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Abstract

Extending previous risk model backtesting literature, we construct multiple hypothesis testing
(MHT) with the stationary bootstrap. We conduct multiple tests which control for the generalized
confidence level and employ the bootstrap MHT to design multiple comparison testing. We consider
absolute and relative predictive ability to test a range of competing risk models, focusing on Value-at-
Risk (VaR) and Expected Shortfall (ExS). In devising the test for the absolute predictive ability, we
take the route of recent literature and construct balanced simultaneous confidence sets that control for
the generalized family-wise error rate, which is the joint probability of rejecting true hypotheses. We
implement a step-down method which increases the power of the MHT in isolating false discoveries.
In testing for the ExS model predictive ability, we design a new simple test to draw inference about
recursive model forecasting capability. In the second suite of statistical testing, we develop a novel
device for measuring the relative predictive ability in the bootstrap MHT framework. The device, we
coin multiple comparison mapping, provides a statistically robust instrument designed to answer the
question: "which model is the best model?”.

Keywords: value-at-risk, expected shortfall, bootstrap multiple hypothesis testing, generalized familywise error rate,

multiple comparison map.



1 Introduction

Value-at-Risk, or more simply VaR, has gained popularity among practitioners in the past years because of
the increasing exposure to market risk of large financial companies and financial divisions of non-financial
firms, and mostly because of the ability of this metric to deliver a readable quantity concerning overall
risk borne. This popularity has increased as a result of the many “crises” and large corporate defaults
due to market exposure, which have become more frequent since the early 90’s and largely publicised by
the media.

VaR! is used by risk managers in banks and wealth management companies to monitor the market
risk of large and varied portfolios of financial securities and over-the-counter products in order to trigger
action by the management on the back of the information packed into this number, summarizing the
optimistic loss in a worst case scenario, with a given probability on a certain time horizon. This calcu-
lation has also become part of regulatory requirements, e.g., in banking regulations such as in Europe,
whereby it is used to determine the amount of regulatory and economic capital. From an operational
point of view, however, VaR in general lacks the important property of subadditivity, Artzner et al.
(1999). Practically, this means that the VaR of a weighted sum of individual quantities is not equal
to the weighted sum of each VaR, hence requiring multiple layers of calculation when aggregating from
subsets to the consolidated portfolio level. This feature led to a shift of focus towards the alternative risk
measure of expected-shortfall (ExS), see Artzner et al. (1999), which holds the subadditivity property and
provides further information: namely, the expected loss in a worst case scenario, with a given probability
on a certain time horizon. This measure represents also a complementary indicator that accounts for the
magnitude of losses exceeding the VaR threshold and draws attention to the full shape of the tail event
distribution.

VaR and ExS are not accounting quantities that come out of a simple algebraic operation. If we were
to give some formalism, these measures and in general a risk measure is a functional defined on a space of
random variables, mapping the set of events or “scenarios” of concern A := (€, F), that is a set of events
and a complete algebra defined on its terms. The space A is assumed to possess a probability measure
P*, that is a measure of the uncertainty of the events belonging to F, which is unknown. A model is any
candidate P~P* that is a measure of uncertainty equivalent, in a certain sense, to P*, representing an
approximation of the true distribution. Essentially, the estimate of a risk measure requires the construc-
tion of a probabilistic model for the distribution of values and the establishment of robust procedures to
infer those numbers from historical samples.

As a logical consequence, the statistical testing of risk models is an important step towards assessing
the ability of these tools to provide reliable output and to contribute to the decision-making process
hinged on market risk exposure. From a practitioner perspective, there are serious implications for a fi-
nancial institution from its choice of risk model in terms of its overall risk management performance and
more importantly its capital adequacy requirements. So for industry, the question of which risk model
performs bests in capturing and forecasting risk exposure is crucial. Historically the first contributions
in backtesting the performance of risk-models are those of Kupiec (1995) and Christoffersen (1998), who
construct unconditional and conditional tests based on the mere sequence of VaR breaches. Thereafter,
research focused on specific issues affecting the VaR prediction ability, such as the time-horizon of the
forecast, the inclusion of time-varying volatility and accounting for fat-tailed distributions generated by
volatility clustering and jumps in returns, see BIS (2011) for a review. On the other hand, backtesting
ExS is more problematic due to the peculiarity of its functional form which in principle requires the
estimation of the entire tail distribution. The literature on model prediction of ExS is not as extensive as
that on VaR, possibly due to the latter reason. The main contributions in this field are Berkowitz (2001)
and Kerkhof and Melenberg (2003), who use the probability transform Rosenblatt (1952) to process the
data and construct tests of ExS prediction based, respectively on the likelihood ratio and the d-functional
method Van der Vaart (1998). Both these works focus on the development of a test for ExS.

All of this literature ignores a fundamental issue with the multiple testing of competing models. This
issue is the multiple comparisons problem that is inherent in multiple hypothesis testing. The multiple
comparisons problem is well established in the statistical and econometrics literature but is largely ig-
nored in the empirical finance literature. The problem arises when performing multiple hypothesis tests
simultaneously and leads to the non-negligible likelihood of identifying statistically significant results by
pure chance alone, rather than on the basis of true statistical relationships. Without controlling for the
multiple comparisons problem, the probability of rejecting true hypotheses, i.e. making erroneous false
discoveries, is increased. Romano, Shaikh and Wolf (2010) provide a detailed exposition of the issues



pertaining to multiple hypothesis testing, outlining the main literature in the area. A key contribution
of this paper is the application of generalised multiple hypothesis testing procedures to control for the
multiple comparison problem in backtesting VaR and ExS models. To date, the authors are only aware
of the paper by Bao et al. (2006) who explicitly account for this multiple comparisons bias with the
application of the bootstrap reality check of White (2000). However, the use of the bootstrap reality
check of White (2000) has some limitations, in particular it is highly conservative in that it seeks to
control the probability of making even one false discovery and so lacks power, where power is loosely
defined as the ability to reject false null hypotheses, i.e. to make true discoveries. Moreover, the relative
comparison test is limited to the benchmarking of the model suite to the forecasting performance of
RiskMetrics. We overcome these limitations by controlling for the generalised family-wise error rate and
further introducing a new statistic for the relative model performance comparison.

In this article, we build on the work of Bao et al. (2006) in that we use a similar model set and
investigate model predictive ability not only for the VaR but also for the ExS models with respect to
different time horizons and volatility conditions. We work within the framework developed by Beran,
Beran (1988), Politis and Romano (1994b), Romano and Wolf (2005), Romano and Wolf (2007), Romano
and Wolf (2010), in that we utilize generalised bootstrap multiple hypothesis testing, or MHT for short.
This approach offers a robust technique for easily implementing any kind of statistical test, which for our
purposes only requires weak stationarity. Sitting on top of a powerful simulation engine, the generalised
bootstrap MHT is capable of delivering hypothesis testing that is free from analytic or asymptotic pivotal
results and that can incorporate finite sample effects, model misspecification and parameter estimation
error. The main contribution of this article lies in the application of the bootstrap MHT framework to
the backtesting of market risk measures. We test absolute and relative forecasting performance of market
risk models. Within the latter exercise, we develop a novel device to support the cross-comparison of
relative predictive performance, a device we coin multiple comparison map, or MCM for short.

We construct bootstrap MHT of risk model predictive ability, analyzing the out-of-sample perfor-
mance over 1-day and 10-day time horizons. We extend the investigation to forecasts that target a time
horizon wider than a single day, an exercise that might either confirm the predictive power of a model
or highlight situations whereby the forecast deteriorates fast. We also observe the model performance
under stressed market scenarios. The inference procedure is accomplished via a direct measure of the
VaR predictive ability or rather exploiting the idea first popularised by Diebold et al. (1998) and used
by Berkowitz (2001), Kerkhof and Melenberg (2003), Bao et al. (2007), in that we use the probability
transform Rosenblatt (1952) to construct statistics which are functionals of the model probability distri-
bution and thereby indirectly test the data via the probability transformed sample. In the latter case we
provide a new simple test for the backtesting of the model predictive ability of the expected-shortfall.

The battery of tests draws inference about two aspects of the model forecasting ability, that is each
individual model’s capability to provide significant predictions, namely the absolute model performance,
and secondly the quality of each model in relation to the rest of the competing models, namely the rela-
tive model performance. In the absolute performance exercise, we estimate confidence sets for the target
statistic and derive joint balanced tests which control for the probability of committing Type I error. This
concept is extended further with the introduction of the generalised family-wise error rate (k-FWER),
cfr. Romano et al. (2009) for a review. The k-FWER sets a tolerance trigger for false rejections, which
on one hand increases the power? of the MHT while tightening the confidence bands, while on the other
hand provides a mechanism to assess hypotheses not excessively distant from acceptance. The MHT is
further refined by the introduction of a step-down algorithm, a procedure which involves recursive testing
that potentially allows for further rejections by altering the critical values at each stage depending on
the hypotheses already rejected up to that point, see Romano and Wolf (2010). In the analysis of the
relative forecasting ability, we develop a new approach expanding the base bootstrap MHT structure of
the test and using the multivariate test distribution generated by the bootstrapping algorithm, which
embeds the overall test dependencies, and we produce a thorough comparison of each model with respect
to all its competitors, measuring the pair-wise probability that each model is better than any other in the
collection. By the suitable extraction of relevant information which is summarised in one simple table, we
are able to evaluate the forecasting ability of each model in relation to the performance of the remaining
competitors, providing a valuable tool to answer robustly the question concerning the best model in the
set of competitors.

The work is organized as follows. In Section 2 we outline the computational engine, the bootstrap,
while in Section 3 we present the framework we use to construct the balanced confidence sets approach
and the step-down algorithm. In Section 4 we briefly introduce the conditional distribution models that



form the suite of competing market risk forecasting instruments, whereas in Section 5 we define the
target risk measures and the sample statistics, further describing the structure of the testing exercise and
introducing the MCM. The experimental Section 6 describes the data set, the modelling approach and
discusses the empirical evidence exhibited. Section 7 concludes.

2 The Stationary Bootstrap

The bootstrap, Efron (1979), is a versatile method for investigating a general form of functions depending
on the full sample history. In the original form of this procedure, we search for an estimate of the statistic
iid

R(X; P) with X = {X;},_, , and X; ~P. The bootstrap method allows one to construct an estimate
of the statistic distribution using the sample distribution P

R* = R(X*; P),

which consists of repeatedly drawing with replacement observations X € X, each weighted with proba-
bility 1/n. The distribution estimate of R is generated through the re-sampling X*, (m resamplings of
X). This procedure is valid under the i.i.d. hypothesis for X. A further generalization is achieved, for
example, with the methods in Kiisch (1989), Liu and Singh (1992) or in Politis and Romano (1994b),
whereby the bootstrap delivers robust estimates of the distribution of the root®, R, for stationary and
weakly dependent time series. In this work, we adopt the stationary bootstrap of Politis and Romano
(1994b).

The stationary bootstrap algorithm starts by “wrapping” the data in circle, such that ¥; = X;,Vt € N,
with £ := (t+ mod n) and the convention that X, := X,,. A pseudo-time series X* is produced retaining the
stationary properties of the original data sample X. The re-sampling scheme requires the construction of
blocks B;; = {Y;,Yit1,...,Yiti—1}, generated through the withdrawal of i.i.d. discrete uniform random
numbers Iy, ..., I € {1,..,n} and geometric random block lengths Ly, ..., L,, with distribution function
D{L; =k} = p(1 — p)*=", k € N. The generic re-sampled time series is X* := {Br, 1,,..., Br. 1. }.

Although optimally choosing the expected block length 1/p does not affect the consistency properties
of the bootstrap, the optimal p grants the fastest convergence rate of the estimates and therefore their
minimum variability, cfr. Politis and White (2004). In the sequel, the artificial samples are simulated
with preconditioning on the optimal p, see Politis and White (2004), Patton et al. (2009). In terms of bias
and variability of the variance of the pseudo-time series, the stationary bootstrap of Politis and Romano
(1994Db) is equivalent to other techniques for bootstrapping stationary and weakly dependent sample data,
though not originally noticed in the multiple comparison work of Lahiri (1999), but successively corrected
by Nordman (2009).

The most attractive characteristic of the bootstrap approach is its high degree of flexibility; it can
be used with parametric and non-parametric models, non-pivotal statistics, that is lacking asymptotic
distribution results, and mostly it can capture features of finite sample statistics whose distributions
might be sensibly different from asymptotic pivotal results, see Horowitz (2000) for a review on the topic.
These features are very appealing in the present context where the ultimate purpose of this work is to
examine the predictive ability of different classes of possibly misspecified models, carrying additional
model estimation error. It is relatively simple within the bootstrap approach, to design experiments for
model selection based on the performance of models with different statistical properties and targeting risk
measures that might have unknown finite sample or even unknown asymptotic properties. Ultimately,
we construct tests for statistics that are functional of some estimate of the conditional distribution of the
random variable modeling the sample observations, cfr. Politis and Romano (1994h), Politis and Romano
(1994a).

3 Simultaneous Confidence Sets and the Step-Down Algorithm

In this section we present two subsections describing, respectively, the construction of the balanced con-
fidence set controlling the generalised probability of Type I error across the family of testing hypothesis,
kE-FWER, and the step-down procedure. Essentially, the step-down procedure consists of an iterative
procedure which aims to minimize Type IT error probability and hence optimise the statistical power of
the MHT.



