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STEM Education and Economic Performance in the American States

Rita Ray"

This paper examines the effect of STEM graduates on the level and growth of real GDP per capita for the
50 US states and the District of Columbia between 1990 and 2011. This paper also examines the effect of
STEM graduates on approved utility patents per one million people. The findings show that the share of
STEM graduates has a statistically significant positive effect on the level and growth of real GDP per capita.
The results are robust irrespective of estimation methods. The paper finds that an increase in the share of
STEM graduates increases the number of approved utility patents per one million people but that the

statistical significance of the results depends on the estimation methods.

JEL Classification: C33, C51, 124, 040, O51, R19

1. Introduction

This paper examines the effect of the share of STEM (Science, Technology, Engineering and Mathematics)
graduates on economic performance and scientific innovation. The share of STEM graduates is measured
by the ratio of the number of bachelor’s, master’s and Ph.D. graduates in STEM fields to the total number
of bachelor’s, master’s and Ph.D. graduates in a state for a given year.? Economic performance is measured
by the level and growth of the state’s real GDP per capita. Using data for the 50 states and the District of
Columbia between 1990 and 2011, this paper investigates whether an increase in the share of STEM
graduates in tertiary education increases a state’s economic performance. This paper also investigates the

connection between the share of STEM graduates in tertiary education and a state’s scientific innovation.

The relationship between education and economic growth is a long-standing topic in economics. Education
is the most crucial element in innovation, which, in turn, increases productivity and growth. STEM
education is one of the most important factors for scientific innovation and technological adaptation.
However, no work has been done that examines the connection between the share of STEM graduates in a

state with the state’s scientific innovation and economic performance.
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Improving the quality of STEM education and attracting future generations of STEM students has become
one of the major educational policies in the United States in recent years. In 2009, President Barack
Obama’s ‘Educate to Innovate’ campaign asked for collaboration between the federal government and
businesses, non-profit organizations, engineers, scientists and policy makers. This campaign also prioritized
the development of 100,000 new and effective STEM teachers over the next decade, an increase in federal
investment in STEM education and widened participation to attract a diverse talent pool to STEM

education.

The paper is organized as follows: Section 2 reviews the literature. Section 3 provides the stylized facts on
regional shares of STEM graduates, the relationship between STEM graduates and real GDP per capita and
the connection between STEM graduates and approved utility patents. Section 4 describes the econometric

models. Section 5 explains the results, and Section 6 concludes.

2. Literature Review

The association between education and economic welfare can be traced back to Adam Smith’s Wealth of
Nations (1776). The research on the importance of education for technological change and growth started
in the 1960s and was fully developed as endogenous growth theory in the 1980s. Arrow (1962) explained
how the optimal allocation of resources for invention depends on the technological features of invention
techniques and types of market for knowledge. Romer (1986) included knowledge as an input in production
in long-run growth theory and explained how knowledge generates endogenous technological changes.
Lucas (1988) developed two models that describe the connection between human-capital accumulation and
neoclassical growth; he measured human-capital accumulation both by schooling and by learning by doing.
Romer (1990) concluded that the growth rate depends on the stock of human capital. Grossman and

Helpman (1991) explained how the strength of intertemporal knowledge spillover could foster growth.

Empirical research concentrating on education, innovation and economic growth started in the 1990s and
is divided into two main groups. One group investigates the effect of R&D expenditures on total factor
productivity, and the other investigates the effect of the quantity and/or quality of education on economic
growth. Aghion and Howitt (1992) developed a model in which competition among research firms creates
innovation that leads to growth. Jones (1995) found no positive connection between the number of
scientists and engineers engaged in R&D research and total productivity growth. Sylwester (2001) found

no strong association between R&D expenditures and economic growth for 20 OECD countries.



