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Abstract

We study the decennial log-growth population rate distributions of the US in-

corporated places (resp., all places) for the period 1990-2000 (resp. 2000-2010)

and the recently constructed US City Clustering Algorithm (CCA) population data

in the period 1991-2000.

It is obtained an excellent parametric description of these log-growth rates by

means of a newly introduced distribution called “double mixture exponential Gen-

eralized Beta 2”. The normal distribution is not the one empirically observed for

the same datasets.
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1 Introduction

Several studies have dealt with the theory of the growth process of cities. However,

(almost) none of the published works deal with the study of the parametric description

of the distribution of city growth rates. This is possibly due to the lack of good data

sets in order to carry on the study until very recent times. In Ramos and Sanz-Gracia

(2015) they have been used some examples of this kind of data to study the city size

distribution of the US, with remarkable success. Using these datasets, the computation

of the log-growth rates is relatively easy so the study of their distribution is a natural

subsequent task.

This research has also theoretical implications, since Gibrat’s process, as it is de-

scribed in Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al.

(2005), takes the log-growth rates to be normally distributed. For another overview of

Gibrat’s Law see, e.g., González-Val et al. (2014). If, empirically, the former assump-

tion happens not to hold, and moreover an alternative description for the log-growth

rates is found with associated finite variances,1 then one of the usual assumptions of

Gibrat’s process would deserve a reconsideration.2

In this article we have succeeded in parameterizing the distribution of log-growth

rates with a newly introduced functional form in all of the studied cases, with the so-

called “double mixture exponential Generalized Beta 2”. In the estimated cases of

this distribution, the variances are always finite. This new distribution will offer a

performance quite better than the normal distribution.3

The rest of the article is organized as follows. Section 2 describes the databases

1The assumption of the finite variances for the log-growth rates is essential for the application of the stan-

dard Central Limit Theorem, rather than the assumption that the log-growth rates are normal. For alternative

Central Limit Theorems when studying city size, see, e.g., Lee and Li (2013).
2In this article we are not testing whether the city size distribution is lognormal, something implied if

Gibrat’s Law is fulfilled (Eeckhout, 2004). That is investigated in other articles, like for example Giesen

et al. (2010); González-Val et al. (2015).
3It is worth mentioning the recent work of Schluter and Trede (2013) where the authors consider a model

with the conclusion that the normalized growth city size distribution follows a Student−t.
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used. Section 3 introduces the parametric distributions used in this paper. Section 4

describes the empirical results obtained. Finally, Section 5 concludes.

2 The databases

We have used in this article data about US urban centers from three sources. The first

is the decennial data of the US Census Bureau of “incorporated places” without any

size restriction, for the period 1890-2000. These include governmental units classified

under state laws as cities, towns, boroughs or villages. Alaska, Hawaii and Puerto Rico

have not been considered due to data limitations. The data have been collected from

the original documents of the annual census published by the US Census Bureau.4

These data sets were first introduced in González-Val (2010), see therein for details,

and later used in other works like González-Val et al. (2015); Ramos and Sanz-Gracia

(2015). For the sake of brevity in this paper, we will consider the necessary data for

constructing the 1990-2000 log-growth rates of incorporated places.

The second source consists of all US urban places, unincorporated and incorpo-

rated, and without size restrictions, also provided by the US Census Bureau for the

years 2000 and 2010. The data for the year 2000 was first used in Eeckhout (2004)

and later in Levy (2009), Eeckhout (2009), Giesen et al. (2010), Ioannides and Sk-

ouras (2013) and Giesen and Suedekum (2014). The two samples were also used in

González-Val et al. (2015); Ramos and Sanz-Gracia (2015).

The third comes from a different and recent approach to defining city centers, de-

scribed in detail in Rozenfeld et al. (2008, 2011). They use a so called “City Clustering

Algorithm” (CCA) to get “an automated and systematic way of building population

clusters based on the geographical location of people.” (op. cit.) We use their US clus-

ters data based on the radius of 2 km. and for the years 1991 and 2000. Data sets of

4http://www.census.gov/prod/www/decennial.htmlLast accessed: July 7
th, 2015.
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this type have been used in Ioannides and Skouras (2013) and Giesen and Suedekum

(2014).

