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Abstract

We analyze the determinants of tacit collusion in an infinitely repeated contest with

noise in the contest success function. Sustaining collusion via Nash reversion strategies

is easier the more noise there is, and is more difficult the larger is the contest’s prize

value. An increase in the contest’s number of players can make sustaining collusion

either more or less difficult.
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1 Introduction

In a contest, players compete by making irrecoverable expenditures or costly efforts to in-

crease their probability of winning a prize. Lobbying, electoral competition, litigation, ad-

vertising competition, R&D competition, military conflict, and sporting competition are all

examples of real-world contests. In many such contests, players’ winning probabilities are

determined not only by their expenditures, but also by pure chance or noise. For example,

a military conflict could be decided not only by the sizes of the countries’ armies, but also

by the geography and prevailing weather where the conflict takes place. Many real-world

contests are also repeated. Repeated contests could provide players opportunities and in-

centives to collude by mutually refraining from competing with one another. If players are

sufficiently patient (or, equivalently, believe the contest will repeat with a sufficiently high

probability), then long-term collusion could dominate short-term opportunism when players

use strategies with implicit threats to punish deviations from collusion. Continuing with the

military conflict example, the long-lived nature of interactions among countries could pro-

vide them incentives to alter their military expenditures or reach other agreements that have

them refrain from engaging in costly conflicts. Because there are many real-world repeated

contests with noise, gaining insight into how noise affects incentives for collusion in repeated

contests is important.

We analyze incentives for tacit collusion in an infinitely repeated contest with the

contest success function (CSF) introduced by Amegashie (2006b) where players’ winning

probabilities are affected by their expenditures as well as by a noise parameter.1 If players

are sufficiently patient, they can sustain maximal collusion (i.e., mutual refraining from

competing in the contest) by using Nash reversion strategies. We show that an increase

in the contest’s degree of noise makes sustaining collusion easier, while an increase in the

contest’s prize value makes sustaining collusion more difficult. An increase in the contest’s

number of players can make sustaining collusion either more or less difficult.

This paper contributes to a literature on collusion in repeated contests. The main

message of this literature is that the long-lived nature of repeated contests can provide play-

ers with incentives to collude, which typically leads to lowered contest expenditures. Yang

(1993) and Leininger and Yang (1994) analyze contests in which players take turns choos-

1Dasgupta and Nti (1998) use a somewhat similar CSF specification in their study of optimal contest
design, but interpret their parameterization as the probability that the contest does not award the prize,
which is more like the contests with the possibility of a draw studied by Blavatskyy (2010) and Jia (2012).
Existing studies of contests with noise in the CSF are either one-shot (Cason, Masters, & Sheremeta, 2013;
Wasser, 2013; Grossmann, 2014) or are repeated but do not analyze players’ incentives for collusion (Eggert,
Itaya, & Mino, 2011).
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ing whether to increase or leave unchanged their current expenditures, which accumulate

over the contest’s horizon; when these alternating moves occur over an infinite horizon, a

tit-for-tat-like strategy can enable players to keep their equilibrium expenditures low and

possibly even minimal. Linster (1994) analyzes cooperative arrangements determined by the

Nash bargaining solution when players’ disagreement payoffs arise from reversion to Nash

equilibrium play in an infinitely repeated contest. Amegashie (2006a) shows that increased

prize value asymmetry between players makes sustaining collusion easier in an infinitely

repeated contest. In an infinitely repeated game of investment with imperfect property

rights, Amegashie (2011) shows that an equilibrium with overinvestment exists where the

asset owner and the potential appropriator cooperate by not competing for the asset in a

subsequent contest as long as the asset owner makes a transfer increasing in investment.

Cheikbossian (2012) studies infinitely repeated contests between two groups of unequal size

and shows that collusion (in the sense of a group overcoming its free-rider problem and in-

creasing its expenditures) can be as easy to sustain in the larger group as it is in the smaller

group.2

Our results on the factors affecting the sustainability of collusion differ markedly from

the closely related analysis of Shaffer and Shogren (2008), who analyze incentives for collu-

sion in an infinitely repeated contest with the Tullock (1980) CSF.3 The exponent to which

each player’s expenditure is raised in the Tullock CSF is the closest analogue to the noise

parameter in the CSF we study. When players attempt to sustain collusion by using Nash

reversion strategies, Shaffer and Shogren (2008) show that a decrease in this exponent (i.e.,

an increase in the level of noise in the contest) makes sustaining collusion more difficult by

making the Nash reversion punishment less severe.4 Shaffer and Shogren (2008) also show

2There also exist a number of studies that analyze explicit collusion in one-shot contests (Alexeev &
Leitzel, 1991, 1996; Huck, Konrad, & Müller, 2002) and that develop models of infinitely repeated contests
to analyze non-collusive behavior (Itaya & Sano, 2003; Mehlum & Moene, 2006; Krähmer, 2007; Eggert
et al., 2011; Grossmann, Lang, & Dietl, 2011).