The results on the connection between education and economic growth are mixed. Barro (1991) examined
the effect of the initial school enrollment rate on real GDP per capita growth rate for 98 countries between
1960 and 1985. He found that initial level of school enrollment has a positive effect on economic growth.
Bils & Klenow (2000) found that the effect of education on growth is frail and explains only one third of
the relationship. Barro (2001) included average years of schooling, as well as science, mathematics and
language scores, as proxies for human capital and investigated the effect of the individual variables on
economic growth for 100 countries between 1965 and 1995. He found that science scores and the average
years of schooling had a significant positive effect on growth. Andres and Looker (2001) examined the
effect of residential areas (rural or urban) on educational expectations and attainments in British Columbia
and Nova Scotia and found that students living in rural areas had lower expectations and attainments. They
also found that rural youth from British Columbia were more likely to pursue tertiary education compared
to the rural youth in Nova Scotia. Blondal et al. (2002) found that compulsory schooling brought high
private and social rates of return to education for OECD countries. Trostel et al. (2002) found no proof of
increasing rates of return of education in 28 countries between 1985 and 1995. Bronzini and Piselli (2009)
examined the long-run connection among total factor productivity, R&D, human capital and public
infrastructure between 1980 and 2001 in Italian regions. They documented that R&D, human capital and
public infrastructure have a positive effect on productivity, with human capital having the most significant

effect.

The relationship between education and economic performance in the US has been studied extensively. De
Young (1985) found that differences in economic and demographic variables have some effect on regional
differences in educational quality among Appalachian and non-Appalachian school districts in Kentucky.
He also found that the source of counties’ income affects the educational status significantly. Income
originating from manufacturing has a significant positive effect, and external control on mineral income
has a significant negative effect on educational status. Domazlicky et al. (1996) examined the cost of high
school non-completion for 24 counties in Southeast Missouri. They found that a one-percentage- point rise
in the high school non-completion rate reduced a county’s per-capita income by $52 in 1980. Thompson
(1998) estimated the economic cost of high school non-completion in the US using 1990 census data. He
found that the cost is higher for states with lower per-capita expenditures on education. Sloboda (1999) also
examined the effect of the high school non-completion rate on the per capita income of 102 counties in
Southern Illinois. He found that a one-percentage-point increase in the high school non-completion rate
decreased per-capita income by $336 in 1990. Fullerton Jr. (2001) found a very similar result for Texas:
the loss of income resulting from high school dropouts was $3.6 billion for the border counties in Texas.

Using panel data for 44 counties in Central Indiana from 1990 to 1999. Dodge (2003) found a positive



effect of education performance on per capita income. Examining 267 metropolitan areas in the US
between 1980 and 1997, Gottlieb and Fogarty (2003) found that college education has a significant positive
effect on the growth of income and employment. Almada et al. (2006) investigated the effect of dropout
rates on per capita personal income in Texas counties that share the border with Mexico. They found that a
decrease in dropout rates could increase income in the border counties. Aghion et al. (2009) examined
whether increased investment in education enhanced growth. They found that exogenous shocks of four-
year colleges had a positive impact on growth, while exogenous shocks of two-year colleges had no
significant effect on growth. Exogenous shocks on research universities affected growth positively only for
the states near the technological frontier. Fullerton Jr. et al. (2013) estimated the public infrastructure stocks
for El Paso, Texas between 1976 and 2009 and their effect on short-run and long-run growth. They found
that infrastructure stocks might have a negative effect on short-run growth but had positive effect on long-
run growth. Fullerton Jr. et al. (2014) investigated the effect of educational attainment, private capital
stocks and public capital stocks on income for 114 counties in Missouri. They found that both educational
attainment and private capital stocks had a significant positive effect on income. However, the effect of

public capital stocks was not clear.

While many economists take primary and secondary education as a proxy of human capital, others argue
that science* and engineering education are vital for innovation and economic growth. Murphy et al. (1991)
argued that the occupational choice of talented people in a country depends on the returns to ability. When
talented people engage in innovation, they foster growth, but when they engage in rent seeking, they hinder
growth. Murphy et al. considered the share of enrollment in engineering majors as a proxy for innovation
for 91 countries between 1970 and 1985. They found that an increase in the share of enrollment in
engineering majors enhanced growth. Giovanni et al. (2013) examined the effect of wage growth among
STEM workers in the labor market, comparing college- and non-college-educated workers for 219 US cities
between 1990 and 2010. They found that an increase in the share of H1 B Visa holders in STEM jobs
increased the wage rate for both STEM and non-STEM college-educated workers. They also found that

STEM workers increased total factor productivity in these US cities.

4 Mathematics is included in science.



3. Stylized Facts

This section provides an overview of the share of STEM graduates in the United States as a whole and in
four particular regions between 1990 and 2011. It also discusses the relationship of the share of STEM
graduates with real GDP per capita and approved utility patents.

