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Abstract

Predominant government behavior is decomposed by frequency into sev-

eral periodic components: updating cycles of infrastructure, Kuznets cy-

cles, fiscal policy over business cycles, and election cycles. Little is known,

however, about the theoretical impact of such cyclical behavior in public

finance on output fluctuations. Based on a standard neoclassical growth

model, this study intends to examine the frequency at which public in-

vestment cycles are relevant to output fluctuations. We find an inverted

U-shaped relationship between output volatility and length of cycle in

public investment. Moreover, with a numerical setting, we show that

periodic behavior in public investment at low frequencies—such as up-

dating cycles of infrastructure and Kuznets cycles—can cause aggravated

output resonance.
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1 Introduction

Previous works have pointed out that public investment consists of multiple com-

ponents, but they provide no details about the effects of the individual factors on

output movement. In the context of spectral analysis, also known as frequency-

domain analysis, behavior in public investment can be decomposed by frequency.

That is, the spectrum of public investment resembles that depicted in Figure 1, and

the underlying components are considered in order of frequency as follows.

First, many researchers have been interested in the business-cycle components

of fiscal policies so far. As in Baxter and King (1999) and Christiano and Fitzgerald

(2003), the range of business cycles is supposed to be 1.5–8 years in the United States.

As for the short run, previous works empirically found that public sectors are prone

to react to business cycles. For example, Sorensen et al. (2001), Lane (2003), Hines

(2010), and Afonso and Jalles (2013) estimated some policy reaction functions for

broad categories of government spending and demonstrated how governments have

reacted to economic fluctuations (i.e., countercyclical, procyclical, or acyclical).

Second, numerous authors have examined the existence of opportunistic political

business cycles (e.g., Nordhaus, 1975; Alesina and Roubini, 1992; Alesina et al.,

1992, 1997).1 They shed light on the particular political aspect of policymakers

manipulating macroeconomic policies in order to be re-elected, and consequently,

there is a tendency to be expansionary as an election approaches and to be austere

after the election.2 This means that election cycles in public investment are based

in reality. In the US case, the cycle of presidential elections is determined de jure,

and 4 years strictly are included in business-cycle frequencies.

Third, as relatively low-frequency components on approximately 20-year cycles,

the Kuznets cycle regarding the public sector is well known (e.g., Hansen, 1941).

Lastly, updating cycle of infrastructure can be considered as more low-frequency

components (i.e., trend components), such as 50-year cycles.

In this study, we focus on such cyclical behavior of public investment and attempt

to clarify the effects on macroeconomic fluctuations. To be more precise, we examine

transitional dynamics by incorporating our observational hypotheses that public

1As in Alesina and Roubini (1992), the literature can be classified into two types of theories,
that is, opportunistic and partisan. The present study pertains only to opportunistic types of
political cycles that are inspired by Nordhaus’ (1975) pioneering work, rather than partisan types
that can be traced to Hibbs (1977). Milani (2010) studies these political business-cycle models in
a dynamic stochastic general equilibrium framework.

2While the present study does not consider monetary policies, their independence from politics
is an ongoing subject of controversy. For recent empirical evidence of the relationship between
presidential elections and monetary policy in the United States, see Abrams and Iossifov (2006)
and Funashima (2013).
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finance patterns are cyclical into Ramsey’s (1928) classic growth model. In doing

so, as a first attempt, we consider the case in which the government invests cyclically

by having access to lump-sum taxes.