3.1 Balanced Confidence Sets

Consider a statistical model P; of the observations X ~ P, and a risk measure p(P), in general a
functional of the probability measure P. The MHT problem consists of testing the m hypothesis

H;: ‘pj(Pj)_p(P)‘<07 J=1...,m. (1)

Considering joint statistical testing is very important when the dependency across the individual tests
is high. In order to understand intuitively this issue, we borrow an example from Romano et al. (2009).
Consider 100 independent statistical tests each of them with a confidence level of a = 0.05; the probability
of rejecting at least one of these tests is extremely high, that is 1—0.95'%° = 0.994. Hence, the probability
of committing an error of first type is very high, which calls for a procedure capable of controlling the
probability of false rejections in the presence of a dependent multiple test structure.

In order to construct MHT (1), we exploit the duality between statistical tests and confidence sets
therefore proceeding to the estimation of probability intervals for the statistics p; € T;, where T; is the
domain of p;, and testing that the critical value p belongs to the specific band. Hence, following Beran
(1988), let the roots R, ; (X, p;) be the relevant function of the data, the confidence set for the statistic
j is the set

Cnj={pj € Tj: Rnj (X, pj) < nj (, P)}. (2)

Notice that here for ease of presentation we refer to one sided intervals, whereas in the experimental
section we effectively work with two sided intervals that can be achieved in a straightforward extension
of this procedure.

Furthermore, we require that the joint confidence set C := {C,, ; } has coverage probability 1—c and has
to be balanced, that is the confidence level for the interval ), ; remains the same Vj. The first constraint
forces the MHT to put in place a mechanism for controlling the joint probability of committing at least
one error of first type, the so called family-wise error rate (FWER). The second constraint, balancing,
is a very important property of the test: if lacking balance then the joint test would determine tighter
confidence bands for worse models and wider intervals for better ones. The aforementioned procedure
is achieved through pre-pivoting. In fact, indicating with H,, ; (-) the cumulative distribution function
of R, ; and with H,(-) the left continuous distribution of max {H, ;,Vj}, the right boundary of the
confidence set C,, ; is then

oy =H,[H'(1—a)]. (3)

n,j
In case we wish to construct a double sided confidence set with joint probability 1 — &, we simply define
a = @/2 and compute (3) as the right boundaries and, to determine the left hedge, we consider the left
sided version of ¢, j, this time defining H,, := min {H,, ;,Vj}. The solution of Beran (1988) to (3) is the
“plug-in” estimate
g0, B) = A3 (1= )] (4)

n,J

calculated with bootstrapping, see Beran (1988), Beran (1990), Beran (2003).

The extension to the procedure of Beran consists of targeting the k-FWER instead of the mere FWER.
The generalized FWER expands the capability of targeting multiple false discoveries and at the same
time provides a control variable that can be used in multiple runs of the testing procedure. By adjusting
the k-FWER, it is possible to detect weak departures from the null hypothesis, in the case whereby a
certain hypothesis is accepted at a slightly lower k. Formally, we define the

k-FWER := P{reject at least k true models}. (5)

Setting k-FWER=«a means controlling for the joint probability of at least k false discoveries, thereby
introducing a target probability of committing joint errors of Type I. The construction of multiple hy-
pothesis tests controlling the k-FWER has followed different procedures in Lehmann and Romano (2005)
and Romano and Wolf (2007) while in Romano and Wolf (2010) the authors achieve the generalization
of (2), thereby introducing balancing in the MHT procedure while controlling the confidence level of at
least k false discoveries. The construction of balanced right sided confidence sets with k-FWER=q« is
achieved by setting
H, = k-max{H, ;, Vj},

with k-max{y; < ya < -+ < Ys} = Ys—k+1, k < s.



The procedure just introduced provides a double benefit to multiple testing: firstly, the extension
to controlling the k-FWER of balanced multiple hypothesis tests raises the tolerance to false rejections,
therefore it makes the acceptance threshold more strict and increases the significance of the null hypothesis
that are accepted; secondly, the parameter k draws attention on individual test statistics that are not
excessively far away from the null but close to the rejection region that with small variation of the
k-FWER may be discarded or not.

3.2 The Step-Down Algorithm

Given the set-up of the balanced MHT with control of the k-FWER, it is possible to improve the perfor-
mance of the test by means of adopting a step-down method. Step-down methods implicitly estimate the
dependency structure of the individual tests achieving an improvement in the power of the MHT. The
algorithm (Romano and Wolf, 2005, 2007, 2010) can be described as follows.

Let MHT be the set of m (right hand sided) simultaneous hypotheses
7_[j : Rn,j < Cn,K,j (OZ, k) (6)

where we now make explicit the set of indexes K = {1,...,m} and the dependency of ¢ on k. The sets
A, and B, are, respectively, the sets of accepted and rejected hypotheses at the step s. At the start of
the procedure, set A9 = K and the counter s := 0

ALGORITHM A: Generic step-down method for control of the k--FWER

o If R,; < én,a,,;(a,k), Vj € Ap, then accept all the hypothesis and stop;
otherwise, reject any H; for which R, ; > ¢y, a,,;(a, k) and include j in By;
set Ay := Ap\Bi and increase the step s by 1;

e while |Bs| > k
reject any H; for which R, ; > d,, 4, i(a, k) and include j in B,yq, where

dn,a,j(onk) == max {&np;(a.k): D= A, UT}
\I|;kj1

set Asy1 := As\Bst1 and increase the step s by 1;
end

The algorithm A is capable of increasing the statistical power, that is the probability of rejecting
a false null hypothesis, because at each iteration the subset of the lowest p-value statistics is excluded,
tightening confidence bands in the subsequent iteration and hence strengthening the ability to pick true
discoveries. However, accounting for at least k > 1 false discoveries involves the possibility that at the
previous stage we have rejected true hypothesis, but hopefully at most k — 1. As a consequence, at step
s we have to consider within the current MHT the event of having previously dismissed k£ — 1 true nulls,
a fact that would affect the current critical values. Nevertheless, iterating through the set B to include
the event ‘“rejection of £ — 1 true nulls” might turn out to be a formidable task due to a rapidly growing
number of possible combinations of size k — 1 from the previously rejected hypotheses. For this reason,
Romano and Wolf (2007), Romano and Wolf (2010) propose a streamlined algorithm, which simplifies
the computational burden of algorithm A.



ALGORITHM B: Streamlined step-down method for control of the k--FWER

o If R,; < éna,,(o,k), Vj € Ag, then accept all the hypothesis and stop;
otherwise, reject any #; for which R, ; > ép a,,;(a, k) and include j in By;
set Ay := Ap\B; and increase the step s by 1;

e while |By| > k
for each j € B; calculate the p-value p,, ; = 1— H,, ; and sort them in descend-
ing order ppn,, = +++ 2 Pnr ., Where {rl,rg,...,r|33|} is the appropriate
permutation of the p-value indices that gives this ordering; then pick a user
specified integer Nyax < (‘ka1|) and let M be the largest integer such that

M

(k—l) S Nmax; 5

reject any #H; for which R, ; > d,. 4, (o, k) and include j in B,y;, where
dp.a, j(a, k) == max {énpj(a,k): D=A,UT}

IC{ri,r2,...,T0 }

set Asy1 := As\Bst1 and increase the step s by 1;
end

The rationale of algorithm B is to reduce the computational burden due to the number of combinations
generated by calculating critical values czm A,,; by limiting the pool of rejected hypotheses to those that are
least significant. The streamlined step-down method tries to reduce the computational effort, limiting
the set to be explored to the hypotheses that are most likely to be rejected. As a consequence, the
algorithm is as close as possible to the generic algorithm A. The step-down algorithm defines a search
path to strengthen the power of the MHT, driven by the implicit dependency structure of the individual
test. At each iteration the algorithms A and B minimise the Type II error probability, hence improving
the statistical power. Notice that in the case of two sided confidence sets the previous algorithms have to
be modified accounting for left critical values computed as minima across the search set and furthermore
including left p-values in the operational method. In the empirical section we use the bootstrap MHT
augmented with the step-down algorithm B.

4 Conditional Distribution Models

In this section we introduce the models that are included in the collection of market risk forecasting tools
and whose performance form the objective of the MHT experiment in the empirical section. The output
of the model we are interested in is the conditional probability density forecast delivered by the different
techniques. Although it is sufficient modelling just the tail of P to produce the inference that is sought,
in certain cases we will need the full distribution to project the system forward.

The suite of models includes: heuristic models such as the historical simulation (HS), which is a rolling
window histogram, a rolling window Normal model (G) and RiskMetrics (RM)*; a non-parametric model
based on a kernel regression (KR); parametric models such as the autoregressive conditional heteroskedas-
tic model (CH), the quantile auto-regression model (QR) and several parametric distribution assumptions
such as normality, student-t, generalized error distribution (GED) and the generalized Pareto distribution

(GPD).

Historical Simulation

The historical simulation (HS) model consists of a rolling window histogram of the return distribution.
The implicit assumption is that a ¢-left neighborhood data sample histogram is a good local estimate of
the conditional distribution P;. Although this might be acceptable as an estimate of Py (Xy4c),e > 0,
a model-free approach seems inadequate when ¢ > 0. Assuming i.i.d., we can compute the distribution
A lags forward with numerical convolution or MC integration. This model is the most widespread in
the financial community, because of the ease of implementation and mainly because it allows one to
aggregate easily the many varieties of financial exposures which would otherwise require the design of an
all-inclusive market risk model.



Normal Hypothesis

The classical assumption of the Black-Scholes model is that log-returns are normal. A practical approach
to the estimation of a conditional mean-variance model is the plugging in of a rolling window sample
mean and variance into the normal function to construct a model of P; (X;1.). This model should be
able to capture some momentum and volatility clustering.

RiskMetrics

The RM model, J.P.Morgan (1996), consists of an exponential smoothing of the squared returns, which
is used for a t + 1 variance proxy. Formally,

ht:9~ht_1+(1—9)~xf_l.

It was originally designed as a simple alternative to the GARCH model on the observation that the lag
polynomial is often close to the stability condition and the GARCH parameters for financial time series
are not widely different across a large collection of data. It presents the disantavantage that it cannot be
projected forward. As a working template, we use the normal hypothesis to compute projections of the
conditional probability distribution, assuming innovation of the variance proxy at current h.

Kernel Regression

A robust and efficient (but biased) technique to estimate a conditional distribution is to exploit the
kernel regression of Nadaraya-Watson, cfr. Nadaraya (1964), Watson (1964) and Bierens (1987) for
several statistical results. Formally,

> yiKn(x — ;)
> Kn(z —xy)

A drawback of this estimator is that it shows high variability when conditioning on values of x;_a that
are far away from the center of gravity of the sample distribution, therefore producing instable estimates
of the tails. On the other hand, an attractive feature of the KR estimator is that it can generate directly
an estimate of the distribution conditional on any lag; in this case the projection exercise is a direct
output of the estimation function.

E{ylz} =

Quantile Regression, CAViaR

The quantile regression model, Koenker and Bassett (1978), is a statistical model of empirical percentile.
Basically, it is a parametric model of relations between the explanatory variables and the percentile of
the target variable. In this work, we employ the specification in Engle and Manganelli (2004), which
accounts for autoregressive features of the model quantile. The model has been designed pretty much
for the estimation of an auto-regressive VaR, therefore the epithet of conditional autoregressive VaR,
designated as CAViaR. Formally, letting X;—1 = {y+-1,.-.,¥t—i,--- }, & quantile auto-regression model
is defined as

v = f(Xe—1;8)+el
= ft(ﬂ)'i_g?a

with the auxiliary assumption that the #*"-quantile of the £/ distribution is equal to 0. The model
estimation is carried out with the minimization of the loss function

min % Y (0= 1<) (ve — fi(B)

t

which is minimal whenever f; = 6.

In this work we employ four different CAViaR specifications: the adaptive; the symmetric; the asym-
metric; and the indirect GARCH. The latter three models are specified as in Engle and Manganelli (2004),



whereas the adaptive CAViaR is defined as

ft = ft*1 + [l{yt—1<ft—1} b+ l{yt—lzft—l} ’ b2] : (ytfl - ftfl)'

For each model, we estimate a quantile regression for the 15¢-5" percentiles, in addition to the 7.5% and
10% levels, in order to smooth out the borders of the distribution. Hence, we use those percentiles as
a point-wise tail estimate. The extreme value distribution is assumed to have a linear to higher order
polynomial decay, matching the all-time minimum, with polynomial degree ranging from 1 to 20. In this
exercise we are modeling the tail of the conditional distribution function only. We project the distribution
forward, simply multiplying the knot points, that is the estimated percentiles, by the square root of time.