Figure 1 depicts the share of STEM graduates’ in the United States as a whole and in four particular regions
for the period 1990 and 2011. During this period, the share of STEM graduates decreased from 30.1% to
29.3% in the United States. The share of STEM graduates increased in the Northeast (from 31.9% to
32.2%), the South (from 27.6% to 27.9%) and the West (from 31.3% to 31.7%). However, it decreased by
one percentage point (from 27.7% to 26.7%) in the Midwest.

Figure 2 represents the growth in the share of STEM graduates in the United States between 1991 and 2011.
The growth rate is lowest in 1990 (-1.68%) and highest in 2010 (1.72%). The growth rate becomes negative
in 2008. A high percentage of STEM graduates are international students,® and the global financial crisis in

2008 may have reduced the graduation rate of foreign students due to the bad job market.

Figure 3 shows the connection between the share of STEM graduates and log of real GDP per capita for
the period 1990 to 2011. Each scatter point in Figure 3 represents the combination of 22 years’ average of
the share of STEM graduates and log of real GDP per capita for a given state. The positive slope (0.031) of

the fitted line represents the positive correlation.

Figure 4 portrays the relationship between the average share of STEM graduates and the average of
approved utility patents per one million people for the period 1990 and 2011. Each point in Figure 4
represents a given state. The positive slope (11.062) of the fitted line shows a positive relationship between

STEM graduates and innovation.

4. Econometric Models and Specifications

This section describes the models to estimate the effect of the share of STEM graduates on the level and

growth of real GDP per capita for the 50 US states and the District of Columbia for the period 1990 to 2011.

3 The share of STEM graduates is the same as the share of STEM graduates in tertiary education.
6 Shares of international STEM graduates in the bachelor’s, master’s and doctorates are 3.75%, 26.03% and 36.85%,
respectively, in 2011.



Econometric models in Sections 4.1 and 4.2 estimate the effect of the share of STEM graduates on the level
of real GDP per capita using STEM graduates as exogenous and endogenous, respectively. Section 4.3
describes the econometric model to estimate the effect of STEM graduates on the growth rate of real GDP

per capita. Section 4.4 illustrates a model to estimate the effect of STEM graduates on innovation.

4.1 STEM Graduates and the Level of Real GDP Per Capita (Exogenous Case)

To examine the effect of the share of STEM graduates on the level of real GDP per capita, 1 use the

following model:

log(yit) = a + BSTEMGRAD;, + yPHYKPC;; + SPWORKFORCE;, + 6SDUMMIES + &; (1).

v, represents the real GDP per capita for state i at year t. STEMGRADj; is the share of STEM graduates
for state i at year t. PHYKPC;; is the log of real gross private physical capital per capita, and
PWORKFORCE}; is the share of the potential workforce (share of people between ages 25 and 64) for

state i at year . To control for the state fixed effect, I use dummy variables for states (SDUMMIES).

Data on private physical capital stock are not available for the US states. I compute the state real physical

capital stock using the method suggested by Garofalo and Yamarik (2002). The procedure is explained

below.
yij ()
ki (t) = K;(t
9
k;(t) = Z K;; (t),t =1990,1991, ................., 1996
=1
and
14
k;(t) = Z K;; (t),t =1997,199§, ... .............., 2011

=1

where, yjj(t)and k;;(t) are real GDP and the real gross physical capital stock, respectively for state i and
industry j for period t. Yj(t) and K;(t) are the US real GDP and the US real gross physical capital stock,
respectively, for industry j for period t. The industrial classification system is different prior to and after
1997. Before 1997, the Bureau of Economic Analysis (BEA) used the SIC industrial classification system,
and after 1997, BEA used the NAICS industrial classification system. Therefore, the number of industries



is different prior to and after 1997. I use the GDP of nine industries’ between 1990 and 1996 and the GDP
of 14 industries® between 1997 and 201 1. Data on nominal net capital stock and depreciation between 1990
and 2011 are available from BEA for 19 industries. I adjust the net capital stock and depreciation by
industries to be consistent with the industrial classification of GDP. For example, the net capital stock and
depreciation of educational services, health care and social assistance come into two separate categories for
net capital stock and depreciation. I add the two categories to make it comparable with GDP between 1997

and 2011.

The level of real GDP per capita, explanatory variables and residuals can be non-stationary. In that case,
the estimation of equation (1) will provide spurious results. I use the Levin-Lin-Chu unit root test for the
log of real GDP per capita, explanatory variables and residuals. Table 2 presents the result. All variables
are stationary. To estimate the parameters, I use pooled OLS, OLS with AR(1) disturbance and GLS with

AR(1) disturbance and robust standard errors for the panel data for equation (1).

