Abrell, Jan and Weigt, Hannes (2010): Combining Energy Networks. Published in: Electricity Markets Working Papers No. WPEM38

PDF
MPRA_paper_65504.pdf Download (341kB)  Preview 
Abstract
Electricity markets rely on other upstream energy markets like oil, gas, and coal to provide the necessary fuel for generation. As both the electricity market and those upstream markets rely on networks, congestion on one market may lead to changes on another. In this paper we analyze the interaction of the natural gas network with the electricity network applying a partial equilibrium approach. The model is applied to a stylized representation of the European energy markets. We apply the model to two cases: first the impact of a supply reduction of natural gas on both markets by cutting imports from Russia, and second, the impact of the introduction of an emission restriction on electricity generation. Since natural gas can be an input for electricity generation, gas price level changes alter the generation dispatch. However, the network character of both markets leads to further effects that are not obvious on first sight. Congestion between markets and particular effects due to loop flows in electricity markets can lead to price and quantity effects in markets far away from the initial cause of market changes.
Item Type:  MPRA Paper 

Original Title:  Combining Energy Networks 
Language:  English 
Keywords:  Electricity network; Natural gas network; Europe; MCP 
Subjects:  L  Industrial Organization > L9  Industry Studies: Transportation and Utilities > L94  Electric Utilities L  Industrial Organization > L9  Industry Studies: Transportation and Utilities > L95  Gas Utilities ; Pipelines ; Water Utilities 
Item ID:  65504 
Depositing User:  Hannes Weigt 
Date Deposited:  10 Jul 2015 04:09 
Last Modified:  29 Sep 2019 10:02 
References:  An, S., Q. Li, and T. W. Gedra. (2003). Natural Gas and Electricity Optimal Power Flow. IEEE PES Transmission and Distribution Conference and Exposition, Dallas, Texas, Sept. 712. Arnold, M. and G. Andersson (2008). Decomposed Electricity and Natural Gas Optimal Power Flow. 16th PSCC, Glasgow, Scotland, July 1418. Aune, F. R., R. Golombek, S. A. C. Kittelsen, K. E. Rosendahl, and O. Wolfgang (2001). LIBEMOD – LIBEralisation MODel for the European Energy Markets: A Technical Description. Ragnar Frisch Centre for Economic Research, Working Paper 1/2001. Online available: http://www.frisch.uio.no/pdf/arbnot01_01.pdf. Retrieved: 15.01.2010. Bauer, N., et al. (2008). REMIND: The equations. Potsdam Institute for Climate Impact Research (PIK). Online available: http://www.pikpotsdam.de/research/researchdomains/sustainablesolutions/esmgroup/remindcode. Retrieved: 15.01.2010. Capros, P., P. Georgakopoulos, D. Van Regemorter, S. Proost, and C. Schmidt (1997): The GEME3 General Equilibrium of the European Union. Economic and Financial Modeling: 21160. Egging, R., S. A. Gabriel, F. Holz, and J. Zhuang (2008): A Complementarity Model for the European Natural Gas Market. Energy Policy 36(7): 23852414. Eurostat (2010): Energy Statistics  Supply, Transformation, Consumption. Online available: http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database. Retrieved: 15.01.2010. Ferris, M. C. and T. S. Munson (2000): Complementarity Problems in GAMS and the Path Solver. Journal of Economic Dynamics and Control 24(2): 165188. Gabriel, S. A., J. Zhuang, S. Kiet (2005). A largescale linear complementarity model of the North American natural gas market. Energy Economics 27(4): 639665. Green, R. (2007): Nodal Pricing of Electricity: How Much Does It Cost to Get It Wrong? Journal of Regulatory Economics 31(2):125–149. Grübler, A. and S. Messner (1998): Technological Change and the Timing of Mitigation Measures. Energy Economics 20(56): 495512. Hobbs, B. F. (2001): Linear Complementarity Models of Nash–Cournot Competition in Bilateral and POOLCO Power Markets. IEEE Transactions on Power Systems 16(2): 194202. Holz, F. (2009): Modeling the European Natural Gas Market – Static and Dynamic Perspectives of an Oligopolistic Market. Dissertation, TU Berlin. IPCC (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Ed. