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Abstract—The aim of this paper is motivated by the following
question: “If a series were best characterized by fractional
process, would a researcher be able to detect that fact by using
conventional Dickey-Fuller (1979) test?” To answer this question,
in simple framework, we propose a new fractional Dickey-Fuller
(F-DF) test, different from the test of Dolado, Gonzalo and
Mayoral (2002).

I. INTRODUCTION

The concept of fractionally integrated time series processes
was originally introduced by Granger and Joyeux (1980) and
Hosking (1981). Diebold and Rudebush (1991) asked the
question: ”If a series were best characterized by a fractional
process, would a researcher be able to detect that fact by reject-
ing the hypothesis of unit root using the conventional Dickey-
Fuller (1979) test? To study this issue Diebold and Rudebush
(1991) examined the power of Dickey-Fuller tests when the
data-generating process is a pure fractionally-integrated pro-
cess

(1− L)dyt = ut, with d ∈

(
1

2
;
3

2

)
(1.1)

or equivalently,

(1− L)yt = (1− L)−δut, (1.2)

with white noise innovation, ut  (0, σ2
u) and δ = d − 1.

(1 − L)d is the fractional difference operator defined by its
Maclaurin series (by its binomial expansion if d is an integer):

(1− L)d =
∞∑

j=0

Γ (−d+ j)

Γ (−d) Γ (j + 1)
,

where

Γ (z) =

{ ∫ +∞

0
sz−1e−zds, if z > 0

∞ if z = 0,

if z < 0, Γ (z) is defined in terms of the above expressions
and the recurrence formula zΓ (z) = Γ (z + 1) .

By using the usual auxiliary regression model,

yt = φyt−1 + εt,

in order to test the following hypotheses

H0 : φ = 1 against H1 : φ ̸= 1,

Diebold and Rudebush (1991) showed, by Monte Carlo
simulations, that this test has quite low power and can lead
to the incorrect conclusion that a time series has a unit root
also when this is not true. They pointed out that a more
appropriate testing procedure is needed to draw conclusions
about the presence of the unit root.

In this paper, we point out that these disappointing re-
sults originate from an ill defined statistical problem. Indeed,
Diebold and Rudebush gave a special attention to the parameter
φ in testing hypothesis rather than the parameter d. However, to
express the hypotheses in term of the parameter φ, by ignoring
the parameter d, this can lead to incorrect conclusions. Since
the seminal work of Dickey and Fuller (1979) on formal tests
for unit roots, these tests became standard in applied time
series analysis and econometrics. In recent years, an increasing
effort has been made to establish reliable testing procedures to
determine whether or not an observed time series is fractionally
integrated. Some contributions on this topic include Dolado,
Gonzalo and Mayoral (2002), Nilsen and Johansen (2010),
Lobato and Velasco (2007). In particular, there has been a
considerable interest in generalizing the Dickey-Fuller type
test by taking into account the fractional integration order.
For instance, Dolado, Gonzalo, and Mayoral [DGM] (2002)
introduced a test based on an auxiliary regression for the null
of unit root against the alternative of fractional integration.
Further, the DGM test was refined by Lobato and Velasco [LV]
(2006, 2007). The fractional Dickey-Fuller (FD-F) test consid-
ered by DGM (2002), in the basic framework, is described by
the following.

Let {yt}
n
t=1 denotes a fractionally integrated process whose

true order of integration is d, denotes as FI(d),

yt = (1− L)−dut, (1.3)

with white noise innovation ut  (0, σ2
u) and d is any real.

For the data generating process (DGP) (1.3), DGM (2002)
propose to test the following hypotheses test,

H0 : d = d0 against H1 : d = d1, with d1 < d0, (1.4)

by means of the t statistic of the coefficient of ∆d1yt−1 in the
ordinary least squares (OLS) regression

∆d0yt = φ1∆
d1yt−1 + εt, (t = 1, · · · , n ),

where n denotes the sample size. LV (2006, 2007) argue that
∆d1yt−1 is not the best class of regression one can choose and
propose another auxiliary regression model for the hypotheses
test (1.4). In the case d0 = 1, they propose to test (1.4) by
using the following auxiliary model

∆yt = φ2zt−1(d1) + εt, (t = 1, · · · , n ),

where

zt−1(d1) =

(
∆d1−1 − 1

1− d1

)
∆yt.