[Table 1 near here]

We offer in Table 1 the descriptive statistics of the used data for the US.

3 Description of the presented distributions

In this section we will introduce the distributions used along the paper5 for the (two

consecutive periods) log-growth rates, denoted by

gi,t = log xi,t − log xi,t−1 ∈ (−∞,∞)

where xi,t is the population of city i at time t. When a fixed t is taken we will simply

write g ∈ (−∞,∞) for the variable of all log-growth rates of the cross-sections taken.

3.1 Normal distribution

Firstly, we recall the normal distribution for the log-growth rates g. We thus set

fn(g, µ, σ) =
1

√
2πσ

exp

(

−
(g − µ)2

2σ2

)

where µ is real and σ > 0 are, respectively, the mean and the standard deviation of the

variable g according to this distribution.

5From a practical point of view, it is our interest in this paper to obtain a very good parametric fit of

the log-growth rate distributions. For that, we have first tried several distributions well-known in the eco-

nomics literature: the normal, the asymmetric exponential power (AEP) of Bottazzi and Secchi (2011),

which generalizes the Laplace distribution of, e.g., Johnson et al. (1995), Stanley et al. (1996) and references

therein, the α-stable distribution, see, e.g., Zolotarev (1986); Uchaikin and Zolotarev (1999) and references

therein (the calculations for the α-stable distribution have been performed using the STABLE software of

Robust Analysis Inc., see http://www.robustanalysis.com/) the generalized hyperbolic distri-

bution (Barndorff-Nielsen (1977); Barndorff-Nielsen and Halgreen (1977); Barndorff-Nielsen and Stelzer

(2005)), and the (non-standardized) Student-t distribution, see, e.g., Johnson et al. (1995) and references

therein. The results for the distributions not presented here are available from the author upon request.
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3.2 The double mixture exponential Generalized Beta 2 (dmeGB2)

For our new distribution “double mixture exponential Generalized Beta 2” we first

define some basic functions which will be employed by the former.

Then, let us consider

feGB2(g, a, b, p, q) =
a exp((g − b)ap)

B(p, q) (1 + exp(a(g − b)))
p+q

cdfeGB2(g, a, b, p, q) =
1

B(p, q)
B

(

exp(a(g − b))

1 + exp(a(g − b))
, p, q

)

u(g, ζ) = exp(−ζg)

l(g, ρ) = exp(ρg)

The feGB2 (cdfeGB2) is the exponential version of the Generalized Beta of the second

kind density (resp., cumulative distribution function, cdf) (McDonald, 1984; McDon-

ald and Xu, 1995; Kleiber and Kotz, 2003),

B(z, p, q) =

∫ z

0

tp−1(1 − t)q−1 dt , z ∈ [0, 1]

is the incomplete Beta function and B(p, q) = B(1, p, q) is the Beta function. The four

parameters a, p, q are positive shape parameters and b ∈ R is a location parameter. The

function u(g, ζ) will model the decreasing exponential part of the upper tail of our new

distribution, where ζ > 0, and l(g, ρ) corresponds to the increasing exponential lower

tail, with ρ > 0. The functions u, l are not normalized at this stage like in Ioannides and

Skouras (2013). Note that if the variable x follows a Pareto distribution and y = lnx,

then y follows an exponential distribution.

The new distribution we introduce here, which yields the best results out of the ones

we have dealt with, is based in one distribution of the work Ramos and Sanz-Gracia

(2015), simply taking the exponential of the variable under study, although the meaning

of the new variable will be log-growth rates. This distribution has two tails which are
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exponential with a mixture of exponential Generalized Beta 2, and body of this last

type. The switch between the tails and the body occurs at two exact thresholds ǫ (lower

tail-body) and τ > ǫ (body-upper tail). For the lower tail, the combining coefficient

will be denoted by ν ∈ (0, 1), and by θ ∈ (0, 1) for the upper tail. We require continuity

of the density function at the threshold points and overall normalization to one. They

are also imposed equal weight of the distributions of the mixing at the tails, like in

Ioannides and Skouras (2013), in order that the parameters ν, θ control the proportion

of each component of the combination in the lower (resp. upper) tail.