4.2 STEM Graduates and the Level of Real GDP Per Capita (Endogenous Case)

The share of STEM graduates can be endogenous for two reasons. First, the existence of omitted variables
affect both the level of real GDP per capita and the share of STEM graduates. Second, there is reverse
causality between the level of real GDP per capita and the share of STEM graduates. Income level may
influence the share of STEM graduates. If the share of STEM graduates is endogenous, the coefficients of
equation (1) would be biased and inconsistent. [ use a two-stage least squares instrumental variable (IV)
method for pooled data to handle the possible endogeneity problem. I begin by introducing the following
reduced-form models for the share of STEM graduates.

STEMGRAD;, = & + BAvgPubExp;;_, + YAvgPriExp;;_, + SPHYKPC;; + 6PWORKFORCE;, +
9SDUMMIES + &, (2).

1. Agriculture, forestry, and fishing; 2. Mining; 3. Construction; 4. Manufacturing; 5. Transportation and public
utilities; 6. Wholesale trade; 7. Retail trade; 8. Finance, insurance, and real estate; 9. Services

8 (1. Agriculture, forestry, fishing, and hunting; 2. Mining; 3. Utilities; 4. Construction; 5. Manufacturing; 6.
Wholesale trade; 7. Retail trade; 8. Transportation and warehousing; 9. Information; 10. Finance, insurance, real
estate, rental, and leasing; 11. Professional and business services; 12. Educational services, health care, and social
assistance; 13. Arts, entertainment, recreation, accommodation, and food services; 14. Other services, except
government)



AvgPubEx;;_, and AvgPriEx;;_4 represent the log of four-year average of lagged real public and private

expenditures per pupil,’ respectively. I also use GMM to handle the endogeneity problem of equation (1).
4.3 STEM Graduates and the Growth of Real GDP Per Capita

To examine the effect of the share of STEM graduates on the growth of real GDP per capita, I use the

following model:

git = @ + Blog(yie—1) + VSTEMEGRAD;, + 5PHYKPC;, + 9PWORKFORCE;, + &, (3)

Eit = @i+ Wy .

Jir represents the growth of real GDP per capita for state i at year z. ¢; and @;; are both i.i.d. random

variables and E(p; ) = E(w;;) = 0.

The one-period lagged income variable is presented to capture the initial conditions: the possibility that
states may not be on their balanced growth paths and that some states may be further away than others. The

presence of lagged income may make the explanatory variables endogenous and OLS estimates biased.

To estimate equation (3), I use the system GMM. System GMM is a combination of the difference GMM
estimator for dynamic panel data model proposed by Arellano and Bond (1991) and the improved version
proposed by Arellano and Bover (1995) and developed by Blundell and Bond (1998). Roodman (2009)
offers an introduction of system GMM to linear GMM. The GMM first difference estimator takes the
explanatory variables as endogenous and generates moment conditions by taking the lagged levels as
instruments of the first difference. Arellano and Bond’s (1991) first difference GMM estimators are often
criticized because the lagged levels are often poor instruments for the first difference. Additionally, first
difference GMM estimators have poor finite sample properties. However, inclusion of the original equation
in levels will develop additional instruments and increase efficiency and improve finite sample properties.
For both GMM and GMMIV, I use the GMM-style instruments proposed by Holtz-Eakin, Newey and
Rosen (1988) and Arellano and Bond (1991) for these explanatory variables. I use two additional

explanatory variables: four-year average of lagged real public and private expenditures per pupil for

SAvgPUbEXDyN 1900 = log((X128%s¢ Real Public Expenditure Per Pupilyy.)/4)



GMMIV. I consider these two new explanatory variables exogenous and use IV style instruments for these

variables.

4.4 STEM Graduates and Innovation

Theories of economic growth claim that an increase in education encourages innovation. To examine this

claim, I use the following model:

UTILITYPATENT;, = @&+ BSTEMGRAD;, + 9PWORKFORCE;, + JR&D;, + &, (4)

UTILITYPATENT;, represents the number of approved utility patents per one million people for state i at
period z. L use utility patent as a proxy for innovation because the United States Patent and Trademark Office
defines this type of patent as ‘patent for invention.” R&D;; shows the share of R&D expenditures in GDP
for state i at period ¢. To estimate the parameters of equation (4), I use pooled OLS, OLS with AR(1)

disturbance and GLS with AR(1) disturbance and robust standard errors for panel data.

