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Abstract

In this article we use a partial integral-differential approach to construct and extend a non-linear
filter to include jump components in the system state. We employ the enhanced filter to estimate
the latent state of multivariate parametric jump-diffusions. The devised procedure is flexible and
can be applied to non-affine diffusions as well as to state dependent jump intensities and jump size
distributions. The particular design of the system state can also provide an estimate of the jump
times and sizes. With the same approch by which the filter has been devised, we implement an
approximate likelihood for the parameter estimation of models of the jump-diffusion class. In the
development of the estimation function, we take particular care in designing a simplified algorithm
for computing. The likelihood function is then characterised in the application to stochastic volatility
models with jumps. In the empirical section we validate the proposed approach via Monte Carlo
experiments. We deal with the volatility as an intrinsic latent factor, which is partially observable
through the integrated variance, a new system state component that is introduced to increase the
filtered information content, allowing a closer tracking of the latent volatility factor. Further, we
analyse the structure of the measurement error, particularly in relation to the presence of jumps in
the system. In connection to this, we detect and address an issue arising in the update equation,
improving the system state estimate.

Keywords: latent state-variables, non-linear filtering, finite difference method, multi-variate jump-diffusions, likelihood

estimation.



1 Introduction

The estimation of parametric models of stochastic differential equations (SDE) has become a subject of
growing interest in recent years, see Sorensen (2004), Ait-Sahalia (2006) for a survey. There are many
approaches available, each designed to deal with specific problems connected to the inference exercise. It
is difficult to classify the solution methods throughout the problems posed by the estimation of parametric
SDEs. A partial categorisation discriminates by

e Moment-based estimator. Seminal papers are the GMM of Hansen and Scheinkman (1995), the
indirect inference of Gourieroux et al. (1993), the efficient method of moments of Gallant and
Tauchen (1996) or the martingale estimating functions of Bibby and Sgrensen (1995). Studies
based on the characteristic function include Singleton (2001), Chako and Viceira (2003).

o Likelihood-based estimator. Seminal papers are the finite difference approach as pioneered by Lo
(1988), the simulation of likelihood of Pedersen (1995a) or the Markov Chain Monte Carlo (MCMC)
methods as independently derived by Jones (1999), Elerian et al. (2001), Eraker (2001). Another
interesting approach is the polynomial expansion as in Ait-Sahalia (1999), Ait-Sahalia (2002), Ait-
Sahalia (2008).

Comparison studies have been performed by Jensen and Poulsen (2002), Lindstrom (2007), Hurn et al.
(2007) and in relation to filtering problems, see Lund (1997), Duffee and Stanton (2012) and Christof-
fersen et al. (2014).

The main issue with the estimation exercise is related to the fact that the likelihood of the stochastic
model is generally not known in closed form, making the use of an exact likelihood estimator virtually
impossible, except for a few limited special cases. A further problem is represented by the imperfect
sample information about the system to be estimated. In the first instance, the system is observed only
at discrete times, which poses the problem of how to optimally project the system forward in time, given
the current information. Secondly, problems of greater interest in finance involve the system state being
only partially or indirectly observable, namely: stochastic volatility (e.g. Heston, 1993, Duffie et al.,
2000) and term structure models (e.g. Duffie and Kan, 1996, Chen and Scott, 2003). This lack of infor-
mation issue can be optimally solved by filtering, which basically consists of finding the mean square best
estimate of the system state, given the partial set of historical information available. This can be viewed
as a projection problem in the space of mean square integrable martingales, see (Oksendal (2003). The
whole filtering exercise boils down to the construction of the projection operator, jointly with an update
procedure for the projection of the system state, once the observable information has been made available.
Several authors develop filtering procedures to tackle the latency of the state components. Examples are
Bates (2006), Jiang and Oomen (2007). However, these algorithms are specific to an affine structure of
the SDE and have in common the use of the spectral function for affine jump-diffusion models, which is
known in semi-analytical form (Duffie et al., 2000).

In this paper, we develop a particular of filter that can treat more general jump-diffusion models and
produce estimates of the state vector which include latent components. We then apply the filter within
the context of a parametric model estimation. We acknowledge that a filter, similar in spirit to the one
used here, has been recently applied to pure diffusion models by Hurn et al. (2013). In that paper the
authors apply the same procedure used in this article to derive the generic main filtering equation for
non-linear pure diffusions. They solve the nonlinearity problem via the application of a quasi-likelihood
approach which is coherent with the estimation strategy they adopt. This paper is different in that
we independently devise an extension to the non-linear filter which is able to handle multivariate jump
components. The form of the jump is quite general, allowing the possibility to handle synchronous
or asynchronous jumps, state-dependent jump size distribution along with affine as well as differently
specified state-dependent jump-intensities. The nonlinearity problem is solved with a second order ap-
proximation which allows for a quasi-analytical form of the filter that can be implemented in a very
flexible fashion. Secondly, along the lines of the original approach found in Maybeck (1982), we comple-
ment the filter with an estimation technique that adopts the same methodology used to derive the main
filtering equation. The econometric procedure consists of an approximate maximum likelihood (AML)
approach whereby the likelihood is obtained via the numerical solution of the partial integral-differential
equation (PIDE) describing the transition probability of the multivariate jump-diffusion under analysis,
with the application of the finite difference method for the construction of the diffusion operator and the
use of a discretisation to deal with the jump component. Within the structuring of the main block of
the approximated likelihood, we also discuss the issue of the stabilisation of the PIDE operator approxi-
mation and report a criterion which provides a major guideline for this purpose. We also characterise in



finer detail the form of the general likelihood for the purpose of a simplified computer implementation.
Finally, in the empirical section we analyse a stochastic volatility model with jumps with focus on the
system state design. Inspired by previous works such as Bollerslev and Zhou (2002), we introduce the
integrated variance variable, which is proved to carry significant auxiliary information when estimating
the stochastic volatility factor. Moreover, we test the form of the measurement error variable, providing
evidence that augmenting the state to model the error as an auxiliary latent system component is signif-
icant. Along the lines of Dempster and Tang (2011) we provide evidence that a martingale form for the
error is more desirable. Further, we have discovered that in the presence of jumps a pure diffusion system
state estimate might experience shocks that can be accommodated via the extension of the measurement
error to jump components. Another interesting conclusion of this paper is that, depending on the system
design, in the presence of jumps the measurement error might actually be a redundant system state com-
ponent, whereby its impact on the system total variability is absorbed by the jump component projection.

The paper is organised as follows. Section 2 presents the non-linear filter and as a key contribu-
tion to the literature the extension of the filtering procedure for handling jump components. Section 3
describes the estimation procedure and analyses the problem of the stabilisation of the PIDE operator
approximation. Section 4 contains the empirical analysis of a suite of stochastic volatility models. It first
depicts the system equations used in the Monte Carlo simulation and further analyses from a statistical
perspective the system design, with particular attention to the use of the integrated variance for the
sake of the latent state estimation and the form of the measurement error as an auxiliary latent state
variable. A further sub-section presents the estimation of the model parameters via AML and discusses
some auxiliary measure of the filter performance. Section 5 concludes.

2 The construction of the nonlinear filter

The problem we tackle is the statistical estimation of a parametric model, which describes the dynamics
of a vector-valued stochastic process (St)te[O,T)' We call S; a system, essentially because the stochastic
differential equations describing its components’ dynamics are interconnected. The system S is arranged
into two components S = (X,Y), in relation to their observability. We indicate the observable compo-
nents as Y, whose dynamics are described as a function of X, the state of the system. The system state
X is fully or partially latent, that is its path can only be inferred from the information coming from the
measurement, Y. In solving the estimation problem, we are therefore concerned with the device estimating
the latent state of the system and with the construction of the full likelihood for parametric estimation
purposes. This section is dedicated to the solution of the former problem, which, as a key contribution
to the literature, is extended to include jump components. The construction of the likelihood is pursued
in Section 3.

Filtering is the problem of finding the best estimate in a mean square sense of the state of the system,
that is the G;-measurable random variable X, that minimises the path-wise distance from the true state
X:. Let the probability space (2, F, F,P) and let the flow of information as represented by the set G C F,
be respectively defined as the algebra of events representing the observable trajectories and the full set
of information about the system (X,Y). The solution to the problem defined above, is the projection
from the space £2 (P) onto the space K C L2 (P) of the G;-measurable random variables. The projection
operator corresponds to the expectation E[-|G;], see Oksendal (2003). The following aims to construct
an approximation of the projection operator, when the stochastic process is a jump-diffusion. Actually,
because the observables are recorded only at discrete times, we need two projection operators providing
the latent state estimates. The approach undertaken here, following the cited seminal literature, consists
of the derivation of two equations defining the operators of projection E [X} |G;—_s, | and E [X; |G¢]. In order
to simplify notation, we will indistinctly indicate Eq  [X] = E[X;|Gs] := Xt|s, s < t. Corresponding
to the previous expectations, the non-linear filter is composed of the following equations. The time-
propagation equation moves the state estimates between the observation times ¢t — §; and ¢, the time
segments being not necessarily equally spaced, whereas the update equation generates the new estimate
of the partially latent state vector X; when a new observation Y; is available. The update equation is
given in a convenient simplified form, as a function of Y and its projection Y, of the projected state vector
X and their second order cross-moments. The problem amounts to the construction of the projection
and update operators of the first two central moments of the system state. Formally, the framework is
given by the parametric system state

dX = b(X~;0)dt + A(X;0)dW + J(z; X, 0)dN (1)

The functions b, A include dependency on the parametric vector § € ©. The jump size component vector



J depends on the mark point z, whose distribution is parametric and may depend on the state. The
random drivers of the system are the Brownian vector W and the Poisson counting process N, with
stochastic intensity A(X ~;6). The random functions b, A and J are assumed to satisfy conditions that
grant a unique solution for Eq. (1) (see e.g. Platen and Bruti-Liberati, 2010), V8 € ©. In Eq. (1)
we make explicit the dependency on the left limit of X, that is its level immediately before the jump,
if any. Subsequently, this notation is dropped, whereby we focus on the construction of the estimation
procedure. For a complete treatment of the stochastic integral X and its components, see, e.g., Cont
and Tankov (2003), Hanson (2007). For the practical purpose of system estimation, we will assume that
the jump size vector of the synchronous jump can be written as J = G(z) f(X), with G = [gij(z)]ij and
gij = 0 when 7 # j, where f and g are mapping, respectively, from the domain of X and z, the mark
point vector, to R®. Here, the definition of J is a working tool which makes the jump size dependent at
the same time on the mark-point vector z and on the state X, but in a way that allows the factorisation
of the jump-component and the state component in the time-propagation equation. The functions f and
g increase the flexibility of the statistical model.

