativity argument. Thus, even if τ2,i is negative, it is

sufficiently small that principal i’s tariff remains nondecreasing. A similar argument holds for

i ∈ B.

The third key property is that the marginal action for which principal i becomes active under

the original tariff ti (e.g., for i ∈ A, the value of qb such that ti(q
b) = 0 and ti(q) > 0 for all

q > qb) coincides with the marginal action under the newly constructed tariff. In the case of an

active principal i ∈ A, the marginal action under the original tariff lies to the left of q1; because

we chose τ1,i = 0, it follows that t̃i(q) = ti(q) for all q < q1. A similar argument establishes that

the marginal action is unchanged under the new tariffs for i ∈ B.

STEP 3: CHOICE OF (q1, q2). Corollary 3 gives the precise structure of q̃ that we wish to prove is

an equilibrium allocation.

q̃(θ) =







































q(θ) θ ∈ [θ1, θ]

q1 θ ∈ (θ0, θ1)

q2 θ ∈ (θ2, θ0)

q(θ) θ ∈ [θ, θ2],

where θ0 is the unique agent type such that

S0(q1) + (β(θ0)− θ)q1 = S0(q2) + (β(θ0)− θ)q2.

We have so far required only that the interval (q1, q2) contain q̂ and that its length be sufficiently

small such that a principal’s activity is uniform over the interval and q(θ) = qQ(θ) for θ ∈
(θ2, θ1). We now impose the requirement that that (q1, q2) be chosen so that θ0 = θ̂ in the above

indifference relation. That is, we choose (q1, q2) so that

(29) S0(q1) + (β(θ̂)− θ̂)q1 = S0(q2) + (β(θ̂)− θ̂)q2

is satisfied by construction. Given θ̂ and given ε = q2 − q1, there is a unique such choice of

(q1, q2) which has this property.

We have now fully described the proposed equilibrium tariffs and allocation. Below we will

demonstrate that such tariffs induce the agent to select q̃ (incentive compatibility) and that each

principal finds the constructed tariff, t̃i, to be a best response against the other constructions,

T̃−i.

STEP 4: ESTABLISHING INCENTIVE COMPATIBILITY. Because all tariffs are nonnegative, the

agent will accept the profile of constructed offers. For the moment, suppose that the agent

is restricted to choose q 6∈ (q1, q2). Suppose also that we can establish that the marginal agent
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type indifferent between q1 and q2 under the new tariffs coincides with θ̂:

(30) S0(q1)− θ̂q1 + T(q1) + ∑
i

τ1,i = S0(q2)− θ̂q2 + T(q2) + ∑
i

τ2,i.

In such a case, the aggregate tariffs would coincide (up to a constant) outside of the gap; i.e.,

the “margins” of these tariffs are equal outside of the gap. Because the agent cannot choose an

action inside of the gap and the marginal agent is θ̂, it follows that q̃ will be the agent’s choice

as required.

The work is in establishing that (30) will indeed hold given the choice of τ’s in the proposed

construction. Given (29), proving (30) is equivalent to proving

β(θ̂)(q2 − q1) = T(q2)− T(q1) + ∑
i

(τ2,i − τ1,i).

Because (28) holds for all i, the required expression reduces to

β(θ̂)(q2 − q1)−
∫ q2

q1

β(ϑ
Q
(x))dx = ∑

i

(τ2,i − τ1,i).

But this expression is true by construction, given the formulae for each τk,i.

Lastly, we remove the restriction that the agent must select q 6∈ (q1, q2) and show that for ε

sufficiently small, the agent would nonetheless never choose an action in the gap. This requires

max
q∈Q\(q,q2)

S0(q)− θq + T̃(q) ≥ sup
q∈(q1,q2)

S0(q)− θq.

By construction, T̃(q1) and T̃(q2) are both bounded away from zero. As such, the continuity of

S0 implies that the inequality is satisfied for ε sufficiently small. With a sufficiently small gap,

we have therefore established that {t̃1, . . . , t̃n} implements q̃.

STEP 5: PRINCIPAL OPTIMALITY. To prove that t̃i is optimal, given T̃−i, we apply Lemma 1 and

confirm that for each i we satisfy the following two conditions for almost every θ ∈ Θ:

Ũ(θ) = Ũ−i(θ) ⇐⇒ βi(θ) = 0,

q̃(θ) ∈ arg max
q∈Q

S0(q) + (βi(θ)− θ)q + T̃−i(q).