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe. Institute for Global Environmental Strategy. Kouvaritakis, N., A. Soria, Antonio Soria, and S. Isoard (2004): Modelling Energy Technology Dynamics: Methodology for Adaptive Expectations Models with Learning by Doing and Learning by Searching. International Journal of Global Energy Issues 14(12): 104115. Leuthold, F., H. Weigt, and C. von Hirschhausen (2008): ELMOD – A model of the European Electricity Market. Dresden Univeristy of Technology Elctricity Market Working Papers WPEM00. Lochner, S. and D. Bothe (2007): Nord StreamGas, quo vadis? Analyse der Ostseepipeline mit dem TIGERModell. Energiewirtschaftliche Tagesfragen 57(11): 1823. Loulou, R., G. Goldstein, and K. Noble et al. (2004). Documentation for the MARKAL Family of Models. Mathiesen, L. (1985): Computational Experience in Solving Equilibrium Models by a Sequence of Linear Complementarity Problems. Operations Research 33(6): 11251250. Mathiesen, L., K. Roland, and K. Thonstad (1987): The European natural gas market: Degrees of market power on the selling side. In: Rolf Golombek, Michael Hoel, and Jon Vislie, editors, Natural Gas Markets and Contracts, Contributions to Economic Analysis: 2758. NorthHolland. Möst, D. and H. Perlwitz (2009): Prospects of Gas Supply until 2020 in Europe and its Relevance for the Power Sector in the Context of Emission Trading. Energy 34(10): 15101522. Neuhoff, K., J. Barquin, M. G. Boots, et al. (2005): Networkconstrained Cournot Models of Liberalized Electricity Markets: The Devil is in the Details. Energy Economics 27(3): 495525. Neumann, A., N. Viehrig, and H. Weigt (2009): InTraGas  A Stylized Model of the European Natural Gas Network. Dresden University of Technology Resource Market Working Paper WPRM16. O'Neil, R. P., P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and W. R. Stewart Jr. (2005): Efficient MarketClearing Prices in Markets with Nonconvexities. European Journal of Operations Research 164: 296285. Paltsev, S., J. M. Reilly, H. D. Jacoby, R. S. Eckaus, J. McFarland, M. Sarofim, M. Asadoorian, and M. Babiker (2005): The MIT Emission Prediction and Policy Analysis (EPPA) model: Version 4. MIT Joint Program on the Science and Policy of Global Change Report 125. Perner, J. and A. Seeliger (2004): Prospects of Gas Supplies to the European Market until 2030  Results from the Simulation Model EUGAS. Utilities Policy 12(4): 291302. Rutherford, T. F. (1995): Extension of GAMS for Complementarity Problems Arising in Applied Economic Analysis. Journal of Economic Dynamics and Control 19(8): 12991324. Smeers, Y. (1997): Computable Equilibrium Models and the Restructuring of the European Electricity and Gas Markets. Energy Journal 18(4): 1–31. Stigler, H. and C. Todem (2005): Optimization of the Austrian Electricity Sector (Control Zone of VERBUND APG) under the Constraints of Network Capacities by Nodal Pricing. Central European Journal of Operations Research 13: pp. 105–125. UCTE (2007): System Adequacy Forecast, SAF 20062015: Scenarios. Online available: http://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/systemadequacy/saf/UCTE_SAF_20062015_scenarios.zip. Retrieved: 15.01.2010. Unsihuay, C., J. W. M. Lima, and A. C. Z. de Souza (2007). Modeling the Integrated Natural Gas and Electricity Optimal Power Flow. IEEE Power Engineering Society General Meeting, Tampa, Florida, June 2428. Ventosa, M., Á. Baíllo, A. Ramos, and M. Rivier (2005): Electricity Market Modeling Trends. Energy Policy 33(7): 897–913. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/65504 