There are several predecessors closely related to our model.3 Turnovsky and

Fisher (1995), Fisher and Turnovsky (1998), and Turnovsky (2004) provided models

that include public-capital dynamics, and they are closely related to the framework

we propose in this study. However, their models are more general than ours in cer-

tain aspects while these works naturally differ in accordance with their purposes. For

instance, Turnovsky and Fisher (1995) considered two types of government expen-

diture to investigate these effects: consumption expenditure, which improves utility,

and which we do not consider; and investment expenditure, which raises private

productivity, and which we do consider. On the other hand, although Fisher and

Turnovsky (1998) did not consider government consumption expenditure, instead,

they studied investment expenditure under congestion, that is, when infrastructure

is not a pure public good and is attended by a certain degree of rivalry. Furthermore,

Turnovsky (2004) examined both expenditure types under various tax finances.4 In

order to focus on the public-investment cycle (hereafter PIC), we reasonably con-

sider only lump-sum tax and omit government consumption expenditure from our

model for the time being.

The remainder of the paper is organized as follows. Section 2 sets up the model

economy. Section 3 approximately log-linearizes our model, provides the analytical

solution, which is consistent with the transversality condition, and presents the

quantitative analysis with a numerical example. Section 4 concludes.

2 The model economy

Following Barro and Sala-i-Martin (2004), we briefly present the extended Ramsey

model. Time (denoted as t) is continuous.

3Since a seminal work by Barro (1990), inquiries into the relationship between public investment
and economic growth have been conducted widely along with various developments (e.g., Futagami
et al., 1993; Cassou and Lansing, 1998; Turnovsky, 2004). From some empirical perspectives,
Aschauer (1989) and many others investigated the contribution of public capital to economic
growth for the United States. More recently, Marrero (2008) offered an elaborate, calibrated model
in which public investment-to-output ratios as observed in developed countries are accounted for
with adequate precision.

4See also Barro and Sala-i-Martin (2004) for some extensions of the Ramsey model to include
government spending with various taxes.
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2.1 Firm

Let L be the total population of the economy and A be effective labor. They are

assumed to increase at constant rates n and e, respectively: L = exp (nt), A =

exp (et). A representative firm’s technology in intensive form is assumed to be

y = kα (Kg)
β ,

where y is output per effective labor, k is capital per effective labor, Kg is public

capital, and α and β are the elasticities of output with respect to capital and public

capital, respectively.

The first-order conditions with profit maximization are

r + δ = αkα−1 (Kg)
β , w = (1− α)Akα (Kg)

β , (1)

where r is the real interest rate, w is the real wage rate, and δ is the depreciation

rate of private capital.

2.2 Household

An infinitely lived representative household has preference to maximize

U =

∫

∞

0

e−ρt c
1−θ

1− θ
L dt,

where c is per capita consumption, ρ is the rate of time preference, and θ is a relative

risk-aversion measure and satisfies θ > 0. The household’s budget constraint in per

capita representation is

ȧ = w + ra− c− τ − (n+ e+ δ)a,

where τ denotes lump-sum tax.

The familiar first-order condition, the Euler equation, is given by:

ċ

c
=

r − ρ− θe

θ
. (2)

Note that in (2), c is consumption per effective labor.

2.3 Government

Next, we turn to the original assumption, that is, the PIC:

G = Bc sin
2π

T
t+Bs ≡ Bc sinωt+Bs, (3)
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where Bc is the amplitude, π is the circular constant, T is the cycle, and ω ≡ (2π)/T

is angular frequency. This formulation is a generalization to include the constant

public investment. In other words, the constant public investment can be obtained

as the limit, that is, Bc → 0.

It should be noted that the PICs are given exogenously in our model. First,

regarding the business-cycle frequencies, the acyclical behavior to business cycles is

relevant to the present formulation, but on the other hand, the countercyclical or

procyclical behavior cannot be considered. Second, if the PIC stems from election-

motivated behavior of policymakers, this can result in an opportunistic political

business cycle á la Nordhaus (1975, figure 8). In this case, the exogenous PIC is

rationalized in the presidential system because the duration regarding particular

elections is fixed strictly by the law. For example, the cycle of presidential elections

in the United States is determined de jure, and it is strictly 4 years.5

Then public capital evolves as follows to

K̇g = (Bc sinωt+Bs)− δgKg, (4)

where δg is the depreciation rate of public capital.