We begin with the first requirement. Suppose that θ̂i is the lowest type such that βi(θ) = 0;

i.e., θ̂i is the boundary type in principal i’s activity set in the original equilibrium. Thus, in the

original equilibrium, ti(q(θ)) = 0 for all θ ≥ θ̂i and ti(q(θ)) > 0 for all θ < θ̂i. We need to verify

that a similar condition holds for the new equilibrium tariffs: t̃i(q̃(θ)) = 0 for all θ ≥ θ̂i and

t̃i(q̃(θ)) > 0 for all θ < θ̂i. There are two cases to consider for i ∈ A:

• θ̂i < θ2. In this case, principal i is inactive over the gap in the original equilibrium. The

tariff construction has τ1,i = τ2,i = 0 because βi(θ) = 0 for θ ∈ (θ2, θ1). Hence, t̃i(q̃(θ)) =

ti(q(θ)) = 0 for θ ≥ θ̂i and t̃i(q̃(θ)) = ti(q(θ)) > 0 for all θ < θ̂i.
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• θ̂i > θ1. In this case, principal i is active over the gap in the original equilibrium.

The tariff construction has τ1,i = 0, so t̃i = ti for q ≤ q1. In particular, this implies that

t̃i(q̃(θ)) = ti(q(θ)) = 0 for θ ≥ θ̂i and t̃i(q̃(θ)) = ti(q(θ)) > 0 for θ ∈ [θ1, θ̂i). Above, we

established that t̃i(q2) ≥ t̃i(q1) for i ∈ A. Because ti is nondecreasing in q for i ∈ A in the

original equilibrium, so may we conclude that t̃i(q̃(θ)) > 0 for all θ < θ1.

• Note that the third possible case of θ̂i ∈ (θ2, θ1) is ruled out by choice of sufficiently small

ε.

A similar argument establishes that Ũ(θ) = Ũ−i(θ) ⇐⇒ βi(θ) = 0 holds for i ∈ B under the

constructed tariffs.

Suppose for the moment that principal i is restricted to choose q 6∈ (q1, q2) and that the

following indifference condition is satisfied for principal i:

(31) S0(q1) + (βi(θ̂)− θ̂)q1 + T̃−i(q1) = S0(q2) + (βi(θ̂)− θ̂)q2 + T̃−i(q2).

Given T̃−i differs from T−i by only a constant to the left and right of the interval, we have for

θ ≤ θ2

arg max
q≥q2

S0(q) + (βi(θ)− θ)q + T−i(q) = arg max
q≥q2

S0(q) + (βi(θ)− θ)q + T̃−i(q),

and for θ ≥ θ1

arg max
q≤q1

S0(q) + (βi(θ)− θ)q + T−i(q) = arg max
q≤q1

S0(q) + (βi(θ)− θ)q + T̃−i(q).

If (31) is also satisfied, then we may conclude

arg max
q∈Q\(q1,q2)

S0(q) + (βi(θ)− θ)q + T−i(q) = arg max
q∈Q\(q1,q2)

S0(q) + (βi(θ)− θ)q + T̃−i(q).

We therefore seek to establish (31). Note that (31) is equivalent to

S0(q1) + (βi(θ̂)− θ̂)q1 + T̃(q1)− t̃i(q1) = S0(q2) + (βi(θ̂)− θ̂)q2 + T̃(q2)− t̃i(q2).

Using (30), we have the simpler condition

βi(θ̂)(q2 − q1) = t̃i(q2)− t̃i(q1) = ti(q2)− ti(q1) + (τ2,i − τ1,i).

Using our construction for t̃i, this is equivalent to

βi(θ̂)(q2 − q1) = ti(q2)− ti(q1) + βi(θ̂)(q2 − q1)−
∫ q2

q1

βi(ϑ
Q
(x))dx.

Using (28), we conclude that (31) holds. Hence,

arg max
q∈Q\(q1,q2)

S0(q) + (βi(θ)− θ)q + T−i(q) = arg max
q∈Q\(q1,q2)

S0(q) + (βi(θ)− θ)q + T̃−i(q).
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What remains to show is that if principal i were allowed to choose q ∈ (q1, q2), that for ε

sufficient small, such a choice is not attractive. But given that there are at least two principals

active over (q1, q2), it follows that for all i ∈ N, T̃−i(q1) and T̃−i(q2) are both positive and

bounded away from zero. Thus, for ε sufficiently small

(32) max
q∈Q\(q1,q2)

S0(q) + (βi(θ)− θ)q + T̃−i(q) ≥ sup
q∈(q1,q2)

S0(q) + (βi(θ)− θ)q.