The share of STEM graduates can be endogenous due to the presence of omitted variables. I use GMM of
equation (4) to deal with the endogeneity. I also use pooled IV estimation using equation (5) as the first-

stage equation. Equation (5) is given below:

STEMGRAD;, = & + BAvgPubExp;;_, + YAvgPriExp;;_, + SPWORKFORCE;, + OR&D;, +
9SDUMMIES + &, (5).

5. Results

Table 3 represents the results of equation (1) using the pooled OLS Method, OLS with AR(1) disturbance
and GLS with AR(1) disturbance and robust standard errors for panel data. The share of STEM graduates
has a statistically significant positive effect on the level of real GDP per capita, and the results are similar
regardless of the econometric techniques. For example, a one-percentage-point increase in the share of
STEM graduates will increase the level of real GDP per capita by 0.48 percent for pooled OLS. Pooled
OLS does not account for the autocorrelation of the residuals. However, first-degree autocorrelation is
present in the residuals of equation (1). I estimate equation (1) by using OLS with AR(1) disturbance and
GLS with AR(1) disturbance and robust standard errors for panel data. The share of STEM graduates has a

statistically significant positive effect on the level of real GDP per capita for both econometric techniques.
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However, the effect is lower (0.17 for OLS with AR(1) disturbance and 0.24 for GLS) compared to the
pooled OLS (0.48). The level of per-capita physical capital also has a significant positive effect on the level
of real GDP per capita. A one-percentage-point increase in per capita physical capital will increase real
GDP per capita by between 0.66 and 0.74 percent, depending on the estimation technique. The share of the
potential workforce also has a statistically significant positive effect, and the results vary between 0.52 and
1.44 percent. Dodge (2003) found very similar results for 44 counties in Central Indiana. He found that an

increase in test scores has a significant positive effect on per capita income.

Table 4 presents the results obtained from pooled IV for equation (1) using equation (2) as the first-stage
equation. Table 4 also reports the results from the GMM estimation. Results from pooled IV show that the
share of STEM graduates has a significant positive effect on the level of real GDP per capita. However, the
values of the parameters for STEM graduates are higher for the pooled IV (2.67) compared to the pooled
OLS (0.48). The GMM estimate also shows a positive effect (0.65) of STEM graduates on the level of real
GDP per capita. The level of per capita physical capital and the share of the potential workforce both affect
real GDP per capita positively, and the results hold for both estimation techniques. Table 5 shows the results
from first-stage equation. The four-year average of lagged private and public expenditures per pupil has a
significant positive effect on the share of STEM graduates. A one-percentage-point increase in lagged
average private expenditures per pupil will increase the share of STEM graduates by 0.02 percent. The

result is same (0.02) for lagged average public expenditures per pupil.

The results from the GMM and GMMIV estimates of equation (3) are presented in Table 6. Initial income
is negative (-0.03) and statistically significant for both GMM and GMMIV. The results confirm beta
convergence. A one-percentage-point increase in the share of STEM graduates increases the growth of real
GDP per capita by 0.11 percent for both GMM and GMMIV. The share of per capita physical capital has a
significant positive (0.02) effect only for GMM. The share of the potential workforce has no significant
effect either in GMM or GMMIV. This result is very similar to Gottlieb and Fogarty’s (2003). They found

that a one-percentage-point increase in the share of college graduates will increase growth by 0.04 percent.

To investigate the effect of STEM graduates on innovation, I estimate equation (4) using pooled OLS, OLS
with an AR(1) disturbance and GLS with AR(1) disturbance and robust standard errors. The results are
presented in Table 7. The share of STEM graduates has a statistically significant positive effect on the
number of approved utility patents per one million people only for pooled OLS. A one-percentage-point
increase in the share of STEM graduates increases the number of approved utility patents per one million

people by 755.15. The share of the potential workforce has a significant positive effect on the number of
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approved utility patents. A one-percentage-point increase in the share of the potential workforce increases
the number of approved utility patents between 286.20 and 378.56. The share of R&D expenditures has a
significant positive effect (1616.89) only for polled OLS.

Table 8 reports the results of the pooled IV and GMM estimations of equation (4). Equation (5) is
considered the first-stage equation for pooled IV. The share of STEM graduates has no significant effect
on the number of approved utility patents for either estimation technique. The share of the potential
workforce and the share of R&D expenditures both have a significant positive (2410.06 and 1568.97,
respectively) effect only for pooled IV. The results from the first-stage equation for pooled IV are presented
in Table 9. Lagged average private and public expenditures per pupil have a significant positive (0.02 and

0.01, respectively) effect on the share of STEM graduates.