GARCH-EVD Models

Financial time series exhibit volatility clustering features and fat tailed distributions. The generalized
autoregressive conditional heteroskedastic models, Engle (1982), Bollerslev (1986), represent the most
successful statistical device in mimicking the evolution of financial time series in the past thirty years.
The GARCH models come in a variety of fashions. However, a GARCH(1,1) does not seem an unrea-
sonable assumption for financial time series, cfr. Hansen and Lunde (2001). In the MHT experiment
we account for modeling time series volatility clustering with conditional heteroskedastic models, and
incorporate asymmetry with exponential or threshold GARCH, cfr. Nelson (1991) and Glosten et al.
(1993). Specifically, we estimate symmetric GARCH models, Engle (1982), Bollerslev (1986)

ht = ap + 0415%71 + Bihs1

and models capable of producing asymmetric distributions such as the TARCH(1,1) of Glosten et al.
(1993)
he = ag + (01 +71ge,_ <0y) €71 + Brhi

and the EGARCH(1,1) of Nelson (1991)
loghy = ag + a1 (|[vi—1| — E|vi—1]) + B1loghe_1,
with Et = ﬂtm.

The stochastic driver v; is such that Ev; = 0, Ev? = 1 and v; ~ G(6), where G(f) is a parametric
distribution of type normal or student-t. However, it is common knowledge that financial time series
exihibit fat tailed distributions, Longin (1996). Further improvement is achieved by augmenting the
model with a piecewise distribution for G(). Thereby, we adapt extreme-value distributions to each tail
of the residuals with a quasi-maximum likelihood estimation (QMLE) of the model classes introduced
above, while a conditional normal or GED is estimated for the mid percentiles. In order to parametrize a
GPD for each tail, we exploit the idea in McNeil and Frey (2000) and maximize the Kolmogorov-Smirnov
statistic of the empirical distribution of the exceedances. This approach is different from that taken by Bao
et al. (2006), where the threshold is picked at a conventional level. A robust alternative semi-parametric
estimation technique has been proposed in Mancini and Trojani (2011). The described econometric setup
is able to capture the time dependency described by volatility clustering, the asymmetric effect and the
thick tails phenomenon.

5 Backtesting and Multiple Hypothesis Testing

In this study we employ the generalised bootstrap MHT to design a suite of statistical tests to investigate
the forecasting performance of the collection of market risk models presented above. We build upon a
simulation approach, the stationary bootstrap Politis and Romano (1994b), to generate the statistic dis-
tributions. In this Section we present the sample measures and the devised tests that are employed in the
experimental exercise to evaluate and compare the forecasting ability of the suite of models under analysis.

The target risk measures are the VaR and the ExS. Formally,
p=VaR;(A,«a) :=inf {z € R: P; (X34 <z) > a}. (7)

Having defined (7), we introduce some simplifying notations. Let P;(-) = P(:|F), Pi(|D) = P(:|DNF),



E={X; an < VaR¢(A,a)} and E = {X;;a < VaR¢(A,a)}. The ExS can then be defined as

Ep, [Xia |E] + [P, (E) ~ P¢ (E)] - VaRao

p=ExS;(Aa) = P, (F)

(8)

The expression (8) complies with market practice, e.g. Kerkhof and Melenberg (2003), whereby we have
to account for the possibility that the VaR:(A, ) might have a finite probability (P not surjective)
or that an interval on X might have 0 probability (P not injective). Although (7) is of practical use in
calculation, this assumption is impractical and quite useless®, having a practical financial application only
in limited cases®. Hence, we drop definitions (7), (8) and assume the cumulative distribution function to
be bijective. Let Fy a(z) := Py (X;4a < z) and define

VaRy(A, a) = F, (@) (9)

and
EXSt(A,Oé) = éEPt [Xt—i-A]-E] . (].0)

Definitions (9) and (10) are the ones that we refer to in the rest of this work. The corresponding sample
measures of the quantities defined in (9) and (10) are either employed in the construction of simultaneous
confidence set or enter a loss function between the realized values and their ex-ante expectations, cfr.
White (2000). Mainly, the type of tests we set up concern the model forecasting ability of VaR and ExS
over 1-day and 10-day time horizons, under low and high volatility conditions and on an average set up.
We test the VaR model predictive performance, cfr. Bao et al. (2006), Kerkhof et al. (2009), using the
sample measures of the empirical coverage probability (ECP)

T—A
pr=3 Y 1a (11)
t=R

As the empirical probability coverage is a scale independent global measure, in order to construct
sample measures for testing the model forecasting ability targeting the expected-shortfall, we need to
introduce some standardisation of the data that could possibly render the shortfall forecast time in-
dependent. We can indeed achieve that by transforming the data with the A-step ahead conditional
distribution Py (z;41A) to construct the probability transform:

Tt4A

YerA = /dPt,A(S)» (12)

— 0o

obtaining the random variable ¥ ~ UJ[0,1], cfr. Rosenblatt (1952), Diebold et al. (1998). Exploiting
the sequentially independence property of Y, the latter work approaches the problem of assessing prob-
ability density forecasting performance by measuring the divergence of the transformed data from the
uniform distribution. Building on this approach, several formal methods of testing density forecasts and
applications to financial risk measurement have been designed, based on the likelihood-ratio test, cfr.
Berkowitz (2001), the Kullback-Leiblier information criterion, cfr. Bao et al. (2007) and the §-functional
method, cfr. Van der Vaart (1998) and Kerkhof and Melenberg (2003). In this article instead, we apply
the probability transform and then derive the sample measure

T—-A 1

o Doi—r Yrealey

p= T-A
Zt:R Eiia

whereas E* is the event in which the observed y has breached the probability transformed VaR;(A, a).
The approach undertaken here in constructing MHT of ExS involves estimating simultaneous confidence
sets for the measure (13) and testing the theoretical ExS of a uniform distribution at the sought confidence
level. To our knowledge, this is the first time that such a test for the expected-shortfall is devised. For
reference, the target critical values for the statistics undergoing the testing procedures, are summarized
in the following scheme:

(13)

o 1% 5%
VaR,(A,a) 001 0.05
ExS,(A,)  0.005 0.025

In the generalised bootstrap MHT framework, backtesting the predictive ability of VaR and ExS for
a collection of models is a relatively simple exercise. In the absolute model performance test, the method
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of balanced confidence set for testing focuses on comparing the theoretical statistic with empirical critical
values, rather than the empirical statistic to theoretical critical values. The step-down algorithm further
refines the set of models, strengthening the power of true discoveries by rejecting those models that are
most unlikely to produce statistically significant forecasts. Another point of view is offered with the
relative performance test exercise, whereby we aim to produce a ranking of the model forecasting ability.
With this test, we compare the divergence between the distances of the sample measures from their
theoretical value for each benchmark model with respect to the rest of the pool, mapping all the possible
double comparisons from the pool. Although it is possible to construct balanced confidence sets with
control for the k.-FWER, for this type of test, we believe that the huge amount of multiple comparisons
would result in an overflow of information. The testing design strategy here is to estimate the marginal
probability of pairwise model superiority to produce a model ranking indicator. in relation to the testing
dependencies we rely on the ability of the bootstrap MHT to take into account this feature.

More specifically, with the absolute model performance test, we derive estimates of balanced joint
confidence intervals for the target statistic with a predetermined probability and an overall k-FWER,
which is specified to control the probability of committing at least k false rejections across the suite of
models. Thereafter, we leverage upon the duality between statistical tests and confidence intervals to
infer conclusions about the significance of the result delivered by each model. For each confidence set, we
check if the target critical value is included in the interval controlling the joint error of Type I, and iterate
in a step-down fashion to improve the MHT statistical power. Formally, the absolute model forecasting
ability test is defined as

Hji amK,j(a, k‘) S RnJ‘(X,p) S bn,K,j(a, k) (14)

In the definition of problem (14), we point out the double sided nature of the multiple test and the route
taken in testing using the confidence set approach. Practically, the output of the simulation process is
the critical value vectors a and b, which incorporate the full dependency structure of the experiment
and the k-FWER and balancing constraint. The step-down algorithm produces a further refinement of
the procedure, as described previously. In the empirical section, we allow for lower confidence on longer
time horizons, because of the increased variability of the statistics, while we keep the number of false
rejections across the tests in the range of 10 — 13%.

With the relative performance test, we want to draw inference about each model’s predictive ability
within the context of all models in the collection. We are targeting the superiority of each model in
delivering the target risk measure, with the ultimate aim of answering the question: “which model is the
best model?”. It follows intuitively that a model, which cannot deliver statistically significant performance
results has little chance of providing superior performance relative to the rest of the pool. But, among
sound models, which model should we choose in optimal statistical terms? This the question we tackle by
developing relative model predictive ability bootstrap MHT. The relative forecasting ability has been first
investigated by the seminal work of White (2000), who designs the Reality Check (RC), a joint statistical
inference procedure that extends the methods of Diebold and Mariano (1995) and West (1996), and which
has been in turn extended in several directions, cfr. Hansen (2001) and Corradi and Swanson (2006).
In recent years, several works on risk model backtesting, see for instance Gonzales-Rivera et al. (2003),
Bao et al. (2006), Kerkhof et al. (2009), and density forecast, cfr. Bao et al. (2007) have used the RC
framework to cope with joint testing of model forecasting ability. This paper is different in that with
the relative model performance exercise our test departs substantially from the Reality Check approach
of White (2000), Hansen (2001). In fact, the bootstrap MHT we deliver is structurally different from
the RC, which hinges on the statistic W := max; E [£; — Lo] where L; is the loss function of the model
i predictive ability and Ly is the loss function of the reference model 0. The RC exploits asymptotic
results with simulated second moments for the target statistics or simulated statistic distributions to
infer realized p-values. Nonetheless, we observe a structural problem with this approach. The statistic
W usually generates distributions centered at the very far right side of the abscissa, entailing that in
order for the researcher to reject the null hypothesis W < 0, the realized model performance should be
large. The standardization procedure proposed by Hansen (2001) attenuates, but does not eliminate,
this phenomenon. Besides, in the presence of strictly competing models, the RC is most likely to accept
the null every time, even in the standardized version. We conjecture that the form of the statistic is too
stringent and, unlike the RC, we construct a different target statistic which measures the gain/loss in
terms of distance from the critical value of the performance measures produced by two competing models,
formally R}, ;(X, p) := |p; — p*| = |pi — p*|. We propose a novel device in relative model comparison with
a multiple testing approach, constructing a matrix, which we call the multiple comparison map, or MCM.
An MCM is a double entry table, which compares each model predictive ability versus every other model
in the pool. The key statistic is the probability estimate of the event that the absolute performance of
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model i is better than the absolute performance of model j, formally P {|p; — p*| — [p; — p*| > 0}, Vi,j.
The latter quantity is the p-value” of the test statistic whose null hypothesis states that model i is better
than model j, formally,

Hy: R (X,p) 20 (15)

that is the distance of the performance measure p; of model j from the critical result p* is greater than
the same result for model i. Therefore, at row 4, column j of the MCM we can read off the probability
that model 7 has better forecasting ability than model j. Notice that the companion elements above and
below the diagonal do not necessarily sum to one, because both the entries include the event that the
measure is zero, which is not a zero probability event; in practice, the bootstrapping mechanism is likely
to produce discrete distributions. In this implementation, the MCM produces the p-value of the test
(15), which represents the estimated likelihood of paired model superiority. Finally, in order to increase
the readability of the results, we provide a table which summarises the large amount of pairwise relative
model forecasting ability tests. The synthetic table presented in the experimental section exhibits the
indicator which is a count of the comparison tests giving the number of times a given model achieves a
p-value greater than 0.5, thus producing a ranking of market risk model forecasting ability.

The MCM incorporates the robustness of the generalised bootstrap MHT approach, packaged into
a readable display format for measuring the model superiority. It shifts the focus towards the relative
performance of the suite of models running a thorough scan of each pair-wise comparison. The MCM
provides a valuable tool for answering uniquely the question concerning the best model in the pool.

6 Experimental Section

6.1 Data Description and Modeling Approach

The data set consists of a large sample of a well diversified equity stock index, that is the Dow Jones In-
dustrials Average index, ranging from December 31%° 1970 to April 227¢ 2013. We work with log-returns
of the index daily close level series. This large sample allows us to consider at least two comparable
volatility peaks, around October 1987 and October 2008 as well as a high number of volatility waves.
To perform the backtesting experiment, we split the data sample into in-the-sample and out-of-sample
segments, assuming size T = R+ P, where R indicates the size of the in-sample data used for model esti-
mation and P indicates the size of the sample used for prediction in the out-of-sample segment. The full
sample size is T' = 10,674. The working assumption here is that there exists stable transition probability
distributions, albeit unknown. We subtract the sample average from the return sub-sample ending on
December, 315 1998, assuming thereon a zero off-set constant. We draw on a large sub-sample for first
estimation and set R = 6,572, that is we start the out-of-sample exercise on January, 15¢ 1997 and use
the same parameters for the parametric models throughout 260 observations, after which the model is
estimated again. As a consequence we split the out-of-sample exercise into 16 blocks which are re-sampled
2,000 times with the stationary bootstrap of Politis and Romano (1994b). We choose that sample size so
that we observe sensible smoothing of the statistic distributions. The optimal bootstrap block-length is
estimated on the growing sample base with the Patton et al. (2009) algorithm. We deliberately discard
the rolling-window approach for parametric models like GARCH-EVD and CAViaR because this practice
increases rather than shrinks the forecast variability. For instance, the autoregressive coefficient of the
symmetric GARCH equation exhibits wide variations if resulting from a two-year rolling sample monthly
estimate as opposed to the procedure employed in the experiments consisting of a yearly estimate on a
growing sample base. For reference, the mentioned rolling-window approach for a symmetric GARCH
model would produce an average autoregressive coefficient of 0.869 with a standard deviation of 0.073 and
a spike at 0.346, whereas the growing sample approach delivered an average coefficient of 0.920 with a
standard deviation of 0.002. We believe that is the main reason for the poor performance of the GARCH
models in, e.g., Kerkhof et al. (2009) and Bao et al. (2006). Hence, in this study we do not include rolling
window versions of the GARCH or CAViaR models, relying on the results of similar models employed
by other authors for reference. The rolling window approch applied to models that are designed to pro-
duce conditional and stationary distributions of the data generating process, is more likely to hurt their
performances by the increased model uncertainty introduced with the parameter variability, rather than
improving their local forecasts.