3The Tullock CSF takes the form

pit(x1t, ..., xnt) :=

{

x
γ

it

x
γ

it
+
∑

j 6=i
x
γ

jt

if xγ
it +

∑

j 6=i x
γ
jt 6= 0

1

n
otherwise.

The exponent γ > 0 measures the CSF’s sensitivity to expenditures in determining winning probabilities and
is commonly referred to in contest theory literature as the CSF’s discriminatory power following Hillman
and Riley (1989). For low levels of γ (i.e., high levels of noise), winning probabilities do not vary much
among players with small expenditure differences; in the limit as γ → 0, the CSF is completely insensitive
to expenditures and each player has a uniform 1/n probability of winning no matter their expenditures.
For high levels of γ (i.e., low levels of noise), winning probabilities vary widely among players with small
expenditure differences; in the limit as γ → ∞, the CSF becomes the all-pay auction CSF in which the
player making the highest expenditures wins with probability 1.

4Shaffer and Shogren (2008) analyze the critical discount rate (r∗) sustaining collusion, which relates to
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that an increase in the contest’s prize value does not affect the sustainability of collusion and

that an increase in the contest’s number of players makes sustaining collusion more difficult.

Broadly speaking, our results differ from one another because of the nature of players’ devi-

ations from collusion. In Shaffer and Shogren (2008), each player’s optimal deviation from

collusion involves making an infinitesimally small expenditure and winning the contest with

probability 1 because the Tullock CSF lacks noise in this case. By contrast, the CSF in our

model always has noise, thus each player’s optimal deviation from collusion is more complex

because making positive expenditures when all other players make 0 expenditures does not

guarantee that a player wins the contest with probability 1.

2 Model

Each period t = 0, 1, 2, ... a finite set of players I = {1, ..., n}, n ≥ 2 compete in a simultaneous-

move contest to win a prize of value v > 0 to each player. Each player i ∈ I makes irrecov-

erable expenditures xit ≥ 0 to increase its winning probability pit, given by the CSF with

noise parameter α from Amegashie (2006b):

pit(x1t, ..., xnt) :=
xit + α

xit + α +
∑

j 6=i(xjt + α)
. (1)

Rai and Sarin (2009) provide an axiomatic foundation and Jia (2012) provides a stochastic

foundation for CSFs of the form in (1). Increasing the degree of noise in the contest has the

effect of discouraging expenditures. Thus, we assume that α ∈ [0, α) where α := (n−1)v/n2

so that the stage game’s unique Nash equilibrium is interior; if instead α ≥ α, the stage

game’s unique Nash equilibrium has each player making an expenditure of 0 and there exists

no form of collusion yielding players a Pareto improvement thus making the analysis of

incentives for collusion moot.

When players make expenditures (x1t, ..., xnt) in period t, the expected profits of player

i ∈ I in period t are:

πit(x1t, ..., xnt) := pit(x1t, ..., xnt)v − xit

=
xit + α

xit + α +
∑

j 6=i(xjt + α)
v − xit. (2)

Each player discounts future profits to their present value with the discount factor δ ∈ (0, 1).

the critical discount factor (δ∗) we analyze as δ∗ = 1/(1 + r∗).
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3 Incentives for Collusion

In the absence of collusion, we suppose that players make expenditures according to the stage

game’s Nash equilibrium. As Amegashie (2006b) shows, when α < (n−1)v/n2 the stage game

has a unique Nash equilibrium in which each player makes expenditures xN = (n−1)v/n2−α

and earns expected profits πN = v/n2 + α each period.5

When α < (n − 1)v/n2, players can improve upon the stage game’s Nash equilibrium

by collusion where each player makes an expenditure of xC = 0 and earns expected profits

πC = v/n each period. We suppose that players use the following Nash reversion strategies

of Friedman (1971) to sustain collusion tacitly as a subgame perfect Nash equilibrium of the

infinitely repeated contest.6 Nash reversion strategies prescribe that each player i ∈ I

• makes an expenditure of xC = 0 in period t = 0;

• makes an expenditure of xC = 0 in periods t = 1, 2, ... as long as all players have

made expenditures of xC = 0 in all periods to date; otherwise, the player makes an

expenditure of xN = (n− 1)v/n2 − α forever.

As an alternative to Nash reversion strategies, we could analyze the collusive behavior sus-

tained by the optimal punishment approach of Abreu (1986, 1988). Adopting such an ap-

proach would be preferable if Nash reversion strategies did not sustain maximal collusion

because optimal punishments can support a wider range of collusive behavior in equilibrium.

However, as we show below, since Nash reversion strategies do sustain maximal collusion,

we opt to follow the Friedman (1971) approach.

The optimal deviation xD of a player i ∈ I from the collusive arrangement above solves

max
xit

πit(xit, 0, ..., 0) =
xit + α

xit + nα
v − xit. (3)

The first-order condition of (3) is

(n− 1)α

(xit + nα)2
v − 1 = 0, 7

5It is straightforward to show that the first derivative of (2) with respect to xit is positive when xjt = 0
for all j ∈ I \ {i} and α < (n− 1)v/n2, ruling out all players making 0 expenditures as a Nash equilibrium.
It is also straightforward to show that (2) is strictly concave in xit.

