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Abstract

This paper provides new conditions under which the shocks recovered from

the estimates of structural vector autoregressions are fundamental. I prove

that the Wold innovations are unpredictable if and only if the model is fun-

damental. I propose a test based on a generalized spectral density to check

the unpredictability of the Wold innovations. The test is applied to study

the dynamic effects of government spending on economic activity. I find

that standard SVAR models commonly employed in the literature are non-

fundamental. Moreover, I formally show that introduction of a narrative

variable that measures anticipation restores fundamentalness.
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1 Introduction

Since Sims’s (1980) seminal paper, Structural Vector Autoregressive (SVAR) mod-

els have been used extensively for economic analysis. The underlying assumption

of SVAR, known as fundamentalness, is that one is able to recover the structural

shocks driving the process from linear combinations of observed present and past

values of the process. Non-fundamentalness arises when observed variables do not

contain enough information to recover the structural shocks and the impulse re-

sponse functions. Once the representation is non-fundamental, all identification

schemes, such as long-run or sign restrictions, fail to recover the true structural

shocks. In this paper, I propose a test to empirically detect whether the shocks

recovered from the estimation of a VAR are truly fundamental.

Although many economic models generate non-fundamental representations, lit-

tle is known how to test if a model is non-fundamental. Permanent income models

(Fernández-Villaverde et al., 2007), news shocks (Blanchard et al., 2013; Forni et al.,

2014), and fiscal foresight (Leeper et al., 2013) are some examples that can generate

equilibrium solutions with non-fundamental representation. For a comprehensive

survey of this literature see Alessi et al. (2011).

The key contribution of this paper is to provide new conditions under which

the shocks obtained from the estimates of the SVAR are truly fundamental. I

prove that the Wold innovations from fitting a VAR to a non-fundamental model

are martingale difference and therefore unpredictable (in the mean), even if one

includes an infinite past of the observable variables. Consequently, to test whether

the model is fundamental, one must check if the Wold innovations are unpredictable.

There are some proposals to test for the unpredictability of the Wold innovations

(see Hong (1999), Domı́nguez and Lobato (2003), Hong and Lee (2005), Escanciano

and Velasco (2006), among others). To the best of my knowledge, none of these tests

are applicable to the multivariate setting of this paper. Alternatively, it is possible
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to apply a sequence of univariate test to each series. However, using a multivariate

procedure will avoid the multiple testing problem and is more powerful, since it

is possible that a single series is unpredictable, but the collection of several series

is predictable. To test for the unpredictability of the Wold innovations, I extend

Hong and Lee’s (2005) test from univariate to multivariate setting. I show that the

proposed test statistic has a convenient asymptotic standard normal distribution

and diverges to infinity under the alternative hypothesis. The proposed test is

simple to apply since it only needs reduced form VAR residuals as input. Therefore,

my proposed test does not require any identification assumption or estimating non-

fundamental models. Simulations show that the test has good size control and has

power against general alternatives.

This paper is related to the literature that attempts to test if a Vector Moving

Average (VMA) model is fundamental. Giannone and Reichlin (2006) prove that

if a model is fundamental, then extra information should not Granger cause the

variables included in the model. Similarly, Forni and Gambetti (2014) exploit the

factors of a large system to propose necessary and sufficient conditions under which

a VAR contains sufficient information to estimate the structural shocks, which under

some assumptions could be applied to detect fundamentalness. However, these pro-

cedures are based on the untestable assumption that the extra information -such as

sectoral data or factors of a large data set- that one uses to test for fundamentalness

is itself fundamental.

From a methodological point of view, my proposal is similar to the proposal

of Chen et al. (2012). By converting testing for fundamentalness to testing for

serial independence of the Wold innovations, these authors proposed a test for fun-

damental VMA representation. However, their test critically depends on the iid

assumption of the true unobserved errors, which is often rejected in macroeconomic

and financial time series. Failure to accommodate these features will lead to rejec-

tion of the null of fundamentalness by mistake. In contrast, my proposal is robust
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to the failure of the iid assumption.

To illustrate the application of the proposed test, I focus on the dynamic effects

of government spending shocks on economic activity in the United States in the

post-war period. I find that the baseline VAR models normally considered in the

empirical literature to identify these effects are non-fundamental, and therefore,

the impulse responses and variance decompositions from SVAR approach appears

not to be reliable. In case of rejection of the null of fundamentalness, it has been

conjectured that expanding the econometrician’s information set might solve the

non-fundamentalness problem.1 The proposed test of this paper can be used to

formally test if adding more information solves the non-fundamentalness problem.

Specifically, I show that augmenting the baseline VAR model with a narrative vari-

able that measure news about future government spending restores fundamental-

ness. Consequently, an econometrician can proceed with the identification strategy

that she finds reasonable to recover the structural shocks.

The rest of the paper is organized as follows: Section 2 provides a formal state-

ment of the fundamental representation and the testing problem. Section 3 in-

troduces formally the test statistic based on the generalized spectrum. Section

4 examines the finite-sample performance of the test through some Monte Carlo

simulation based on a DSGE model and an empirical application to the identifica-

tion of government spending shocks. Section 5 concludes. The MATLAB code for

implementing the test is available from the author upon request.

1See for example, Giannone and Reichlin (2006) and Forni and Gambetti (2014).
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2 Characterization of non-fundamental VARMA

representations

Let {xt} be a d-dimensional stationary solution of a VARMA(p,q) model satisfying

the difference equation:

Φ(L)xt = Θ(L)ξt , t = 0,±1,±2, · · · (2.1)

where {ξt} is an unpredictable process (also known as martingale difference)2 with

covariance matrix Σξ and

Φ(L) := Id − Φ1L− · · · − ΦpL
p

Θ(L) := Id +Θ1L+ · · ·+ΘqL
q

are the AR and MA polynomials, respectively. Henceforth, Id is the d× d identity

matrix, Φp 6= 0 and Θq 6= 0 and L is the lag operator, i.e., Lxt = xt−1. The

polynomials Φ(·) and Θ(·) have no common roots, neither of the roots is on the

unit circle, nor equal to zero.

To begin, lets define fundamentalness, also known as invertibility.3

Definition 2.1: An uncorrelated process {ξt} is xt-fundamental if Hξ
t = Hx

t for

all t ∈ Z, where Hξ
t is the closed linear span of {ξs : s ≤ t}. The process {ξt} is

non-fundamental if Hξ
t ∈ Hx

t and Hξ
t 6= Hx

t , for at least one t ∈ Z.