In this empirical study, we generate the sample statistics with resampling from subsamples of 260
days. There are two reasons for this: firstly to avoid the phenomenon of location bias, Corradi and
Swanson (2007), that is the bias in resampling for recursive problems, whereby earlier observations are
used more frequently than temporally subsequent observations when forming test statistics; and secondly
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to construct artificial samples with classified volatility, in order to investigate the model performance in
different volatility environments. We construct model predictive ability measures on 1-day and 10-day
projections of the target risk measures, that are the empirical loss function, the empirical coverage prob-
ability and the VaR and ExS of the probability transformed sample distributions, whereby the model
functional is constructed out of forecast distributions. As described earlier, the out-of-sample data is
divided into 16 blocks of 1 calendar year.® We investigate the full out-of-sample performance of the mod-
els. Furthermore, we back-test the performance in low / high volatility scenarios each corresponding to
four blocks labelled as L/V and H/V, representing extreme sample years. The blocks are not necessarily
time-contiguous.

Where necessary, the model 1-step and 10-step distributions are constructed via Monte Carlo inte-
gration. In order to consistently reduce the computational time, the GARCH-EVD distributions are
constructed on a grid for the conditioning variable entailing an array of forecast distributions, which
is used at run time by truncating over the prescribed grid the dependency on the current value. The
historical simulation is projected forward via Monte Carlo integration. The RiskMetrics distributional as-
sumption is Gaussian with h; variance. The Kernel regression estimate is constructed in a similar manner
as the GARCH-EVD distributions, that is on a grid for the conditioning variable that is determined on
the historical sample as well. In order to reduce the computational time, the Kernel regression is also kept
fixed until the subsequent estimation. The rolling window models are recalculated daily at time t—1. The
CAViaR equation requires some inventiveness to be employed. As they stand, the quantile regressions
cannot be projected forward or input in the probability transform, because they have naturally been
designed to be free of any distributional assumption. This model is appealing both for the short term
memory quantile feature as well as for the absence of an explicit probability assumption. Nevertheless,
we need a conditional distribution to feed the Rosenblatt functional and construct the ExS backtesting
procedure. Therefore, we proceed by estimating several quantile auto-regressions to construct a linear
approximation of the tail of interest. We need to expand on the inner side in order to avoid polarization
on the quantile of interest, that is the 5 in this exercise. Meanwhile, on the outer side, we need a tail
assumption to work with. We start joining the all time minimum with the first percentile with a straight
line and then with a rational function of degree 5, 10 and 20. To be sure that the operation model we are
designing produces reasonable results, we ought to prove that the percentile order is what is expected to
be. In this case, we rely on the careful choice of the pivot points, on the constraint preventing the au-
toregressive quantiles to cross each other, were that to happen and, of course, on the empirical evidence.
The quantiles are carried forward in time simply multiplying by the square root of time.

Furthermore, we are also interested in the significance of conditioning in the presence of model mis-
specification. We include in the model a fully unconditional distribution assumption, based on a dual tail
GPD distribution with constrained normal or GED distribution for the mid quantiles, estimated through
MLE on the base sample. We also consider for the 10-step ahead forecast the unconditional distribution
of the GARCH-EVD models. This distribution is constructed taking the expectation with respect to the
conditioning variable, formally

P(X) =EY [P(X]Y)].

The rationale in testing these models relies on the possibility that the forecast 10 steps ahead is possibly
distorted by the conditioning, firstly because of the speed of the mean reversion of the volatility, which
should be ruled out by the preliminary tests on the model parameters significance, but mostly because of
possibly a misspecification of the model that might include unexpected innovations that impact rapidly
and significantly the model projections.

Table 1 provides a summary of the models and the acronyms that are used in the next section.

6.2 Empirical Evidence

In this section, we summarize the empirical evidence obtained from our testing. To conserve space, we
do not present all tables related to the analysis, although this section discuss the outcomes in full. The
complete set of tables is available from the authors upon request.

With reference to the full sample of the target market risk measures and then the VaR numbers for
the L/V and H/V blocks, Tables 2 to 5 present the balanced k-FWER confidence sets and the generalised
bootstrap MHT results. The tables show the balanced confidence set estimates before the application of
the step-down procedure, while the shaded cells correspond to those models rejected at the termination
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of the aforementioned algorithm. The tables also show the bootstrap mean of the target statistic for each
model, which represents the expected model performance. The critical values are applied according to
the following scheme:

Measure Horizon Confidence k&
ECP 1d 99% 3
ECP 10d 95% 4
ExS 1d 99% 4
ExS 10d 95% 5

Further, in relation to the relative performance comparison, Tables 6 to 9 exhibit the MCM tables,
that is the p-values of the pairwise tests for the market risk forecasting model performance for the short
term horizon and full sample. As noted earlier, to conserve on space we have not presented the MCMs for
the other test settings; however, these are available from the authors upon request. Moreover, in order
to facilitate the reading of the model comparison tests, we also provide a collation of the results where
we present a synthetic number which produces a model forecasting performance ranking. The index in
Table 10 is a count of the number of times that each model produces a probability greater than 0.5 in
each pairwise model comparison test.

In Table 2 we exhibit the full sample results for the VaR forecasting experiment. Although the MHT
for the empirical coverage probability (ECP) of the VaR(1d, 5%) shows that the HS and the Gaussian
models are significant good predictors, in forecasting VaR(1d, 1%) the class of heteroskedastic models aug-
mented with EVD deliver superior results, as well as in the former experiment. The KR can surprisingly
capture the 1d first percentile, while being rejected in estimating the fifth percentile: this model generally
shows quite erratic performance. The Nadaraya-Watson kernel is quite sensitive to tail data and so is
especially erratic in the tails; this model could possibly improve its performance slightly if iterating the
estimation daily or using a weighted version of the kernel.” The CAViaR exhibits the same underestima-
tion effect (higher empirical coverage) that is visible in the designers’ work Engle and Manganelli (2004),
probably due to finite sample effect. Increasing the sample size reduces the bias effect allowing improved
performance. The Student-t type models seem to suffer on the 5" percentile exercise. The unconditional
models DT n and DT ged are systematically rejected in the 1d horizon. In the 10d forecasting exercise
the higher variability produces more widespread acceptable model performance, despite having relaxed
the Type I error and the the generalised FWER. The EVD models seem to slightly overestimate the
quantile over the 10d projection; this might be connected to the necessity for improving the likelihood
optimisation. The good performance of the CH*t avg model in the VaR(5%,10d) case, whereby this
model is usually affected by critical performance of the higher percentile yet nevertheless performs well
in the longer horizon exercise, seems to suggest that the joint estimation of the GARCH filter and the
tail model may add to predictive power. In fact, this is the only fat-tailed GARCH model which has
been estimated with full MLE. The unconditional GARCH-EVD models are accepted in both experi-
ments and also the DT _* models are significant in the 5" quantile experiment. This performance raises
the question concerning “how far” the conditional distribution is from the stationary one over the projec-
tion horizon. The RM model produces significant forecasts, except in the short time short tail experiment.

The generalised bootstrap MHT for the VaR in the Rosenblatt space perfectly confirms the results
delivered by the empirical coverage probability tests, with the exception of the HS for the VaR(1d, 1%)
and the QR2 class for the VaR(1d, 5%), most likely because these models are at the boundary of the
acceptance set. In fact an increase of the number of tolerated false rejections induces the acceptance of
the null for these tests that were rejected previously. We infer that these models deliver results whose
critical values are at the boundary of the acceptance set.

Turning to the ExS experiment, we notice the large number of rejections over the 1d horizon. Contrary
to the common sense intuition, the number of models that pass the test is greater in the smaller tail. The
non-Gaussian heteroskedastic models with fat tail innovations provide statistically significant predictors
for the ExS(1d, 1%), whereas only the symmetric EVD and CH3t are significant at the fifth percentile.
In general, the GARCH-EVD are good predictors on shorter horizon, whereas they tend to show slightly
biased forecast on the 10d horizon, though still significant. The tail adjustment in the QR model delivers
significant results in several cases for the first percentile exercise. The historical simulation, proves to
be an acceptable choice on short term horizon and for ExS(10d, 5%), while it fails on the far tail at the
long horizon. The 10d horizon exercise shows again more wide spread significant results in the longer
tail forecast, whereas in the small tail experiment only a few models outside the CH class can deliver
significant results. We also produce but do not report VaR testing under the probability transform, which
mostly return the same results as the one delivered by the empirical coverage probability measure. We
also exclude unconditional models from the ExS forecasting model suite, which basically produce the
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same conclusions as the VaR experiment.

In the stress test experiment, we evaluate the predictive ability of the model battery in a controlled
volatility environment targeting the low volatility (L/V), in Table 4 we show the results for the VaR
forecasts, and high volatility (H/V) subsamples, shown in Table 5. The general result is that Gaussian
models tend to outperform with low volatility, while the GARCH-EVD class, mimicking more probability
distribution characteristics, outperform almost systematically. In the low volatility scenario the RM can
also deliver significant results.

Finally, in order to enrich the analysis thus far, we construct the MCM for the suite of risk models
we have been testing with the generalised bootstrap MHT. This tool is able to garner information con-
cerning the “best” model in the collection. In this exercise, we do not exclude the models that have been
rejected at the absolute performance result level, in order to highlight the consistency of this approach
with respect to the relative testing procedure. On the short-term horizon forecast, the GARCH-EVD
models provide the top performances for all the target risk measures. The implicit GARCH CaViaR
with tenth degrees rational tail is most likely the best performer for the ExS(1d, 1%) and ExS(1d, 5%),
where few other models of this class exhibiting top performance over the 10d horizon, like some elements
of QR2_*. An interesting result is the loss of performance ability of the CH1x model over the longer
horizon at the fifth percentile, which coupled with the noticeable results of the CH*t plus model for the
same target, suggest either the necessity of fine tuning the estimation function or for a further expansion
of the probability model. The HS model is a mid-rank performer, with few exceptions on one side in the
case of the short term ExS forecasts and on the other side in the case of the empirical coverage probability
in the first percentile and 10d horizon. Other results that stand out but do not show a pattern are the
top performances shown by the rolling Gaussian, the unconditional dual fat tail, the QR1 and the RM
model in the case of VaR(10d, 5%).

7 Conclusions

In this article, we extend the exercise carried out in Bao et al. (2006) by means of testing the model
performance of a suite of models in forecasting 1-day and 10-day VaR and ExS with a generalised multiple
hypothesis testing (MHT) methodology. We present the bootstrap MHT framework, which is a multiple
hypothesis testing approach built on a non-parametric simulation device, capable of producing estimates
of the statistic distribution of interest and delivering robust inferences that do not rely on analytic or
asymptotic results, requiring only weakly stationary times series. Among its characteristics, the MHT
is able to deliver statistical tests that take into account multiple test dependencies and that are sound
to finite sample effects and non-pivotal statistics. From this perspective, we believe this approach to
be particularly appealing to practitioners, due to the fact that it allows one to design robust multiple
hypothesis tests, which easily can accommodate decision-making problems that concern competing risk-
models.

We apply the MHT approach to produce absolute and relative model forecasting ability performance
testing. In the absolute testing exercise, we estimate simultaneous balanced confidence sets controlling for
the generalized family-wise error rate. Balancing multiple confidence sets is a highly desirable property of
a MHT, in order to construct homogeneous intervals, which target the same confidence probability at the
individual hypothesis level. Furthermore, controlling for the k--FWER is of capital importance in MHT
because the probability of false discoveries in multiple hypothesis test reaches the boundary very rapidly.
The k-FWER extends naturally the concept of confidence level for the scalar statistic. As a final layer, we
use a step-down algorithm, which maximises the power of the test. We use this approach to test jointly
a set of alternatives. Finally, in the second part of our suite of statistical tests, we exploit the bootstrap
MHT to construct a novel relative comparison testing device, the multiple comparison map (MCM), that
offers a complementary perspective on the target measure across the collection of alternatives, measuring
the p-value of each pairwise individual hypothesis that the reference model provides superior market risk
forecasts. The MCM is a novel tool intended to investigate model predictive ability at a more granular
level. With the relative model forecasting performance test, we do not apply the procedure for controlling
the generalised family-wise error rate, in order to produce a full ranking of the reference model suite. A
further layer of robustness can be added by previously filtering the model set via the control for false
discoveries in relation to the multiple pairwise model comparisons for each reference model. However, we
rely on the capability of the bootstrap engine to take into account the test dependencies. The general
objective of producing a ranking in relation to the model’s ability in forecasting the target risk measures
is pursued by synthesising the multiple model comparison p-values into an index measure of the model
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superiority.