The forward equation

Later in the construction of the time-propagation operator, a key role is played by the Kolmogorov
forward equation (KFE). In general, considering the SDE (1), the KFE that is the equation describing
the transition probabilities of the system, is found as:

Proposition 2.1 (The multi-dimensional jump-diffusion PIDE). The Kolmogorov forward equation for
the Ito process with Poisson jump components (1) is

O [p] = (x + Ix) [p] (2)
where the differential operator <7x is defined by the position, C = AA*
dx[pl = 3> 07, [Cipl = 0x, [bip] (3)
ij i
and the integral operator Zx is defined as
Fxlpl == 0w)+ [ QG 1)1 () o @
Proof. See Hanson (2007) O

In Eq. (4) Q is the jump size probability measure, h: X — X~ is the post-jump transform, |Vh| is
the determinant of the Jacobian of h and we indicate by o the function composition operator. For ease
of presentation, we consider the counting process to be scalar and allow the synchronous jump vector J
to be state dependent or not. The jump intensity is the process A(X).

The second component of the system is represented by the observation equation,
Y =qx(X)+E (5)

where E is the measurement error, which is left unspecified at the moment. In Eq. (5) we assume a simple
linear form for q(X) = HX, through the constant matrix H. This case is relevant for the stochastic
volatility model, where H is a pick matrix and for a latent factor term structure model, which targets
the estimation of the empirical measure. The extension of Eq. (5) to more general forms requires an
approximation to be fully implemented, see e.g. Nielsen et al. (2000), Baadsgaard et al. (2000). See
Christoffersen et al. (2014) for a study of non-linearity in the observation equation in the case of an
unscented Kalman filter.

In this article, we need to include a further component to the system state. This auxiliary component,
intrinsically latent by its nature, is a defining object of the jump component, that is its, possibly state
dependent, intensity process. We give it here in its level effect form

A=aqa(X) (6)

In the following we extend the time propagation equation as conceived by Maybeck (1982) to handle a
marked point Poisson component, which can be state-dependent in the jump intensity function and in
the jump size distribution. Our work relies on the intuition of using the jump operator of the forward
equation to extend the system state projection dynamics to include a jump component and in deriving
workable expressions for the estimation of the latent system-state. Furthermore, we also address from
an implementation perspective a feature of the update equation arising when jumps are included in the
system state equation and offer robust statistics confirming the effectiveness of the solution.



2.1 The time-propagation equation

In order to construct optimal estimates of the state of the system X, which is observed at discrete
times only, we need conditions for the evolution of the system state projections between two observation
times. This is called the time-propagation equation. The idea in Maybeck (1982) is to derive possibly
approximated ordinary differential equations for the first two moments of X, cfr. Nielsen et al. (2000),
Baadsgaard et al. (2000)

4X = [XopdX

d 75 d ¥ % d (@)
4V = [XX*OpdX - LXX* - X4X*

In Eq. (7), we substitute the KFE for the jump-diffusion transition probability d;p to obtain an exact
or an appropriately proxied ordinary differential equation (ODE) system for X, and Vjs. The aim is to
calculate the solution of (7) for the jump-diffusion (1). To obtain the solution the following integrals are
involved [ X (&/+ 7 )[p] and [ X X*(</+ 7 )[p|] that because of linearity can be handled separately with
respect to each individual KFE operator. For the same reason, further synchronous jumps can be easily
included to the state model. We split Eq. (7) into its diffusion and jump component, using linearity of
the operators, that is & (1) = £ (1), + & (); To simplify notation, we indicate the operator EF|[-] with

(-] and EQ[] with (- ]). We find that the diffusion component of Eq. (7) is
Proposition 2.2 (The Diffusion Component of the Time-Propagation Equation, Maybeck, 1982).

& (X)), = ) "
8
G V), = (C)+(bx*) + (Xb*) — (b)X* — X (b)*
Proof. See the Appendix. O

The filter (X, V) can be extended with the same approach described above, adapting the integration
procedure to handle the jump component. We derive the auxiliary filter component providing the following
formal ODE system.

Proposition 2.3 (The Jump Component of the Time-Propagation Equation).

& (X) , = (G =U - o)
G (V) ;= AGHAMX*) + (AX )G + (M) © {gg7) — UX* — XU*
Proof. See the Appendix. O

In the above, we have used the sign ® to indicate component-wise multiplication. The jump component
(9) represents to the best of our knowledge a novel contribution to the literature and provides an extension
to the nonlinear filter of Maybeck (1982) and the most recent applications in finance of Nielsen et al.
(2000), Baadsgaard et al. (2000) and Hurn et al. (2013), which can be used for the estimation of the
latent state of jump-diffusions. In order to get a workable expression to use for computations the time-
propagation equations require the evaluation of the expectations on the RHS of the previous differential
expressions.

2.2 Approximating the expectation operator

With Egs. (8) and (9), we have obtained an ordinary differential system which describes the projection
operators for the first two central moments of the state-equation as a function of time. However, it has
to be noticed that Eq. (8) and Eq. (9) are only a formal definition, because the RHS is in general
unknown. In order to obtain a workable specification, we need to characterise this formal statement of
the time-propagation equations. The approach undertaken in this paper is along the lines of the seminal
papers cited above. The expectation of a generic scalar function of the state ¢(X) is approximated by
taking a Taylor series expansion of ¢ around the current state estimate X and applying the operator E [,
to both side of the equation, cfr. Maybeck (1982), Nielsen et al. (2000), to obtain

Elg(X)] = q (X) + 3 trace [V?¢ (X) - V] + R, (10)

where we neglect the remainder R, which contains a third order central moment function. The truncated
second order expansion introduces bias correction and can be seen as a stochastic equivalent of the ex-
tended Kalman filter'. It is interesting to notice that if the state function ¢(X) is at most quadratic, the

IThe extended Kalman filter corresponds to a first order approximation within the same methodology, cfr., e.g., Lund
(1997) and in comparison with other methods in Duffee and Stanton (2012), Christoffersen et al. (2014).



expansion in Eq. (10) is exact. In general, we have obtained an estimate of the time-propagation equation
for the jump diffusion (1), with state-dependent jump intensities and amplitudes. This approach differs
from that undertaken in Hurn et al. (2013), which uses the quasi-likelihood to approximate the integral
with numerical quadrature. We believe this approach offers convenience in allowing for the construction
of the time-propagation equation for the estimation of the main projection operator in a quasi-analytical
form and further it can be coded in a very flexible fashion.

Example: state-independent affine jump-diffusion

From Egs. (8), (9) and (10) it is evident that when the b and A are affine, the jump size is state
independent and the diffusion matrix is at most a quadratic function of the state, the time propagation
equations are exact and can even be solved explicitly. For instance, in the affine jump-diffusion case,
when the jump intensity is A(X) = A\p + A1 - X and the synchronised jump vector .J is state-independent,
we get the exact ODE system

)

(11)

e Sle
< <
I

v S

+
= D+BV+VB*
where

= a+ X\
B+ (J)A:
AD%A* + (Mo + A1 - X)(JJ*)

T 3 o
I

which admits a closed form solution. In other situations we have to revert to an approximated ODE.

Example: non-affine volatility

When the stochastic system is not affine, we approximate the time-propagation equation via Eq. (10).
In this example, we look at a scalar pure diffusion, with an affine drift @ + X and a squared diffusion
function C' = 02X?7, hence the ODE driving the system projection is then

4X = a+0bX (12)
%V = 02XP 402292 — ) X207VY v

The expression (12) is used later within the experimental section, in junction with a larger system, when
conducting an exercise with a non-affine model.

2.3 The update equation

The non-linear filter we have developed in the previous section has the purpose of projecting the system
between two consecutive times, carrying over the whole set of information inferred by the observation
vector for the sake of delivering the best estimate of the partially observed system state. Once the system
is at the observation time ¢ and new information is collected about Y, we need a means to incorporate
such quantities into the system state estimate in an optimal way. The update equation consists of a
mechanism to estimate the expectation )_(t‘t by refreshing the system state projection with the newly
arrived information Y;+, which are the only observable quantities in the context of a latent system state.
The optimal filter X represents the best estimate of the state under partial information, which is the
natural condition under which data on a phenomenon are presented to the researcher.

The update equation, fundamentally, consists of the application of Bayes’ rule, when conditioning the
state estimates onto the observed information set at current time. Assuming the update equation form
is a linear function of the residuals, it can be found that:

Proposition 2.4 (The update of a linear projection, Maybeck, 1982). The update equation for the
non-linear filter defined by Eqs. (8) and (9) is given by

X = Xy + 325, (Vi —Yy,)
) ) (13)
V;E|t = V;f\s - Eryzgylzyz



with
Yy = By [(Y;f - Yt\S) (Yt - Yt\S)*]

Emy = Et\s |:(Xt — Xt|s) ()/t _ )7t|s)*i| _ E*

yx
Proof. See the Appendix. O

Embedding new information into X;; about the observed residuals Y; — Yy s imports into the states
estimates information that would be lost otherwise.

For the application we construct in this study, the observation equation of interest is a linear function
of the latent state, Y = HX where in general H is a constant matrix. This assumption implies the exact
estimates Y = HX, ¥, = HVH*. Whenever Y is a generic function of the state X, Y = q(X) + E, the
system variables Y, ¥,, and ¥, are approximated via Eq. (10), cfr. Nielsen et al. (2000). We remark
that the update equation (13) in the general case of a nonlinear filtering corresponds to a first order
expansion of the projection operator E;;. Expanding this approximation to higher orders, whereby the
expectations are approximated via Eq. (10) is impossible.

2.4 The measurement error

In the observation equation (5), we left the measurement error E unspecified. We discuss the modelling of
the process F in this section. In the literature the measurement error is generically indicated as a random
process E; with zero mean and constant covariance matrix Y., a white noise which is at most cross-section
correlated. However, in a recent paper, cfr. Dempster and Tang (2011), it has been statistically proved
that the measurement error manifests mean reversion and cross correlation with the state. In Dempster
and Tang (2011), the authors plug the measurement error into the state equation, a choice that allows
one to design an evolutionary equation for E that could better track the underlying state of the system
X. The behaviour of the measurement error is actually the result of the filtering process, therefore it is
straightforward to expect a mean reverting or even a martingale behaviour which might have a random
impulse which is correlated with the diffusions W. The outcome of the inclusion of the measurement
error into the state vector consists of effectively transforming FE into another latent component of an
augmented state vector. This is an implementation strategy that allows greater flexibility in the system
state filtering and the parametric estimation, introducing parameters that might be able to modulate the
estimation residuals and improve the quality of the fitting.