The DGM (2002) and LV (2007) tests present an analogy
with the original Dickey-Fuller test, but can not be consid-
ered as a generalization of the familiar Dickey-Fuller test in978-1-4673-6601-4/15/$31.00 c⃝2015 IEEE



the sense that the conventional I(1) vs I(0) framework is
recovered (for the DGM test the conventional framework is
recovered only if d0 = 1 and d1 = 0). Indeed, under the
null and d1 known, the t statistic in the regression model
of DGM (2002) depends on fractional Brownian motion if
0 ≤ d1 < 0.5 and t → N(0, 1) if 0.5 ≤ d1 < 1. These
asymptotic distributions are different from those derived by
Dickey and Fuller (1979) which depend only on standard
Brownian motion. The implementation of DGM (2002) test
would require tabulations of the percentiles of the functional of
fractional Brownian motion, which imply that the inference on
the presence of unit root would be conditional on d1, and thus
might suffer from misspecification. When d1 is not taken to be
known a priory, a pre-estimation of it is needed to implement
the test. In this case, we can perform the test only if the

estimator of d1 (d̂1) is sufficiently close to unity (see DGM
(2002) for details). The problem is that the [DGM] and [LV]
approaches are based on having a choice of two possible orders
of integration of which the true order can be different from the
null and alternative. In fractional case, we have a continuum
of possible orders of integration which makes the simple null
hypothesis against the simple alternative being invalid. For
example, for the D.G.M. test we have three cases,

• The case where the true value of d is equal d0 = 1,

• The case where the true value of d is equal d1,

• The case where the true value of d is different from
d0 = 1 and d1.

The third case cause serious troubles in practice. To over-
come this problem, the null hypothesis and alternative must be
complementary and mutually exclusive and then, we suggest
to use a composite null hypothesis against the composite
alternative. More precisely in this paper, we deal with a
fractionally integrated, FI(d), processes {yt}

n
t=1, defined by

(1.3) where the order d is any real number in
]
1
2 ,+∞

[
. Under

this setting, we propose to test the following hypotheses test12

H0 : d ≥ d0 against H1 : d < d0, (1.5)

The hypotheses test (1.5) is based on having a choice of two
possible cases of which one is true. The test statistics is the
same as in Dickey-Fuller test using as output ∆d0yt instead of
∆yt and as input ∆−1+d0yt instead of yt, exploiting the fact
that if yt is I(d) then ∆−1+d0yt is I(1) under the null d = d0.
If d ≥ d0, using the generalization of Sowell’s results (1990),
we propose a test based on the least favorable case d = d0, to
control type I error and when d < d0 we show that the usual
tests statistics diverges to −∞, providing consistency. We call
this test procedure (like DGM) the F-DF test.

The rest of this paper is organized as follows. In Section
2, we provide, in simple framework, the auxiliary regression
model used to test the null and the main results on asymptotic
null and alternative distribution for the testing problem (1.5).

1This paper was presented at ICMSAO’15 Conference, Istanbul, Turkey,
27–29 Mayl 2015.

21The special case of hypothesis testing H0 : d ≤ 1 against H1 : d < 1
was presented at ICMSAO’13 Conference, Hammamet, Tunisia, 28–30 April
2013, in the paper entitled ”A consistent against for unit root against fractional
alternative”. Expanded version of this paper forthcoming in Inderscience
journal ”International Journal of operational research

In Section 3, we show how to use the new F-DF test, in
practice.