The target risk measures are the VaR and ExS forecast on 1-day and 10-day time horizons. In the
latter experiments we present a new simple test for the expected-shortfall, building on the probability
transform. In the context of model forecasting ability, the bootstrap MHT framework is attractive, be-
cause it can cope with possibly non-nested misspecified models and parameter estimation risk. Concerning
this latter issue, we adopt the working hypothesis that the parameters or the non-parametric estimates
are set to their p-limits, due mainly to restrictions to the currently available computational power. We
plan to expand this feature in future experiments and include estimation risk in the full simulation.

The empirical results that we obtain diverge significantly from the evidence collected in Bao et al.
(2006). We have used more stable parameters for the GARCH models and optimized the estimates of the
thresholds for the GPD. Furthermore, the generalised MHT approach we have employed, allows testing
for the significance of model results in absolute terms, while the MCM determines a comparison of model
performance that is more informative than the reality check p-value, which in the reference article fails to
detect any model superiority over the benchmark RiskMetrics. We have compared the forecasting abil-
ity of several models with respect to different performance measures. In general, models which account
for volatility mean reversion and fat-tailedness result in the best performance on the shorter horizon,
whereas the heteroskedastic models with a Gaussian specification seem to perform slightly better on the
10d horizon. Most of the time the CH1x_* (see Table 1) is the best model. This result is in contrast
with previous findings and shows that GARCH rolling window parameter estimates introduce high model
uncertainty, inevitably compromising their forecasting performance. The Historical Simulation also per-
forms reasonably, resulting in mid-ranking performance. Risk Metrics, another popular model among
practitioners, does not exhibit a noticeable performance. Conditioning sometimes hurts the performance
on a wide time horizon. The 10d horizon experiment shows a wider variability and in the case of the 5%
tail a smaller number of rejected models. We also conduct a model stress test in order to investigate the
model performance in low /high volatility scenarios, whereby we observe the Gaussian models performing
better in a low volatility regime.

Further extensions or improvements that might be brought into the experiment include the following;:
the parameter estimation risk, that would entail the estimation of parametric and non-parametric models
at the resampling level; the inclusion of jump-diffusion models, possibly capable of capturing non-smooth
surprises on wider forecasting horizons; the exploration of the soundness of the stable transition proba-
bility assumption, with the introduction of switching regime models. We leave this to further research
activity.
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Notes

I'We keep referring to VaR in this work although we always mean the target quantile of the empirical returns. Nevertheless,
originally, the VaR is defined as a monetary measure that better refers to a consolidated portfolio of asset values rather
than returns. However, it is theoretically easy to switch from one measure to another.

2The statistical power of a test is defined as the probability of rejecting false null hypothesis, that is one minus the
probability of committing Type II error. The power measures the ability of the test in rejecting false hypotheses.

31n statistics, a root is a generic term to indicate a function of the sample data. We use indifferently as a synonym for
statistic, or as a more elaborate function.

4The RiskMetrics model is presented as a heuristic model because the model parameter 6 is fixed a-priori and we assume
conditional normality to project the system forward.

5Moreover, as we will see later on, we have to assume an invertible distribution function for the application of the
Rosenblatt transform.

%The main example of this sort is a credit risk model with constant recovery.

"To be precise, here we refer to the ex-ante probability of the null hypothesis, that is before observing any statistic. This
p-value is the probability of committing a type I error in each pairwise comparison, where the null hypothesis corresponds
to the superior performance of the reference model. The confidence level has been set to 0.5, because in each comparison
we pick the model with the highest probability of not being rejected as the superior performer.

8The last block is less than 1 year but the resampled data is let run for a full year.

9We have run some experiments with the weighted version of this model which did not seem to stabilize the tails.
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Name

Model

CHl1g

CH1t
CH1lx n
CHlx ged
CH2g

CH2t
CH2x_n
CH2x_ ged
CH3g

CH3t
CH3x n
CH3x_ged
CHlg_avg
CHIt_avg
CHlx_n_avg
CH1x ged avg
CH2g avg
CH2t_avg
CH2x_n_avg
CH2x_ged_avg
CH3g_avg
CH3t_avg
CH3x_n_avg
CH3x ged avg
DT _n

DT _ged

GO

Gm

HS

KR

RM

QR1
QR1_005
QR1_010
QR1_020
QR2

QR2_ 005
QR2_010
QR2_020
QR3
QR3_005
QR3_010
QR3_020
QR4
QR4_005
QR4_010
QR4_020

Gaussian GARCH(1,1)

Student-t GARCH(1,1)

GARCH(1,1) with € ~ dual GPD tailed and normal mid-quantile
GARCH(1,1) with € ~ dual GPD tailed and GED mid-quantile

Gaussian TARCH(1,1)

Student-t TARCH(1,1)

TARCH(1,1) with ¢ ~ dual GPD tailed and normal mid-quantile
TARCH(1,1) with ¢ ~ dual GPD tailed and GED mid-quantile

Gaussian EGARCH(1,1)

Student-t EGARCH(1,1)

EGARCH(1,1) with € ~ dual GPD tailed and normal mid-quantile
EGARCH(1,1) with € ~ dual GPD tailed and GED mid-quantile
Unconditional Gaussian GARCH(1,1)

Unconditional Student-t GARCH(1,1)

Unconditional GARCH(1,1) with ¢ ~ dual GPD tailed and normal mid-quantile
Unconditional GARCH(1,1) with ¢ ~ dual GPD tailed and GED mid-quantile
Unconditional Gaussian TARCH(1,1)

Unconditional Student-t TARCH(1,1)

Unconditional TARCH(1,1) with & ~ dual GPD tailed and normal mid-quantile
Unconditional TARCH(1,1) with ¢ ~ dual GPD tailed and GED mid-quantile
Unconditional Gaussian EGARCH(1,1)

Unconditional Student-t EGARCH(1,1)

Unconditional EGARCH(1,1) with € ~ dual GPD tailed and normal mid-quantile
Unconditional EGARCH(1,1) with ¢ ~ dual GPD tailed and GED mid-quantile
Unconditional dual GPD tailed and normal mid-quantile

Unconditional dual GPD tailed and GED mid-quantile

2 years rolling window Gaussian with 0 mean

2 years rolling window Gaussian

2 years rolling window Histogram

Kernel Regression

RiskMetrics

Adaptive CAViaR

Adaptive CAViaR with 5 degree rational tail

Adaptive CAViaR with 10 degree rational tail

Adaptive CAViaR with 20 degree rational tail

Symmetric CAViaR

Symmetric CAViaR with 5 degree rational tail

Symmetric CAViaR with 10 degree rational tail

Symmetric CAViaR with 20 degree rational tail

Asymmetric CAViaR

Asymmetric CAViaR with 5 degree rational tail

Asymmetric CAViaR with 10 degree rational tail

Asymmetric CAViaR with 20 degree rational tail

GARCH Indirect CAViaR

GARCH Indirect CAViaR with 5 degree rational tail

GARCH Indirect CAViaR with 10 degree rational tail

GARCH Indirect CAViaR with 20 degree rational tail

Table 1: Name and Model Type.
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VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d

Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean
CHlg 0.0146  0.0247 0.0194 | 0.0434 0.0595 0.0514 | 0.0052 0.0221 0.0125 ‘ 0.0298 0.0617 0.0452
CH1t 0.0046 0.0114 0.0076 | 0.0292 0.0441 0.0367 | 0.0009 0.0115 0.0053 0.0152 0.0386 0.0263
CH1x n 0.0075 0.0148 0.0108 | 0.0448 0.0605 0.0528 | 0.0026 0.0164 0.0086 | 0.0238 0.0528 0.0378
CH1x ged 0.0075 0.0148 0.0108 | 0.0448 0.0605 0.0528 | 0.0026 0.0164 0.0086 | 0.0238 0.0528 0.0378
CH2g 0.0160 0.0254 0.0204 | 0.0458 0.0603 0.0532 | 0.0044 0.0194 0.0110 | 0.0297 0.0587 0.0439
CH2t 0.0053 0.0119 0.0083 | 0.0318 0.0454 0.0382 | 0.0006 0.0104 0.0047 0.0153 0.0373 0.0259
CH2x_n 0.0084 0.0154 0.0118 | 0.0497 0.0643 0.0569 | 0.0024 0.0149 0.0078 | 0.0251 0.0522 0.0384
CH2x_ged 0.0084 0.0154 0.0118 | 0.0497 0.0643 0.0569 | 0.0024 0.0149 0.0078 | 0.0251 0.0522 0.0384
CH3g 0.0173 0.0281 0.0224 | 0.0491 0.0640 0.0565 | 0.0047 0.0197 0.0114 | 0.0306 0.0615 0.0456
CH3t 0.0076 0.0148 0.0111 | 0.0380 0.0519 0.0449 | 0.0016 0.0131 0.0065 0.0200 0.0452 0.0321
CH3x_n 0.0097 0.0178 0.0136 | 0.0530 0.0688 0.0609 | 0.0031 0.0162 0.0089 | 0.0275 0.0567 0.0415
CH3x_ged 0.0097 0.0178 0.0136 | 0.0530 0.0688 0.0609 | 0.0031 0.0162 0.0089 | 0.0276 0.0566 0.0415
CH1g_avg - - - - - - 0.0103 0.0356 0.0219 | 0.0489 0.0911 0.0694
CH1t_avg - - - - - - 0.0041 0.0237 0.0126 | 0.0311 0.0666 0.0481
CHlx n_avg - - - - - - 0.0070  0.0294 0.0169 | 0.0405 0.0803 0.0599
CH1x_ged_avg - - - - - - 0.0068 0.0293 0.0169 | 0.0407 0.0803 0.0598
CH2g avg - - - - - - 0.0089 0.0327 0.0196 | 0.0469 0.0882 0.0669
CH2t_avg - - - - - - 0.0031 0.0219 0.0110 | 0.0303 0.0651 0.0470
CH2x n_avg - - - - - - 0.0060 0.0282 0.0157 | 0.0405 0.0800 0.0596
CH2x ged avg - - - - - - 0.0060 0.0282 0.0157 | 0.0406 0.0803 0.0597
CH3g_avg - - - - - - 0.0085 0.0323 0.0194 | 0.0447 0.0854 0.0640
CH3t_avg - - - - - - 0.0042  0.0239 0.0126 | 0.0309 0.0663 0.0479
CH3x_n_avg - - - - - - 0.0063 0.0287 0.0162 | 0.0400 0.0794 0.0589
CH3x_ged_avg - - - - - - 0.0063 0.0287 0.0162 | 0.0400 0.0794 0.0590
DT n 0.0112 0.0245 0.0176 | 0.0572 0.0826 0.0702 | 0.0101 0.0351 0.0215 | 0.0333 0.0697 0.0506
DT _ged 0.0112 0.0245 0.0176 | 0.0572 0.0826 0.0702 | 0.0100 0.0351 0.0215 | 0.0333 0.0697 0.0506
GO 0.0168 0.0297 0.0234 | 0.0440 0.0643 0.0542 | 0.0101 0.0330 0.0204 | 0.0334 0.0697 0.0511
Gm 0.0181 0.0305 0.0243 | 0.0460 0.0655 0.0560 | 0.0127 0.0353 0.0234 | 0.0418 0.0752 0.0587
HS 0.0102 0.0184 0.0141 | 0.0472 0.0644 0.0564 | 0.0107 0.0307 0.0201 | 0.0388 0.0712 0.0548
KR 0.0097 0.0198 0.0146 | 0.0171 0.0316 0.0245 | 0.0117 0.0332 0.0218 | 0.0482 0.0859 0.0666
RM 0.0143 0.0240 0.0192 | 0.0460 0.0628 0.0547 | 0.0068 0.0255 0.0153 | 0.0320 0.0636 0.0470
QR1 0.0135 0.0233 0.0181 | 0.0551 0.0722 0.0634 | 0.0074 0.0237 0.0150 | 0.0396 0.0700 0.0541
QR2 0.0133 0.0242 0.0183 | 0.0512 0.0689 0.0605 | 0.0069 0.0256 0.0152 | 0.0370 0.0719 0.0540
QR3 0.0145 0.0247 0.0196 | 0.0585 0.0739 0.0658 | 0.0089 0.0269 0.0172 | 0.0431 0.0769 0.0603
QR4 0.0163 0.0286 0.0225 | 0.0559 0.0755 0.0665 | 0.0096 0.0333 0.0209 | 0.0429 0.0813 0.0611

Table 2: MHT with 1% 3-FWER for ECP and MHT with 5% 4-FWER for ECP. The table contains balanced
confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate model
performance significance which have been rejected during the step-down algorithm.