In this article we extend the intuition in Dempster and Tang (2011) a step further. We report that in
the presence of the jump component the measurement error can experience jumps that if neglected might
propagate to the system state estimate and arise unexpectedly in other parts of the system. The case
that we will be exploring in the empirical section is that of a latent pure diffusion stochastic volatility
whose filtered state, according to a certain measure to be specified, might sometimes experience excessive
variations or jumps that can be improved or corrected by a measurement error that contemplates jumps.
Thus, building on the same strategy, we will augment the system state by a measurement error vector F
that, in general, will include a mean reversion term, a diffusion and a jump component. However, having
both a diffusion and a jump component in the error term might result in a useless over-parametrisation.
The general equation for the measurement error E is

dE = (¢ + CoE) dt + C,dWg + JgdNg. (14)

We assume that the eigenvalues of the constant matrix Cy grant that the process F is stationary or at least
non-explosive, whereas the constant c is such to compensate the drift generated by the jumps ElN:tlJti; if
any, and hence the unconditional mean is zero. As the vector process F belongs to the system state, the
diffusion component drivers might possibly be correlated with the diffusive impulse of X. The innovation
we introduce is to allow the measurement error to jump via the Poisson point process represented by
the stochastic differential JgdNg. In general, the measurement error jumps may be synchronised or not
with the X component’s jumps, whereby in the latter case an intensity function should be specified and
parametrised. However, we have found experimentally that at least for the model under test, the former
case does not allow the flexibility required to explain the unexpected jumps in the state estimate. When
the measurement error jump process Ng is not synchronised with the jump in the state, if any, a further
hypothesis on the dynamics of the stochastic intensity process should be specified. This may give rise
to auxiliary latent measurement error variables. However, in the empirical section we will adopt the
simplification that the jump error intensity is an affine function of the state X. In several case studies,
this assumption will produce a statistically significant effect on improving the latent state estimates.



3 Estimation

In Section 2 we have presented the procedure to estimate the system state X in the presence of partial
information via a nonlinear filter, which has been extended to include jump elements. In this paragraph
we complement that technique with an estimation method for the parametrisation of multivariate jump-
diffusions with latent components. Whereas we have exploited a PIDE approach for the derivation of the
symbolic solution of the time-propagation equation (7) for the filtering of the latent state X, here we use
an intrinsic filtering approach for the derivation of the likelihood function, whose main component is the
solution of the PIDE which describes the transition probability density of the system (1). In treating the
latter problem, we follow the route leading to the construction of the approximate likelihood function of
the latent state by numerically solving the forward equation (2). We use an AML approach exploiting
the inherent optimality properties of the exact likelihood that can be achieved asymptotically by the
approximation, cfr. Pedersen (1995a), Poulsen (1999). The same result extends to the PIDE version,
provided uniform convergence of the solution, see Lindstrom (2007). Finally, the approximate likelihood
of the observed variable Y is achieved via the numerical integration of the latent state component. The
contribution of this article in the estimation exercise involves a particular implementation strategy that
allows further simplification of the AML algorithm. In the following we describe the approach under-
taken in this paper in the development of the estimation algorithm, which allows a considerable saving of
computational time. We also tackle the problem of the stabilisation of the PIDE operator approximation.

3.1 Approximate likelihood function

The objective is to build an approximate likelihood function for the observables, P (Y;|Y;—1), which is
able to capture higher order moments implied by the system probability structure. In order to handle
the presence of the partially or totally latent system state X, we use the classic Bayesian decomposition
of the full likelihood function, which is then concentrated onto the observable variable by marginalising
the system state. The contribution of this article in the estimation problem is the characterisation of
the likelihood function which hinges on the particular implementation strategy of the likelihood core
component P (X;11|X;). As a result, we achieve a simplification of the estimation algorithm.

We work with the following equation:*
P (Xena[Ye) P (Y] Yeon) = /dXtP(Xt+1|Xt)]P)(Yt|Xt)]P(Xt|Y171) (15)

In Eq. (15) the likelihood component of the observables Y, that is P (Y;|Y;—1), acts as a normalisation
constant, hence it is obtained by integrating the RHS w.r.t. X;y;. Furthermore, the above likelihood
function defines an iteration that recursively combines the transition probability of the system state with
the density implied by the observation equation. The equation defined in (15) progressively generates
the likelihood for the observables and the function P (X;41|Y;), which acts as a weighting function in
the successive step. The initial condition P(X,|Y_1) is set to [dX_1P(X(|X_1), wherever the initial
condition is not observable; otherwise, the initial condition is set to the observables.

In order to portray further the likelihood recursion, we exploit the solution chosen in the article of
Dempster and Tang (2011), by augmenting the system state with the measurement error, which renders
the observation equation as Y = gx (X). As a consequence we have that P (Y;|X;) = d [¢(X:) — V3], where
0 is the pulse function. Concerning the latter statement, we need to clarify that we implicitly assume
that, whenever the observation function is not surjective, the Y belongs to the image of ¢q. Further, we
also notice that if any subcomponent X, of the partition X = (X,, X}) does not enter ¢ then we simply
refer to P (Y|X) =P (Y] Xp)®.

To complete the construction of Eq. (15), we build its core component as the solution of the KFE
via a combination of a finite difference method (FDM) and an ordinary integral approximation. In re-
cent years, the FDM has received renewed attention in continuous-time financial econometrics, since the

2Equation (15) is obtained by plugging into the definition of P (X¢41|Y:) = [dX: P (X¢41|X:) P (X¢|Y:) the probabilistic
P(Ye | X)P(X¢|Ve—1)
P(YelYeo1)
3However, if the range of Y does not coincide with the image of ¢, the probability P (Y'|X) would not be defined. In
fact, we have the chain of equalities

correspondent of the update equation, that is P (X¢|Y;) =

P(Xq|Y,Xp)P(Y|X
P(Y|Xa, Xp) = B TR TIX0)

and if Y ¢ ¢(X), then {Y, X} = 0 and P (X,|Y, X}) is not defined. Furthermore, from the RHS of the above chain we
notice that because y = g(z) then {Y, X} = {X}} and therefore P (Y |X) = P (Y|X}).



seminal papers of Lo (1988), Pedersen (1995b) and Poulsen (1999). Examples are Jensen and Poulsen
(2002), Lindstrom (2007), Hurn et al. (2010), Lux (2012).

We approximate each component P (X;1|X;) as the solution of the system of ordinary differential
equations in the time dimension obtained by applying a finite difference scheme to the diffusion operator
and a discretisation of the integral component for the jump operator. Formally, we transform the PIDE
(2) into the ODE homogeneous system

ap(t) = (A+J) - p(t) = p(t) = exp [(A + J)t] - p(0) (16)

that can be formally solved as exhibited. The vector p contains the stack of grid-points, t = t; —¢;_1 and
p(0) is a representation of the delta function centred at z;,_,. Eventually, we focus on the construction of
an approximation of the integral-differential operator in the space dimension defining the PIDE for the
transition probability distribution. Solving the ODE along the time dimension via the exponentiation of
the approximate operator in the space dimension offers a very attractive feature in terms of computational
speed and that will be fully exploited in the derivation of the final expression for the likelihood iteration.
The construction of the delta function initial condition also involves some caution. A coarse grid might
generate abrupt variations in the function approximation that result in oscillatory behaviour of the
solution. It might be necessary to force the solution to be positive. Another approach involves the use
of the terminal value of a Euler approximation in place of the initial condition, cfr. Poulsen (1999). We
choose the first approach, which we justify with the following proposition:

Proposition 3.1. Assuming the sequence of functions p* — p pointwise, with p > 0, V. Thus,
[ = p
Proof. See Appendix. O

The proposition 3.1 basically says that it is safe forcing the approximated solution to be positive,
because its absolute value will still converge to the true solution.

In this paper the solution we adopt for the estimation of the parameters of a multivariate jump-
diffusion with latent state components, consists of constructing the likelihood function on a fixed grid
space, avoiding dependency of the grid on the system status. Lacking this feature, the AML solution
for each time frame would require a localised solution, forcing the computational burden to increase
exponentially. In order to achieve this target, we adopt two schemes. First, we implement the solution
of the KFE for the system state as described above. The exponentiation of the operator renders the
solution dependent on the initial condition only through a matrix operation, thus entailing that the
matrix exponential has to be performed only once at each likelihood calculation, instead of as many times
as the sample size. However, in order to keep the likelihood calculation on a fixed grid at each recursion,
there is a second aspect to deal with. In case the system state contains non-stationary components whose
transition densities do not depend on their own levels, their initial condition would have the sole effect of
shifting the probability structure along their range of definition. Therefore, to keep the likelihood on a
fixed grid, we are more interested in considering their first differences rather than their levels, otherwise
forcing the implementation of a specific operator at each likelihood recursion. In the following we derive
a finer characterisation of the likelihood iteration in Eq. (15), whose purpose is solely presenting the
method although further specifications depend on the partitioning of the state vector and can in general
be refined more depending on the system state form. Thus, assuming, for instance, the partitioning of the
system state into X = (X%, X!) and that Y = ¢(X°), with X° non stationary* and level independent,
we can rearrange the likelihood iteration into

P(AXE 1 XL|AY) o faxt | P(axP xkal0.x)) [aax?p(axtxtavi)|  an
Q

where the vector integration variable dX7 = dz; ...dzk, and a; ' = P (Y;|Y;_1). The integration domain
O = {AX): ¢(AX)) — AY; = 0}. It is important to notice that in order to transform the likelihood
iteration into Eq. (17), where the probability mass stays confined onto a user defined multi-interval,
instead of drifting alongside the non-stationary system components, the function defining the observation
equation ¢ is required to be linear. In the empirical section we will use the proposed approach to produce
Monte Carlo experiments with several stochastic volatility model specifications.

4In this example we assume that Y is a non stationary process, which is a function of a non stationary state component
q(Xo). This is the relevant case for applications. The case where Y is a function of a stationary state can be accommodated
with the same approach. The case when Y is at the same time a function of the level of both a stationary and non stationary
process cannot be dealt with a fixed grid approach, unless the Y as a function output can be partitioned according to the
partitioning of X into stationary and non stationary components. For the non-stationary case we will further need to require
that the function g be linear, in order to get Y + AY = ¢(Xo + AXo) = AY = ¢(AXo).