II. THE MODEL AND THE NEW FRACTIONAL DICKEY

FULLER TEST (F-DF TEST)

To test the null, our proposal is based upon testing the
statistical significance of the coefficient φ (or ρ = φ − 1) in
the following autoregression model,

∆−1+d0yt = φ∆−1+d0yt−1 + εt, (2.1)

or equivalently

∆d0yt = ρ∆−1+d0yt−1 + εt, (2.2)

where ρ = φ − 1 and {εt} the residuals. The most important
idea behind the choice of framework above is that if d = d0,
then

xt = ∆−1+d0yt is integrated of order 1

More generally, we have:

xt is integrated of order 1 + d− d0,

with {
1 + d− d0 ≥ 1 , if d ≥ d0
1 + d− d0 < 1 , if d < d0

Before stating the main results of this article, we give some
technical tools that we need for this study. Let ηt = (1 −
L)−δut, with δ ∈ ]−0.5, 0.5] and ut defined as above. Let

σ2
S = var(Sn), where St =

∑t
j=1 ηj . When |δ| < 1

2 , we have

(see Sowell (1990))

lim
n→∞

n−1−2δσ2
S =

σ2
εΓ(1− 2δ)

(1 + 2δ)Γ(1 + δ)Γ(1− δ)
≡ κ2

η(δ),

(2.4)

If in addition, E |ut|
a
< ∞for a ≥ max

{
4, −8δ

1+2δ

}
, we

have the following useful results that apply to this type of
process:

n− 1

2
−δκ−1

η (δ)S[nr] ⇒
1

Γ(1 + δ)

∫ r

0

(r − s)δdw(s), (2.5)

if − 1
2 < δ < 1

2 ,and

n− 1

2
−δ

(
log−1 n

)
κ−1
η ( 12 )S[nr] ⇒ w0.5(r), (2.6)

if δ = 0.5.

Where w(r)is the standard Brownian motion on
[0, 1]associated with the utsequence and the symbols

” ⇒ ”and ”
p
→ ”denote weak convergence and convergence

in probability, respectively.

By noting that d−d0can always be decomposed as d−d0 =
m+ δ, where m ∈ Nand δ ∈]− 0.5, 0.5], the asymptotic null
and alternative of the Dickey-Fuller normalized bias statistic

nρ̂n = n
(
φ̂n − 1

)
and the Dickey-Fuller t-statistic, tρ̂, in the

model (2.2)are provided by the theorem 1.

Theorem 1. Let {yt} be generated according DGP (1.3). If
regression model (2.2) is fitted to a sample of size n then, as
n ↑ ∞,



1) nρ̂n verifies that

ρ̂n = Op(log
−1 n) and (logn) ρ̂n

p
→ −∞, (2.7)

if d− d0 = −0.5.

ρ̂n = Op(n
−1−2δ) and nρ̂n

p
→ −∞, (2.8)

if −0.5 < d− d0 < 0.

ρ̂n = Op(n
−1) and nρ̂n ⇒

1
2

{
w

2(1)− 1
}

∫ 1

0
w

2(r)dr
, (2.9)

if d− d0 = 0.

ρ̂n = Op(n
−1) and nρ̂n ⇒

1
2w

2
δ,m+1(1)∫ 1

0
w

2
δ,m+1(r)dr

,

(2.10)
if d− d0 > 0.

2) tρ̂n
verifies that

tρ̂n
= Op(n

−0.5 log−0.5 n) and tρ̂n

p
→ −∞, (2.11)

if d− d0 = −0.5.

tρ̂n
= Op(n

−δ) and tρ̂n

p
→ −∞, (2.12)

if − 1
2 < d− d0 < 0.

tρ̂n
= Op(1) and tρ̂n

⇒
1
2

{
w

2 (1)− 1
}

[∫ 1

0
w

2(r)dr
]1/2 , (2.13)

if d− d0 = 0.

tρ̂n
= Op(n

δ) and tρ̂n

p
→ +∞, (2.14)

if 0 < d− d0 < 0.5.

tρ̂n
= Op(n

0.5) and tρ̂n

p
→ +∞, (2.15)

if d− d0 ≥ 0.5.
where wδ,m(r) is (m − 1)−fold integral of wδ(r)
recursively defined as wδ,m(r) =

∫ r

0
wδ,m−1(s)ds,

with wδ,1(r) = wδ(r) and w(r) is the standard
Brownian motion.