The resulting composite density is given by:

fdmeGB2(g, ρ, ǫ, ν, a, b, p, q, τ, ζ, θ)

=























b2[(1− ν) d2 feGB2(g, a, b, p, q) + ν e2 l(g, ρ)] g < ǫ

b2 feGB2(g, a, b, p, q) ǫ ≤ g ≤ τ

b2[(1− θ) c2 feGB2(g, a, b, p, q) + θ a2 u(g, ζ)] τ < g

where the constants are given as follows:

d−1
2 = 1− ν +

exp(−ρǫ) ν ρ cdfeGB2(ǫ, a, b, p, q) l(ǫ, ρ)

feGB2(ǫ, a, b, p, q)

e−1
2 =

(1 − ν) exp(ǫρ)

ρ cdfeGB2(ǫ, a, b, p, q)
+

ν l(ǫ, ρ)

feGB2(ǫ, a, b, p, q)

c−1
2 = 1− θ +

ζ θ exp(τζ) (1 − cdfeGB2(τ, a, b, p, q))u(τ, ζ)

feGB2(τ, a, b, p, q)

a−1
2 =

(1− θ) exp(−τζ)

ζ (1− cdfeGB2(τ, a, b, p, q))
+

θ u(τ, ζ)

feGB2(τ, a, b, p, q)

b−1
2 = e2

exp(ǫρ)

ρ
+ cdfeGB2(τ, a, b, p, q)− cdfeGB2(ǫ, a, b, p, q) +

a2

ζ exp(τζ)

This distribution depends on ten parameters (ρ, ǫ, ν, a, b, p, q, τ, ζ, θ) to be esti-

mated below by Maximum Likelihood (ML). Also, this distribution can be obtained in

an exact way from an optimization model similar to those accounted for in Ramos and

Sanz-Gracia (2015); we enclose a MATHEMATICA notebook with the main optimiza-
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tion equations as supplementary material. The model is based heavily on a previous

model by Parker (1999).

4 Results

In this Section we recall briefly the empirical results concerning the US samples on

use.

We have computed the log-growth rates between each two consecutive cross-sections

of our data. In order to avoid infinite values we have removed the observations for

which at least one of the population values is zero. The descriptive statistics of the data

so obtained is given in Table 2.

[Table 2 near here]

After the computation of the log-growth rates we have estimated the studied distri-

butions by the method of Maximum Likelihood (ML), using the software MATLAB

and MATHEMATICA. We report on Table 3 the estimated values of the parameters for

the dmeGB2 and the corresponding standard errors (SE) computed according to Efron

and Hinkley (1978) and McCullough and Vinod (2003). The ML estimators for the

parameters of the normal distribution are exact, being the mean and standard deviation

of each empirical dataset, see simply Table 2. We see that the estimations are rather

precise in almost all cases.

[Table 3 near here]

We have computed numerically as well the means and the standard deviations of

the variable g according to the estimated dmeGB2 distributions, which are shown in

Table 4. From it, we observe that the computed means and standard deviations are

almost identical to those of the empirical samples, and more importantly, that all of

them are finite.

[Table 4 near here]
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In order to assess the goodness of fit of the two distributions explicitly shown in

this paper, we use three standard statistical tests: the Kolmogorov–Smirnov (KS) test,

the Crámer–von Mises (CM) test and the Anderson–Darling (AD) test. These test are

very powerful when the sample size is as high as in the cases of this article (Razali and

Wah, 2011) and the last one is particularly useful when one wants to see the adequacy

of the distribution at the tails, see, e.g., Cirillo (2013). The results are shown on Ta-

ble 5. Very briefly, the normal distribution is strongly rejected always by the three tests.

Meanwhile, the dmeGB2 is not rejected 100% of the cases, and not by a small margin

precisely. Thus, the new dmeGB2 models always, with a high degree of accuracy, the

studied decennial log-growth rates of US.

[Table 5 near here]

Additionally, we compute more metrics allowing to select amongst the hypothe-

sized distributions, namely the msd and the pseudo R2 quantities adapted from Duran-

ton (2007) to this particular case (we simply replace the log-variable by the variable

under study):

msd =
1

m

m
∑

j=1

[Actual log growth rate(j)

−Mean Simulated log growth rate(j)]2

R2 = 1−
msd

var

where var is the empirical variance for log-growth rates and m is the number of obser-

vations in the empirical sample.