A VARMA process defined by (2.1) is said to be fundamental if and only if all

the roots of Θ(z) lie outside the unit circle in the complex plane. Similarly (2.1) is

2A real-valued stationary time series {Yt}∞t=−∞
is a martingale difference (MD) process if

E[Yt|Yt−1, Yt−2, · · · ] = 0. A MD process is unpredictable in the mean.
3Fundamentalness is slightly different from invertibility, since invertibility requires that no roots

of the MA component be on or inside the unit circle. In this framework, they are equivalent since
unit root in the MA polynomial is ruled out.
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said to be causal if and only if all the roots of Φ(z) lie outside the unit circle in the

complex plane.4 Throughout, I assume that the model is causal.

One can show that if non-fundamental representation is excluded by mistake, the

true unobserved shocks will be related to the Wold innovations through Blaschke

matrices.5 The following example illustrates the main ideas.

Example 2.1: Leeper et al. (2013) introduce foresight into a simple growth model.

Assuming two-quarter fiscal foresight, the log-linearized equilibrium condition for

capital is

(1− αL)kt = −κ(L+ θ)ξτ,t (2.2)

where κ is a functions of the deep parameters of the model and 0 < α < 1 and

0 < θ < 1. However, fundamentalness is satisfied only if |θ| > 1. The fact that

more recent tax news are discounted heavier than older news makes model (2.2)

non-fundamental. Imposing fundamentalness, the less informed econometrician in-

correctly estimates the model

(1− αL)kt = −κ(1 + θL)ǫτ,t |θ| < 1

or in the autoregressive form

(1− αL)

−κ(1 + θL)
kt =

∞
∑

j=0

γjkt−j = ǫτ,t |θ| < 1

where γj is a function of deep parameters and ǫτ,t is the Wold innovation6, related

to the true unobserved errors through Blaschke factor, ǫτ,t =
[

L+θ
1+θL

]

ξτ,t.�

In practice, it is common to estimate a VAR instead of a VARMA, which makes

4See Brockwell and Davis (1991), Theorems 3.1.1 and 3.1.2.
5Blaschke matrices are complex-valued filters which take the roots from inside to outside the

unit disc, thus generates a fundamental representation from a non-fundamental one (Lippi and
Reichlin, 1994).

6i.e., ǫt = kt − L[kt|Hk
t ] where, L[kt|Hk

t ] denotes the optimal linear predictor of kt given its
past.
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detecting non-fundamentalness more complicated since the DGP has undergone a

further approximation. To see this, suppose the true process is a non-fundamental

ARMA process (2.1), but an econometrician incorrectly imposes fundamentalness

assumption. One can show that the resulting process has a representation given by

Φ(L)xt = Θ̃(L)ǫt (2.3)

where {ǫt} are the Wold innovations related to the original innovations, {ξt},

through filter

ǫt = Θ̃−1(L)Θ(L)ξt (2.4)

and Θ̃(L) has the same order as Θ(L) but all its roots are outside the unit circle.

Therefore, (2.3) can be written as a VAR(∞) form:

Θ̃(L)−1Φ(L)xt =
∞
∑

j=0

γjxt−j = ǫt (2.5)

For estimation of such models it is necessary to approximate the infinite order

lag structure by finite order VAR(p). In practice, the order p is often selected

so that the residuals are white noise. One can prove that if fundamentalness is

imposed incorrectly, the Wold innovations (2.4) are still uncorrelated. Therefore,

estimation methods based on second-order moment techniques do not identify non-

fundamentalness. In order to deal with this identification problem the literature

imposes fundamentalness by assumption.

In the non-Gaussian case, however, fundamental and non-fundamental models

are distinguishable based on higher order cumulants (Lii and Rosenblatt, 1982).

Using time-reversibility argument, Breidt and Davis (1992) proved that the Wold

innovations from fitting an invertible ARMA model to a non-invertible one are iid,

if and only if the error is non-Gaussian. Chen et al. (2012) extended this result

to the multivariate case and proposed to test for serial dependence to detect non-
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fundamentalness. However, testing for serial dependence of the Wold innovations

is a restrictive and may lead to rejection of the null of fundamentalness by mistake.

The following is an example intended to highlight this point.

Example 2.2: Consider the ARCH process

xt = ξt

ξt = h
1/2
t zt ht = 0.43 + 0.57z2t−1

zt ∼ iid N(0, 1)

Definition 2.1 trivially holds and therefore ξt is xt-fundamental. However, ξt is an

ARCH process and therefore serial dependence test can incorrectly reject the null

of fundamentalness.�

In this paper, I use the information available in the Blaschke matrix to propose

a new test which is robust to the failure of the iid assumption. Under some mild

conditions stated in Assumption 1, I prove that if the model is non-fundamental,

the Wold innovations are non-MD, i.e., non-linearly predictable despite being white

noise.

Assumption 1. Let ξjt denote the jth element of the true unobserved shocks {ξt}.

There exists a j ∈ 1, · · · , d such that ξjt is (a) independent, and (b) continuously

distributed with a non-Gaussian distribution such that (a+ 1)th moment finite for

some a ≥ 2 and Var(ξjt) > 0.

Proposition 2.1: Let Assumption 1 hold. The non-Gaussian VARMA model (2.1)

is invertible if and only if the Wold innovations {ǫt} are MD.

For the proof see Appendix A. Assumption 1.(a) is commonly used in the em-

pirical studies. It can be further relaxed to allow for the true unobserved shocks to

be dependent.7 Moreover, independence is a more restrictive assumption than MD.

7The proof holds under sub-independence assumption. Two random variables are said to
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Therefore, Proposition 2.1 states that even if the true unobserved errors are inde-

pendent, the Wold innovations from fitting an invertible model to a non-invertible

one are non-MD. Intuitively, by introducing some dependence structure on the true

shocks (for example, a GARCH process), one still expects the Wold innovations

from fitting the wrong model to stay non-MD.

Non-Gausianity is needed to achieve identification. In fact, there are many

studies that emphasize considering non-Gaussian distributions and other higher

order time-varying moments (see e.g., Harvey and Siddique, 1999, 2000; Jondeau

and Rockinger, 2003). Note that, no specific distributional assumption is needed.