2.4 Equilibrium

The government’s budget constraint in per effective labor representation satisfies

τ = g, where g ≡ G/(AL) is public investment per effective labor. Using the

market-clearing condition of capital market a = k and (1), in the equilibrium, we

obtain the following dynamic system:

ċ =
αkα−1 (Kg)

β − δ − ρ− θe

θ
c, (5)

k̇ = kα (Kg)
β − c− (n+ e+ δ)k − g. (6)

5In fact, Nordhaus (1975) and many others essentially supposed a presidential system, and the
length of the electoral period was assumed to be exogenous. It should be noted, however, that our
analysis is not really relevant to some countries, such as Japan, where a parliamentary system is
adopted and the incumbent government can determine the timing of the elections. In this case, the
timing of the elections is endogenous and the exogenous PICs mentioned above are unreasonable.
For example, Ito and Park (1988) and Ito (1990) discussed and investigated the hypotheses of
political cycles in the Japanese parliamentary system.
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3 Analytical solutions in log-linearized system

3.1 Log-linearization

To solve the model analytically, we now log-linearize the system of differential equa-

tions, (4)-(6). It should be noted that the strict steady state does not exist because

public investment follows an exogenous sinusoidal process. As detailed below, we

consider some approximate steady state by ignoring the fluctuation of public invest-

ment around the steady state.

We insert a hat above a variable to remind ourselves that this quantity is a log

deviation from the steady state: x̂ ≡ ln x− ln x∗ for ∀x, where the asterisk denotes

the steady state.

Since the steady state is expressed by ċ/c = d (ln c) /dt = 0 and k̇/k = d (ln k) /dt =

0, it holds in the steady state that

α (k∗)α−1 (K∗

g

)β
− (δ + ρ+ θe) = 0, (7)

(k∗)α−1 (K∗

g

)β
−

c∗

k∗
− (n+ e+ δ)−

g∗

k∗
= 0. (8)

To ensure the existence of K∗

g , we postulate that the ratio of public investment to

public capital is so small that the fluctuation of public investment can be negligible

around the steady state: K̇g = Bs − δgKg. In other words, g∗ = Bs is assumed.

Consequently, in what follows, the influence of PIC upon public capital is excluded

approximately. It then follows from K̇g/Kg = d (lnKg) /dt = 0 in the steady state

that

Bs

K∗

g
− δg = 0. (9)

Moreover, we assume (a) that the ratio of public investment to private capital

is sufficiently small (i.e., g∗/k∗ ≪ 1) and (b) g∗ = Bs because evaluating g∗ only

is troublesome. According to Marrero’s (2008) calibration, in fact, G∗/K∗

g and

g∗/k∗ are calculated to be 0.069 and 0.038, respectively. Hence, G∗/K∗

g ≪ 1 and

g∗/k∗ ≪ 1 seem satisfactory assumptions.

Using an approximate formula x ≃ x∗(1 + x̂) for c, k and Kg, that is accurate if

x is near x∗, we approximately obtain the following log-linearization system around
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the steady state:

˙̂c = (α− 1)γk̂ + βγK̂g, (10)

˙̂
k =

(

n+ e+ δ +
g∗

k∗
−

θ

α
γ

)

ĉ+

(

ζ −
g∗

k∗

)

k̂ +
βθ

α
γK̂g −

g∗

k∗
g

g∗
, (11)

˙̂
Kg = −δgK̂g, (12)

where γ ≡ (ρ+ θe+ δ)/θ, ζ ≡ ρ− n− e(1− θ).

