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                                                                    Abstract 
Under the Vasicek asymptotic single risk factor model, stress testing based on rating transition probability 
involves three components: the unconditional rating transition matrix, asset correlations, and stress testing 
factor models for systematic downgrade (including default) risk. Conditional transition probability for stress 
testing given systematic risk factors can be derived accordingly. In this paper, we extend Miu and Ozdemir’s 
work ([14]) on stress testing under this transition probability framework by assuming different asset correlation 
and different stress testing factor model for each non-default rating. We propose two Vasicek models for each 
non-default rating, one with a single latent factor for rating level asset correlation, and another multifactor 
Vasicek model with a latent effect for systematic downgrade risk. Both models can be fitted effectively by using, 
for example, the SAS non-linear mixed procedure. Analytical formulas for conditional transition probabilities 
are derived. Modeling downgrade risk rather than default risk addresses the issue of low default counts for high 
quality ratings.  As an illustration, we model the transition probabilities for a corporate portfolio. Portfolio 
default risk and credit loss under stress scenarios are derived accordingly. Results show, stress-testing models 
developed in this way demonstrate desired sensitivity to risk factors, which is generally expected.   

 

Keywords: Stress testing, systematic risk, asset correlation, rating migration, Vasicek model, bootstrap 

aggregation 
 
 

1. Introduction  
 

Stress testing is important for financial institutions either for regulatory requirements or for internal 
capital allocation ([1], [3], [7], [18]). In practice, stress testing focuses on systematic risk, with shocks 
originating from the market or macroeconomic factors ([5], [7], [19]).  
 

Let }1|{ kiR
i

 denote a rating system with k ratings, with lower indexes i indicating lower 

default risk. Thus 1R is the best quality rating and
k

R is the worst rating, i.e., the default rating.  
 

For a credit portfolio, stress testing can be implemented through modeling the conditional transitional 
probabilities under systematic risk ([2], [14]). The transition probabilities for an entity with a non-

default rating
i

R are assumed to be governed by a latent random variable 
i

z , called the firm’s 

normalized asset value, which splits into two parts as: 
 

                                

 
 

where 
i

s  represents the systematic risk (i.e., the common risk to all entities in the rating), while
i

   

represents the idiosyncratic risk. The constant
i

  is called the asset correlation. It is assumed that 
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there exist threshold values }{ ijb such that a firm’s rating migrates from 
i

R to jR  or worse (called 

downgrade (including default) risk) when 
i

z falls below the threshold value )1(  jkib .  
 

Modeling for stress testing purposes for a credit portfolio under this framework involves: 
 

(a) Determining the threshold values }{ ijb (or equivalently, the unconditional transition 

probabilities). 

(b) Estimating the asset correlation
i

 for each non-default rating.  

(c) Modeling the downgrade risk by a multifactor model for each non-default rating. 
(d) Deriving conditional transition probabilities given scenario risk factors thus assessing 

portfolio level credit loss. 
 

While threshold values }{ ijb can be estimated by using historical point-in-time migration matrices (see 

section 2), the estimation of asset correlations and modeling of conditional downgrade risk by factor 
models are more challenging. Miu and Ozdemir ([14]) propose approaches to deriving the conditional 
transition probabilities based on a factor model for the systematic risk s: 
 

           ),0(~,)...,,,(
2

21 em
Neexxxfs                                           (1.2) 

 

by assuming the same systematic risk and same asset correlation for all non-default ratings. Miu and 
Ozdemir also show how parameters of model (1.2) and those from (a)-(c), including threshold values 

}{ ijb , can be estimated simultaneously in one single process of likelihood maximization. 

 

We extend Miu and Ozdemir’s work to a more granular rating level, by assuming different asset 

correlation
i

  and different systematic risk 
i

s  for each non-default rating. Specifically, for a non-

default rating
i

R , let )(
ii

sd denote the downgrade probability given systematic risk
i

s . We proposed 

two Vasicek models, each with a latent random effect, for stress testing purposes: 
 

          )1,0(~,)()( 10 Nssaasd
iiiiii

                                                (1.3) 

         ))(,0(~),()( 2
2110 iiimimsiiiii

eNeexaxaxaasd            (1.4) 
 

where   denotes the standard normal cumulative distribution, and
m

xxx ...,,, 21 are scenario or 

macro risk factors. As shown in later sections, asset correlation 
i

  and conditional transition 

probabilities can be derived accordingly from these two stress testing models, given the threshold 

values }{ ijb  (see Lemma 3.1 and Theorem 3.3). 
 