The continuity assumption is also mild and could be dropped in the univariate case

or if there is only one root of the detΘ(L) that is inside the unit circle. This is

stated in the following corollary.

Corollary 2.1: If there is only one root of the determinant of the MA polyno-

mial inside the unit circle, then the continuity assumption is not needed for the

Proposition 2.1 to hold.

3 Testing for non-fundamental representations

Under the null of fundamentalness ξt(θ0) = ǫt(θ0), which following Proposition 2.1

can be restated as

H0 : ǫt(θ0) are MD (unpredictable) for some θ0 ∈ Ξ (3.1)

where θ0 = vec{Φ1, · · · ,Φp,Θ1, · · · ,Θq,Σǫ}, and vec(.) denote an operator on a

matrix which cascades the columns of the matrix from the left to the right and

be sub-independent if the characteristic function of their sum is equal to the product of their
marginal characteristic functions, i.e., φx+y(t) = φx(t)φy(t). This is a generalization of the concept
of independence of random variables, i.e., if two random variables are independent then they are
sub-independent, but not conversely, see Hamedani (2013). Unfortunately, the connection between
sub-independence and MD is not clear in the literature, and I do not attempt to justify it here.
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forms a column vector.

Testing (3.1) is not an easy task. Portmanteau test proposed by Box and Pierce

(1970) and Ljung and Box (1978) are not suitable to reflect the non-linear de-

pendence structure. Moreover, {ǫt} is unobserved and residuals depend on a
√
T -

consistent estimator for θ0, which may cause the loss of the nuisance parameter-free

property of the asymptotic distribution of the test statistics.

To overcome these problems and checking for unpredictability at all lags in

the sample, I extend the generalized spectral test of Hong and Lee (2005) to the

multivariate setting. Compared with the existing tests in the literature, this test

has some advantages: first, with the frequency domain approach, one can allow

infinite number of lags as the sample size increases; second, the test has a standard

normal limiting distribution and parameter estimation uncertainty has no impact

on the asymptotic distribution of the test statistics. The proposed test can also be

used to test the martingale hypothesis in the multivariate setting for observed raw

data without any modification.

My proposal for testing the MD property of the Wold innovations is based upon

the generalized spectrum of Hong (1999):

f(ω, u, v) ≡ 1

2π

∞
∑

j=−∞

σj(u, v)e
−ijω, (3.2)

where ω ∈ [−π, π] is the frequency, i ≡
√
−1, (u, v) ∈ R

d × R
d, and

σj(u, v) = cov(eiu
′ǫt , eiv

′ǫt−|j|), j = 0,±1, ...

where ǫt ≡ ǫt(θ). Note that f(ω, u, v) is a complex-valued scalar function, although

ǫt is a d × 1 vector. The function f(ω, u, v) captures any type of pairwise serial

dependence in {ǫt}, including that with zero autocorrelation function.

The generalized spectrum f(ω, u, v) is not suitable for testing (3.1), because it

also captures the serial dependence in higher order moments. For example, f(ω, u, v)
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captures GARCH dependence, although the process could be a MD. However, just

as the characteristic function can be differentiated to generate various moments

of ǫt, f(ω, u, v) can be differentiated to capture the serial dependence in various

moments. To capture (and only capture) the serial dependence in the conditional

mean, one can use

f (0,1,0)(ω, u, v) ≡ 1

2π

∞
∑

j=−∞

σ
(1,0)
j (0, v)e−ijω, ω ∈ [−π, π]

where

σ
(1,0)
j (0, v) ≡ ∂

∂u
σj(u, v)

∣

∣

u=0
= cov(iǫt, e

iv′ǫt−|j|)

is a d×1 vector. The measure σ
(1,0)
j (0, v) checks whether the autoregression function

E(ǫt|ǫt−j) = 0 at lag j is zero.8

In the present context, ǫt is not observed. Suppose we have T observations

{xt}Tt=1 which is used to estimate the model and to obtain the estimated model

residual

ǫ̂t ≡ Θ̂−1(L)Φ̂(L)xt (3.3)

where θ̂ is a
√
T -consistent estimator for θ0. Examples of θ̂ are conditional least

squares and quasi-maximum likelihood estimator. We can estimate f (0,1,0)(ω, 0, v)

by a smoothed kernel estimator

f̂ (0,1,0)(ω, 0, v) ≡ 1

2π

T−1
∑

j=T−1

(1− |j|
T
)1/2k(j/h)σ̂

(1,0)
j (0, v)e−ijω, ω ∈ [−π, π] (3.4)

where σ̂
(1,0)
j (0, v) = ∂

∂u
σ̂j(u, v)

∣

∣

u=0
, σ̂j(u, v) = ϕ̂j(u, v)− ϕ̂j(u, 0)ϕ̂j(0, v), and

ϕ̂j(u, v) =
1

T − |j|

T
∑

t=j+1

eiu
′ǫ̂t+iv′ǫ̂t−|j|

8The hypothesis of E(ǫt|Iǫt−j) = 0 a.s. is not the same as the hypothesis of E(ǫt|ǫt−j) = 0 a.s.

for all j > 0. The former checks all type of dependencies, whereas the latter one only captures
pairwise dependencies. See Hong (1999) for more discussion on this.
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where h ≡ h(T ) is a bandwidth, and k : R → [−1, 1] is a symmetric kernel. Ex-

amples of k(·) include the Bartlett, Daniell, Parzen and Quadratic spectral kernels.

The factor (1− |j|
T
)1/2 is a finite-sample correction. The effect of this correction factor

is to put less weight on very large lags, for which we have less sample information.

It could be replaced by unity.

Under H0, the generalized spectral derivative f (0,1,0)(ω, 0, v) becomes a flat spec-

trum:

f
(0,1,0)
0 (ω, 0, v) ≡ 1

2π
σ
(1,0)
0 (0, v), ω ∈ [−π, π]

which can be consistently estimated by

f̂
(0,1,0)
0 (ω, 0, v) ≡ 1

2π
σ̂
(1,0)
0 (0, v), ω ∈ [−π, π]

The estimators f̂ (0,1,0)(ω, 0, v) and f̂
(0,1,0)
0 (ω, 0, v) converge to the same limit under

H0, and generally converge to different limits under H1. Thus, any significant

divergence between them can be interpret as evidence of the violation of the MD

property, and hence, of the non-fundamentalness of the process.