3.2 Characteristics of analytical solution

As shown in the Appendix, solving the system (10)–(12) yields

ŷ = αk̂ + βK̂g

=
αλ2C2

(α− 1)γ
exp (λ2t)

+

{

αΓ1δg
(1− α)γΦ(−δg)

+
β

1− α
K̂g(0)

}

exp (−δgt)

+
αg∗(e+ n)

k∗Φ(−(e+ n))
exp {−(e+ n)t}

+
αg∗BcΘ̃

k∗Bs
cos (ωt+ φ0 + φ1) exp {−(e+ n)t},

where

Θ̃ ≡
√

ω2 + (e+ n)2

[

{

ω2 +
(e+ n+ λ1)

2 + (e+ n+ λ2)
2

2

}2

−

{

(e+ n+ λ1)
2 − (e+ n+ λ2)

2

2

}2
]

−1/2

,

Φ(x) ≡ (x− λ1)(x− λ2),

φ0 ≡ tan−1

[

−
(e+ n+ λ1)(e+ n+ λ2)− ω2

ω{2(e+ n) + λ1 + λ2}

]

,

φ1 ≡ tan−1
(

−
ω

e+ n

)

,

λ1 ≡

[

ζ− g∗

k∗
+

√

(ζ− g∗

k∗ )
2
+4(1−α)γ{ ρ+θe+δ−α(g∗/k∗)

α
−(n+e+δ)}

]

2 ,

λ2 ≡

[

ζ− g∗

k∗
−

√

(ζ− g∗

k∗ )
2
+4(1−α)γ{ ρ+θe+δ−α(g∗/k∗)

α
−(n+e+δ)}

]

2 .
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If e + n > 0 and λ2 < 0, this particular solution is stable, converging to zero as

t → ∞.

Our main concern is the relationship between PIC and the transitional dynamics.

When focusing on the cycle T (or ω), which is included in Θ̃, we can obtain a few

implications. First, it turns out at once that Θ̃ converges to (e + n)/{(e + n +

λ1)(e + n + λ2)} as T → ∞. Moreover, Θ̃ can be a monotone increasing function

in certain order of ω where ω2 is dominant to Θ̃. This tells us that Θ̃ is maximized

at certain particular values of cycle T , implying that a kind of “resonance” can

occur.6 Henceforth, we call the volatile transitional dynamics “output resonance.”

We restate the outcome as Proposition 1:

Proposition 1. There exists an inverted U-shaped relationship between output volatil-

ity and length of cycle in public investment.

Up to this point, we consider the single cycle of public investment. We now

turn to the case in which public investment consists of multiple cycles. Because the

dynamic system is linear, the above outcome can be generalized readily. Insofar as

the economy is around the steady state, similar consequences would emerge in more

general cases owing to the principle of superposition:

Corollary 1. In the log-linearlized system, even when we consider a generalized

public investment, G (t) =
∑q

p=1

(

Bc
p sinωpt+Bs

p

)

, certain particular types of cycles

that public investment is composed of can be crucial, and thereby, the transitional

dynamics radically fluctuate.

Corollary 1 provides an important implication from spectral analysis, also known

as frequency-domain analysis (e.g., Hamilton, 1994). In particular, the band-pass

filter perspective, such as that presented in Baxter and King (1999) and Christiano

and Fitzgerald (2003), is relevant to our results. That is, the corollary implies that

even when public investment G has multiple trend components (i.e., T is large)

and noise components (i.e., T is small), the output resonance occurs at certain

frequencies. In other words, the resonance phenomenon is independent of the other

cyclical components of public investment.

6The present term “resonance” is common in the field of physics or engineering. As an example
of the resonance phenomenon, a well-known occurrence is the wind-induced collapse of the “Tacoma
Narrows Bridge” (November 1940). It is widely recognized that this incident occurred because the
cycle of the wind takes particular values, although the amplitude of wind is within expectations.
The experience teaches us a lesson that it is important to take account not only of the amplitude
of wind (PIC) but also of the cycle.
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3.3 Numerical illustration

In order to identify the frequency at which the effect of PIC on the transitional

dynamics is significant, we next present a numerical example. The values mostly

follow Marrero’s (2008) benchmark calibration supposing the annual model of the

US economy (see Table 1). Hence, the model’s time period is defined as 1 year.