 

The advantages for the proposed approaches are the following: 
 

(1)  Asset correlations and stress testing factor models are differentiated between non-default 
ratings, achieving desired risk sensitivity for the stress testing models under stress scenarios. 

(2) Similar to the results by Miu and Ozdemir ([14]), analytical formulas for conditional transition 
probabilities are derived. 

(3) Parameters in (a)-(c) are estimated separately, expert judgements and adjustments for threshold 

values }{ ijb and asset correlations are made possible.  

(4) Modeling downgrade probability rather than default risk addresses the issue caused by low 
default counts for high quality ratings. 
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Models (1.3)-(1.4) can be fitted effectively by using, for example, SAS non-linear mixed procedure 
([21]), assuming a binomial distribution for the event count given the event probability. We will 
propose a two-step fitting procedure in section 3.3 for training the model (1.4): first by a master 
model for all non-default ratings targeting the portfolio default risk, and then calibrating this master 
model to rating level for each non-default rating, targeting the downgrade risk. 
 
The paper is organized as follows: We review in section 2 the Vasicek asymptotic single risk factor 
model (ASRF) for modeling of rating migration. In section 3, we propose the stress testing models 
(1.3)-(1.4), and derive the analytical formulas for conditional transition probabilities. Parameter 
estimation methodologies, including the bootstrap aggregation technique (called bagging, for 
addressing the time series serial correlation), are reviewed in section 4. In section 5, we validate the 
proposed approaches by building stress testing models for a US corporate portfolio. Portfolio credit 
loss and default risk on stress scenarios are assessed accordingly. 
 
The author thanks Dr. Clovis Sukam for his critical reading of the manuscript. 

 
 
 

2. Rating Migration under the Vasicek Asymptotic Single Risk Factor Model Framework 

2.1. The Vasicek Asymptotic Single Risk Factor Model 
 
Under the Vasicek asymptotic single risk factor model ([2], [9], [11], [12], [13], [14], [20]), default 
risk for an entity is driven by a latent variable z, the normalized asset value of the entity. A default 
event occurs in horizon if this normalized asset value falls below a threshold value, called default 
point. For a group of risk homogenous entities, z splits into two parts: 
 
 

                                

 
 

where s represents the systematic risk (i.e., the common risk), common to all entities in the group, 
while   represents the idiosyncratic risk. The constant   is called the asset correlation of the group. 
 

 
2.2. The Unconditional Rating Migration Matrix 
 
We assume that entities in the same rating are risk homogeneous. Thus model (2.1) applies.  
 

Given a non-default rating
i

R , we assume that there exist k threshold values 
 

             )(... )1(21   ikkiii bbbb                                       (2.2) 
 

such that an entity will migrate to rating jR or worse in horizon if z falls below )1(  jkib , 

i.e., )1(  jkibz . 
 

Denote by ijp  the unconditional transition probability of migrating from
i

R  to jR , and ijd the 

unconditional transition probability from 
i

R  to jR or worse. This means )(
ikik

dp   is the 

unconditional default probability for rating
i

R . The following propositions hold and can be found in 

([2], [14]). 
 

Proposition 2.1. (a) If 1j , 1ijd . 

    (b) If 1j , )()( )1(1(   jkijkiij bbzPd                    

)1.2()1,0(~),1,0(~,10,1 NNssz  
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Proposition 2.2 (a) )( 1iikik
bdp   and )(1 )1(1  kii bp  

    (b) If kj 1  then  

             )1()()1( )()(   jiijjkijkiij ddbbp . 

 

Consequently, given the unconditional transition matrix )( ijpT  , the threshold values }{ ijb in (2.2) 

can be determined sequentially, first 1ib  by Proposition 2.2 (a), then 2i
b  by Proposition 2.2 (b) and 

Proposition 2.1 (b), and so on.    
 