3.2 Stabilisation of the operator approximation

In this section we discuss an important problem related to the solution of the system state transition
density P(X;11]|X¢). An aspect which is often disregarded when constructing a PDE solution with a
FDM is the operator stabilisation. In system theory, the concept of stability is in general referred to the
sensitivity of the solution to a small perturbation of the system parameters, usually the initial conditions.
In the application of finite difference schemes for the solution of PDEs and in particular to evolutionary
problems, the study of the stability of the operator approximation is concerned with the problem of
suitably choosing the discretisation scheme for the time variable, in order to assure the stability of the
solution approximation, see Tavella and Randall (2000), Duffy (2006). In reality, it would be more appro-
priate to define this problem as how to preserve stability when moving to the time discretisation scheme,
assuming the operator in the space dimension is initially stable. However, if we disregard the “special”
role that is assigned to time, we might think of this problem for FDM as the problem of stabilising the
time-space operator, altogether. In the particular implementation chosen in this paper, we avoid the last
issue by taking the analytic solution of the space dimension discretised problem. As a consequence, we
are left with the study of the stability of the space-discretised operator. In this section, we take into
consideration the stability aspect of the matrix approximation of the original PIDE problem, and provide
a criterion which is exploited as a tool for the analysis of this aspect of the likelihood approximation.
The design of a stable system is crucial in the construction of the estimation procedure. We offer some
guidelines in what follows, without the pretence of exhausting the argument but more to shed some light
onto the stabilisation issue related to the implementation of the AML procedure employed in this work.
The stabilisation of the operator approximation is in general a task to be pursued on a case-by-case basis.

In general terms, there is not an overall solution to the problem of the stability of a FDM operator and
its study is usually confined to the derivative operator approximation 9. Considering the solution (16),
we search for system matrices with negative real part eigenvalues, which would grant stable solutions.
However, not every finite difference scheme grants stable operators. See Tavella and Randall (2000) as to
how to construct finite difference scheme of any order. In Fig. 1 we show a perfectly legit first order first
derivative finite difference scheme which produces a totally unstable matrix. The figure exhibits the real
part of the matrix eigenvalues of a simple example whereby the use of a given finite difference scheme
produces a problematic approximation of a first order derivative operator. The matrix eigenvalues are all
positive entailing that the exponentiation of the matrix will rapidly explode at low variations of ¢t. The
situation becomes even more intricate in the case of mixed derivatives with multiple dimensions, where
the options to design a finite difference approximation of a given order become numerous. As a general
rule, we exploit the following version of the Gerschgorin’s disks theorem. Let [a;;] =: A € C"*" be a
square matrix and ¢; = >, |a;;|, we have

Theorem 3.1 (Gerschgorin, 1931). The eigenvalues of the matriz A lie in the union of the disks
{ZE(C: |z—aii| Sci},lgign

Therefore, the general criterion in constructing a FDM scheme consists of plugging as many negative
values as possible on the matrix operator diagonal and keeping the radius of the disks small, in order
to obtain stable differential operator approximations. In Fig. 2, we show the ordered real part of the
eigenvalue of the matrix approximation of the operators 0., 92, and 92, which have been used in the

empirical section. The careful choice of the differentiation scheme allows for the complete stabilisation of
the matrix operators.

To conclude this section, we recall that in the jump-diffusion case with scalar point mark, we approxi-
mate the jump operator with a trapezoidal rule that yields an approximation matrix, which is a triangular
banded matrix. Usually, this matrix has a minor impact on the overall structure of the system operator.
What can be said in general is that this matrix contains positive entries, therefore it will shift the centre
of the Gerschgorin’s disks to the right, determining a cause for the decrease of the stability. Another
problem is related to the fact that although the individual operator blocks might be stable or negligibly
destabilising, their sum does not necessarily retain the same spectral structure of the individual factors.
Moreover, a few problematic eigenvalues might have been generated by numerical truncation that exhibit
a positive real part which tend to shrink when increasing the thickness of the grid. For instance, in the
following table® we compare the percentage of the matrix trace which can be attributed to problematic
eigenvalues for several approximations of the full operator @x + Zx:

5The table exibits the value of the index in corresponding to a given grid dimension. The correspondent matrix approx-
imation of the PIDE operator is a square matrix whose side is as long as the grid volume expressed in terms of number
of steps for each dimension. That corresponds to all the possible combinations of the coverage of the values allowed by
the multi-dimensional grid. The index shows the percentage ratio of the sum of the absolute value of positive real part
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grid dimension instability index

10 x 10 2.27%
20 x 20 0.16%
30 x 30 0.04%
50 x 50 0.00%

We observe that they tend to disappear when the system dimension increases, that is the grid becomes
more dense.

In practice, it is important to remark that before using a PIDE solution for the design of the AML
procedure, a preliminary study of the system state distribution function output must be run thoroughly
and the system grid must be carefully chosen, in order to calibrate the algorithm. Having chosen a fixed
grid approach, it is important to make the multi-interval proportionate to the long-run variability of
the system components and further rendering a sufficiently fine grid in order to obtain a well enough
detailed distribution at low variability levels. The point of strength of this approach is that it is easily
adaptable for any type of multivariate jump-diffusion model, whereby the implemented codes require only
few modifications to change the system state equations. Moreover, it allows the parameter estimation
time to be greatly reduced showcasing the benefit of the sole need of one single matrix exponential at
each likelihood cycle, leaving ample possibility for a targeted implementation of the numerical algorithm
at the programming level. The procedure also offers the possibility of cutting off the numerical gradient
loop, at the cost of a further matrix exponentiation, cfr. Van Loan (1978). We leave this latter step to
subsequent implementation and testing.

4 Experimental Section

In this section, we provide empirical evidence in a simulated environment of the efficacy of the described
procedures for the estimation of jump-diffusion models. We deal with a stochastic volatility model with
jumps whose diffusive component may have a non-affine state function volatility, while the jump com-
ponent is characterised by a state dependent stochastic intensity which can be non-linear as well. The
approach is particularly appealing for the filtering of non-affine processes, where we cannot use, for exam-
ple, the spectral filtering procedure as in Bates (2006), and even so, in the affine case the jump-diffusion
filtering proposed in this paper is particularly convenient. In fact, for the implementation of the cited
approach, the estimation of the latent state requires the combined use of numerical integration and dif-
ferentiation of the characteristic function, constructed via the solution of the ODE system associated
with the affine model, cfr. Duffie et al. (2000). On the contrary, the extended filter introduced in this
paper and constructed directly in the time domain, produces estimates of the system state trajectories
through the less complex recursion described by the Egs. (8), (9) and (13), an implementation strategy
that requires a lower number of approximation layers. Concerning the parameter estimation exercise, the
PIDE approach used here is instrumental to the optimisation of the model parameters by which a sample
path is most likely to have been generated, and the attention is more for the implications in the filtering
context. We refer to articles such as Jensen and Poulsen (2002), Lindstrom (2007) for a comparative
analysis of the AML adopted in this section.

With the Monte Carlo experiment, we check that the estimation of the system state and the model
parameters are significant, while focusing the analysis on several aspects of the system development and
estimation that we have found to be relevant. Specifically, we augment the system state of the stochas-
tic volatility model with the integrated variance dynamics y; and produce statistical evidence that it
brings significant information into the system for the sake of the estimation of the latent state voolatility.
Further, introducing a measurement error in the observation equation (19), we test the autocorrelation
function of the output residuals to investigate the white noise hypothesis, finding that the strong auto-
correlation and the presence of a unit root suggest to model the y;’s residual in a martingale form that
entails the augmentation of the state equation by the measurement error, as it was an auxiliary latent
variable. Moreover, while experimenting several model specifications as a jump-diffusion in = with a pure
diffusive v factor, we have detected the presence of unexpected jumps in the projection of the variable
v. In the latter situation, we provide evidence that this phenomenon, when present, may be corrected
with a pure jump measurement error, which is probably the most suitable form for the measurement
error, when the filter is applied to jump-diffusions. Further down the line, we investigate its nature by
questioning the need of a measurement error. In fact, we provide evidence that in the majority of the
extreme cases, the presence of a jump in the supposedly pure diffusive v factor can be accommodated by

eigenvalues over the sum of the absolute value of the full set of eigenvalues. That number can be thought of as an index of
instability of the system matrix: the lower the better.
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dropping the variable E and by the likelihood estimation of the parameters. Finally, with another AML
exercise, we exhibit the parameter estimates and their likelihood derived standard error, highlighting the
very low tracking error of the v estimates with respect to the simulated ones and whereby we also show
how to use the filter to derive an estimate of the jumps. The main statistics are presented in Tabs. 2 and 3.

The simulations are produced with a simple Euler scheme at a very tight interval, plus the product
of the jump size times a binomial random variable with p; = 1 — exp [-A(X;)At].