These properties and distributions are the generalization of
those established by Sowell (1990) for the cases − 1

2 < d−1 <
0, d−1 = 0 and 0 < d−1 < 1

2 . From (2.7) and (2.8), the rate

at which ρ̂n = φ̂n−1 converge to zero (i.e. φ̂n converge to 1 )
is slow for nonpositive values of d− d0, particularly it is very
slow for − 1

2 < d−d0 < − 1
4 . Moreover for − 1

2 < d−d0 < 0,
the limiting distribution of ρ̂n has nonpositive support and then

lim
n→∞

P
(
φ̂n < 1

)
= 1. From (2.9) and (2.10), ρ̂n converge

to zero at the rate n, when d ≥ d0. The rate convergence

n is faster than the usual standard rate n
1

2 , when we deal
with stationary I(0) variables. Then, for d− d0 ≥ 0, the least
squares estimate is super consistent. In the other words, if a
first order autoregression model (2.1) is fitted to a sample of
size n generated according an ARFIMA(0, 1 + d − d0, 0),
where 1+d−d0 is the order of integration of ∆−1+d0yt, then

the OLS estimator, φ̂n, will not exceed 1 in probability, when
d− d0 ≥ 0. Figure 1 and figure 2 below illustrates this fact in
an obvious way.

Fig. 1. Relation between the order of integration d0of the process {yt}and the

OLS estimator φ̂nin the regression model ∆−1+d0yt = φ∆−1+d0yt−1 +
εt(d fixed and d0varied)

Figure 1 shows that so long as d−d0 ≥ 0, we have φ̂n = 1,

and so long as d − d0 < 0, we have φ̂ < 1, where φ̂n is the
OLS estimator in the autoregression model (2.1).

For example, for d0 = 0.5, we have,
{

d− 0.5 < 0 and φ̂n < 1 for 0 ≤ d < 0.5,

d− 0.5 ≥ 0 and φ̂n = 1 for d ≥ 0.5,

and for d0 = 2, we have,
{

d− 2 < 0 and φ̂n < 1 for 0 ≤ d < 2,

d− 2 ≥ 0 and φ̂n = 1 for d ≥ 2.

Figure 2 shows that so long as d−d0 ≥ 0, we have φ̂n = 1,

and so long as d − d0 < 0, we have φ̂ < 1, where φ̂n is the
OLS estimator in the autoregression model (2.1).

Fig. 2. Relation between the order of integration d0 of the process
{yt} and the OLS estimator φ̂n in the regression model ∆−1+d0yt =
φ∆−1+d0yt−1 + εt (d0 fixed and d varied )

For example, for d = 0.5, we have,
{

0.5− d0 < 0 and φ̂n < 1 for 0 ≤ d0 < 0.5,

0.5− d0 ≥ 0 and φ̂n = 1 for d0 ≥ 0.5,

and for d = 2, we have,
{

2− d0 < 0 and φ̂n < 1 for 0 ≤ d0 < 2,

2− d0 ≥ 0 and φ̂n = 1 for d0 ≥ 2.

The figure 1 is made as follows: For a fixed sample
{u1−n, · · · , u0, · · · , un} generated from i.i.d.(0, 1), with n =
1000, samples of ARFIMA(0, 1+ d− d0, 0) processes were
generated for d varying between 0 and 3 with step of 0.01



and d0 fixed. The figure 2 is made as follows: For a fixed
sample {u1−n, · · · , u0, · · · , un} generated from i.i.d.(0, 1),
with n = 1000, samples of ARFIMA(0, 1 + d − d0, 0)
processes were generated for d0 varying between 0 and 3 with
step of 0.01 and d fixed. For each sample {xt, t = 1, · · · , n}
a first order autoregression model (2.1) is fitted and estimate

of φ are calculated. By plotting the parameter φ̂n against
the fractional parameter d one obtains the figure 1 and by

plotting the parameter φ̂n against the fractional parameter d0
one obtains the figure 2 . A general procedure for generating
a fractionally integrated series of length n is to apply for

t = 1, · · · , n , the formula xt =
∑t−1

j=0
Γ(d+1−d0+j)

Γ(d+1−d0)Γ(j+1)ut−j .