6. Conclusion

This paper investigates how the share of STEM graduates affects the economic performance in American
States. The results demonstrate that share of STEM graduates is a crucial factor for economic performance.
The results provide strong evidence in favor of educational policies concentrating on improving STEM
education in the US and could be used to argue for future STEM education policies and allocation of

educational funds.

The US is one of the most dominant countries in scientific innovation, and, to maintain its dominance, the
US needs to increase the number of STEM undergraduates by 34%!'? annually. However, the share of STEM
graduates in the US decreased by 0.13% between 1990 and 2011. Twenty-five states experienced negative
growth in the share of STEM graduates in this period. The Midwest is the most affected region, with eight
states in that region having negative growth. In the Northeast, West and South, respectively, six, six and
five states experienced negative growth. The President’s council of advisors on science and technology
policy provides reports and recommendations to improve K-12 and post-secondary STEM education.

However, weak implementation, lack of STEM teachers and standard syllabi make the progress slow. This

10 Report To The President, ‘Engage To Excel: Producing One Million Additional College Graduates With Degrees
In Science, Technology, Engineering, and Mathematics,” Executive Office of the President, President’s Council of

Advisors on Science and Technology, February 2012.
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paper advocates future research on the implementation of recommendations for STEM education and its

effect on the quality of STEM education in the US.
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Data Appendix

Data on the share of STEM graduates and the share of R&D expenditure in GDP are collected from the
National Science Foundation. Data on nominal GDP, nominal net physical capital stock and nominal
depreciation are obtained from the Bureau of Economic Analysis. Population and CPI data are collected
from the Census Bureau and the Bureau of Labor Statistics respectively. The United States Patent and

Trademark Office provides the data on approved utility patents.
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Figure 2: Growth of Share of STEM Graduates between

1991 and 2011 in the US
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Figure 4: Share of STEM Graduates and Utility Patent Per 1 Million

People
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Table 1: Descriptive Statistics
Variable Mean Standard Min Max
Deviation
Real GDP Per-capita ($) 20485.10 7748.85 11498.48 81304.57
Share of STEM Graduates (%) 29.64 4.64 16.70 45.10
Capital Per-Capita ($) 24797.77 9510.37 14436.83 86995.24
Share of Workforce (%) 51.81 2.24 42.35 57.92
Public Expenditure Per Pupil ($) 8138.22 1821.32 3696.47 15072.49
Private Expenditure Per Pupil ($) 11658.50 6079.37 1185.76 37647.73
Utility Patent Per 1 Million People 229.45 178.27 26.46 1363.80
Share of R&D Performed in GDP (%) 2.11 1.54 0.09 9.73
Table 2: Levin-Lin-Chu unit-root test for Stationarity
Ho: Panels contain unit roots
Ha: Panels are stationary
Adjusted t p-value

Real GDP Per-Capita 0.000
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Share of STEM Graduates

Capital Per-Capita

Share of Workforce

Share of R&D Expenditure

Utility Patent per 1 Million People

Private Expenditure per Pupil

Public Expenditure per Pupil

Residual - Dependent variable: real GDP Per-Capita,
Method: Pooled OLS with Robust Standard Error
Residual - Dependent variable: real GDP Per-Capita,
Method: OLS with AR(1) Disturbance

Residual - Dependent variable: real GDP Per-Capita,
Method: GLS with AR(1) Disturbance

and Robust Standard Error

Residual - Dependent variable: real GDP Per-Capita,
Method: Pooled IV with Robust Standard Error

Residual - Dependent variable: real GDP Per-Capita,
Method: GMM

Residual - Dependent variable: Utility Patent per 1 million
People, Method: Pooled OLS with Robust Standard Error
Residual - Dependent variable: Utility Patent per 1 million
People, Method: OLS with AR(1) Disturbance

Residual - Dependent variable: Utility Patent per 1 million
People, Method: OLS with AR(1) Disturbance

and Robust Standard Error

Residual - Dependent variable: Utility Patent per 1 million
People, Method: Pooled IV with Robust Standard Error
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Residual - Dependent variable: Utility Patent per 1 million