4.1 System Design

In this section we characterise the form of the system used in the Monte Carlo experiments. We introduce
the SDE describing the dynamics of the system and its observables. The baseline state equation is given
by

dz = 0+/¢.(v)dWy (18)
dv = k(w—v)dt+ov (deO +1—p? dW1> + J, dNy

du = 6%q.(v)dt
dﬂ';E = —Jo dNO
dm, = JZdN,

The dynamic system described by the Eqs. (18) represents the state of the reference multi-variate process
we are employing for the Monte Carlo study. The observation equation is given by the linear form

Yo = T+ 7y (19)
Y1 = U+ Ty FE

The observations are represented by the two dimensional vector Y = (yg,y1). The process yo is a jump-
diffusion with quadratic variation given by the (Lebesgue)-stochastic integral [dt [0?¢.(v) + J§An,],
representing the prototype stochastic volatility model for the experimental exercise. As it can be no-
ticed, the quadratic variation of yy depends on the instantaneous variance of the pure diffusion =z and
the second order (infinitesimal) moment of the Poisson random measure, symbolically described by the
stochastic differential dm,,. The parameter 6 is a scaling factor, whereas the diffusion function is taken as
g» = v27, with 0 < v < 1. This specification corresponds to a deterministic constant elasticity function®.
Given the dynamics of v, basically the constant parameter v regulates the skewness of the unconditional
distribution of the unscaled diffusion, determining an asymmetric response in the function v”, when v, is
below or above the long run average of one. The case v = 1/2 corresponds to an affine volatility function.
The state component v is a scalar square-root process, which can be affected by jumps N; that are not
synchronised with the jumps Ny in yy and that have independent size distributions. The inclusion of a
jump in volatility allows the system to resemble the behaviour of the double-jump model introduced by
Duffie et al. (2000). Other working hypotheses can be easily implemented. We allow for the presence
of correlated diffusive random drivers between the factor x and the stochastic volatility factor v, a fact
that in applied financial econometrics is used to reproduce the so called leverage effect, cfr. for instance
Glosten et al. (1993). However, we notice that this feature might be reproduced by suitably modelling
the jumps and the intensity function. The variable v is also input to the state dependent jump intensities
AN, (v), which can be a linear or a square function of v, allowing state dependency and non linearity also
in the stochastic jump-intensity process that have been handled by the jump-extended filter introduced
in this paper. For the specific simulation experiment where the jump in variance N is considered, its
jump intensity and that of Ny will be taken as linear in v with the scaling factor of Ayx, given by a
fixed proportion of the parameter Ay,. As they are conceived, the stochastic intensities will produce
clustered jumps manifesting their concentration during volatility peaks. The simple non-linear stochastic
intensity model with jump frequency described by Agv?, will exacerbate the feature just described. The
jumps in volatility are assumed to have an affine intensity, with a coefficient which is a fixed fraction of
Ao- The jump size distribution of the Poisson point process component .Jy is specified as exponential,
which is also the case for Ji, or extreme value distributions, depending on constant parameters. In the
latter case, the jump size distribution is given by the polynomially decaying extreme value distribution
PlJo<z2]=1—(1+2/a)”", where we need to require finite order fourth moments in order to grant the
well definiteness of the time-propagation equation. In the appendix (cfr. A.5) we calculate the moments

6In economics, the elasticity of the utility function U(c) is defined as —cU" /U’. This corresponds to an elasticity of the
function v of 1 — ~.
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of the extreme value distribution function used in the experiments. We notice here another interesting
aspect of the estimation approach presented in this paper, that is the ability of handling extreme value
distributions (EVD) for the jump size, a characteristic that is prevented by the requirement of finite
exponential moments in the jump extension of the indirect Hermite expansion approach of Ait-Sahalia
(2002) , cfr. Filipovi¢ et al. (2013) and Singer (2006). The coefficient w = (k — A\oJy)/k, allows the
stochastic factor v to oscillate around one with unconditionally unitary mean. For that, in the estimation
exercise we will require the mean reversion speed to be higher than the jump drift, in order to obtain
stationary variance. As it can be noticed, the jump process Ny is not compensated, hence yo will have a
negative drift. Another key point in the design of the system state is the isolation of the diffusion from
the jump components, such that the filter state estimates will produce a direct estimate of the the jump
process itself. However, this strategy is not directly implementable for the jump component in the v
factor, because it does not enter directly in any observable. As it will be seen in the AML exercise, the
estimation of this feature is problematic.

The observable y; plays a special role. As the state vector (x,v,m,) is completely unobservable
with a dimensionality which is higher than that of the observable yy, we would expect a high degree of
indeterminacy in estimating its projection onto G;. However, for the case under analysis, we can resort
to stochastic calculus to obtain two new variables which increase the information content available by
introducing a new observable. We plug into the observation equation the “integrated variance” of the
process yg, which is partially observable. We will prove later that this innovation matters. The integrated
variance has been used in other applications in a realised volatility context, see for instance Bollerslev
and Zhou (2002), which exploits its moment structure to improve the estimation of a stochastic volatility
model. In this paper, the origination point is different. We construct the process y; = u + m, considering
the SDE which describes the observable yo = = + 7, and derive the process dynamics for w = y2

dw = 2y (co dt + 0/ g (v) dWo) + quz(v) dt + [(yo — Jo)2 — yg] dNy
2y0 dyo + 02q,(v) dt + JZ d N
= 2yodyo + du + dmy,.

Hence, let y1 = w—2 f Yo dyo to obtain the new observable y;. The augmented state vector for the simu-
lation exercise is therefore X = (z,v,u, 7., 7,). In deriving the reference state equation, we highlight the
separation of the main random sources into specific state variables, a design choice that allows for the dis-
entangling of the jump variable from the diffusion component. As a consequence, the filter Egs. (18) and
(19) will be able, in particular, to produce the projection of the latent variable ., which accumulates the
jumps of the observable y,. We will use the latter filter output to estimate the jump times and sizes; sim-
ulation shows that the jumps can be estimated as the tail events of the first difference distribution of the
cumulative jump state component, when the tail is cut at the expected unconditional frequency of jumps.
The residuals after the distribution cut, can be seen as a projection error that is expected to be negligible.

At this stage of the construction of the stochastic system to be used to experiment the non-linear
filter complemented with the chosen AML procedure, we have not yet introduced any measurement er-
ror process. We introduce the variable F = ¢ into the definition of y;, as in Eq. (19), postulating a
further stochastic factor in explaining the dynamics of the observations for the sequence y;(t,),n € N.
However, some questions are crucial in the design of an efficient filter. In the following, we pay partic-
ular attention to the form that e is most likely to exhibit and the implications that entails; further we
question the introduction of an additional unobserved process in the system, such as €. Concerning its
form, the classical hypothesis in filtering is that the measurement error is a white noise ;. However,
when introduced into the system, the residuals that it gathers contradicts this simple hypothesis. We
follow Dempster and Tang (2011) in modelling directly the measurement error within the system state
and extend this concept further by allowing the measurement error to be affected by jumps. When it is
not taken as a simple white noise, the general form of the error is a scalar version of Eq. (14), where its
diffusion or pure jump form will be used separately. The empirical evidence shows that in the presence
of jumps, a pure diffusion system state component, like v in the experiments carried out in this paper,
might in extreme cases exhibit jumps which have not been modelled and that can be accommodated by
the introduction of a jump latent measurement error variable. However, the introduction of an auxiliary
variable employed as a measurement error for the observation equation might be redundant. In fact, in
a simulation exercise presented below, we gather evidence showing that the latter feature is likely to be
due to unoptimised parameters. It is further to be noticed that dropping the variable € can be justified
by the presence of a non-zero residual in the cumulative jump projections, once that the jump estimates
have been removed. This characteristic signals that in the presence of jumps some background noise in
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the observation equation might be absorbed by the jump projection.

For the illustration of the AML estimation procedure, the system (18) is re-elaborated in order to
construct a simplified version of the likelihood function. We deal with the stochastic volatility system in
Eq. (18) whereby the integrated variance component has been dropped. In the latter case, the observation
error is irrelevant for the parameter estimation exercise. We produce estimates for the two dimensional
system (zg,v). In constructing the likelihood iteration, we apply the approach depicted in the estimation
defining Section 3. We remark that the system state and the observables are, respectively, X = (Axg,v),
Y = Ayg. Hence, we get the following iterations for the target likelihood:

P(X;41|Y2) = a¢ /d'Ut P(Azo 141,410, v¢)P(Ayo,e, ve| Ayo,e—1) (20)

The log-likelihood function for the observables is then
Ly = L ¥ilogay,

Ultimately, the AML module constructed in Section 3 provides a moderately time consuming algorithm
for the estimation of continuous time parametric models. The integrals involved in the likelihood iteration
are discretised to obtain simple matrix multiplications on the defined grid. The full vector of the output
parameters is the set (0, &, o, p, 7, Ao, a0, n), which represents, respectively, the diffusion scaling factor for
the observed variable z, the speed of mean reversion constant for the stochastic factor v, its volatility
coefficient, the correlation factor of the diffusion stochastic factors of z and v, the diffusion exponent
factor and the diffusion scaling factor. The remaining factors have different use according to the model
they are used for; the o parameter is a scaling parameter for either the exponential or the extreme value
jump size distribution, whereas 7 is employed either as the exponent factor for the EVD or as the scaling
factor for the exponential distribution for the jump in the v factor. Whenever unused, certain parameters
are dropped.

4.2 Diagnostic check of the system state specification

In the first set of tests, we include the integrated variance into the system and provide statistical evidence
of its statistical significance. We postulate a martingale form for the measurement error which is tested
successively in a second set of diagnostic checks, where we want to establish the most likely form of the
measurement error. Table 2 provides the summary results of the test statistics constructed in this first
part of the empirical section; Table 1 contains a legenda of the acronyms used in the latter table. In most
cases, the only variables that are left free are the measurement error parameters, while the system state
parameters are set at the simulation values. In the case of the testing for the exclusion of measurement
error, the model parameters have been estimated with AML. We include several affine models, that also
include jumps, which are kept at quite a high frequency, when testing for jumps in the filtered path of a
pure diffusion v. We use the quasi-analytical approximation for filtering non-affine model specifications
as the CEV and the squared jump intensity. The drift induced by the jump component is the same for
the exponential and EVD jumps size, whereas in the case of the squared jump intensity it is slightly
smaller, to compensate for the higher variability generated by the squaring of the v factor. The expected
jump size is the same for all the models.

The integrated variance

Bollerslev and Zhou (2002) use several sample moments of the integrated variance of equity prices, to
estimate parametric stochastic volatility models with the method of moments. The background idea is
to extend the information available from observed data to improve the performance of the estimation
function. Their main focus, however, is on realised volatility with high frequency data. In this paper, we
employ the same idea of extending the observable set, but from a different perspective. We manipulate
the state equation to obtain the dynamics of the squared variation, which, up to the integral approx-
imation, is observable. The integrated variance components are then included in the augmented state
vector, as in Eq. (18), while a new observable, 1, is obtained. The question we answer in this section is
whether this extension is significant in terms of the estimation ability of the latent state of v. However, in
some cases the inclusion of the variable y; could even be necessary before being significant. For instance,
the filter considered in the estimation exercise with p = 0 and lacking the variable y;, for any initial
condition, would be able to produce only a curve decaying to the long run mean, because the absence of
correlation completely disconnects the projection of the latent state from the observable x. The latter
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feature is related to the intrinsic martingale structure by which z has been modelled.