ExS 1% 1d ExS 5% 1d ExS 1% 10d ExS 5% 10d
Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean
CHlg 0.0004 0.0027 0.0013 | 0.0144 0.0253 0.0196 | 0.0007 0.0093 0.0034 | 0.0152 0.0401 0.0262
CHI1t 0.0038 0.0099 0.0066 | 0.0281 0.0399 0.0339 | 0.0031 0.0225 0.0106 | 0.0308 0.0659 0.0471

CH1x_n 0.0029 0.0069 0.0048 | 0.0193 0.0267 0.0228 | 0.0017 0.0142 0.0062 | 0.0207 0.0489 0.0333
CHI1x_ged | 0.0029 0.0069 0.0048 | 0.0193 0.0267 0.0228 | 0.0017 0.0142 0.0062 | 0.0207 0.0489 0.0333
CH2g 0.0003 0.0024 0.0011 | 0.0142 0.0230 0.0185 | 0.001  0.0103 0.0043 | 0.0173 0.0404 0.0277
CH2t 0.0034 0.009 0.0059 | 0.0277 0.0380 0.0326 | 0.0039 0.0235 0.0118 | 0.0324 0.0649 0.0476
CH2x_n 0.0028 0.0065 0.0044 | 0.0180 0.0245 0.0211 | 0.0023 0.0144 0.007 | 0.0219 0.0468 0.0333
CH2x_ged | 0.0028 0.0065 0.0044 | 0.0180 0.0245 0.0211 | 0.0023 0.0144 0.007 | 0.0219 0.0468 0.0333
CH3g 0.0002 0.0019 0.0008 | 0.0120 0.0210 0.0163 | 0.0009 0.0101 0.0041 | 0.0165 0.0398 0.0267
CH3t 0.0023 0.0066 0.0043 | 0.0226 0.0311 0.0267 | 0.0025 0.0179 0.0083 | 0.0259 0.0557 0.0394
CH3x_n 0.0023 0.0057 0.0038 | 0.0159 0.0225 0.0191 | 0.0018 0.0132 0.006 | 0.0197 0.0443 0.0306
CH3x_ged | 0.0023 0.0057 0.0038 | 0.0159 0.0225 0.0191 | 0.0018 0.0132 0.006 | 0.0197 0.0443 0.0305

DT _n 0.0007 0.0046 0.0020 | 0.0112 0.0202 0.0151 | 0.0001 0.0045 0.0009 | 0.0074 0.0349 0.0187
DT _ged 0.0007 0.0046 0.0020 | 0.0112 0.0202 0.0151 | 0.0001 0.0045 0.0009 | 0.0074 0.0349 0.0187
GO 0.0000 0.0009 0.0003 | 0.0105 0.0226 0.0154 | 0.0000 0.0039 0.0008 | 0.0083 0.0345 0.0188
Gm 0.0000 0.0008 0.0002 | 0.0099 0.0205 0.0143 | 0.0000 0.0027 0.0006 | 0.0068 0.0261 0.0147
HS 0.0032  0.006 0.0045 | 0.0183 0.0252 0.0215 | 0.0007 0.0045 0.0018 | 0.0101 0.0309 0.0184
KR 0.0000 0.0025 0.0003 | 0.0354 0.0626 0.0480 | 0.0002 0.0033 0.0011 | 0.0073 0.0231 0.0139
RM 0.0003 0.0021 0.0009 | 0.0132 0.0225 0.0176 | 0.0002 0.0067 0.002 | 0.0126 0.0377 0.0236
QR1 0.0091  0.0096 0.0093 | 0.0156 0.0221 0.0185 | 0.0090 0.0105 0.0096 | 0.0153 0.0334 0.0229

QR1_005 | 0.0065 0.0081 0.0073 | 0.0151 0.0216 0.0180 | 0.0063 0.0098 0.0080 | 0.0147 0.0332 0.0225
QR1_010 | 0.0046 0.0067 0.0057 | 0.0147 0.0212 0.0176 | 0.0043 0.0092 0.0066 | 0.0142 0.033  0.0222
QR1_020 | 0.0027 0.005 0.0038 | 0.0141 0.0207 0.0171 | 0.0021 0.0084 0.0049 | 0.0135 0.0329 0.0218
QR2 0.0090 0.0096 0.0094 | 0.0165 0.0245 0.0203 | 0.0090 0.0110 0.0096 | 0.0159 0.0363 0.0244
QR2_005 | 0.0063 0.0084 0.0074 | 0.0160 0.0242 0.0198 | 0.0061 0.0105 0.0080 | 0.0152 0.0362 0.0241
QR2_010 | 0.0044 0.0072 0.0058 | 0.0156 0.0239 0.0195 | 0.004 0.0099 0.0065 | 0.0146 0.036  0.0237
QR2_020 | 0.0024 0.0057 0.0039 | 0.0150 0.0236 0.0190 | 0.0019 0.0091 0.0048 | 0.0138 0.0358 0.0233
QR3 0.0091 0.0096 0.0094 | 0.0157 0.0221 0.0187 | 0.0090 0.0100 0.0095 | 0.0148 0.0309 0.0216
QR3_005 | 0.0064 0.0083 0.0074 | 0.0152 0.0217 0.0182 | 0.0061 0.0093 0.0078 | 0.0141 0.0307 0.0212
QR3_010 | 0.0045 0.007 0.0058 | 0.0147 0.0214 0.0178 | 0.004 0.0085 0.0062 | 0.0135 0.0306 0.0208
QR3_020 | 0.0025 0.0054 0.0038 | 0.0140 0.0210 0.0173 | 0.0019 0.0075 0.0044 | 0.0126 0.0304 0.0203
QR4 0.0088 0.0095 0.0091 | 0.0130 0.0205 0.0160 | 0.0087 0.0098 0.0093 | 0.0118 0.0298 0.0188
QR4_005 | 0.0055 0.0077 0.0066 | 0.0122 0.0200 0.0154 | 0.0052 0.0089 0.0071 | 0.0109 0.0295 0.0182
QR4_010 | 0.0033 0.0061 0.0046 | 0.0115 0.0196 0.0148 | 0.003  0.008 0.0053 | 0.01  0.0292 0.0177
QR4_020 | 0.0014 0.0045 0.0025 | 0.0107 0.0192 0.0142 | 0.0011 0.0067 0.0033 | 0.0089 0.029 0.0171

Table 3: MHT with 1% 4-FWER for ExS and MHT with 5% 5-FWER for ExS. The table contains balanced
confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate model
performance significance which have been rejected during the step-down algorithm.
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VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d

Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean
CHlg 0.0041 0.0215 0.0120 | 0.0180 0.0479 0.0317 | 0.0000 0.0119 0.0030 0.0053 0.0481 0.0227
CH1t 0.0000 0.0101 0.0039 | 0.0094 0.0345 0.0210 | 0.0000 0.0081 0.0008 0.0005 0.0303 0.0118
CH1x n 0.0004 0.0132 0.0060 | 0.0197 0.0490 0.0335 | 0.0000 0.0105 0.0016 0.0029 0.0400 0.0178
CHI1x_ged 0.0004 0.0132 0.0060 | 0.0197 0.0490 0.0335 | 0.0000 0.0105 0.0016 0.0029 0.0400 0.0178
CH2g 0.0042 0.0202 0.0117 | 0.0177 0.0446 0.0308 | 0.0000 0.0114 0.0021 0.0046 0.0420 0.0201
CH2t 0.0000 0.0107 0.0044 | 0.0114 0.0346 0.0223 | 0.0000 0.0071 0.0006 0.0003 0.0280 0.0111
CH2x_n 0.0007 0.0130 0.0060 | 0.0199 0.0471 0.0334 | 0.0000 0.0084 0.0011 0.0025 0.0359 0.0161
CH2x_ged 0.0007 0.0130 0.0060 | 0.0199 0.0471 0.0334 | 0.0000 0.0084 0.0011 0.0025 0.0359 0.0161
CH3g 0.0054 0.0225 0.0132 | 0.0202 0.0498 0.0334 | 0.0000 0.0112 0.0029 0.0053 0.0449 0.0219
CH3t 0.0011 0.0148 0.0067 | 0.0154 0.0410 0.0270 | 0.0000 0.0101 0.0015 0.0025 0.0359 0.0159
CH3x_n 0.0017 0.0156 0.0076 | 0.0250 0.0510 0.0375 | 0.0000 0.0113 0.0020 0.0039 0.0413 0.0192
CH3x_ged 0.0017 0.0156 0.0076 | 0.0250 0.0510 0.0375 | 0.0000 0.0113 0.0020 0.0039 0.0413 0.0192
CH1g_avg - - - - - - 0.0000 0.0032 0.0001 0.0000 0.0190 0.0053
CH1t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0088 0.0014
CHlx n_avg - - - - - - 0.0000 0.0011 0.0000 0.0000 0.0135 0.0030
CH1x_ged_avg - - - - - - 0.0000 0.0011 0.0000 0.0000 0.0135 0.0030
CH2g avg - - - - - - 0.0000 0.0017 0.0000 0.0000 0.0170 0.0046
CH2t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0084 0.0012
CH2x n_avg - - - - - - 0.0000 0.0004 0.0000 0.0000 0.0125 0.0026
CH2x ged avg - - - - - - 0.0000 0.0004 0.0000 0.0000 0.0125 0.0026
CH3g_avg - - - - - - 0.0000 0.0016 0.0000 0.0000 0.0149 0.0036
CH3t_avg - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0088 0.0014
CH3x_n_avg - - - - - - 0.0000 0.0008 0.0000 0.0000 0.0127 0.0027
CH3x_ged_avg - - - - - - 0.0000 0.0008 0.0000 0.0000 0.0127 0.0027
DT n 0.0000 0.0047 0.0010 | 0.0019 0.0215 0.0104 | 0.0000 0.0032 0.0001 0.0000 0.0095 0.0016
DT _ged 0.0000 0.0047 0.0010 | 0.0019 0.0215 0.0104 | 0.0000 0.0032 0.0001 0.0000 0.0095 0.0016
GO 0.0014 0.0181 0.0081 | 0.0115 0.0403 0.0256 | 0.0000 0.0163 0.0044 0.0022 0.0442 0.0191
Gm 0.0015 0.0181 0.0084 | 0.0126 0.0426 0.0274 | 0.0004 0.0196 0.0064 0.0066 0.0531 0.0261
HS 0.0012 0.0127 0.0065 | 0.0128 0.0409 0.0267 | 0.0000 0.0173 0.0056 0.0056 0.0496 0.0242
KR 0.0000 0.0047 0.0010 | 0.0000 0.0044 0.0010 | 0.0000 0.0044 0.0002 0.0000 0.0223 0.0079
RM 0.0066 0.0263 0.0158 | 0.0348 0.0649 0.0491 | 0.0026 0.0259 0.0103 | 0.0162 0.0656 0.0386
QR1 0.0039 0.0185 0.0103 | 0.0506 0.0825 0.0654 | 0.0008 0.0199 0.0066 | 0.0275 0.0779 0.0508
QR2 0.0012 0.0163 0.0079 | 0.0183 0.0496 0.0335 | 0.0000 0.0125 0.0032 0.0073 0.0560 0.0273
QR3 0.0010 0.0141 0.0066 | 0.0218 0.0518 0.0356 | 0.0000 0.0122 0.0025 ‘ 0.0127 0.0517 0.0306
QR4 0.0000 0.0056 0.0013 | 0.0096 0.0363 0.0224 | 0.0000 0.0057 0.0003 0.0022 0.0393 0.0169

Table 4: 1./V MHT with 1% 3-FWER for ECP and L/V MHT with 5% 4-FWER, for ECP. The table contains
balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate
model performance significance which have been rejected during the step-down algorithm.