For the msd and R2 quantities, we generate 100 random samples6 and the results

are shown in Table 6. From it, it is clear that the dmeGB2 provides a much better fit

than the normal distribution.

6Each of these samples is of the sample size of the empirical data. The total generated observations

range from about 1,900,000 to 3,020,000 depending on the case under study and we hope the results to

be statistically significant. We have chosen a number of generated samples reasonably high enough while

maintaining computational feasibility.
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[Table 6 near here]

Also, we have computed the Akaike Information Criterion (AIC) and Bayesian or

Schwarz Information Criterion (BIC) (Burnham and Anderson, 2002, 2004), very well

adapted to the maximum likelihood estimation we have performed before. For the

computed AIC and BIC see the Table 7.

By these two different types of criteria we see that the dmeGB2 greatly outperforms

the normal distribution when considering the decennial log-growth rates of US city

sizes, in spite of the fact that our new distribution depends on ten parameters instead of

the two parameters of the normal distribution.

[Table 7 near here]

As a complement of the KS, CM, AD, msd, pseudo-R2, AIC and BIC criteria, we

show in Figure 1 an informal graphical approximation of the obtained fits for two of

the used samples. We observe excellent fits with small deviations, if any, at the tails

(the deviations at the tails are subject to an amplification effect, see, e.g., González-

Val et al. (2013)). However, the overall fit of the densities is visually excellent. Let us

remark that on the plots of the tails the cdf for the lower tail or 1−cdf for the upper tail

are nearly exponential, and therefore the graphs are almost linear, in agreement with

previous knowledge (Johnson et al., 1995; Stanley et al., 1996; Bottazzi and Secchi,

2011).

[Figure 1 near here]

5 Conclusions

In the preceding Section we have seen that a very appropriate parametric model for

the log-growth rate distribution of the city size of the US is the newly introduced (in

Subsection 3.2) dmeGB2.

In our opinion, the excellent parametric fit of this distribution is by itself a signifi-
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cant advance of the theory of the growth of city size.

Likewise, the normal distribution for the log-growth rates is clearly rejected empir-

ically in all of our samples, so one of the assumptions of the Gibrat’s process (see, e.g.,

Sutton (1997) and references therein, Eeckhout (2004) and Delli Gatti et al. (2005))

may not hold, and it deserves a reconsideration.

The variances given by the dmeGB2 in all of our cases of study are finite, so we

have found an example of distribution for the log-growth rates of city size for the US,

always not rejected empirically and with finite variances. This is an alternative to the

normal distribution.

This does not mean that other assumptions of Gibrat’s process do not hold in prin-

ciple. On the contrary, more research can be done to this respect. We hope to address

this issue in further work.

References

Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm

of particle size. Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 353(1674):401–419.

Barndorff-Nielsen, O. and Halgreen, C. (1977). Infinite divisibility of the hyperbolic

and generalized inverse Gaussian distributions. Z. Wahrscheinlichkeitstheorie verw.

Gebiete, 38:309–311.

Barndorff-Nielsen, O. and Stelzer, R. (2005). Absolute moments of generalized hyper-

bolic distributions and approximate scaling of normal inverse Gaussian Lévy pro-
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Table 1: Descriptive statistics of the data samples used

Sample Obs. Mean SD Min. Max.

Inc. places 1990 19,120 7,978 71,874 2 7,322,564

Inc. places 2000 19,296 8,968 78,015 1 8,008,278

All places 2000 25,358 8,232 68,390 1 8,008,278

All places 2010 29,461 7,826 65,494 1 8,175,133

US CCA 1991 (2 km) 30,201 8,180 104,954 1 12,511,237

US CCA 2000 (2 km) 30,201 8,977 108,342 1 12,734,150

Table 2: Descriptive statistics of the log-growth rates for the consecutive samples used

Sample Obs Mean SD Min Max

Ip 1990-2000 19,048 0.075 0.262 -4.467 3.581

Ap 2000-2010 24,685 0.035 0.282 -5.278 6.075

US CCA 1991-2000 (2 km) 30,201 0.105 0.156 -2.398 3.773

Table 3: ML estimators and standard errors (SE) for the dmeGB2 and the studied

log-growth rate samples. The estimators for the normal distribution are the mean and

standard deviation of the log-growth data, see Table 2

Sample dmeGB2

ρ (SE) ǫ (SE) ν (SE)