We introduce the integrated variance of the process x in order to augment the information used by the
filter to produce the latent state estimation. We prove here that the inclusion of the integrated variance
within the system steers a significantly informative data flow to the filtering device. We test the latent
state v estimation ability of the filter with or without the integrated variance y;. In case of a system with
the latter variable, we include the measurement error £ which we assume to be a martingale diffusion.
The model parameters are set to their simulation values, whereas the error parameter is optimised by
minimising the mean squared error (MSE) of the y; against the filtered one. The estimation ability of
the filters is measured with the sample MSE, E [(v — 17)2], of the filtered v path. We apply the t-test
and the F-test on a large sample of model paths, yielding a set of sample MSE’s. The test results are
presented in Tab. 2, labelled test Ty. The null hypotheses are based on the assumptions that the plain
filter without the integrated variance is yielding a MSE which is on average lower and less volatile than
those produced by the augmented state filter. The hypotheses correspond to the irrelevance of the filter
with an extended observation equation. We consider the case of a pure diffusion z, whereby it should
be easier to estimate the variance path as the variance of the observable which is generated totally by a
single risk factor. The models encompass affine and non-affine specification, with a constant elasticity of
variance specification, with the parameter v ranging from 0.2 to 0.9. Nevertheless, the null hypotheses
are strongly rejected in all the cases under analysis. It is interesting to notice that in the affine case
with p = 0 the reduced state model produces not only a significantly higher MSE on average, but it also
generates a huge variability of this performance measure. The same happens in the case of the highly
sensitive response of the x’s diffusion to the v factor.

A martingale measurement error

In the previous section, we have assumed that the augmented observation Eq. (19) contains a measure-
ment error € which is a martingale diffusion. In this section, we include the y; variable and test that
the latter assumption concerning the measurement error is the most likely. As a consequence, with the
martingale assumption, the system state is augmented with the ¢ dynamics specification.

With the test labelled T; we first verify whether assuming a white noise structure for the measurement
error is preferable to a martingale equation. With a large sample, that is 2,000 sample paths generated
for a simple affine pure diffusion with quite a high diffusion coefficient for the latent factor v and high
negative correlation p, we perform a dual tail t-test and F-test for the null that, respectively, the ex-post
MSE average and variance of the estimated sample path v against the realised trajectories are different
within the two samples. We found that these hypotheses are strongly rejected, supporting the conjecture
that using a white noise or a martingale form for ¢ are equivalent. However, this approach is not optimal.
In fact, with the sequence of tests labelled To and T3, we check for the autocorrelation presence in the
residuals and even for the presence of a unit root in lag polynomial of, respectively, the sample residuals of
the white noise and the martingale measurement error form. Again, we choose a simple model structure,
that is that of a pure diffusion affine model. In this case already, the results are clear. We randomly
select from a 2,000 sample path for several model parameter specifications, two sample paths upon which
we perform a Phillip-Perron test for the presence of unit root and an augmented Dickey-Fuller test for
the presence of autocorrelation. The time series which are investigated are the sample measurement
error y; — §1 output of the filtering algorithm. In the case of the martingale error with the test Ts,
the autocorrelation of the residuals are tested after the application of the first difference operator, as
for the confirmation of the unit root presence. The unit root presence is strongly rejected in the white
noise case (test Tp), but the presence of autocorrelated residuals is always confirmed. In the case of
the martingale specification of the measurement equation, as in the case of the group of tests T3, we
find very general confirmation of the unit root presence, which is removed by the application of the first
difference operator, which is to say that the Dickey-Fuller test generally fails to reject the absence of
autocorrelation. This battery of tests on random samples taken from model specification characterised
by high and low variance of the latent factor v along with presence and absence of correlated random
drivers provides strong evidence for the adoption of the martingale hypothesis, via the inclusion of the
measurement equation within the system state. It is interesting to notice the results of the tests To-A and
T3-A, whereby the unit root presence is in the first case rejected and in the second case confirmed. Those
results are produced by two different measurement error specifications suggesting that the autocorrelated
residuals might be self-induced by the smoothing feature of the filtering device. The optimal strategy
to deal with this feature is adopting a martingale form which delivers coherent results for both the
experiments.
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Filtering a pure diffusion variance path

When we bring a jump component into the system equation, a pure diffusion martingale measurement
error might reveal itself to be sometimes inadequate. The update Eq. (13) embeds the information
streaming from new observables Y; at time ¢ into the system state equation (1). This mechanism is very
convenient because it provides a straightforward method to construct an approximation of the projection
operator ;. However, when extending the time-propagation of the projection operator E,, Eq. (7), to
filtering in the presence of jumps, a new feature related to the update equation arises. We acknowledge
that in dealing with a system structure like the experimental model (18), when characterised by a pure
diffusion latent factor v, that is J; = 0, the filter might experience jumps in ¥, which are not explained by
the solution chosen. The source of these shocks reveals to be enclosed within the mechanism of the update
equation, which conveys information coming from two processes that manifest synchronous jumps and
propagate from the observed variable Y to the system state estimate v. We observe that this behaviour
is not systemic, because it is found only in a few samples of the same simulation and further it is not
strictly related to the jump components, because it pairs with a few but not all large jumps manifesting
within the very same sample where it happens. It might be connected to the peculiar form of the model
or it might depend on the parametric configuration It is, in fact, those two conjectures that we test with
the experiments labelled T4, and T5 of Tab. 2. Before discussing the results, we briefly introduce the
procedure that we implement to infer conclusions about the suggested explanations of this phenomenon.
We construct a local statistical measure to detect a jump in the filtered v path. For the several model
structures that have been used in these experiments, the parameter vector of the simulated volatility and
stochastic intensity factor v is kept constant. Then, via simulation, a non-central Student-t distribution
is fit to the standardised first differences of its path, yielding a degree of freedom parameter of 6.49.
Thereafter, the latter parameter is used to simulate the distribution of the maximum of the absolute
values of a corresponding Student-t random vector whose size is set to be equal to the size of the sample
filter. The idea is to estimate the tail of the absolute value of the first differences of v, in order to test
the maximum absolute variation of the filtered data for extreme values. The single tail p-value of the
test that has just been designed, indicates an estimate of the probability of rejecting the hypothesis that
the standardised max variation can be attributed to a diffusive v, signalling the presence of a jump. This
test has been applied to the following experiments and referred to as the jump-test.

With the experiment labelled T4 we test a new form for the measurement error, in relation to the
presence of possible jumps induced by the update equation in the pure diffusive latent state variable v, for
some extreme experimental cases. We provide evidence that allowing for jumps in the measurement error
can attenuate fairly large variations or eliminate unexpected jumps in a state variable whose projection
is expected to be a diffusion. The augmentation of the system state with a pure jump martingale intro-
duces a new flexibility within the filtered solution that can handle the unexpected shock to the estimate
of v. In Figure 3 we exhibit a typical path of v obtained by selecting the system state simulation path
with the largest jump in z, which exhibits a shock in the filtered v factor. The filter represented by
the square markers has been obtained with unoptimised simulation parameters and without any type of
measurement, error. The remaining dotted lines with different markers showcase the changes in the out-
put filtered v when a pure jump martingale is introduced and then optimised against the target measure
which consists in the standardised maximum variation of the output filter. The continuous line path is
the realised v path. An attenuation of the jump phenomenon, whenever it happens can also be obtained
by the introduction of a diffusion measurement error, whose parameter is suitably optimised. The test
labelled T4 of Tab. 2 shows the results of the jump-test applied to the extreme jump path selected from
a large sample of simulated evolutions of several models characterised by a pure diffusion v latent factor,
borderline volatility parameters and large jump frequencies and size. The Tab. 2 columns A and B carry
the p-value of, respectively, the test statistics when the measurement error is a latent state variable with
the dynamics of a pure diffusion or a pure jump martingale. The general result is that the introduction of
a pure diffusion measurement error can in general attenuate the jump event likelihood although mostly
the jump event cannot be rejected at a 5% confidence level. The pure jump martingale error introduces
further flexibility in the model at the cost of an auxiliary parameter, with the capability of completely
eliminating the phenomenon. It is interesting to notice the numbers in the case of the EVD models.

However, the unexpected jump which is seldom observed in extreme cases during simulations, can
be removed also with another stratagem. In the sequence of testing Ts in Tab. 2, we use the AML
to estimate the model parameters of several sample paths which produce the largest jumps amongst a
large simulated sample, which is generated with the same specification and parameters of the experiment
described above, but whose system state and observation equation do not contain any measurement er-
ror. We use the jump-test to measure the likelihood of a jump in the v path, when the filter is applied
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at the simulation parameters (test T5-A). The jump is mostly removed when the model parameters are
estimated via the likelihood approach. However, in the EVD case, this approach is not sufficient to adjust
for the unexpected jump event, in the peak jump sample paths. A careful use of of the measurement
error augmentation might be necessary to obtain efficient latent state system estimates. In fact, the
use of a measurement error might be redundant, somehow prefiguring an over-parametrisation of the
system under analysis. To support this statement, we show in Fig. 4 the value of the likelihood of the
system state, when fixing the model parameters to their full likelihood estimates and when considering
the filtered state as it had been observed, that is P(X;|X;_1). We include a pure jump observation error,
with a very low fixed size and varying intensity. What is observed is a likelihood which does not change
very significantly, making the need of a measurement error questionable. The chart should be viewed
as a sequence of likelihood ratio tests. The explanations as to why a measurement error might possibly
be an unnecessary component of the system state equation must be sought in the presence of jumps.
Setting the system parameters at their maximum likelihood estimates, the use of procedure to extract
jump estimates from the filtered path of 7., leaves a residual that can be interpreted as an induced
measurement error. Eventually, the jump projection absorbs a background noise that should otherwise
be incorporated by some other variable.

4.3 Estimation of Stochastic volatility models with jumps

To conclude the empirical section, we use the AML procedure in an exercise which puts more emphasis
on the parameter estimation exercise that is finally combined with the proposed jump-diffusion extended
filter to provide a measure of the ability of this tool in evaluating the path of latent state variables such
as the v factor and the x related jump Jy. In this exercise we also deal with a jump-diffusion version of
the latent variable v and briefly discuss the implications from an estimation perspective.