VaR 1% 1d VaR 5% 1d VaR 1% 10d VaR 5% 10d

Conf. Set mean Conf. Set mean Conf. Set mean Conf. Set mean
CHlg 0.0135 0.0367 0.0246 | 0.0460 0.0821 0.0640 | 0.0067 0.0541 0.0270 | 0.0377 0.1154 0.0756
CHI1t 0.0039 0.0207 0.0115 | 0.0308 0.0628 0.0457 | 0.0004 0.0320 0.0133 | 0.0191 0.0799 0.0475
CHlx_n 0.0068 0.0255 0.0156 | 0.0471 0.0832 0.0650 | 0.0029 0.0424 0.0199 | 0.0302 0.1042 0.0653
CH1x_ged 0.0068 0.0255 0.0156 | 0.0471 0.0832 0.0650 | 0.0029 0.0424 0.0199 | 0.0302 0.1040 0.0653
CH2g 0.0147 0.0356 0.0254 | 0.0522 0.0851 0.0675 | 0.0060 0.0470 0.0239 | 0.0396 0.1114 0.0742
CH2t 0.0050 0.0202 0.0122 | 0.0335 0.0606 0.0474 | 0.0001 0.0283 0.0116 | 0.0192 0.0763 0.0464
CH2x n 0.0080 0.0245 0.0162 | 0.0559 0.0902 0.0723 | 0.0028 0.0390 0.0183 | 0.0341 0.1029 0.0666
CH2x_ged 0.0080 0.0245 0.0162 | 0.0559 0.0902 0.0723 | 0.0028 0.0389 0.0183 | 0.0341 0.1029 0.0666
CH3g 0.0175 0.0414 0.0293 | 0.0553 0.0911 0.0732 | 0.0063 0.0489 0.0250 | 0.0431 0.1173 0.0785
CH3t 0.0072 0.0239 0.0159 | 0.0408 0.0714 0.0565 | 0.0016 0.0342 0.0152 | 0.0261 0.0888 0.0560
CH3x_n 0.0096 0.0279 0.0189 | 0.0589 0.0969 0.0778 | 0.0038 0.0423 0.0204 | 0.0380 0.1093 0.0722
CH3x_ged 0.0096 0.0279 0.0189 | 0.0589 0.0969 0.0778 | 0.0038 0.0423 0.0204 | 0.0381 0.1093 0.0722
CH1g avg - - - - - - 0.0263 0.1172 0.0691 0.1001 0.2363 0.1655
CHI1t_avg - - - - - - 0.0122 0.0820 0.0425 0.0704 0.1861 0.1261
CHlx n_ avg - - - - - - 0.0192 0.1012 0.0552 0.0860 0.2123 0.1472
CH1x ged avg - - - - - - 0.0192 0.1012 0.0552 0.0860 0.2123 0.1472
CH2g_avg - - - - - - 0.0233  0.1099 0.0627 0.0972 0.2311 0.1608
CH2t avg - - - - - - 0.0095 0.0755 0.0373 0.0678 0.1823 0.1238
CH2x n_avg - - - - - - 0.0172 0.0975 0.0518 0.0864 0.2129 0.1474
CH2x_ged_avg - - - - - - 0.0172 0.0975 0.0519 0.0867 0.2129 0.1476
CH3g_avg - - - - - - 0.0226 0.1092 0.0620 0.0931 0.2242 0.1561
CH3t_avg - - - - - - 0.0118 0.0816 0.0423 0.0693 0.1849 0.1257
CH3x_n_avg - - - - - - 0.0176 0.0988 0.0529 0.0848 0.2111 0.1457
CH3x ged avg - - - - - - 0.0176 0.0988 0.0529 0.0849 0.2112 0.1458
DT_n 0.0266 0.0729 0.0492 | 0.1063 0.1772 0.1434 | 0.0259 0.1162 0.0680 0.0755 0.1929 0.1312
DT ged 0.0266 0.0729 0.0492 | 0.1063 0.1772 0.1434 | 0.0259 0.1162 0.0680 0.0755 0.1929 0.1312
GO 0.0233 0.0608 0.0416 | 0.0611 0.1129 0.0882 | 0.0147 0.0840 0.0459 0.0517 0.1540 0.1006
Gm 0.0239 0.0598 0.0421 | 0.0625 0.1131 0.0884 | 0.0159 0.0824 0.0459 0.0574 0.1463 0.1009
HS 0.0140 0.0363 0.0251 | 0.0684 0.1124 0.0915 | 0.0134 0.0756 0.0414 0.0544 0.1406 0.0958
KR 0.0218 0.0563 0.0393 | 0.0370 0.0808 0.0585 | 0.0302 0.1009 0.0640 0.0956 0.2108 0.1511
RM 0.0108 0.0318 0.0214 | 0.0423 0.0757 0.0590 | 0.0065 0.0526 0.0267 | 0.0315 0.1058 0.0670
QR1 0.0176 0.0412 0.0291 | 0.0514 0.0941 0.0727 | 0.0091 0.0599 0.0317 | 0.0455 0.1161 0.0794
QR2 0.0146 0.0412 0.0285 | 0.0591 0.1012 0.0800 | 0.0084 0.0669 0.0342 | 0.0490 0.1353 0.0902
QR3 0.0175 0.0421 0.0297 | 0.0678 0.1056 0.0867 | 0.0129 0.0669 0.0377 0.0569 0.1412 0.0960
QR4 0.0281 0.0684 0.0475 | 0.0793 0.1291 0.1050 | 0.0214 0.0996 0.0578 0.0657 0.1722 0.1160

Table 5: H/V MHT with 1% 4-FWER for ECP and H/V MHT with 5% 5-FWER for ECP. The table contains
balanced confidence sets, with control of the generalised family-wise error rate. The grey shaded cells indicate
model performance significance which have been rejected during the step-down algorithm.
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CHlg 0 0.0015 0 0 0.8595  0.0005 0 0 0.995 0 0 0 0.2315  0.2315 0.9785 0.9955 0.0005 0.0115  0.487 0.2895 0.198 589 0.952
CHLt 0.0985 0 0249 0249 1 0219 04 04 1 02805 0.671 0671 09585 09585 1 1 07735 0.8085 0.098 09985 0.9905 09985 1
CHIx_n 1o0ml 0 1 1 06575 0793 0793 1 0617 0945 0945 0097 0997 1 1 0979 0965 1 109995 1 1
CHLx_ged 1ooml 1 0 1 06575 0793 0793 1 0617 0945 0945 0097 0997 1 1 0979 0965 1 109995 1 1
CH2g 0.1915 0 0 0 0 0 0 0 0.985 0 0 0 0.1325 0.1325 0.925 0.974 0 0.002 0.1765 0.146 0.0725 0.3025 0.8585
CH2t 0.9995 0.857 0.3425 0.3425 1 0 0.523 0.523 1 0.394 0.772 0.772 0978 0.978 1 1 0.859  0.8755 0.9985 0.9995 0.9965 0.9995 1
CH2x_n 1 0.6 0.262 0.262 1 0.477 0 1 1 0.303 0973 0973 0.997 0.997 1 1 0.939 1 1 1 1
CH2x_ged 1 0.6 0.262 0.262 1 0.477 1 0 1 0.303 0973 0973 0.997 0.997 1 1 0.939 1 1 1 1
CH3g 0.008 0 0 0 0.0285 0 0 0 0 0 0 0 0.022 0.022 0.684 0.828 0 0.0225 0.0005 0.0165 0.539
CH3t 1 0.7105 0.49 0.49 1 0.606 0.766 0.766 1 0 0.952  0.952 0.998 0.998 1 1 0.969 0.9995  0.999 1 1
CH3x_n 1 0.329 0.056 0.056 1 0.228  0.0335 0.0335 1 0.048 0 1 0.9775 09775 1 1 0.643 0.9905 1 1 1
CH3x_ged 1 0.329 0.056 0.056 1 0.228  0.0335 0.0335 1 0.048 1 0 0.9775 09775 1 1 0.643  0.7135 1 0.9905 1 1 1
DT_n 0.796 00415 0.003 0003 0.8855 0.022 0003 0.003 098¢ 0002 003 003 0 1 0999 00995 00395 00045 0.763 06025 0.659 0834 1
DT_ged 0.796 0.0415 0003 0003 0.8855 0.022 0003 0.003 0984 0002 003 003 1 0 0099 00995 0.0395 00045 0763 06025 0.650 0834 1
GO 0.0305 0 0 0 0.0925 0 0 0 0.358 0 0 0 0.002 0.002 0 0.984 0 0 0.0245  0.002 0.007  0.0385  0.353
Gm 0.008 0 0 0 0.0345 0 0 0 0.203 0 0 0 0.0005 0.0005 0.0525 0 0 0 0.008 0.001  0.0005 0.0125 0.1745
HS 0.9995 0.2265 0.027 0.027 1 0.141  0.0825 0.0825 1 0.04 0.415 0415 0.973 0.973 1 1 0 0.6385 0.9995 1 0.995  0.9995 1
KR 0.99 0.1915 0.04 0.04 0.999 0.1245  0.086 0.086 1 0.052 0.328 0.328 0.998 0.998 1 1 0.41 0 0.986 09425 0.9775 0.9935 1
RM 0.618 0.002 0 0 0.8695 0.0015 0 0 0.995 0 0 0 0.2755 0.2755 0.9815 0.9945 0.0015 0.02 0 03175 0.2745  0.621 0.946
QR1 0.751  0.0015 0 0 0.884  0.0005 0 0 0.9825 0.0005 0.014 0.014 0.433 0.433 0.998 0.999  0.0005 0.0705 0.722 0 0.569 0.766  0.9775
QR2 0.847  0.0095 0.0005 0.0005 0.9535 0.0035 0 0 1 0.001 0 0 0.3785 0.3785 0.995 0.9995 0.007 0.0325 0.778 04715 0 0.8585  0.995
QR3 0.4755  0.0015 0 0 0.7625  0.0005 0 0 0.9885 0 0 0 0.197 0.197 0.971  0.9895  0.001 0.008 0.434  0.2685  0.182 0 0.9505
QR4 0.0615 0 0 0 014 0 0 0 0302 0 0 0 0 0 0688 08565 0 0 0068 00305 0009 0.063 0
Table 6: MCM for the ECP of the VaR(1d, 1%). This tables contains the bootstrap estimate probabilities that the model
at row j be a better performance that the corresponding model at column 3.
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CHilg 0 00805 0.0005 0.0005 08875 0025 0 0 09975 0 0 0 0137 0136 1 I 0 009 09094 00615 00525 0050 0316
CHIt 09195 0 02315 02315 00445 01055 0.28% 0288 0965 0331 04225 04225 0.8265 0.824 0991 09925 02115 0988 09555 09915 0992 0.992 0.9865
CHlx_n 0.9995 0.7685 0 0.531 1 0.6495 0.684 0.6855 1 0.7465 0.8695 0.8695 0.995 0.995 1 1 0.5075 1 1 1 1 1 1
CHI1x_ged 0.9995 0.7685 0.4715 0 1 0.65 0.685  0.6865 1 0.747  0.8695 0.8695 0.995 0.995 1 1 0.508 1 1 1 1 1 1
CH2g 0.1125 0.0555 0 0 0 0.015 0 0 0.99 0 0 0 0.063 0.064 1 1 0 0.9795 0.8455 0.9085 0.8985 0.9045 0.7145
CH2t 09715 0.8945 0.3505 0.35 0.985 0 0.433  0.4335 0.9925 0.4605 0.584 0.584 0.931 09315 19995 0.9995  0.367  0.9985 0.9875 1 1 1 1
CH2x_n 1 0.712 0.316 0.315 1 0.567 0 0.646 1 0.7415 0.9245 0.9245 0.998 0.998 1 1 0.4195 1 1 1 1 1 1
CH2x_ged 1 0.712  0.3145 0.3135 1 0.5665  0.392 0 1 0.74 0.9245 0.9245 0.998 0.998 1 1 0.419 1 1 1 1 1 1
CH3g 0.0025  0.035 0 0 0.01 0.0075 0 0 0 0 0 0 0.0135 0.013  0.9955 0.9995 0 0.9465  0.295 0.675 0.6695 0.6785  0.406
CH3t 1 0.669  0.2535  0.253 1 0.5395  0.2585 0.26 1 0 09135 0914  0.9965 0.996 1 1 0.326 1 1 1 1 1 1
CH3x_n 1 05775 01305 0305 1 0416 00755 00755 1 00865 0 0595 0996 09955 1 1o 1 1 1 1 1 1
CH3x_ged 1 05775 01305 0305 1 0416 00755 00755 1 0086 0423 0 099 09955 1 1o 1 1 1 1 1 1
DT_n 0.863 0.735 0005 0.005 0037 0069 0002 0002 09865 00035 0.004 0004 0 0933 1 1 00015 0999 00775 0.9935 09915 0.9935 0.961
DT_ged 0.864 0.176 0.005 0.005 0.936  0.0685 0.002 0.002 0.987 0.004 0.0045 0.0045 0.067 0 1 1 0.0015 0999 0.9785 0994 0.9925 0.994 0.961
GO 0 0.009 0 0 0 0.0005 0 0 0.0045 0 0 0 0 0 0 0.995 0 0.641  0.0015 0.0355 0.05 0.0445 0.0115
Gm 0 0.0075 0 0 0 0.0005 0 0 0.0005 0 0 0 0 0 0.005 0 0 0.6035 0.001 0.0165 0.0255 0.024 0.0045
HS 1 0.7885 0.4925 0.492 1 0.633  0.5805 0.581 1 0.674 0.845 0.845  0.9985 0.9985 1 1 0 1 1 1 1 1 1
KR 0.01 0.012 0 0 0.0205 0.0015 0 0 0.0535 0 0 0 0.001 0.001 0.359  0.3965 0 0 0.0405 0.1215 0.1315 0.128  0.0605
RM 0.006  0.0445 0 0 0.1545  0.0125 0 0 0.705 0 0 0 0.0225 0.0215 0.9985 0.999 0 0.9595 0 0.754  0.7495 0.758 0.5115
QR1 0.0385  0.0085 0 0 0.0915 0 0 0 0.325 0 0 0 0.0065 0.006 0.9645 0.9835 0 0.8785  0.246 0 0.614 0.633 0
QR2 0.0475  0.008 0 0 0.1015 0 0 0 0.3305 0 0 0 0.0085 0.0075 0.95 0.9745 0 0.8685 0.2505  0.386 0 0.5245 0
QR3 0.041 0008 0 0 0095 0 0 0 03215 0 0 0 00065 0006 09555 0976 0 0872 0242 0367 04755 0 0
QR4 0.154 00135 0 0 0285 0 0 0 0594 0 0 0 0039 0039 0985 09955 0 09305 04885 1 1 1 0
Table 7: MCM for the ExS(1d, 1%). This tables contains the bootstrap estimate probabilities that the model at row j be