6Numerous studies of collusion in repeated contests follow a similar approach; see, for example, Linster
(1994), Amegashie (2006a, 2011), Shaffer and Shogren (2008), and Cheikbossian (2012). Therefore, we adopt
this approach so that our results on incentives for collusion are comparable to ones already existing in the
literature.

7It is straightforward to show that (3) is strictly concave in xit.
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which is satisfied by x̃D = ±
√

(n− 1)αv − nα, of which only x̃D =
√

(n− 1)αv − nα > 0

when α < (n − 1)v/n2. Therefore, the optimal deviation is xD =
√

(n− 1)αv − nα and

earns expected profits of πD = v − 2
√

(n− 1)αv + nα in the period of deviation.

Nash reversion strategies sustain collusion as a subgame perfect Nash equilibrium of

the infinitely repeated contest if and only if the discounted profits from collusion exceed the

discounted profits from deviation and reversion to the stage game’s Nash equilibrium forever;

that is, Nash reversion strategies sustain collusion if and only if

πC

1− δ
≥ πD +

δ

1− δ
πN ,

or

δ ≥ πD − πC

πD − πN

=
v − 2

√

(n− 1)αv + nα− v
n

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

) := δ∗. (4)

Note that δ∗ ∈ (0, 1) because πD > πC holds if and only if [(n − 1)v/n − nα]2 > 0, which

always holds, and πC > πN holds if and only if α < (n− 1)v/n2, which holds by assumption.

Any factor increasing δ∗ makes collusion more difficult to sustain and any factor decreasing

δ∗ makes collusion easier to sustain. The following proposition describes how δ∗ varies with

α, v, and n.

Proposition. When players attempt to sustain maximal collusion by using Nash reversion

strategies in an infinitely repeated contest with the contest success function in (1), (i) an

increase in the contest’s degree of noise makes sustaining collusion easier, (ii) an increase

in the contest’s prize value makes sustaining collusion more difficult, and (iii) an increase in

the contest’s number of players can make sustaining collusion either more or less difficult.

Proof. (i) Differentiating (4) with respect to α, we have

∂δ∗

∂α
= −

√

(n− 1)αv
{

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]}

α
[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 < 0,

which holds if and only if

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]

> 0,
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which holds if and only if
[

(n− 1)v − n2α
]2

> 0,

which always holds.

(ii) Differentiating (4) with respect to v, we have

∂δ∗

∂v
=

√

(n− 1)αv
{

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]}

v
[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 > 0,

which holds if and only if

(n− 1)v − n
[

2
√

(n− 1)αv − nα
]

> 0,

which always holds, as we have shown above in (i).

(iii) Differentiating (4) with respect to n, we have

∂δ∗

∂n
=

[

− αv√
(n−1)αv

+ α + v
n2

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2

−

[

v − 2
√

(n− 1)αv + nα− v
n

]

[

− αv√
(n−1)αv

+ α + 2v
n3

]

[

v − 2
√

(n− 1)αv + nα−
(

v
n2 + α

)

]2 ≷ 0.

Figure 1 illustrates the nonmonotonic relationship between n and δ∗ by graphing (4) for

α = 0.9, v = 100, and n ∈ [2, 100]. Figure 1 shows that an increase in n initially makes

collusion more difficult to sustain and eventually makes collusion easier to sustain.

The properties of δ∗ are fairly intuitive. An increase in α decreases πD, decreasing

incentives to deviate from collusion, while it increases πN , increasing deviation incentives

because of the less severe Nash reversion punishment; the former effect dominates, thus an

increase in α makes sustaining collusion easier. An increase in v has three effects on δ∗:

it increases πD and πN , both of which increase incentives to deviate from collusion, and

it increases πC , increasing incentives for collusion; the first two effects dominate, thus an

increase in v makes sustaining collusion more difficult. An increase in n also has three effects

on δ∗: it decreases πD and πN , both of which decrease incentives to deviate from collusion,

and it decreases πC , decreasing incentives for collusion; which of the three effects dominate

depends upon the levels of α, v, and n, thus an increase in n can make sustaining collusion
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Figure 1: Critical Discount Factor Sustaining Collusion (α = 0.9, v = 100, n ∈ [2, 100])

either more or less difficult.

4 Conclusion

Both expenditures and noise affect players’ performance in many real-world contests. Many

of these same contests are repeated, and therefore could offer players incentives to collude.

We analyze incentives for tacit collusion in an infinitely repeated contest with noise where

players can sustain collusion by using Nash reversion strategies if players are sufficiently

patient. We show that an increase in the contest’s degree of noise makes sustaining collusion

easier, an increase in the contest’s prize value makes sustaining collusion more difficult, and

an increase in the contest’s number of players can make sustaining collusion either more or

less difficult.

The analysis in this paper suggests a number of avenues for future research. Empirical

research in the form of a carefully designed experiment could investigate the results in this

paper. Analysis of alternative mechanisms sustaining collusion in repeated contests with

noise or extending the analysis in this paper to the case of players asymmetrically affected

by noise could test the generalizability of our results.
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