The test statistic, that is robust to conditional heteroscedasticity and other time-

varying higher order conditional moments of unknown form, is given as follows:

M̂ ≡
[ T−1
∑

j=1

k2(j/h)Tj

∫

∥

∥σ̂
(1,0)
j (0, v)

∥

∥

2
dW(v)− Ĉ

]/

√

D̂ (3.5)

where Tj = T − j, W(v) =
∏d

c=1W (vc), W : R → R
+ is a nondecreasing function

that weighs sets symmetric about zero equally, and the unspecified integrals are

taken over the support of W(·). Examples of W (·) include the CDF of any sym-

metric probability distribution, either discrete or continuous. Ĉ and D̂ are estimate

of the mean and the variance of T
∫∫ π

−π
‖f̂ (0,1,0)(ω, 0, v)− f̂

(0,1,0)
0 (ω, 0, v)‖2dωdW(v),

Ĉ =
T−1
∑

j=1

k2(j/h)T−1
j

T−1
∑

t=j+1

‖ǫ̂t‖2
∫

∣

∣ψ̂t−j(v)
∣

∣

2
dW(v)
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D̂ = 2ŝ4
T−2
∑

j=1

T−2
∑

l=1

k2(j/h)k2(l/h)

∫∫

∣

∣σ̂j−l(u, v)
∣

∣

2
dW(u)dW(v)

where ψ̂t(v) = eiv
′ǫ̂t − T−1

∑T
t=1 e

iv′ǫ̂t , and ŝ4 =
∑d

a,b=1

(

T−1
∑T

t=1 ǫ̂atǫ̂bt

)2

.

To derive the limit distribution of the test, I need to impose some regularity

conditions. Throughout, I use C to denote a generic bounded constant, ‖.‖ the

Euclidean norm, and A∗ the complex conjugate of A.

Assumption A1. {xt} is a d × 1 strictly stationary time series process, and ǫt

are MD with E‖ǫ4t‖ ≤ C, where ǫt is Wold innovation from estimating an invertible

model.

Assumption A2. For q sufficiently large, there exists a strictly stationary process

{ǫq,t} measurable with respect to the sigma field generated by {ǫt−1, ǫt−2, · · · , ǫt−q}

s.t. as q → ∞, ǫq,t is independent of {ǫt−q−1, ǫt−q−2, · · · } for each t, E[ǫq,t|It−1] = 0

a.s., E‖ǫt − ǫq,t‖2 ≤ Cq−κ for some constant κ ≥ 1, and E‖ǫq,t‖4 ≤ C for all large q.

Assumption A3. The estimator θ̂ is such that
√
T (θ̂ − θ∗) = OP (1), where

θ∗ ≡ plimT→∞θ̂. Under H0, θ
∗ = θ0.

Assumption A4. Let x̄0 = (x0; · · · ; x1−p; ǫ0; · · · ; ǫ1−q) be some assumed initial

values. Then E‖x̄20‖ <∞.

Assumption A5. k : R → [−1, 1] is symmetric about 0, and is continuous at 0

and all points except a finite number of points, with k(0) = 1 and |k(z)| ≤ C|z|−b

as z → ∞ for some b > 1.

Assumption A6. W : R → R
+ is nondecreasing and weights sets symmetric

about zero equally, with
∫

‖v‖4dW (v) ≤ C.

Assumption A7. Define ψt(v) ≡ eivǫt − T−1
∑T

t=1 e
ivǫt and Σ ≡ E(ǫtǫ

′
t). Then,

{∂ǫt
∂θ
, ǫt} is a strictly stationary process such that
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(a)
∑∞

j=1 ‖cov[∂ǫt∂θ
, ψt−j(v)]‖ ≤ C;

(b)
∑∞

j=1 sup(u,v)∈R2 |σj(u, v)| ≤ C;

(c)
∑∞

j=1

∑∞
l=1 sup(u,v)∈R2

∥

∥E[(ǫtǫ
′
t − Σ)ψt−j(u)ψt−l(v)]

∥

∥ ≤ C;

(d)
∑∞

j=−∞

∑∞
l=−∞

∑∞
τ=−∞ supv∈R‖κj,l,τ (v)‖ ≤ C, where κj,l,τ (v) is the fourth or-

der cumulant of the joint distribution of the process {∂ǫt
∂θ
, ψt−j(v),

∂ǫt−l

∂θ
, ψ∗

t−τ (v)}.

Assumption A8.
∑∞

j=1 supv∈R ‖σ(1,0)
j (0, v)‖ ≤ C.

Assumption A1 is a regularity condition on the data generating process (DGP)

{xt}. Assumption A2 is required only under H0, which states that the MD {ǫt}

can be approximated by a q-dependent MD process {ǫt} arbitrarily well when q

is sufficiently large. Because {ǫt} is a MD, Assumption A2 essentially imposes

restrictions on the serial dependence in higher order moments of {ǫt}. It covers

GARCH and stochastic volatility processes as special cases; see e.g. Hong and Lee

(2005). Assumption A3 requires a
√
T -consistent estimator θ̂, such as conditional

least squares estimator or a conditional quasi-maximum likelihood estimator.

Assumption A4 is a start-up value condition. It ensures that the impact of

initial values assumed in the observed information set is asymptotically negligible.

Assumption A5 is a regularity condition on the kernel k(.). It includes all commonly

used kernels in practice. For kernels with bounded support, such as the Bartlett

and Parzen kernels, we have b = ∞: For kernels with unbounded support, b is

some finite positive real number. Assumption A6 is a condition on the weighting

function W (.) for the transform parameter v. It is satisfied by the CDF of any

symmetric continuous distribution with a finite fourth moment. Assumption A7

provides some covariance and fourth order cumulant conditions on {∂ǫt−1

∂θ
, ǫt}, which

restricts the degree of serial dependence in {∂ǫt−1

∂θ
, ǫt}. Finally, Assumption A8

impose a condition on the serial dependence in {ǫt}. The asymptotic properties
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of the test statistic is stated in the following theorem. The proof is similar to the

univariate case of Hong and Lee (2005), and for the sake of space is not provided.