STEP 6: AGENT WELFARE COMPARISON. Lastly, note that the aggregate tariff under the new

equilibrium has the property that T̃(q) = 0 for q ∈ (q1, q2) and T̃(q) = T(q) otherwise. Thus,

all agent types are weakly worse off under the new equilibrium tariffs, and those agents who

previously chose q ∈ (q1, q2) are strictly worse off by revealed preference. �

A.5. Proof of Proposition 2

Recall (15) that

qQ(θ) = arg max
q∈Q

S0(q)− θq +

(

∑
i∈N

max

{

si −
F(θ)

f (θ)
, 0

}

)

q.

Because

∑
i∈N

max

{

si −
F(θ)

f (θ)
, 0

}

is convex in si, it weakly higher under s̃ compared to s. Define θ̂i by si f (θ̂i) = F(θ̂i) and define

θ̃i by s̃i f (θ̃i) = F(θ̃i). Choose i such that si < s̃i, and thus θ̂i < θ̃i . Then for any θ ∈ (θ̂i, θ̃i), the

argmax above is strictly higher under s̃ compared to s. It follows that the maximal allocation

under s̃ is weakly higher than that under s (and it is strictly higher for some types). �

A.6. Proof of Proposition 5

We first remind the expressions of rents and payments in the maximal equilibrium when

s1 = −s2 = 1 < 2δ (which ensures that both θ̂1 and θ̂2 are interior) and the distribution is

uniform on Θ = [−δ, δ] with Q = [−1 − δ, 1 + δ]. From Proposition 4, we know that, on the

interval [−min(1 − δ, δ), min(1 − δ, δ)] that contains θ0 = 0, the maximal equilibrium policy is

given by qQ(θ) = −3θ for θ ∈ [−1 + δ, 1 − δ]. The individual equilibrium schedules and the

aggregate payment are respectively

t
Q
1 (q) = t

Q
2 (−q) =























0 for q ≤ −3(1 − δ),

1
6 (q + 3(1 − δ))2 for q ∈ [−3(1 − δ), 3(1 − δ)]

9
4 (1 − δ)2 + (1−δ)

2 q + q2

4 for q ∈ [3(1 − δ), 1 + δ]
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and T
Q
(q) = t

Q
1 (q) + t

Q
2 (q), while the agent’s rent writes as

U
Q
(θ) =























9
4 (1 − δ)2 + 1

4 (1 − δ − 2θ)2 for θ ∈ [−δ,−1 + δ]

3(1 − δ)2 + 3
2 θ2 for θ ∈ [−1 + δ, 1 − δ]

9
4 (1 − δ)2 + 1

4 (1 − δ + 2θ)2 for θ ∈ [1 − δ, δ].

We now construct an equilibrium with a discontinuity at θ0 = 0 so that the discontinuity gap

[−q0, q0] remains in qQ([−1 + δ, 1 − δ]), i.e., on an area where principals’ activity sets overlap

in the maximal equilibrium which implies q0 ≤ 3(1 − δ). In particular, we have T
Q
(q0) =

T
Q
(−q0) = 1

6 (q0 + 3(1 − δ))2 + 1
6 (−q0 + 3(1 − δ))2 =

q2
0

3 + 3(1 − δ)2. Following the proof

of Proposition 1 and using the specificity of the uniform distribution so that the construction

in Footnote 23 applies, the so-constructed discontinuous equilibrium preserves aggregate and

individual payments beyond the discontinuity gap:

T(q) =











0 for q ∈ (−q0, q0)

T
Q
(q) for q ≥ q0 and q ≤ q0.

This yields the following expression of the agent’s rent in the discontinuous equilibrium:

(33) U(θ) = min

{

U
Q
(θ),−θq0 −

q2
0

2
+ T

Q
(q0), θq0 −

q2
0

2
+ T

Q
(−q0)

}

.

Following notations in the proof of Proposition 1, we denote θ2 = −θ1 = − q0

3 . To find out the

maximal value of the q0 that can be sustained, we again closely follow the proof of Proposition

1. The first condition to be checked is that the agent does not want to choose a decision in the

discontinuity gap. This condition rewrites in this specific context as:

(34) U(θ) = max
q∈qQ(Θ)\(−q0,q0)

−θq − q2

2
+ T

Q
(q) ≥ sup

q∈(−q0,q0)

−θq − q2

2
≡ θ2

2
∀θ ∈ [θ2, θ1].

Using (33) to express the lefthand side and symmetry of the rent profile in θ around the origin,

this condition holds when U(θ) = θq0 − q2
0

6 + 3(1 − δ)2 ≥ θ2

2 for all θ ∈ [0, θ1] which is always

true if it holds at θ = 0, i.e., U(0) = − q2
0

6 + 3(1− δ)2
> 0 but this latter inequality is always true

for all q0 ≤ 3(1 − δ).