2.3. Calibration of the Unconditional Rating Migration Matrix 
 

The unconditional transition probabilities }{ ijp  can be estimated using the historical point-in-

time migration matrices. This is because:  
 

        ))|(()( )1()1( sbzPEbzPd jkisjkiij    

       

)3.2()]|([

))]|()|([

)1()(

)()1(

)1(

sbzbPE

sbzPsbzPE

ddp

jkijkis

jkijkis

jiijij













 

 

where )(
s

E  denotes the expectation with respect to s. Since  
 

          )|( )1()( sbzbP jkijki     
 

is the point-in-time transition probability of migrating from 
i

R to jR given the systematic risk s, we 

conclude that the unconditional transition probability ijp can be estimated by taking the average of the 

historical transition rate of moving from rating
i

R  to rating jR .  
 

This average migration matrix, estimated from historical point-in-time transition matrices as above, 
are usually subjected to experts’ reviews. Adjustments may be required before it is used to derive the 

threshold values }{ ijb . In general, the following rules are imposed: 
              

(a) Transition probabilities ijp  have to be floored at a positive number to ensue that the threshold 

values }{ ijb are different for a given rating
i

R .   

(b) The unconditional default probability
ik

p is an increasing function of i, i.e., better quality 

ratings have lower default probabilities 

(c) Given a risk rating
i

R , the transition probability ijp is a decreasing (not necessarily strict) 

function for the distance || ji   between i and j, where ji  . This means an entity is more 

likely to migrate to a closer rating than a farther away rating in the same direction. 
 
  
2.4. Conditional Rating Migration Given Systematic Risk  

 

Given model (2.1), let )(spij  denote the transition probability of moving from
i

R  to jR  conditional 

on systematic risk s, and )(sd ij the transition probability of moving
i

R  to jR  or worse, conditional on 
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systematic risk s. The two propositions below for )(sd ij  and )(spij follow similarly as Propositions 

2.1 and 2.2 via model (2.1), and can be found in ([2], [14]). 
 

 
 

Proposition 2.3 (a) If 1j , 1)( sd ij .  

   (b) If 1j , ]1/)[()( )1(    sbsd jkiij  
 

Proposition 2.4. (a) ]1/)[()()( 1   sbsdsp
iikik

 

(b) ]1/)[(1)( )1(1    sbsp kii  

(c) If kj 1  then  

        )()(]1/)[(]1/)[()( )1()()1( sdsdsbsbsp jiijjkijkiij     
 

 
3.  Stress Testing Models  

3.1 The Vasicek Models 
 

For simplicity, we denote the downgrade probability )()1( sd ii  for a non-default rating
i

R  by )(sd
i

. 

Given a non-default rating
i

R , we propose two Vasicek models for stress testing purposes: 
 

          )1,0(~,)()( 10 Nssaasd
i

                                               (3.1) 

         ),0(~),()(
2

2110 emmsi
Neexaxaxaasd             (3.2) 

 

where 
m

xxx ...,,, 21 are macro variables or market factors in horizon, subjected to an appropriate 

transformation by
1 when necessary. The latent random residual e is independent of 

m
xxx ...,,, 21 . 

With the model (3.2), we are required to estimate parameters 
m

aaaa ...,,,, 210 and 
e

 . Note that, 

models (3.1) and (3.2) are at rating level. We are required to fit models (3.1) and (3.2) for each non-
default rating independently. 
 
 

With the rating level Vasicek model (3.1), the asset correlation can be calculated as in the next 

lemma below. 
 

Lemma 3.1 ([17]) (a) )1/()]([
2

1010 aasaaEs  , where )1,0(~ Ns      

(b) ([22]) )1/(
2

1

2

1 aa
i

  under model (3.1). 