In Table 3 we present the parameter estimation for the selected models. As with the case of filtering,
we work with affine jump diffusion models with exponential and Pareto type jump size structure, with
state dependent affine intensity function. We extend the set of affine models by including a model with
an exponential size jump in volatility which has a v proportional stochastic intensity and is not in sync
with the jump in the x level. The latter feature keeps the convolution component of the KFE still single
dimensional. Exploiting the PIDE solution type approach to construct the core component of the likeli-
hood function, we are able to deal with the parametrisation of two more jump-diffusions which are not
affine in their specification. Again, we include one model with a CEV type diffusion function for the x
differential, and another model specification with the jump intensity process specified as the square of
the variance factor state component. The models are labelled as in Table 1. The model parameters are
similar to the ones adopted in the filtering exercise, when studying the measurement error behaviour.
However, in this experiment we lower the number of jumps to balance the total amount of variability split
between the diffusive and the jump components. In the case of the affine model with the ancillary jump
in volatility, although the jumps are supposed to be generated by two distinct random measures, the
jump intensity of the volatility component is set to one tenth of the average jump number in the = level.
In the latter case, the model generates a rare jump in volatility, which is very large. The parameter « is
such to generate the same pull to the mean, when compensating for the outward drift produced by the
jump sequence through the w parameter. The parameter n represents the size distribution of J;, when
it refers to the affine model with jumps in volatility. The estimation exercise reveals several interesting
features. The estimation is very satisfactory although, depending on the specific sample characteristics
of the realised jumps, the diffusion correlation and partly the jump intensity and size might be affected.
In the case of the jump intensity, we report quite a high parameter variability for the squared intensity
and the jump in volatility models, when compared to the rest of the model suite. Concerning the latter
model, we record the tendency to squeeze the jump size while increasing the speed of mean reversion and
in general the variability of the diffusion component. It seems that the estimator has the tendency to
interpret the jumps in volatility as an increased volatility of volatility component.

As noted at the outset, we finally combine the parametrisation component with the filtering, but this
time we consider the ability of the filter to estimate the jump time and investigate the relation of the
jumps with the measurement error. In Table 3 column A, we report the basis points’ daily tracking
error (TE) of the filtered state component v with respect to its actual sample path, that is the annualised
standard deviation of the percentage deviation of the target and the benchmark path. Those numbers are
to be considered very low. It is interesting to notice the EVD sample TE value, which is quite an outlier.

"In standard financial jargon, one basis point corresponds to 1/10000 in the relative change of a quantity, that is 100
points are equivalent to a 1% variation of the quantity under analysis.
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This is due to a large jump in the filtered path, which can be corrected by the inclusion of a measurement
error. Another important output we can achieve with the use of the extended jump-diffusion filter, is the
projection of the jump component. In fact, if we consider the estimates of the jump components that
affect the x path, we can deduce the jump times and sizes by simply differentiating the ., while compen-
sating for the induced drift. The jump events result in the left tail when cutting the realised distribution
of the first difference of the jump components filter at their expected sample frequency. Figure 5 exhibits
the first difference of the 7, state (solid line) components compared to the realised jumps (circles). The
chart highlights the typical pattern of the first difference of the projection of the compensated jump
component. The empirical distribution exhibits a skewed shape with a large tail corresponding to the
jump events. The cutting of the distribution at the unconditional jump frequency leaves a residual that
can be interpreted as a general measurement error that can encompass not only an intrinsic projection
error, but that might absorb further error components coming from other system parts. The simulation
study shows that this error represents a very limited percentage of the variance of z. The Table 3 column
B exhibits the percentage of the realised jump times that can be detected with the mentioned procedure.
Tab. 3 column C show the average percentage difference of the estimated jump sizes with respect to
the corresponding simulation values. What remains after excluding the jumps from the Am, process is a
stationary noise whose variance is confined to a small portion of the total expected variance generated by
the diffusion and the jump component. The last column D of Tab. 3 shows the yearly standard deviation
of residual first difference of the filtered jump component, after the cut of the tail. Similarly, an estimate
of the m, jump process and some residual can be produced by the filter, whereas in the case of jumps in
the latent factor v this procedure is not achievable, because there is no way of disentangling the jump
factor via a suitable system design. This is due to the fact that the v jump component does not enter
the observation equation. However, it must be noticed, see also Ait-Sahalia (2004), that factors like high
jump frequency with low size, unbalanced variance attribution in favour of the diffusion component and
very low sampling frequency, will in general increase the jump residuals and therefore render the jump
estimation more difficult. Or more simply will increase the aliasing of the sampling behaviour with a
pure diffusive model.

5 Conclusion

In this article we have extended to partially observable jump-diffusions the nonlinear filter in Maybeck
(1982) and more recently applied in Nielsen et al. (2000), Baadsgaard et al. (2000) and Hurn et al.
(2013). Specifically, we extend the time-propagation equation component of the filter to jump processes
and analyse the implications for the design of the system, with particular attention to the form of the
measurement, error. Further, with this article we complement the filtering procedure with an econo-
metric method for the estimation of discretely sampled multivariate jump-diffusions with latent state
components that is capable of handling the same model class as the filter and exploits the same PIDE
philosophy to deliver its core component. The AML procedure for the estimation of the vector parameter
defining the model exploits the classic integration of the latent state, while achieving a simple iteration
using a proxy of the solution of the KFE, based on the finite difference approximation of the diffusion
operator plus a discretisation of the jump part of the KFE. The latter method has recently received re-
newed attention in the Financial Econometrics literature, cfr. Lindstrom (2007), Hurn et al. (2010), Lux
(2012). In relation to the approximation of the main component of the likelihood solution, we investigate
the stabilisation of the PIDE operator approximation and report a general criterion which provides a
guideline for the construction of reliable algorithms. The particular implementation choice simplifies the
estimation process saving considerable computation time, rendering the estimation technique appealing
from this perspective. Furthermore, the numerical component are reduced to a matrix exponentiation
and a few numerical integration, which might be possibly refined and optimised at the programming level.

In the experimental section, we deal with an application of the econometric procedure to a stochastic
volatility model with jumps, treating the volatility factor as intrinsically latent. We prove that extending
the system state to the integrated variance (see, for instance, Bollerslev and Zhou, 2002), imports a
wider information content that improves the estimation of the latent variable path. In our analysis, we
focus on the dynamics of the measurement error, which can be best dealt with as an auxiliary latent
variable via the augmentation of the system state, cfr. Dempster and Tang (2011). In filtering a system
with a pure diffusive v factor, we have found that the jump extension of the filter presented in this
article might produce, in extreme situations, unexpected jumps in the projection of v, which are detected
with an ad hoc testing procedure. We have found that a pure jump martingale measurement error can
accommodate this inconvenience. However, further down the lines of investigating the nature of this
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phenomenon, we have found that the AML optimisation of the system parameters might annihilate the
likelihood of a jump in the extreme paths, putting forward a possible explanation about the source of
this distortion. Moreover, we collect evidence that in most of the cases under analysis, which are already
quite extreme, the auxiliary measurement error component might not be necessary, highlighting the risk
of possible over-parametrisation. However, in some cases like the EVD, the use of the latter element
might be necessary for the design of an efficient filter. In the final Monte Carlo exercise, we use the AML
procedure to estimate the model parameters of the full suite of models described in the Eqgs. (18) and
(19), including also a jump in the latent factor v. The estimation algorithm produces satisfactory output
in a relatively short time. The estimates exhibit high sensitivity to the sample path, especially in the
cases of the correlation coefficient and the jump frequency. The AML, when applied to the model with a
jump in the v factor, seems to over-weight the variance attributed to the diffusion component as opposed
to the jump part. This feature is related to the observation equation lacking the sought jump element.
Finally, we use the optimised sample parameters to measure the performance of the filter in estimating
the latent variable path for the jump-diffusion model set. The filter is able to produce projections that
track the realised latent state very closely. Furthermore, the filter is used to produce estimates of the
jump times and sizes, using the tail of the first difference of the filtered x jump component. The residuals
of the latter sample data shows how the jump variable incorporates a measurement error that can justify
the elimination of the ¢ variable from the observation equation.

With the application of this method, we are able to exploit the high flexibility it delivers with an
exercise that produces system states and parameter estimates and statistics not only for affine jump-
diffusions with exponential jumps, but that can deal with non linear models, with possibly non-affine
state-dependent jump intensity function and with EVD jump size model, a feature which is prevented
with other approaches, (see, for instance Ait-Sahalia, 1996, Filipovi¢ et al.; 2013, Singer, 2006). With
respect to the model parametrisation exercise, the likelihood function which is constructed to estimate
the jump-diffusion parameters, takes a particularly simple form. The method proposed can be applied
to a large family of stochastic models and can work with information sets which are only partially in-
formative, with respect to the evolutionary phenomenon to be described. Moreover the approach is very
flexible and once implemented, the codes can be easily adapted to change the model specification. The
model produces reliable estimates at a very contained computational cost.
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Test type

Legenda Description A B

To information significance of the integrated variance | one-tail t-test one-tail F-test

T MSE of the white noise filter vs. the martingale’s | two-tail t-test two-tail F-test

Ty residuals of the white noise measurement error unit-root test autocorr. residuals
Ty residuals of the martingale measurement error unit-root test autocorr. residuals
Ty jumps in the pure diffusion v j-test diff. err. j-test jump err.

Ts jumps in the pure diffusion v j-test mod. par. j-test AML par.