People, Method: GMM

-4.299

0.000

Table 3: Level of Real GDP Per-Capita and Share of STEM Graduates (Exogenous Case)

Dependent Variable: Log of Real GDP Per-Capita

STEM Graduates 0.478**
(0.101)
Capital Per-Capita 0.745%%*
(0.017)
Share of Potential Workforce 1.437%%*
(0.179)
R2 0.972
No. of Observation 1122
State Dummies Yes

Estimate Auto-Correlation

Coefficient
Pooled OLS with
Method Robust Standard
Error

0.175%*
(0.074)
0.658%*

(0.017)

0.522%*

(0.126)

0.966

1122

Yes

0.896

OLS with AR(1)

Disturbance

0.243%%%
(0.073)
0.716%*
(0.015)
0.819%%
(0.122)

1122

Yes

0.771

GLS with AR(1)
Disturbance and
Robust Standard

Error

Standard errors are in parenthesis. *** and ** represent significance at 1% and 5% level.
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Table 4: Level of Real GDP Per-Capita and Share of STEM Graduates (Endogenous Case)

Dependent Variable: Log of Real GDP Per-Capita

STEM Graduates 2.667%%* 0.654***
(0.508) (0.192)
Capital Per-Capita 0.780%** 0.566%**
(0.022) (0.108)
Share of Potential Workforce 1.831%** 5.052%**
(0.228) (0.827)
R? 0.959 -
No. of Observation 1122 1122
Pooled IV with Robust Pooled
Method
Standard Error GMM

Standard errors are in parenthesis. *** represents significance at 1% level.

Table 5: First Stage Equation

Dependent Variable: Share of STEM Graduates

Average Private Expenditure per Pupil 0.023#**
(0.003)
Average Public Expenditure per Pupil 0.025%**
(0.004)
R? 0.914
No. of Observation 1122

Heteroskedastic robust standard errors are in parenthesis. *** represents significance at 1% level.
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Table 6: Real GDP Per-Capita Growth and Share of STEM Graduates

Dependent Variable: Real GDP Per-Capita Growth

Initial Income -0.031*
(0.016)
STEM Graduates 0.112*
(0.063)
Capital Per-Capita 0.020*
(0.011)
Share of Potential Workforce -0.117
(0.099)
AR(1) in First Differences -4.04
No. of Observation 1071
Method GMM

-0.030*
(0.016)
0.106%
(0.036)
0.018
(0.012)
-0.105
(0.093)

4.14

1071

GMMIV

Heteroskedastic robust standard errors are in parenthesis. *** and * represent significance at 1% and

10% level respectively.

Table 7: Approved Utility Patent and Share of STEM Graduates (Exogenous Case)

Dependent Variable: Approved Utility Patent per 1 Million People

Share of STEM Graduates 755.153%%* 137.317
(195.520) (198.887)
Share of Potential Workforce 2342.7741%%* 387.569*
(245.828) (361.257)
Share of R&D Expenditure 1616.887%%* 190.553
(704.959) (320.769)
R? 0.789 0.753
No. of Observation 1122 1122
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-87.958
(68.346)
286.199%
(95.835)
203.807
(202.655)
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State Dummies Yes Yes

Estimated Auto-Correlation

- 0.900
Coefficient
Pooled OLS with
OLS with an AR(1)
Method Robust Standard
Disturbance
Error

No

0.735

GLS with AR(1)
Disturbance and
Robust Standard

Error

Heteroskedastic robust standard errors are in parenthesis. *** and * represent significance at 1% and

10% level respectively.

Table 8: Approved Utility Patent and Share of STEM Graduates (Endogenous Case)

Dependent Variable: Approved Utility Patent per 1 Million People

Share of STEM Graduates 968.236
(630.948)

Share of Potential Workforce 2410.063***
(308.575)

Share of R&D Expenditure 1568.968**
(718.606)

R? 0.788

No. of Observation 1122

Pooled IV with

Method
Robust Standard Error

Standard errors are in parenthesis. *** represents significance at 1% level.

23.551
(128.845)
50.425
(239.949)
238.354
(1379.143)

1122

GMM
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Table 9: First Stage Equation

Dependent Variable: Share of STEM Graduates

Average Private Expenditure per Pupil 0.022%**
(0.005)

Average Public Expenditure per Pupil 0.011#**
(0.004)

R? 0.915

No. of Observation 1122

Heteroskedastic robust standard errors are in parenthesis. *** represents significance at 1% level.
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