Proposition 4.1: Let h = cT λ for 0 < λ < (3 + 1
4b−2

)−1 and 0 < c <∞. Then:

(a) Under Assumptions A1-A7 and H0, M̂
d→ N(0, 1).

(b) Under Assumptions A1-A8 and H1 , limT→∞ P [M̂ > C(T )] = 1 for any

sequence C(T ) = o(T/h1/2).

Under the null, M̂ has a simple standard normal distribution. Under the

alternative hypothesis, E(ǫt|ǫt−j) 6= 0 a.s., at some lag j > 0. Then we have
∫

‖σ(1,0)
j (0, v)‖2dW(v) > 0 for any weighting function W(·) that is positive, mono-

tonically increasing and continuous, with unbounded support on R. Therefore, M̂

has asymptotic unit power at any given significance level.

An important feature of M̂ is that the use of the estimated residuals {ǫ̂t} in place

of the true errors {ǫt} has no impact on the limit distribution of M̂ . The reason

is that the convergence rate of the parametric parameter estimator θ̂ to θ0 is faster

than that of the nonparametric kernel estimator f̂ (0,1,0)(w, 0, v) to f (0,1,0)(w, 0, v).

Consequently, the limit distribution of M̂ is solely determined by f̂ (0,1,0)(w, 0, v),

and replacing θ0 by θ̂ has no impact asymptotically.

4 Monte Carlo evidence and empirical applica-

tion

4.1 Simulation study

In this section I examine the finite sample performance of the proposed test based on

artificial data generated from the DSGE model with fiscal foresight of Leeper et al.
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(2013). The model is characterized by a representative household that maximizes

expected log utility,

E0

∞
∑

t=0

βt log(Ct)

s.t. Ct +Kt + Tt ≤ (1− τt)AtK
α
t−1

where Ct, Kt, Yt, Tt, and τt denote time−t consumption, capital, output, lump-

sum taxes, and the income tax rate, respectively, and At is an exogenous technology

shock. The parameters satisfy 0 < α < 1, 0 < β < 1. The government sets the

tax rate according to Tt = τtYt, and labor is supplied inelastically. Let A and τk

denote the steady states values of technology and the tax rate. The log-linearized

equilibrium condition for the capital and the tax rate is given by the following

bivariate VARMA model

τ̂t = Ψ(L)ξτ,t

kt = αkt−1 + ξa,t −
τ(1− θ)

1− τ

∞
∑

k=0

θkEtτ̂t+k+1

where θ = αβ 1−τy
1−τk

and the lower case letters denote percentage deviations from

steady state values, kt = log(Kt)− log(K), at = log(At)− log(A), and τ̂t = log(τt)−

log(τ).

To model foresight, I assume the tax rate evolves as

τ̂t =
J
∑

j=0

ψjξτ,t−j = Ψ(L)ξτ,t (4.1)

where
∑J

j=0 ψj = 1, and ψj ∈ [0, 1] determines the relative weight of the shock at

time j. I consider five different processes for the tax rate (Table 1), that embed

many of the information flows that appear in theoretical studies of foresight (see,

e.g., Leeper et al., 2013; Forni et al., 2014; Schmitt-Grohé and Uribe, 2012). DGP1

is an example of no foresight, and therefore the model is fundamental. DGP2 is an
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example of a fundamental model with two period foresight.9 DGP3 is an example

of a non-fundamental process with two period foresight, with weights reciprocal

to the DGP2. DGP4 and DGP5 are examples of non-fundamental processes with

roots zero, which are commonly used in the literature with news shocks. Although

Proposition 2.1 rules out these kind of processes, it would be interesting to see how

the test performs.

For the simulation exercise, I generate artificial series for the capital and the

tax rate setting α = 0.36, β = 0.99, and τ = 0.25, as in Leeper et al. (2013).

The structural shocks ξa,t and ξτ,t are generated as centered iid lognormal(0, 1),

mutually independent at all leads and lags.

Chen et al. (2012) consider the stronger null hypothesis that the errors are

serially independent. However, testing for serial independence of the errors is a

more restrictive condition than (3.1); in particular, one might reject a correct null

model because of higher order dependence. Their proposed test statistic to check

for serial dependence of the residuals is of the form

Q̂ ≡
[ T−1
∑

j=1

k2(j/h)Tj

∫∫

∣

∣σ̂j(u, v)
∣

∣

2
dW(u)dW(v)− Ĉq

]/
√

D̂q

where

Ĉq =
T−1
∑

j=1

k2(j/h)

[ ∫

σ̂0(v,−v)dW(v)

]2

D̂q = 2
T−2
∑

j=1

k4(j/h)

[ ∫

|σ̂0(u, v)|2dW(u)dW(v)

]2

which also has an asymptotic standard normal null distribution. To examine why it

is important to take into account the impact of higher order time-varying moments

in testing H0, I also consider a GARCH process for ξa,t = σ
1

2

t zt, σ2
t = 0.001 +

0.09ξ2t−1 + 0.9σ2
t−1 and ξτ,t ∼ iid lognorm(0, 1). A similar GARCH process is used

9The roots of the determinant of the MA component are complex conjugate with modulus 2.82.
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Table 1: Information Flow Processes

Process Description Coefficients
DGP1 No foresight ψ0 = 1
DGP2 2-qtr concentrated news ψ0 = 0.8, ψ1 = 0.1, ψ2 = 0.1
DGP3 2-qtr concentrated news ψ0 = 0.1, ψ1 = 0.1, ψ2 = 0.8
DGP4 2-qtr perfect foresight ψ2 = 1
DGP5 8-qtr perfect foresight ψ8 = 1

Note: Coefficient settings in tax rule (4.1).

by Escanciano and Velasco (2006).10

I estimate a VAR(p) based on a sample size of 250 which is about the size of

most postwar data sets. The number of Monte Carlo replication is 500. I also

throw away the first 1000 observations for removing initial conditions effects on the

simulations. I choose the order of VAR, p, using the Akaike Information Criterion

(AIC) to reduce the probability of choosing a small order VAR by mistake.11 If the

VARMA representation is non-invertible, it does not admit a VAR representation

mapping economic shocks to a vector of observable variables and its lags. Therefore,

I expect that VAR estimation give a reasonable approximation for DGP1 and DGP2,

but a poor one for DGP3-DGP5.