Description

AFF affine jump-diffusion with exponential jump size

EVD affine jump-diffusion with EVD jump size

CEV affine volatility factor with CEV type diffusion and exponential jump size

SQI affine jump-diffusion with exponential jump size and quadratic intensity

AFJ affine jump-diffusion with exponential jump in x and v

Table 1: Description of the labels used in tab. 2 and tab. 3

Model Test type
Type 6 k o p yooA @ n  Sampling A B
To | AFFp [2 1 09 -06 05 - - - large | 1274 (1) 1317 (1)
To | AFF;y |2 1 09 0 05 - - - large 9.72 (1) 31.86 (1)
To | CEVp |2 1 09 -06 09 - - - large 11.79 (1) 42.68 (1)
To | CEV: |2 1 09 -06 02 - - - large 6.29 (0.99) 8.15 (1)
T, | AFFg | 2 1 09 -06 0.5 - - - large 9.55 (0) 1.80 (0)
T, | AFFp |2 1 09 -06 05 - - - rand | -7.06  (0)  T7e+3 (1)
To | AFFg |2 1 09 -06 0.5 - - - rand -4.21 (0) le+4 (1)
To | AFF;, |2 1 09 0 05 - - - rand -4.26 (0) le+4 (1)
T, | AFF; |2 1 09 0 05 - - - rand | -7.46  (0)  5e+3 (1)
T, | AFF, |2 1 03 0 05 - - - rand | -4.09  (0) le+td (1)
T, | AFF, |2 1 03 0 05 - - - rand | -3.57  (0)  letd (1)
Ts | AFFg |2 1 09 -06 0.5 - - - rand -0.60 (0.43) 85.86 (0)
Tz | AFFg | 2 1 09 -06 0.5 - - - rand -1.54  (0.12) 49.06 (0)
Tz | AFF; |2 1 09 0 05 - - - rand -0.32  (0.54) 31.36 (0.05)
Ts | AFF; |2 1 09 0 05 - - - rand -2.21  (0.03) 97.32 (0)
Ts | AFF, |2 1 03 0 05 - - - rand -1.06 (0.26) 93.53 (0)
Ts | AFF, |2 1 03 0 05 - - - rand -1.55  (0.11) 71.26 (0)
T, | AFF; |2 1 09 0 05 30 1 - peak 845 (0.12) &.14 (0.15)
Ty | AFF3 |2 1 09 0 05 30 1 - peak 11.86 (0.02) 8.38 (0.13)
T, | EVD |2 1 09 0 0.5 30 310 4.1 peak 30.05 (0) 8.41 (0.12)
T, | EVD |2 1 09 0 05 30 310 41 peak 23.00 (0) 9.49 (0.06)
T, |CEV, |2 1 09 0 09 30 1 - peak 7.44 (0.24) 7.65 (0.21)
T, |CEV, |2 1 09 0 09 30 1 - peak 8.83 (0.09) 5.60 (0.75)
Ty SQI |2 1 09 0 05 14 1 - peak 12.39 (0.01) 5.95 (0.63)
Ty SQI |2 1 09 0 05 14 1 - peak 12.34 (0.01) 5.99 (0.61)
Ts | AFF3 |2 1 09 -06 05 30 0.5 - peak 21.65 (0) 6.52 (0.45)
Ts | AFF3 |2 1 09 -06 05 30 0.5 - peak 15.41 (0.00) 7.01 (0.32)
Ts | EVD |2 1 09 -06 0.5 30 155 4.1 peak 22.37 (0) 13.92  (0.00)
Ts | EVD |2 1 09 -06 0.5 30 155 4.1 peak 34.76 (0) 15.83 (0)
Ts | CEV, |2 1 09 -06 09 30 0.5 - peak 25.07 (0) 8.07 (0.15)
Ts | CEV, |2 1 09 -06 09 30 05 - peak 20.93 (0) 9.75 (0.05)
Ts | SQI |2 1 09 -06 05 14 0.5 - peak 28.96 (0) 9.39 (0.07)
Ts | SQI |2 1 09 -06 05 14 0.5 - peak 9.81 (0.05) 6.53 (0.44)

Table 2: The table contains the test statistic results of the diagnostic check for the structuring of the
measurement, error process and the inclusion of the new variable, the integrated variance, into the system
state equation of the stochastic volatility model (18) used in the econometric application. The description
of the labels used within the table are reported in tab. 1.
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0 K o P A o N v A B C D

Mod. 2 1 0.9 -0.6 10 0.5

AFF | Est. | 1.914 2810 0.884 -0.596 13.784 0.561 48 92% -16% 0.7
Std | (0.191) (0.820) (0.236) (0.204)  (1.747)  (0.048)
Mod. 2 1 0.9 -0.6 10 1.55 4.1

EVD | Est. 1.691 1.275 1.058 -0.230 6.183 2.266 4.918 9.7 T76% -16% 0.9
Std | (0.495) (0.852) (0.167) (0.642) (3.084) (0.965) (1.081)
Mod. 2 1 0.9 -0.6 10 0.5 0.8

CEV | Est. | 1.997 1.006 1.003 -0.208 11.116 0.748 0.646 | 6.7 124% -18% 0.8
Std | (0.347) (0.603) (0.183) (0.171)  (3.393)  (0.282) (0.103)
Mod. 2 1 0.9 -0.6 7.11 0.5

SQI Est. | 2.106 2.141 0.665 -0.658 13.290 0.463 41 101% 12% 0.7
Std | (0.404) (1.863) (0.153) (0.254)  (9.258)  (0.117)
Mod. 2 2 0.9 -0.6 10 0.5 1

AFJ | Est. | 1.851 3.958 1.416 -0.081 13.777 0.615 0.101 6.5 2% 2% 1.1

Std | (0.172) (4.059) (0.251) (0.175)  (9.619)  (0.279) (0.178)

Table 3: The table contains the model parameters, their estimated values and their estimated standard
deviations. For all the models the parameter A indicates the coefficient in the state dependent process,
which is always affine, expect in the case of the squared intensity process. For all the models with an
exponential jump in the x level, the coefficient a represent the expected jump size, whereas in the EVD
jumps affine model, a and 7 are the coefficients characterising the jump distribution. Finally, in the case
of the affine model with an exponential jump in the v factor, the coefficient 7 represents the average
jump size in v, while the jump intensity factor is assumed to be A\; = A/10. The column A represents a
measure of the efficiency of the nonlinear filter in estimating the most relevant system state component,
that is the v factor. That column carries the daily tracking error in basis points of the filtered against
the realised sample path of v. The column B contains the percentage of the realised jump times in the x
levels that are filtered via the system state component m,. The column C presents the average percentage
jump size error, at the estimated jump times, with respect to the corresponding first difference of Jy.
The column D exibits the yearly standard deviation of the residuals of first difference of the filtered Jy,
once the tail has been removed, with the purpose of estimating the system jumps.
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Figure 1: Ordered real part of the FDM matrix for the operator 0., constructed with predominant
backward approximation. The order of the approximation is first, which allow the minimum amount of
grid points involved. The size of the matrix has been scaled to unity.
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Figure 2: Ordered real part of the FDM matrix for the operator 9, 02,, 82, constructed, respectively,
with predominant forward approximation, central approximation and mixed upper-right and lower-left
corner. The order of the approximation is first and second, which allow the minimum amount of grid
points involved. The size of the matrix has been scaled to unity.

24
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Figure 3: The figure shows the typical pattern of a shock in the filtered path of the volatility factor. The
realised v factor (solid line) is compared to a non-linear filter with a pure jump measurement error (dotted
lines) when triggering the jump intensity up to its optimised level (circle marks). Introducing jumps in
the measurement error provide more flexibility to the system and allow the absorption of possible shocks
in the latent state estimates.
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Figure 4: This figure shows the value of the log-likelihood of the filtered system state X as if it was
observed. The model parameters are optimised with full AML estimation and then kept constant while
the system state is estimated thorough the nonlinear filter. The system state includes a pure jump
measurement error, with a jump size set to 0.1, while the jump intensity runs from 0 to 100. The various
curves corresponds to the experimental section’s model. What is interesting here is the complete absence
of a trend and the very limited variability of the target function values.
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Figure 5: This figure shows the first difference of the filtered m, path for the AFF model. The red circles
indicates the realised jumps in the x level.
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A Proof of several Propositions

A.1 Proposition 2.2
Proof. Recall the Forward Kolmogorov Equation

Op = 3 Z Cijp) — Z 9; [bip] (21)

Where p represents the state transition density. Therefore, we can take the time derivative of the expec-
tation and combine with (21)

Xt|s = /d;vpt‘sX = %X’ = /dxath =
5[ >0 (Copl X~ [de 01l X (22)
ij [

and simplify the expression. In fact, considering the generic component of the last term and integrating
by parts, we obtain

/dx@ [ / /d:l?l dxl 1d$l+1 .dx T /dl‘7 8, [b,p] X =

Similarly, integrating by parts the first term we obtain
2
ij
because 97, X = d;e; = 0.

In order to obtain the the evolutionary equation for the covariance of the X, we consider the expression

Vvt|s = ]Et\s [XX*] - Xt|sX:

|s

and obtain

Vs = SEXX*] - S [X] X - X &

5 (X1

Now, combining (21) with the L E[XX*] and with the same argument as above we obtain
- /dx > 0 [bip XX+ = - /d:cpriaiXX*
but 0, X X* = e; X* + Xe, hence
—/dx > o0 bip) XX+ = —/dxp(bX*—i—Xb*) =
Z E[bX*] + E[Xb*]

The last component of the expression for %Vﬂs is

%/deafj [Cijp) XX* = 3 /dszC’ 07 [ XX
ij

but
2 1 1
1 2 1
Z&inX*:Z&» (EjX*—FXE;) - .
Y 1 1 2
hence

/ de Y 0% [Cypl XX* = EC.

17
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A.2 Proposition 2.3

Proof. We notice that in (4) it is more convenient to revert back to the pre-jump transform H(XT) =
X~<=X*t = (I+J)(X~) when calculating the first two moments of the state; using the distributional
equality (J*[u],v) = (u, J[v]), we obtain the integrals [(X~ + J7)J*[p]dX and [(X~ + J )(X~ +
JT)y*T*[pldX. After some calculus, using the moment integrals, we get the sought jump component of
the time propagation equation. O

A.3 Proposition 2.4

Proof. Following Maybeck (1982), we define two functions of the state vector X and the observed vector
Y, ¢(X) and 6(Y) and, applying a version of the iterated expectations

Eyjs [(0(X)0(Y)] = Eyjs [Eepe [(X)]0(Y)] (23)
To obtain the 13 we assume the form

Xt\t = a+ A (Yt—Yt\s)
Vt\t = %

The update equation can therefore be obtained by defining appropriately the functions ¢ and ¢ and then
plugging the definitions into the 23. The term a; is obtained by letting ¢ = X; — X;; and 6 = 1, whereas

Y =Xy — X’t‘t and 0 = (Yt - Yt|s)* entails that the 23 can be solved for A;. The matrix X; can be
obtained with ¢ = (X; — Xy;) (X — Xt‘t)* and 6 = 1 and substituting the definition of X;; in the RHS.
O

A.4 Proposition 3.1

Proof. Assume that f* — f pointwise and f > 0, V. Recalling the definition of a limit, with £ > 0,

lim f"(z) = f(z) < Ik: |f—f"] <eVh>k
h— 00
The variable k& depends in general on z. Now, because —f > — |fh| and f > 0, we have

e>[f=rM=r =1 =0

and the proposition is proved. O

A.5 Calculus: non-central moments of the EVD

Consider the distribution of the P[J < z]=1— (1+x/a)” ", that is

_n 24
a(l—&-%)l—m 24

after the change of variable z/«a = z and disregarding the constant o™, we need to calculate the integral

“+oo P
d -
77/0 Z(1+Z)1+77

for n > n it can be proved by induction that this integral is equal to

n!
(m—mn)...(n—1)

This is true for n = 1, assuming it true for n, we see that

“+oo ZnJrl n -+ 1 “+o0 P
z
o

d - B —
o )it T Ty 14 2)1+n

and letting n = n — 1 we get
(n+ 1)n!
@+1D)@=n)...(71—1)7
substituting back 77 and multiplying by 1 we get the sought result.
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