 
 

3.2 Conditional Transition Probabilities Given Factor Model (3.2) 
 

Given model (3.2) for a rating
i

R , let 

                       ii

m

i

xaau 



1

0                                          

Denote by )...,,,( 21 mi
xxxd  the downgrade probability for the rating 

i
R  given the macro condition 

m
xxx ...,,, 21 . By model (3.2) and Lemma (3.1) (b), we have the following proposition: 
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Proposition 3.2. ([22]) )1/()...,,,|)(()...,,,(
2

2121 emmi uxxxeuExxxd   
 

Let )( ikii bb  , the threshold value corresponding to the downgrade probability for rating
i

R . Given 

threshold values }{ ijb and the market condition
m

xxx ...,,, 21 , the conditional migration probabilities 

can be derived (using models (3.1)-(3.2)) as in the theorem below. We get similar but slightly 
different from the results by Miu and Ozdemir ([14]). 
 
Theorem 3.3. The following statements hold under model (3.2):  

(a) ])1)(1(/)(1/[1)...,,,(
2

)1(

2

211 eikiemi bbuxxxp     

(b) .],)1)(1(/)(1/[)...,,,(
2

1

2

21 eiiemik bbuxxxp    

(c) If kj 1  then  

        
])1)(1(/)(1/[

])1)(1(/)(1/[)...,,,(

2

)(

2

2

)1(

2

21

eijkie

eijkiemij

bbu

bbuxxxp












 

 

Proof.  By model (3.2), and Proposition 2.3 (b), we have 
 

         








1/1/

1/)(

i

i

beus

eusb
 

  

We just prove the statements (b) and (c), the proof for (a) is similar. By Proposition 2.4 (a), we have  
 

        

])1)(1(/)(1/[)...,,,(

]1/)([

]1/)[()(

2

1

2

21

1

1

eiiemik

ii

iik

bbuxxxp

bbeu

sbsp













 

 

by Lemma 3.1 (a). This proves statement (b). 
 

For statement (c), we have 

       
]1/)([]1/)([

]1/)[(]1/)[()(

)()1(

)()1(













ijkiijki

jkijkiij

bbeubbeu

sbsbsp
 

by Proposition 2.4 (c) for kj 1 . 
 

)...,,,( 21 mjk xxxp          

])1)(1(/)(1/[])1)(1(/)(1/[
2

)(

22

)1(

2

eijkieeijkie
bbubbu     

 

by Lemma 3.1 (a). This proves statement (c) □         
 
 
 

3.3 Two-Step Fitting Procedure for the Multifactor Vasicek Model (3.2)  
 
To simplify the model fitting work at rating level for model (3.2), and ensure weights are fairly 
allocated to risk drivers with respect to portfolio default risk, we propose the following two-step 
fitting procedure for model (3.2): 
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(i) Let )(sp
all

 denote the portfolio level default probability given systematic risk s. 

First, fit a model over the portfolio for all non-default ratings, targeting the portfolio level 

default probability )(sp
all

:  

                            ),0(~),()()(
2

1
0 eii

m

i

all Neewexaasp  


      (3.3)       

             where w sums up the fixed effects, and e is the model residual. 
               

(ii) Next, calibrate the above model to each non-default rating
i

R  targeting the downgrade 

probability as:        
            

                         ),0(~),()(
2

ieiiii Neewcsd                                   (3.4) 
 

             where 
i

e  denotes the model residual.  

 
Master model (3.3) captures the sensitivity with respect to the portfolio level default risk, ensuring 
fair risk weights are allocated among risk factors. In general, default is barely observed for high 
quality ratings, a model targeting default risk has to be fitted on portfolio level. With model (3.4), the 
master model is calibrated back to the rating level for each non-default rating, targeting the 
downgrade risk. 
 
 
4 Parameter Estimation 
4.1 Binomial Likelihood Approaches  
 

Let },,...,,,{( 21 iimiii
nkxxxS  , Ni ...,,2,1 , be a time series sample, where 

m
xxx ...,,, 21 are 

market or macroeconomic variables, and 
ii

kn ,  are respectively the numbers of entities and numbers 

of downgrades in one-year horizon at time index i.  Given the downgrade event probability 
 

         )1,0(~),()( Neceusp    
 

where u is a deterministic linear function of 
m

xxx ...,,, 21 ,  the likelihood of observing k downgrades 

for a non-default rating with n entities is: 

               knk
spsp

k

n 







))(1()(  

Its expected value with respect to random factor e gives the unconditional likelihood:  