Our main findings are exhibited in Figure 2, which illustrates Θ̃ as a function of T .

In this figure, Θ̃ is on the vertical axis and T is on the horizontal axis. The numerical

result is consistent with Proposition 1 and we can observe the inverted U-shaped

relationship between output volatility and length of cycle in public investment.

The amplitude of output dynamics is maximized in the vicinity of T = 50. On

the other hand, compared with this case, the Kuznets cycle with T = 20 has less

impact on output volatility. Moreover, in the election-motivated PIC (i.e., around

T = 4) and at business-cycle frequencies (T = 1.5 − 8), the degree is negligible.

From Corollary 1, we conclude that relatively low-frequency (trend) components,

such as updating the cycle of infrastructure, are dominant in output volatility.

4 Conclusion

This study employed a standard neoclassical growth framework to clarify the effects

of public-finance cycles on economic fluctuations. We showed that relatively low

frequency components of PICs can cause aggravated output resonance. This acts

as a warning against a government’s periodic fiscal management under which an

economy could radically shake even to collapse, as if the Tacoma Narrows Bridge

had collapsed (see footnote 6).

While our numerical result suggests that business-cycle behavior in public in-

vestment is relatively irrelevant in output volatility, this suggestion depends on the

exogeneous PIC. In this sense, our analysis disregards the response of government

behavior to output, and it focuses on acyclical behavior. Countercyclical or pro-

cyclical behavior should be investigated formally in some endogenous settings.

Appendix

In this appendix, we show the derivation of analytical solutions in the log-linearized

system around the steady state. First, from the differential equation of K̂g, we can

directly obtain the particular solution:

K̂g = K̂g(0) exp (−δgt),
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where K̂g(0) refers to an initial value of K̂g. By substituting this and g(t) =

(Bc sinωt + Bs) exp {−(e+ n)t} into differential equation of ĉ and k̂, the model

is represented by the following system of inhomogeneous linear differential equa-

tions of first order with constant coefficient with ĉ and k̂, also called the forced

system:

d

dt

[

ĉ

k̂

]

= A

[

ĉ

k̂

]

+ b(t),

where

A ≡

[

0 (α− 1)γ

n+ e+ δ + g∗

k∗
− θ

αγ ζ − g∗

k∗

]

,

b(t) ≡

[

βγK̂g(0) exp (−δgt)
βθ
α γK̂g(0) exp (−δgt)−

g∗

k∗
(Bc sinωt+Bs) exp {−(e+ n)t}/g∗

]

.

Without loss of generality, we now eliminate k̂ and obtain an inhomogeneous linear

differential equation of second order with constant coefficient with ĉ:

¨̂c−
(

ζ − g∗

k∗

)

˙̂c+ (α− 1)γ
{

ρ+θe+δ
α − (n+ e+ δ)− g∗

k∗

}

ĉ

= Γ1 exp (−δgt) + Γ2 exp {−(e+ n)t}+ Γ3 exp {−(e+ n)t} sinωt,

where Γ1 ≡ −βγ
{

(1−α)θ
α γ + δg + ζ − g∗

k∗

}

K̂g(0), Γ2 ≡ (1 − α)γ g∗

k∗
, Γ3 ≡ (1 −

α)γ g∗

k∗

Bc

Bs . In this representation of Γ3, assumption g∗ = Bs is used.

Now let us consider the general solutions of the case of homogeneous linear

differential equation, ¨̂c−
(

ζ − g∗

k∗

)

˙̂c+ (α− 1)γ
{

ρ+θe+δ
α − (n+ e+ δ)− g∗

k∗

}

ĉ = 0.