Some comments are in order. First, M̂ involves d− and 2d− dimensional nu-

merical integration, which can be computationally cumbersome when d is large. In

practice, one may approximate the integrals by choosing a finite number of grid

points symmetric about zero or generate a finite number of points drawn from the

uniform distribution on [−1, 1]d. Alternatively, for some weighting functions there

is a closed form expression for the test statistics. In this paper, I use a closed form

solution obtained by choosing dW(·) as the d−dimensional Gaussian CDF.

10As a robustness check, I examined many combinations of alternative volatility forms and found
results that are consistent with those of Table 2.

11The results (not reported here) are very similar when I use the BIC and HQ criteria. The
finding that choosing different lag order does not solve the invertibility problem is in accordance
with the fact that if a model is non-invertible, we can not recover the true shocks even if we include
infinite lags.
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Table 2: Empirical rejections probabilities for DGP1-DGP5

DGP1(size) DGP2(size) DGP3 DGP4 DGP5

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
Panel A: IID

h̄ = 5
M̂

Q̂

1.2
27.4

0.4
20.6

1.6
38.0

0.8
30.2

91.0
93.4

86.2
88.6

90.2
93.8

85.8
89.2

91.8
95.8

88.4
92.6

h̄ = 10
M̂

Q̂

1.0
27.0

0.4
20.4

1.6
37.2

0.8
30.8

90.6
91.8

81.4
85.8

90.4
93.0

85.2
87.4

89.8
93.2

85.6
89.0

h̄ = 15
M̂

Q̂

1.0
27.6

0.4
20.2

1.8
37.0

0.6
30.4

87.6
90.8

81.6
84.6

88.8
91.2

80.2
83.0

86.0
89.6

82.6
84.6

Panel B: GARCH

h̄ = 5
M̂

Q̂

2.2
57.6

1.8
51.2

2.0
59.8

1.2
51.8

100
100

99.0
100

99.8
100

97.6
100

100
100

100
100

h̄ = 10
M̂

Q̂

2.2
58.4

1.6
52.8

1.8
66.6

1.4
57.7

100
100

98.4
100

98.8
100

96.0
100

100
100

99.0
100

h̄ = 15
M̂

Q̂

2.2
58.0

1.4
52.6

1.6
66.4

1.2
57.6

98.2
100

95.6
100

99.2
100

96.0
100

100
100

99.4
100

Notes: (1) M̂ is the multivariate martingale test; (2) Q̂ is the multivariate indepen-
dence test proposed by Chen et al. (2012); (3) h̄ is the preliminary lag order used in
a plug-in method to select a data-driven lag order; (4) The number of Monte Carlo
replication is 500; (5) Sample size is 250.
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Second, a practical issue in implementing the test is the choice of the bandwidth

parameter ĥ. Following Hong and Lee (2005), one can choose a data-driven band-

width ĥ = ĉ0T
1

2q+1 via the plug-in method, which lets data themselves determine an

appropriate lag.12 The data-driven bandwidth ĉ0, involves the choice of a prelim-

inary bandwidth h̄, which can be fixed or grow with the sample size T . Applying

the data-driven method to choose the bandwidth, while considering a wide range

of the bandwidth, h̄ ∈ {4, · · · , 16}, the simulation results show that the test is not

sensitive to the choice of preliminary bandwidth. For the sake of space, I only report

the results for h̄ = 5, 10 and 15, using the Bartlett kernel. Simulations suggest that

the choice of k(·) has little impact on both the level and the power of the test.

Table 2 reports the rejection rates of the tests at the 10% and 5% levels. The

simulation results show that M̂ severely under-rejects H0. Similar under-rejection

has been reported by Hong and Lee (2005).13 This could be due to the fact that

the asymptotic standard normal distribution only approximates the small sample

distribution of the test statistic under the null hypothesis, and T = 250 is rather

small. For example, when I increase the sample size to T = 500, the size for DGP1

improves to 2.6 and 6.4 at 5% and 10% level of significance, respectively.14 The

fact that the test is under-rejects the null hypothesis is not harmful. However, this

might be imply that the test is also under power.

For the sake of comparison, I also report the multivariate independence test Q̂

proposed by Chen et al. (2012). As can be seen from Table 2, Q̂ does not control the

size, even under the iid assumption. The rejection of the null hypothesis of serial

independence can be due to the truncation error. Theoretically, the truncation error

12q is called the characteristic exponent of k(.). For Bartlett kernel, q = 1; for quadratic spectral
(QS) and Tukey kernels, q = 2.

13These authors argue that the under-rejection is due to the parameter estimation uncertainty
in the finite-sample.

14Hong and Lee (2007) argue that the under-rejection might be due to the impact of parameter
estimation uncertainty in small samples. Indeed, this might be the case for my simulations since
using AIC, I may estimate a long VAR when it is unnecessary. For example, for the DGP1, which
we know the correct order is p = 1, the average lag order chosen by AIC is 2.67. When I estimate
a VAR with p = 1, the size performance improves.
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associated with the estimation of a finite order VAR(p) which only approximates the

exact infinite order VAR representation is expected to be small. However, it might

be the case that the lag order p necessary to recover the structural shock maybe

very large, and therefore the errors after truncation might be dependent even under

the invertibility assumption (see, e.g., Chari et al., 2005; Ravenna, 2007).

4.2 Empirical application

As an empirical application, I focus on the dynamic effects of government spending

shocks on economic activity in the United States. It has been argued that fiscal

policy should be the primary tool for the economy to recover from the Great Re-

cession and operate near potential level of output and employment. Yet there is a

sharp conflict over the efficacy of discretionary fiscal policy.

Using VAR techniques, Blanchard and Perotti (2002) find moderate estimates

of government spending output multipliers, an increase in consumption and the real

wages (see also, Gaĺı et al., 2007; Mountford and Uhlig, 2009). In contrast, Ramey

(2011) argue that big increases in military spending are anticipated several quarters

before they actually occur. Leeper et al. (2013) argue that fiscal foresight can create

non-fundamentalness and therefore econometric methods using VAR models can not

recover the correct structural shocks and impulse response functions.

To check whether fiscal foresight plays an important role in measuring the gov-

ernment spending shocks, I apply the test to the VAR specification standard in the

empirical fiscal policy literature. To this end, suppose an economy is represented

by a VMA model

xt = Γ(L)ξt (4.2)

where xt consists of variables of interest and Γ(L) is a polynomial in the lag operator.