Ip 1990-2000 2.69 (0.13) -0.000 (0.014) 0.082 (0.006)

Ap 2000-2010 1.80 (0.08) -0.000 (0.012) 0.054 (0.003)

US CCA 1991-2000 (2 km) 3.04 (0.32) -0.121 (0.004) 0.265 (0.023)

a (SE) b (SE) p (SE) q (SE)

Ip 1990-2000 34.79 (0.27) -0.006 (0.001) 0.327 (0.003) 0.193 (0.002)

Ap 2000-2010 54.61 (0.38) -0.017 (0.001) 0.192 (0.002) 0.150 (0.001)

US CCA 1991-2000 (2 km) 20.40 (0.10) -0.019 (0.001) 1.581 (0.012) 0.432 (0.003)

τ (SE) ζ (SE) θ (SE)

Ip 1990-2000 0.31 (0.01) 2.57 (0.08) 0.51 (0.02)

Ap 2000-2010 0.17 (0.01) 2.45 (0.06) 0.46 (0.01)

US CCA 1991-2000 (2 km) -0.02 (0.02) 2.15 (0.21) 0.02 (0.04)
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Table 4: Means and standard deviations (SD) according to the estimated dmeGB2 and

the studied log-growth rate samples. Observe that the values are almost identical to

those of Table 2.

Sample Mean SD

Ip 1990-2000 0.075 0.260

Ap 2000-2010 0.035 0.273

US CCA 1991-2000 (2 km) 0.105 0.155

Table 5: p-values (statistics) of the Kolmogorov–Smirnov (KS), Cramér–Von Mises

(CM) and Anderson–Darling (AD) tests for the used samples and density functions.

Non-rejections are marked in boldface

Sample normal

KS CM AD

Ip 1990-2000 0 (0.130) 0 (111.162) 0 (623.525)

Ap 2000-2010 0 (0.150) 0 (198.399) 0 (1112.25)

US CCA 1991-2000 (2 km) 0 (0.097) 0 (95.971) 0 (597.806)

dmeGB2

KS CM AD

Ip 1990-2000 0.770 (0.005) 0.588 (0.099) 0.248 (1.253)
Ap 2000-2010 0.689 (0.005) 0.734 (0.073) 0.678 (0.569)
US CCA 1991-2000 (2 km) 0.798 (0.004) 0.886 (0.048) 0.927 (0.314)

Table 6: Values of the msd (in units of 10−3) and of the pseudo R2 inspired by Du-

ranton (2007) for the used samples and distributions. The most favoured values are

marked in boldface.

Sample normal dmeGB2

msd R2 msd R2

Ip 1990-2000 13.12 0.8095 0.64 0.9907
Ap 2000-2010 22.66 0.7160 1.00 0.9874
US CCA 1991-2000 (2 km) 4.44 0.8168 0.09 0.9963

Table 7: Maximum log-likelihoods, AIC and BIC for the used distributions and log-

growth rates samples. The lowest values of AIC and BIC for each sample are marked

in boldface

Sample normal

log-likelihood AIC BIC

Ip 1990-2000 -1,548 3,100 3,116

Ap 2000-2010 -3,817 7,638 7,655

US CCA 1991-2000 (2 km) 13,302 -26,600 -26,584

dmeGB2

log-likelihood AIC BIC

Ip 1990-2000 3,509 -6,998 -6,920
Ap 2000-2010 5,625 -11,231 -11,150
US CCA 1991-2000 (2 km) 19,771 -39,521 -39,438
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Figure 1: First row: empirical and estimated dmeGB2 ln(cdf) for the lower tail. Sec-

ond row: empirical (Gaussian kernel density, bandwidth=0.02) and estimated dmeGB2

density functions. Third row: empirical and estimated dmeGB2 ln(1 − cdf) for

the upper tail. Left-hand column: log-growth rates of all US places 2000-2010 and

dmeGB2. Right-hand column: log-growth rates of US CCA clusters 1991-2000, 2 km

and dmeGB2. Empirical in blue, estimated in red in all cases.
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