The relations, from one side, between φ̂n and d and

from another side between φ̂n and d0, highlighted by the
results, (2.7), (2.8), (2.9), (2.10) and illustrated by figures
1 and 2, suggests that when we deal with degree of fractional
integration test, we have,

φ = 1 ⇐⇒ d ≥ d0 and φ < 1 ⇔ d < d0

In the other words, the testing problem H0 : φ = 1 against
H1 : φ < 1 is equivalent to (1.5).

A. How to use the New F-DF Test

To use this test, we proceed as follows:

1) Estimate the parameter ρ in the regression model
∆d0yt =.ρ∆−1+d0yt−1 + εt. This regression model
provides a more flexible and unified framework to
test the null for different values of d0, by using the
same critical value.

2) The null hypothesis is rejected if Zi < ci(α), where
Zi is the usual statistic test tρ̂n

or n(ρ̂n − 1).
3) The size of the test can be approximated by its

asymptotic value: α = Supd≥d0
P (Zi < ci(α)) =

P [Zi < ci(α)/d = d0].
4) The critical value ci(α) can be chosen so as to

achieve a predetermined size by using the usual table
statistics of Dickey-Fuller.

5) To implement the test we don’t need to estimate the
parameter d.

III. EMPIRICAL APPLICATION

To illustrate in practice, how to use the F-DF test, we apply
our procedure test to the Nelson-Plosser data set to provide a
new evidence (Nelsson and Plosser (1982). The starting date
is 1860 for consumer price index and industrial production;
1869 for velocity, 1871 for stock prices; 1889 for GNP deflator
and money stock; 1890 for employment and unemployment
rate; 1900 for bond yield, real wages and wages; and 1909
for nominal and real GNP and GNP per capita. The variables
are expressed in natural logarithms. All variables exhibit an
upward trend with the exception of velocity, which shows
a strong downward trend and the unemployment rate, which
tends to fluctuate around a constant level.

Since the empirical work by Nelson and Plosser (1982)
suggests that there is strong evidence that the unit root hy-
pothesis, for most macroeconomic time series data, cannot be

rejected, two possible specifications data generating processes
(DGP) are

yt = (1− L)−dut, (3.1)

yt = β0 + (1− L)−dut. (3.2)

The theoretical framework provided in this paper, does not
allow us to use DGP (3.2). At this level of theoretical
framework we only use the DGP (3.1).

For DGP (3.1), we test the null for forth value of d0,
namely, 0; 0.5; 1; 1.5 and 2 by using respectively the following
regression models,

yt = ρ∆−1yt−1 + ε1,t, (model I)

∆0.5yt = ρ∆−0.5yt−1 + ε2,t, (model II)

∆yt = ρyt−1 + ε3,t, (model III)

∆1.5yt = ρ∆0.5yt−1 + ε4,t, (model IV )

∆2yt = ρ∆yt−1 + ε5,t. (model V )

Note that all the size of the 14 United States annual macroe-
conomic variables of the Nelson-Plosser data used here are
between n = 80 and n = 129, consequently the decision rules
adopted for the testing problem (1.5), are,

reject H0 if Z1 < −7.9,

reject H0 if Z2 < −1.95,

where Z1 and Z2 are respectively the usual statistics test nρ̂

and
ρ̂

σρ̂
and (−7.9,, −1.95) are the critical values, at size α =

5%, from the usual tables statistics of Dickey-Fuller (1979).
The results shown in table 5 provide that

• for the model (I), all series are found to be integrated
of order d ≥ 0,

• for the model (II), all series are found to be integrated
of order d ≥ 0.5,

• for the model (III), all series are found to be inte-
grated of order d ≥ 1,

• for the model (IV ), all series are found to be inte-
grated of order d < 1.5, with exception of Industrial
production and Money stock.

• for the model (V ), all series are found to be integrated
of order d < 2.

To summarize, all the variables are integrated for order d,
with 1 ≤ d < 1.5, with exception of Industrial production
and Money stock which have the value of integration order
parameter d is greater or equal 1.5 and less than 2, i.e. 1.5 ≤
d < 2.