For the baseline specification, I include quarterly real per capita taxes, government

spending, GDP, and the tax rate. This set of variables is similar to the ones used
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recently by Ramey (2011), covering the period 1948:I-2008:IV, and is available on

Valerie Ramey’s website.

Obtaining structural shocks from a VAR involves two steps: first, impose in-

vertibility on (4.2) and construct a reduced form VAR model

Π(L)xt = ξt (4.3)

where Π(L) is an autoregressive polynomial in the lag operator. Wold innovations

can be recovered from estimating (4.3) with p lags. Second, structural disturbances

are identified from the reduced-form errors, imposing some restrictions derived from

economic theory.

To apply the test, I only need model residuals from the first step. This is

consistent with what one would expect: no identification scheme is valid if the VAR

is non-fundamental. Following Ramey (2011), I specify the VAR in levels, with a

quadratic time trend and four lags included. Panel A of Table 3 reports the p-values

of the tests applied to the residuals of this model.

Applying the tests to the residuals obtained from VAR, one observes that both

M̂ and Q̂ reject the null of fundamentalness at the 10% level for the baseline spec-

ification. This implies that based on the results of the tests, given the data and

variables selected in the baseline model, the impulse responses from SVAR approach

appears not to be reliable.

Giannone and Reichlin (2006) proposed to restore the fundamentalness by ex-

panding the econometrician’s information set using extra information. Ramey

(2011) argues that many shocks identified from a SVAR are anticipated changes

in defense spending, which accounts for almost all of the volatility of government

spending. Motivated by the importance of measuring anticipation, Ramey uses nar-

rative evidence to construct a new variable, which measures the expected discounted

value of government spending changes. Augmenting the baseline model with this
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Table 3: Testing for Fundamentalness of VAR

Panel A: Baseline specification

h̄ = 5 h̄ = 10 h̄ = 15

Q̂ 0.000 0.000 0.000

M̂ 0.026 0.042 0.069

Panel B: News-augmented specification

Q̂ 0.000 0.000 0.000

M̂ 0.382 0.384 0.392

Notes: (1) P-values for the null hypothesis that the structural model is fundamental;
(2) M̂ is the multivariate martingale test; (3) Q̂ is the multivariate independence test
proposed by Chen et al. (2012); (4) h̄ is the preliminary lag order used in a plug-in
method to select a data-driven lag order.

narrative variable, Ramey finds very different effects of government spending on

economic activities, and conjectures that this new narrative variable might solve

the non-fundamentalness problem.15

My proposed test can be used to formally show if adding more information solves

the non-fundamentalness problem. Panel B of Table 3 reports the p-values for the

null of fundamentalness for the M̂ and Q̂, which suggest that we fails to reject

the null for the news-augmented model. This implies that based on the results of

the tests, the SVAR model augmented with the news variable is fundamental, and

the impulse responses appear to be reliable. In contrast, serial dependence test,

Q̂, rejects the null of fundamentalness at 5% level for the news-augmented model.

As discussed in the simulation study, this could be due to the fact that the Q̂ test

over-reject the null hypothesis.

15Using the narrative tax series constructed by Romer and Romer (2010), Mertens and Ravn
(2012) also find that the effects of anticipated tax changes are very different from the unanticipated
ones.
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5 Conclusions

This paper provides a new theoretical and empirical tool for testing fundamental-

ness assumption of macroeconomic models. I convert the fundamentalness testing

problem into one of testing the unpredictability of the Wold innovations. To test

the unpredictability, I extend the generalized spectral density test of Hong and Lee

(2005) to the multivariate case. The proposed test is simple to apply since it only

needs model residual as input and has a convenient asymptotic standard normal

distribution. In addition, the test is robust to the failure of the iid assumption and

does not need information outside of the specified model to check for fundamental-

ness. The Monte Carlo study based on a DSGE model with fiscal foresight exhibits

a satisfactory finite-sample performance of the proposed test. Furthermore, an em-

pirical application to the identification of government spending shocks illustrates

how to use the proposed test to a variety of empirical problems.

If the null hypothesis is rejected, it has been conjectured that expanding the

econometrician’s information set may restore the fundamentalness. The proposed

test can be used to formally check if adding more information solves the non-

fundamentalness problem. In the empirical application, I show that augmenting

a standard VAR model with a narrative variable that measure anticipations solves

the non-fundamentalness problem.
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Appendix

I first prove Lemma 1, which is an extension of Theorem 5.4.1 Rosenblatt (2000),

by dropping the identical distribution assumption. In Lemma 2, I use Lemma 1 to

prove the univariate case of Proposition 2.1, and then show that under Assumption

1 the multivariate case can be reduced to the univariate case.

Lemma 1: Consider a causal and non-invertible ARMA(p, q) model

p
∑

i=0

αiǫt−i =

q
∑

i=0

βiξt−i (A.1)

and let φt(τ) denote the characteristic function of ξt and φt
τ0
(·) = ∂φt(·)

∂τ0
. Then

linearity of the best predictor in mean square implies that

∞
∑

k=−∞

(

γk −
∞
∑

l=1

blγk−l

)

ht−k(
∞
∑

l=1

τlγk−l) = 0 (A.2)

where ht(ϑ) =
φt
τ0

(ϑ)

φt(ϑ)
and bl’s are the coefficients of the best linear predictor of ǫt in

mean square

ǫ∗t =
∞
∑

l=1

blǫt−l (A.3)

Proof of Lemma 1: Writing (A.1) in the MA form we have:

ǫt =
∞
∑

k=0

γkξt−k, γk = 0 ∀k < 0 (A.4)
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The joint characteristic function of {ǫt−j, j ≥ 0} is given by

ηt(τ0, τ1, · · · , τp, · · · ) = E
{

exp
(

i
∞
∑

l=0

τlξt−l

)

}

=
∞
∏

k=−∞

φt−k
(

∞
∑

l=0

τlγt−l

)

(A.5)

while the joint characteristic function of {ǫt−j, j ≥ 1} is

η̃t(τ1, · · · , τp, · · · ) =
∞
∏

k=−∞

φt−k
(

∞
∑

l=1

τlγt−l

)

(A.6)