       

deeeueu
k

n

deespsp
k

n
nkbin

knk

knk

)())(1)((

)())(1()(),(






































  

where )( denotes the standard normal density. The negative natural logarithmic likelihood is given 

by the sum ([6], [10], [14]): 
 

        )),(ln(log
1

ii

N

i

nkbinL 


   
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With the maximum likelihood parameter estimation approach, we are required to estimate the model 
parameters for models (3.1) and (3.2) by minimizing -log L. SAS non-linear mixed procedure 
(NLMIXED, [21]) provides a tool for fitting this type of models, while maximizing the binomial 
likelihood. 
 
 
 

4.2 The Serial Correlation and Bootstrap Aggregation Methodologies  
 
A model describes the joint distribution between the target and explanatory variables. Given a 
modeling sample, independence between data points is generally expected. However, serial 
correlation for a times series sample is in general significant. This causes an issue for parameter 
estimation ([15], [16, pp.159-175]).  
 

Instead of fitting the models (3.1) and (3.2) directly on the time series sample, we propose a bootstrap 
approach, assuming that the time series variables are stationary. This approach is analogous to the 
bagging (bootstrap aggregation) technique ([4], [8]): 
 

(a) Generate B (a sufficiently large number, for example, 200) bootstrap samples using the original 
time series. Each bootstrap sample is of the same size as the original sample, and is created by 
randomly sampling from the original sample with replacement. Block sampling may be required 
when variables used are not evaluated at the same time.     

(b) For each bootstrap sample, fit a model of form (3.1).  
(c) Calculate the average of each parameter over all bootstrapped models, and select the model with 

parameters that are the closest to these parameter averages. 
 
For model (3.2), we follow the two-step fitting procedure proposed in section 3.3, and sequentially fit 
the models (3.3) and (3.4) using the bootstrap technique proposed as above. 
 
 

5 An Empirical Example: Stress Testing for a Corporate Portfolio 
 

In this section, we validate our proposed approaches to stress testing a corporate portfolio. The 
sample is created synthetically for a US corporate portfolio. The sample includes the portfolio 
quarterly data covering the years between 2001 and 2013 in one-year horizon: the first one-year 
observation period starts at the beginning of the 1st quarter 2001 and ends at 4-th quarter 2001, the 
second one-year observation period starts at the beginning of the 2nd quarter of 2001 and ends at 1st 
quarter 2002, and so on. The last one-year observation period starts at the beginning of the 1st quarter 
2013 and ends at 4-th quarter 2013.  
 

This is a low default portfolio, with an average portfolio default rate below 1%. There are 21 ratings, 
with the first rating 1 as the best; and the last rating 21 as the default rating.  
 

Our stress testing for the portfolio follows the steps as proposed in section 1. 
 

(a) Determining the threshold values }{ ijb  

 

Using all the historical point-in-time migration matrices, we calculate the average migration matrix, 

and take it as the preliminary unconditional transition matrix )( ijpT  . Minor adjustments are made 

following the rules (a) -(c) as proposed in section 2.3.  
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(b) Estimating the asset correlation 
i

  for each non-default rating 

 

We estimate asset correlation for each non-default rating by using Lemma 3.1 (b) via model (3.1). 
Model (3.1) is fitted using the bootstrap technique as proposed in section 4.2. The two tables below 
show the estimated asset correlations for all 20 non-default ratings:  the asset correlation is over 30% 
for ratings between 17-20, is about 20% for ratings 1-2 and 16, and is around 10% for ratings 3-15.    
 