a better performance that the corresponding model at column q.
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CHlg 0 .9 0.7755  0.7755 0.7405 0.9855 0.9525 0.9525 0.9395 0.781 0.991 0.991 1 1 0.778 0.875 0.919 1 0.8595 1 0.9775 1 0.999
CHI1t 00115 0 0022 002 0014 0112 0082 0082 0074 0 03025 03025 0883 0883 0046 0.0785 1 00455 0504 0207 07035 0.716
CHIx_n 0245 09805 0 1 0577 0974 0966 0966 0.046 0.6885 0.9975 09975 1 1 0.6995 08485 1 08565 09995 0988 1 1
0.245 09805 1 0 0577 0974 0066 0966 0946 06885 09975 09975 1 1 06995 0.8485 1 08565 09995 0988 1 1
0.305 0.9865 0.492 0.492 0 0.9775 0.9805 0.9805 0.9675 0.6665 0.9985 0.9985 1 1 0.674  0.8305 1 0.7945 1 0.9945 1 1
0.016  0.9255 0.03 0.03 0.025 0 0.1375 0.1375 0.126 0.001 0.4335 04335 0.9385 0.9385 0.0675 0.1185 1 0.071 0.6695 0.405 0.8185 0.8105
CH2x_n 0.052 0.9295 0.0405 0.0405 0.0215 0.8765 0 1 0.4545 0.3755  0.998 0.998 1 1 0.211 0.384 1 0.1745  0.988 0.975 1 1
CH2x_ged 0.052 0.9295 0.0405 0.0405 0.0215 0.8765 1 0 0.4545 0.3755  0.998 0.998 1 1 0.211 0.384 1 0.1745  0.988 0.975 1 1
CH3g 0.0675 0.9305 0.0625 0.0625 0.038 0.884 0.6025 0.6025 0 0.4005 1 1 1 1 0.2485  0.4405 1 0.2305 0.9855 0.985 1 1
CH3t 0.2325 1 0.332 0.332 0.347 0.999 0.646 0.646 0.62 0 0.8835 0.8835 0.996 0.996 0.431 0.577 1 0.483  0.9815 0.8495 0.989  0.9855
CH3x_n 0.0105 0.7045 0.0035 0.0035 0.002 0.5835 0.003 0.003 0 0.1255 0 1 0.998 0.998  0.0155 0.0465 1 0.005 0.7825 0.4165 1 0.99
CH3x_ged 0.0105 0.7045 0.0035 0.0035 0.002 0.5835 0.003 0.003 0 0.1255 1 0 0.998 0.998  0.0155 0.0465 1 0.005 0.7825 0.4165 1 0.99
DT_n 0 0123 0 0 0 00645 0 0 0 0004 0003 0003 0 100005 0 0812 0 00685 00005 0.104 0.0765
DT_ged 0 0123 0 0 0 00645 0 0 0 0004 0003 0003 @1 0 00005 0 0.812 0 00685 00005 0.104 0.0765
GO 0.249 0.958 0.3445 0.3445  0.366 0937 0.8115 0.8115 0.7805 0.5855 0.987 0.987 1 1 0 0.9215 1 0.564  0.9925 0.983 1 0.999
Gm 0.136 0.926 0.177 0.177 0.19 0.8855  0.646 0.646 0.598  0.4425 0.96 0.96 1 1 0.095 0 1 0.376  0.9835  0.948 1 1
HS 0.0945 0.9285 0.1365 0.1365 0.1305 0.8985 0.5985 0.5985 0.557 0.4 0.9615 0.9615 1 1 0.157 0.442 1 0.332 0.983 0.943 1 1
KR 0 0 0 0 0 0 0 0 0 0 0 0 0.1915 0.1915 0 0 0 0 0 0.0005 0 0.015 0.043
RM 0.154  0.9585 0.1695 0.1695 0.2535 0.935 0.859 0.859 0.803  0.5325  0.996 0.996 1 1 0.4735 0.6545 0.7045 1 0 0.9965  0.991 1 1
QR1 0.0005 0.508  0.0005 0.0005 0 0.3475 0.0135 0.0135 0.0175 0.0205 0.2395 0.2395 0.9365 0.9365 0.008 0.023 0.0195 0.9995 0.0045 0 0.217  0.7805 0.7995
QR2 0.0235 0.7135 0.0145 0.0145 0.0065 0.6125 0.034 0.034 0.021 0.16 0.633 0.633  0.9995 0.9995 0.0205 0.065 0.071 1 0.0105  0.801 0 0.9955 1
QR3 0 0.307 0 0 0 0.1865 0 0 0 0.013 0 0 0.905 0.905 0 0 0 0.985 0 0.2435  0.006 0 0.6245
QR4 0.0015 0204 0 0 0 0197 0 0 0 00155 0012 0012 0934 0934 0001 0 0 095 0 02165 00005 0416 0
Table 8: MCM for the ECP of the VaR(1d, 5%). This tables contains the bootstrap estimate probabilities that the model
at row j be a better performance that the corresponding model at column 3.
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CHilg 0 818 0015 0015 0046 0720 005 0051 1 0153 0.6835 006835 0096 0096 00925 00995 0115 1 T 07505 01905 0471 0999
CHIt 0182 0 00225 00225 0253 00175 0.0455 0.0455 04865 0001 01735 01735 0632 0.632 05955 0709 00365 1 03475 0193 01075 0.204 0534
CHlx_n 0.985 0.9775 0 0.1215 0.9985 0.9645 0.987 0.987 1 0.4205 0.9995 0.9995 1 1 0.999 1 0.834 1 0.999 0.998  0.9895 1 1
CHI1x_ged 0.985 09775 0.888 0 0.9985 0.9645 0.987 0.987 1 0.4205 0.9995 0.9995 1 1 0.999 1 0.834 1 0.999 0.998  0.9895 1 1
CH2g 0.054 0.747  0.0015 0.0015 0 0.6205 0 0 1 0.0635 0.2135 0.214 0.9845 09845 0.959 0.9965 0.018 1 0.8555  0.494 0.021  0.3905 0.984
CH2t 0.271  0.9825 0.0355 0.0355 0.3795 0 0.0985  0.0985 0.65 0.0015  0.294 0.294 0.7995 0.7995 0.742 0.8325 0.0715 1 0.494 0.348  0.1815 0.3395 0.7025
CH2x_n 0.949 0.9545 0.013 0.013 1 0.9015 0 0.0275 1 0.2215 1 1 1 1 0.9985 1 0.395 1 1 0.98 0.905 1 1
CH2x_ged 0.949  0.9545 0.013 0.013 1 0.9015 0.9815 0 1 0.2215 1 1 1 1 0.9985 1 0.395 1 1 0.98 0.905 1 1
CH3g 0 0.5135 0 0 0 0.35 0 0 0 0.0175 0 0 0.795 0.795 0.7105  0.912 0 0.999 0.093 0.081 0 0.0005  0.604
CH3t 0.847 0.999  0.5795 0.5795 0.9365 0.9985 0.7785 0.7785 0.9825 0 0.9285 0.9285 0.996 0.996 0.9865 0.996  0.7565 1 0.958 0.979  0.8305 0.95 0.995
CH3x_n 0.3165 0.8265 0.0005 0.0005 0.7865 0.706 0 0 100715 0 0978 1 100825 0999 00175 1 00475  0.67 00265 0.8265 0.9995
CH3x_ged | 0.3165 0.8265 0.0005 0.0005 0.786 0706 0 0 100715 00235 0 1 100825 0999 00175 1 00475 0.67 0026 0.8265 0.9995
DT_n 0.004 0368 0 0 00155 02005 0 0 0205 0004 0 0 0 0371 0417 071 0 009 0057  0.02 0 00015 0134
DT_ged 0.004 0.368 0 0 0.0155  0.2005 0 0 0.205 0.004 0 0 0.629 0 0.417 0.751 0 0.99 0.057 0.02 0 0.0015 0.134
GO 0.0075 0.4045 0.001 0.001 0.041 0.258 0.0015 0.0015 0.2895 0.0135 0.0175 0.0175 0.583 0.583 0 1 0.001 09915 0.1155 0.052 0.0015 0.0305 0.316
Gm 0.0005  0.291 0 0 0.0035 0.1675 0 0 0.088 0.004 0.001 0.001 0.249 0.249 0 0 0 0.987  0.0265 0.0065 0.0005 0.0025 0.069
HS 0.885 0.9635 0.166 0.166 0.982  0.9285 0.605 0.605 1 0.2435 0.9825 0.9825 1 1 0.999 1 0 1 0.9975 0.9945 0.836  0.9935 1
KR 0 0 0 0 0 0 0 0 0.001 0 0 0 0.01 0.01 0.0085  0.013 0 0 0.0005 0 0 0 0.0025
RM 0 0.6525  0.001 0.001  0.1445  0.506 0 0 0.907 0.042  0.0525 0.0525 0.943 0.943  0.8845 0.9735 0.0025 0.9995 0 0.278 0.001  0.1515  0.887
QR1 0.2495  0.807 0.002 0.002 0.506 0.652 0.02 0.02 0.919 0.021 0.33 0.33 0.98 0.98 0.948  0.9935 0.0055 1 0.722 0 0.1005 0.4345 0.9645
QR2 0.8095 0.8925 0.0105 0.0105 0.979 0.8185 0.095 0.095 1 0.1695 0.9735 0.974 1 1 0.9985 0.9995 0.164 1 0.999  0.8995 0 0.9915 1
QR3 022 0796 0 0 06095 06605 0 0 00995 0.05 01735 01735 0.9985 09985 0.9695 09975 0.0065 1  0.8485 05655 00085 0  0.9995
QR4 0.001 0466 0 0 0016 02075 0 0 0396 0.005 0.0005 00005 O0.866 0.866 0.684 0931 0 09975 0.13 00355 0 00005 0
Table 9: MCM for the ExS(1d, 5%). This tables contains the bootstrap estimate probabilities that the model at row j be

a better performance that the corresponding model at column q.



ExS 1% ExS 5% VaR 1% VaR 5%

1d 10d 1d 10d 1d 10d 1d 10d
CHig 10 25 26 42 6 27 22 23
CHIt 18 1 9 1 16 21 6 1
CH1x n 33 35 32 10 22 30 21 8
CHI1x_ ged 32 34 33 9 22 30 21 8
CH2g 9 32 19 38 4 34 19 22
CH2t 24 0 13 0 19 15 7 0
CH2x n 30 28 29 12 18 26 12 10
CH2x_ ged 29 26 30 11 18 26 12 10
CH3g 6 31 10 44 3 33 13 28
CH3t 25 15 34 2 20 22 16 3
CH3x_n 20 36 24 26 15 32 9 21
CH3x_ ged 19 37 23 27 15 32 9 21
CH1g_avg - 13 - 4 - 2 - 2
CHIt_avg - 40 - 34 - 24 - 29
CHlx_n_avg - 22 - 17 - 12 - 14
CH1x_ged_avg - 23 - 18 - 12 - 15
CH2g_avg - 19 - 6 - 8 - 4
CH2t_avg - 41 - 37 - 28 - 26
CH2x_n_avg - 31 - 24 - 17 - 16
CH2x ged avg - 32 - 25 - 17 - 16
CH3g_avg - 14 - 7 - 9 - 6
CH3t_avg - 33 - 35 - 24 - 29
CH3x_n_avg - 21 - 22 - 14 - 18
CH3x_ged_avg - 20 - 21 - 14 - 18
DT_n 12 8 4 15 11 4 2 32
DT _ged 11 7 5 14 11 4 2 32
GO 2 6 6 16 1 6 18 34
Gm 1 2 2 5 0 0 15 19
HS 31 12 31 20 13 7 14 25
KR 0 10 0 3 12 2 0 5
RM 8 11 14 34 7 18 17 33
QR1 5 3 20 43 9 20 6 34
QR1_005 16 16 17 39 - - - -
QR1_010 28 36 15 36 - - - -
QR1_020 21 45 11 31 - - - -
QR2 4 4 28 46 8 19 10 27
QR2_005 15 17 27 44 - - - -
QR2_010 26 37 25 41 - - - -
QR2_020 23 44 22 39 - - - -
QR3 3 5 21 32 5 10 4 16
QR3_005 14 18 18 30 - - - -
QR3_010 27 42 16 29 - - - -
QR3_020 22 43 12 28 - - - -
QR4 7 9 8 23 3 5 3 11
QR4_ 005 17 25 7 19 - - - -
QR4_010 34 46 3 13 - - - -
QR4_020 13 26 1 8 - - - -
High rank QR4_010 QR4_010 CH3t QR2 CHlx_n CH2g CH1_g GO
CHIx_n  QR1_020 CHix_ged QR2_005 CHlx_ged CH3g CHI_n  QRI1
CHIx_ged QR2 020 CHix n  CH3g CH3t CH3x_ged CHI ged RM
GO Gm Gm CH3t QR4 CHlg_avg DT_n CHlg_avg
Gm CHIt QR4_020 CHIt GO KR DT ged CHIt
Low rank KR CH2t KR CH2t Gm Gm KR CH2t
Max rank 34 46 34 46 22 34 22 34

Table 10: The table contains the model forecasting performance ranking index. The number is a counter of
the number of times the corresponding reference model produces a p-value greater than 0.5 in each pairwise
relative forecasting ability test.
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