Differentiating ηt(τ0, τ1, · · · , τp, · · · ) w.r.t. τ0 we have

∂

∂τ0
ηt(τ0, τ1, · · · , τp, · · · )|τ0=0 = ηtτ0(0, τ1, · · · , τp, · · · )

=

∫

iǫt exp(i
∞
∑

l=1

τlǫt−l) dF
t(ǫt, ǫt−1, · · · , ǫt−p, · · · ) (A.7)

= i

∫

E[ǫt|ǫt−s, s > 0] exp(i
∞
∑

l=1

τlǫt−l) dF
t(ǫt−1, · · · , ǫt−p, · · · )

where F t(ǫt, ǫt−1, · · · , ǫt−p, · · · ) is the joint cumulative distribution function of ǫt−j, j ≥

0. Also by differentiating the logarithm of (A.4) w.r.t. τ0 we get:

ηtτ0(0, τ1, · · · , τp, · · · )
ηt(0, τ1, · · · , τp, · · · )

=
∞
∑

k=−∞

γkh
t−k(

∞
∑

l=1

τlγk−l). (A.8)

Similarly, differentiating the logarithm of η̃t(τ1, · · · , τp, · · · ) w.r.t. τj, j = 1, 2, · · · ,

we have

∂

∂τj
log η̃t(τ1, · · · , τp, · · · ) =

∞
∑

k=−∞

γk−jh
t−k(

∞
∑

l=1

τlγk−l), j = 1, 2, · · · (A.9)
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If the best predictor in mean square is linear we must have

ηtτ0(0, τ1, · · · ) =
∞
∑

k=1

bkη̃
t
τk
(τ1, τ2, · · · ) (A.10)

which implies
∞
∑

k=−∞

(

γk −
∞
∑

l=1

blγk−l

)

ht−k(
∞
∑

l=1

τlγk−l) = 0. (A.11)

�

Lemma 2: Let Assumption 1 hold. The univariate non-Gaussian ARMA model

(2.1) is invertible if and only if the Wold innovations {ǫt} are MDS.

Proof of Lemma 2: A standard result for ARMA processes is that any ARMA(p,

q) process {xt} which is non-invertible with respect to the noise sequence {ξt} can

also be modeled as an invertible ARMA(p, q) with respect to a new noise sequence

{ǫt} defined by16

ǫt =

∏

rB<i≤q

(1− b−1
i L)

∏

rB<i≤q

(1− biL)
ξt, |bi| < 1. (A.12)

which can be written as:
q−rB
∑

i=0

αiǫt−i =

q−rB
∑

i=0

βiξt−i (A.13)

Let yt =
∑q−rΘ

i=0 αiǫt−i. Then (A.13) can be written as:

yt =

q−rΘ
∑

i=0

βiξt−i. (A.14)

Because yt in a non-invertible MA of order (q−rΘ), Lemma 1 and Corollary 5.4.3

of Rosenblatt (2000) implies that the best one-step predictor of yt is non-linear, i.e.,

E[yt|yt−s, s ≥ 1] is non-linear. On the other hand, yt is causal since all the roots of
∏

rΘ<i≤q

(1− biL) are outside the unit circle. Therefore, the σ−algebras σ(ǫt−s, s ≥ 1)

16See Brockwell and Davis (1991), page 103.
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and σ(yt−s, s ≥ 1) coincide, and

E[yt|yt−s, s ≥ 1] = E[yt|ǫt−s, s ≥ 1] a.s.

= E[ǫt − α1ǫt−1 − · · · − αq−rΘǫt−q−rΘ |ǫt−s, s ≥ 1] a.s.

= E[ǫt|ǫt−s, s ≥ 1]− α1ǫt−1 − · · · − αq−rΘǫt−q−rΘ a.s. (A.15)

If ǫt were a MD, i.e. E[ǫt|ǫt−s, s ≥ 1] = 0, then

E[yt|yt−s, s ≥ 1] = −α1ǫt−1 − · · · − αq−rΘǫt−q−rΘ a.s. (A.16)

which is linear -a clear contradiction- and therefore ǫt can not be a MD.�

Proof of Proposition 2.1: Note that without loss of generality we can assume

that the first component of {ξt} satisfies Assumption 1. It is clear that if {xt} is

invertible {ǫt} ≡ {ξt} are MD. I want to prove the reciprocal, that is if {xt} is

non-invertible then {ǫt} is non-MD. The proof in the univariate case follows from

Lemma 2. I want to show under Assumption 1 we can reduce the multivariate to

the univariate case. Let Θ̃−1(L)Θ(L) = A(L). Write

A(L) =
[

A1(L) A2(L)
]

Where A1(L) is d× 1 and A2(L) is d× (d− 1). From (2.4) we have

ǫt = Θ̃−1(L)Θ(L)ξt

[

ǫt M
]

= A(L)

[

ξt
01×(d−1)

Id−1

]

where M = A2(L). Define ǫ̃t = det
[

ǫt M
]

, and note that by Assumption 1 and

the property A∗(1)A(1) = Id, {ǫ̃t} is a non-zero measurable transformation of {ξt}.
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Furthermore from the properties of determinants we have

ǫ̃t = det(A(L))ξt1

where ξt1 is the first component of ξt. Theorem 3 in Lippi and Reichlin (1994)

implies that for some non-zero constant C

ǫ̃t = C
Θ∗(L)

Θf (L)
ξt1

where Θ∗(L) contains the non-invertible roots, i.e.,

Θ∗(L) :=

dq
∏

i=s+1

(1− b−1
i z), |bi| < 1

and Θf (L) is the flipped-root polynomial defined as

Θf (L) :=

dq
∏

i=s+1

(1− b∗i z), |b∗i | < 1

with s ∈
[

0, dq
]

is the number of the invertible roots of det(Θ(z)) = 0. Then by

Lemma 2 {ǫ̃t} and hence {ξt} is non-MD.�

Proof of Corrolary 2.1: Note that by the proof of Theorem 1 in Lippi and

Reichlin (1994)

Θ̃−1(L)Θ(L) = R(α, L)K

where K is an orthogonal matrix and

R(α, L) =







1+b−1L
1+bL

0

0 Id−1







Then, if {ξt} is a martingale difference process, {ξ̃t := Kξt} is also a martingale
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difference process, and the results from Lemma 2 applied to

ǫt =
1 + b−1L

1 + bL
ξ̃1t

where ξ̃1t is the first component of ξ̃t.�
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