The second condition to be checked is (32) for each principal. Taking into account symmetry,

it suffices to verify that this condition holds for principal 1 which gives:

(35) max
q∈q(Θ)\(−q0,q0)

−q2

2
+(1− δ− 2θ)q+ t

Q
2 (q) ≥ sup

q∈(−q0,q0)

−q2

2
+(1− δ− 2θ)q ∀θ ∈ [θ2, θ1].

When q0 ≤ 3(1 − δ), the max on the lefthand side is achieved either at −q0 (for θ ∈ [0, θ1]) or at

q0 (for θ ∈ [θ2, 0]). Again using symmetry, we focus on the case θ ∈ [0, θ1] and note that the sup

on the righthand side can be rewritten so that (35) becomes:

(36)
3

2
(1 − δ)2 − q2

0

3
≥ R(θ) = −2θq0 + max

q∈[−q0,q0]
−q2

2
+ (1 − δ − 2θ)q ∀θ ∈ [0, θ1].
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Because the maximum of linear functions of θ is convex, R is also convex in θ. Using the enve-

lope theorem to evaluate the derivative of this max, it is immediate that R is also decreasing.

Hence, the condition always holds when it holds at θ = 0. We compute

R(0) =











(1−δ)2

2 if q0 ∈ [1 − δ, 3(1 − δ)],

− q2
0

2 + (1 − δ)q0 if q0 ∈ [0, 1 − δ].

Hence, (36) holds when 3
2 (1 − δ)2 − q2

0
3 ≥ R(0) which is true when q0 ≤

√
3(1 − δ).

Welfare comparison. Fix q0 ∈ [0,
√

3(1 − δ)] (the case q0 = 0 corresponding to the maximal equi-

librium). We know from Proposition 1 that the agent always prefers the maximal equilibrium to

any discontinuous equilibrium keeping aggregate payments the same outside the discontinuity

gap. Turning now overall expected payoff of the principals in a discontinuous equilibrium, we

observe that, because of opposite interests, this expected payoff is the opposite of their overall

expected payment. This expected payment writes as:

T (q0) =
1

2δ

(

∫ − q0
3

−δ
T
Q
(qQ(θ))dθ +

∫ 0

− q0
3

T
Q
(q0)dθ +

∫

q0
3

0
T
Q
(−q0)dθ +

∫ δ

q0
3

TQ(qQ(θ))dθ

)

.

Observe that:

dT
dq0

(q0) =
1

2δ

(

∫ 0

− q0
3

d

dq0
(T

Q
(q0))dθ +

∫

q0
3

0

d

dq0
(T

Q
(−q0))dθ

)

=
2q2

0

9δ
.

Henceforth, T (q0) is convex for q0 ≥ 0 and minimized at q0 = 0, i.e., the maximal equilibrium

is also preferred by the principals. Since both the principals and the agent prefers the maximal

equilibrium, welfare is higher at that equilibrium. �

A.7. Proof of Proposition 6

This result follows from an immediate application of the arguments in Proposition 2 for the

case of A. For the case of B, note that the maximal allocation function is a concave function of

sB, and hence the inequalities (both weak and strict) are reversed. �

A.8. Proof of Proposition 7

This result follows from an application of the arguments proving Proposition 3 in the main

text. �

A.9. Proof of Proposition 8

Given the assumptions of symmetry, qQ is symmetric around θ = 0 and the mean policy

chosen by the agent is 0. Furthermore, any pairwise spread preserves symmetry and is mean
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preserving. It is sufficient that we establish that any component pairwise spread for some pair

i results in a mean-preserving spread in qQ.

For θ ≤ 0, note that the introduction of any increment ∆i can only increase qQ(θ). There are

three cases to consider to establish this claim. Fixing θ ≤ 0, after the increment is introduced,

either both principals are active, neither principal is active, or only principal i ∈ A is active.

For the first two outcomes, the increment has no effect on qQ for the type at θ. When only i ∈ A
is active, however, the increment increases the marginal virtual preference for i ∈ A, which in

turn increases qQ (given that S0 is differentiable and strictly concave, as maintained). Under

our assumptions on the distribution of θ, there is always some region of inactivity. Hence, there

is a positive measure of types for which qQ strictly increases. For θ ≥ 0, a reverse argument

establishes that qQ must weakly decrease (and strictly decrease on a set of positive measure).

Furthermore, given our symmetry assumptions, such changes in qQ are mean preserving, and

hence the resulting allocation leads to a greater dispersion in policy choices.

�
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