       

Table A. Sample asset correlation for non-default ratings 1-10

RTG 1 2 3 4 5 6 7 8 9 10

Asset Corr 0.20 0.21 0.07 0.13 0.07 0.11 0.11 0.09 0.07 0.09

Table B. Sample asset correlation for non-default ratings 11-20

RTG 11 12 13 14 15 16 17 18 19 20

Asset Corr 0.13 0.08 0.10 0.09 0.12 0.19 0.30 0.58 0.64 0.49
 

 

 
(c) Fitting the multifactor model (3.2) for each non-default rating  

 
The risk factors we select are the following: 
 

(1) US Growth GDP 
(2) US Unemployment Rate 
(3) US Government 10-year bond yield 
(4) US 30-year BBB corporate bond credit spread 

 
We follow the two-step fitting procedure proposed in section 3.3 and the bootstrap technique 
proposed in section 4.2: First fit a master model of the form (3.3) for all non-default ratings targeting 
portfolio level default risk, using the bootstrap technique; then calibrate the selected master model 
(3.3) to model (3.4) for each non-default rating, targeting downgrade risk and using the bootstrap 
technique.     
 
(d) Deriving conditional transition probabilities and assessing portfolio credit loss  
  
We derive the conditional transition probabilities by using Theorem 3.3. Conditional portfolio level 
default rate and loss are calculated respectively as:  
 

i

i

iii

i

ii nLGDEADplossnnpp ))((,/
20

1

20

1



  

where for a given rating
i

R , the numbers 
ii

pn ,  are respectively the size and the model predicted 

probability of default, and 
ii

LGDEAD ,  are the exposure at default (EAD) and loss given default, 

and n is the portfolio size. 
.  
The table below shows the results for model projected portfolio loss and model predicted portfolio 
default rate.  
 
The 1st column indicates the horizon (one-year) end quarter, the 2nd column records the realized 
portfolio default rate at the end quarter, and the 3rd column is the model predicted portfolio default 
rate at the end quarter. We also calculate the conditional 95-percentile upper bound for the predicted 
portfolio default rate, assuming default count follows a binomial distribution with the event 
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probability given by the predicted portfolio level default probability. The last column shows the 
model projected portfolio scenario loss, reported as a percentage of the portfolio total EAD.  
 

As shown in the table below, both the model predicted and realized portfolio default rates peak at 
2009.3. The projected loss peaks at 2009.2 rather than 2009.3. Note that, projected loss is not 
necessarily 100% concordant to the predicted default probability due to the LGD factor. The loss rate 
is generally higher for the entities that get hit in the first round of market shocks. As market moves 
further into the downturn period, more entities, including those with better risk profiles, start to 
default, resulting in a relatively higher portfolio default rate but slightly lower loss rate.  
 

                     

Table C. Projected portfolio default rate and loss

Portfolio Default Rate Projected

Quarter Actual Predicted 95-Percentile Portfolio Loss

2006.2 0.29% 0.37% 0.74% 0.29%

2006.4 1.15% 0.77% 1.28% 0.33%

2007.2 0.12% 0.60% 1.09% 0.32%

2007.4 0.12% 0.69% 1.17% 0.32%

2008.2 0.33% 0.82% 1.31% 0.34%

2008.4 1.42% 1.26% 1.86% 0.48%

2009.2 2.52% 2.72% 3.58% 0.96%

2009.3 2.73% 2.94% 3.89% 0.89%

2009.4 2.58% 2.30% 3.12% 0.56%

2010.2 1.74% 1.38% 2.09% 0.32%

2010.4 0.96% 1.28% 1.83% 0.25%

2011.2 0.63% 1.38% 1.98% 0.28%

2011.4 0.30% 1.10% 1.57% 0.25%

2012.2 0.30% 1.00% 1.44% 0.21%

2012.4 0.40% 0.93% 1.32% 0.20%

2013.2 0.36% 0.88% 1.26% 0.19%  
 

 
Conclusion. Risk sensitivity is a key measure for a stress-testing model. In this paper, we 
differentiate asset correlations between non-default ratings, and fit stress testing factor models at the 
rating level, targeting the downgrade risk. We thus achieve desired risk sensitivity and robustness for 
the stress testing models under stress scenarios. By targeting the downgrade risk rather than default 
risk, we address the issue of low default counts for high quality ratings. The proposed models can be 
fitted effectively by using, for example, SAS non-linear mixed procedure. Bootstrap aggregation 
technique is used to address the serial correlation issue for the time series sample. We believe the 
proposed approaches provide a step-by-step, effective, and practical tool for practitioners in the fields 
of financial stress testing. 
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