Thus, the characteristic equation that is equal to the eigen-equation of A is given

by

Φ(λ) ≡
∣

∣

∣
A −λE

∣

∣

∣
= λ2 −

(

ζ − g∗

k∗

)

λ+ (α− 1)γ
{

ρ+θe+δ
α − (n+ e+ δ)− g∗

k∗

}

= 0,

where E denotes the 2× 2 identity matrix. Factorizing this equation yields Φ(x) =

(x−λ1)(x−λ2). Because of ζ > 0 and 0 < α < 1, we only have to consider the case

of the real number root, provided that ζ− g∗

k∗
is positive. Moreover, we immediately

confirm that λ1 is positive and λ2 is negative because the part of square root is

larger than ζ − g∗

k∗
.7

7In fact, these conditions hold under our specified parameter on the basis of Marrero’s (2008)
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Using the so-called differential operator method, we next turn to a derivation

of the particular solutions of the case of inhomogeneous linear differential equation.

We now write the differential operator as D ≡ d/dt. From the useful formula

φ(D) exp (at) = φ(a) exp (at) for ∀a ∈ C, φ(D) exp (at)f(t) = exp (at)φ(D + a) f(t)

for ∀a ∈ C, and the principle of superposition, the general solution of ĉ is given by:

ĉ(t) = C1 exp (λ1t) + C2 exp (λ2t) +
Γ1

Φ(−δg)
exp (−δgt)

+
Γ2

Φ(−(e+ n))
exp {−(e+ n)t}

+ Γ3Θ(ω) cos (ωt+ φ0) exp {−(e+ n)t}.

Thus, from k̂ = 1
γ(α−1)

˙̂c− β
α−1K̂g(0) exp(−δgt), the general solution of k̂ is

k̂(t) =
C1λ1

(α− 1)γ
exp (λ1t) +

C2λ2
(α− 1)γ

exp (λ2t)

−

{

Γ1δg
(α− 1)γΦ(−δg)

+
β

α− 1
K̂g(0)

}

exp (−δgt)

−
Γ2(e+ n)

(α− 1)γΦ(−(e+ n))
exp {−(e+ n)t}

−
Γ3

(α− 1)γ
Θ̃(ω) cos (ωt+ φ0 + φ1) exp {−(e+ n)t},

where C1 and C2 denote arbitrary constants, and

Θ(ω) ≡

[

{

ω2 +
(e+ n+ λ1)

2 + (e+ n+ λ2)
2

2

}2

−

{

(e+ n+ λ1)
2 − (e+ n+ λ2)

2

2

}2
]

−1/2

,

Θ̃(ω) ≡
√

ω2 + (e+ n)2Θ(ω),

φ0 ≡ tan−1

[

−
(e+ n+ λ1)(e+ n+ λ2)− ω2

ω{2(e+ n) + λ1 + λ2}

]

,

φ1 ≡ tan−1
(

−
ω

e+ n

)

.

Lastly, we impose initial and boundary conditions. To exclude the divergency

solution, we set C1 = 0 as the boundary condition when t approaches infinity since

λ1 > 0 and λ2 < 0. Furthermore, in order to impose the initial condition, we now

benchmark calibration (see Table 1). Hence, we consider only the case in which λ1 > 0 and λ2 < 0
are satisfied.

11



substitute t = 0 to the solution of k̂, and solving about C2 establishes

C2 =
1

λ2

{

γ(α− 1)k̂(0) +
Γ1δg

Φ(−δg)
+ βγK̂g(0)

+
Γ2(e+ n)

Φ(−(e+ n))
+ Γ3Θ̃(ω) cos (φ0 + φ1)

}

.

Substituting these conditions for the general solution, we obtain the particular so-

lution presented in Section 3.
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Table 1: Calibration

Parameter Value
Bc 1.000
Bs 1.000
e 0.020
n 0.010
α 0.327
β 0.093
θ 2.000
δ 0.094
δg 0.038
ρ 0.036

g∗/k∗ 0.038
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Figure 1: Spectrum of government spending
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Figure 2: Plot of Θ̃(T ) in a numerical setting
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