To reinforce these results we use the figure 2. We recall that
to interpret the results of theorem 1, for a purely fractionally
integrated process of order d, we use the relation between d0
and φ̂n, where d0 ≥ 0 and φ̂n is the OLS estimator in the
autoregression model

∆−1+d0yt = φ∆−1+d0yt−1 + εt.



The same treatment is made to the Nelson-Plosser data
for which orders d of integration are unknown. In the same
graph we reproduce the curves of the simulated processes for
d = 1, d = 1.5 and d = 2, the curves of the Bond yield,
Nominal GNP, Real GNP, GNP per capita, Real wages, Stock
prices, Unemployment, Velocity, Nominal wages, GNPdeflator,
CPI, Employment. This set of variables are those for which
the values of the integration parameter are between 1 and
1.5. Figure 3 shows that the curves of the empirical data are
localized between the curves of the simulated processes for
d = 1 and d = 1.5.

Fig. 3. Relation between d0 and the OLS estimator φ̂n in the regression
model (2.1) for some US macroeconomic variables.

For the Industrial production and Money stock, for which
the values of the integration parameter are between 1.5 and
2, Figure (9) show that the curves of the empirical variable
”Money stock” is localized between the simulated curves d =
1.5 and d = 2. For the ”Industrial production” even if the
F-DF test indicates that the value of the integration order of
this variable is between 1.5 and 2, the figure 4 show that the
curve, represented by the relation between d0 and the OLS
estimator of the regression model (2.1), is localized between
the simulated curve of d = 1 and d = 1.5.

Fig. 4. Relation between d0 and the OLS estimator φ̂ in the regression model
(2.1) for Money stock and Ind.production

We must not loose sight that the F-DF test was done
assuming that the empirical variables are derived from data
generating process ARFIMA(0, d, 0). More general study is
needed to achieve adequate conclusions about the integration
order of the Nelson-Plosser Data, by considering more general
data generating process ARFIMA(p, d, q) and incorporating
non zero drift and time trend in data generating process (1.3)
and the auxiliary regression model (2.1).

IV. CONCLUSION

In this paper, we have proposed a consistent test that can
distinguish between FI(d) processes. The test is based on a
composite null hypothesis, H0 : d ≥ d0, rather than a simple
one. To use this test, we proceed as follows:

1) Estimate the parameter ρ in the regression model
∆d0yt =.ρ∆−1+d0yt−1 + εt. This regression model
provides a more flexible and unified framework to
test the null for different values of d0, by using the
same critical value.

2) The null hypothesis is rejected if Zi < ci(α), where
Zi is the usual statistic test tρ̂n

or n(ρ̂n − 1).
3) The size of the test can be approximated by its

asymptotic value: α = Supd≥d0
P (Zi < ci(α)) =

P [Zi < ci(α)/d = d0].
4) The critical value ci(α) can be chosen so as to

achieve a predetermined size by using the usual table
statistics of Dickey-Fuller.

5) To implement the test we don’t need to estimate the
parameter d.

6) Regarding the Dickey-Pantula test, both upward and
downward procedure are valid (see Dickey, Pantula
1987)

The new F-DF test is applied to the Nelson-Plosser Data.
The empirical study on Nelson-Plosser Data is only made
to illustrate the F-DF test. This article does not discuss the
situation when there is short memory in series, of AR or
MA type. This seems a very serious drawback for practical
implementation of the tests. Here, we give just an indication
when yt ∼ ARFIMA(p, d, 0)

A(L)∆dyt = εt,

where A(L) =
∑p

j=0 αjL
j , with α0 = 1 and the roots of

A(z) = 0 are outside the unit circle and εt is defined as above.
Then the fractional augmented Dickey-Fuller test, for the null
hypothesis d ≥ d0, is based on the regression model

∆d0yt = ρ∆−1+d0yt−1 +

p∑

j=0

αj∆
d0yt−j + εt.

More general study is needed to achieve adequate con-
clusions about the integration order of the Nelson-Plosser
Data, by considering more general data generating process
ARFIMA(p, d, q) and incorporating non zero drift and time
trend in data generating process (1.3) and the auxiliary regres-
sion model (2.1).
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