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Abstract

This paper proposes a simple technical approach for the derivation of future (forward) point-in-time
PD forecasts, with minimal data requirements. The inputs required are the current and future through-
the-cycle PDs of the obligors, their last known default rates, and a measure for the systematic
dependence of the obligors. Technically, the forecasts are made from within a classical asset-based
credit portfolio model, just with the assumption of a suitable autoregressive process for the systematic
factor. The paper discusses in detail the practical issues of implementation, in particular the
parametrization alternatives.

The paper also shows how the approach can be naturally extended to low-default portfolios with
volatile default rates, using Bayesian methodology. Furthermore, the expert judgments about the
current macroeconomic state, although not necessary for the forecasts, can be embedded using the
Bayesian technique.

The presented forward PDs can be used for the derivation of lifetime credit losses required by the new
accounting standard IFRS 9. In doing so, the presented approach is endogenous, as it does not require
any exogenous macroeconomic forecasts which are notoriously unreliable and often subjective.
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Introduction

The newly adopted IFRS 9 accounting standard requires the estimation of probability-weighted lifetime
credit losses for some categories of high-risk credit exposures. To this end, the classical risk-
management-style PD and LGD metrics can be used, in the form of their projections into the future.
The PDs of interest should reflect both obligor-specific and macroeconomic conditions. This seems to
correspond to what is known as Point-in-Time (PIT) PDs, rather than the more usual Through-the-Cycle
(TTC) PDs. The forecast of future (forward) PDs is a nontrivial task. Forecasting obligor-specific
conditions (resulting in TTC PD forecasts) is quite challenging, whereas forecasting future
macroeconomic conditions (necessary for PIT PDs) is often extremely difficult and unreliable, with
corresponding forecast errors being particularly high.

The notion of a PIT PD is more or less clear: it corresponds to the expected default rate (DR) of an
obligor in the nearest future, taking into account all available obligor-specific and macroeconomic
information. On the opposite, there is an ambiguity as to what the TTC PD actually means (and how it
can be estimated or verified using observable data). In this paper, the TTC PD is defined as the
unconditional expectation of an obligor default rate, i.e. the expectation in a situation where the
macroeconomic conditions are assumed to be unknown.

The external credit ratings and the Basel Il internal credit ratings are normally technically implemented
as a discretization of such TTC PDs, in order to factor out the influence of (uncertain, volatile, and
cyclical) macroeconomic conditions. The corresponding models are normally calibrated to long-term
averages of defaults rates and normally lack strong macroeconomic inputs. Due to their wide
availability, Basel Il PDs can serve as an abundant source of approximate TTC PDs.

For a portfolio of N; obligors, we assume that their trough-the-cycle (TTC) one-year probabilities of
default PDEtTC are known for each obligor i, for a recent past (in the following “current”) period t =
Ty, as well as for each future forecast period of interest t = Ty, T > Tp.

We further assume that during the current period Ty a number of the obligors Nﬁ defaults, resulting
in the observed portfolio default rate DRy, = Np /N, .

The measures we are looking for are the ex-ante forecasted (forward) PIT PDs for the individual
obligors for the future periods/years PDL-’};, Ty > Tp.
Asset-based Credit Portfolio Approach

A possible theoretical approach to deal with the PIT vs TTC transformations is based on the classical
credit portfolio modeling, in particular on the concepts of a firm asset return and a default barrier.

In this framework, the default of an obligor i in a period t is caused by the value of the obligor’s (firm’s)
assets falling below a certain critical (barrier) level (which is normally linked to the debt of the firm).

This condition can be restated as the firm’s asset return r; , happening to be (in that particular period)
lower than a certain critical return th. Thus, the probability of default of the obligor i can be specified
as:

PD;y = P(ri,t < th) (1)
The return 73, can be assumed to be normally distributed and represented as a weighted sum of a
systematic (common to all obligors) return 1, and an idiosyncratic (obligor-specific) return &; ;, with
these two return factors being independent of each other. Without loss of generality, after suitable



transformations, the factors can be mathematically expressed as standard normal variables related as
follows:

Tyt = Ebt\/; + &1 —p
Y:~N(0,1) (2)
&,te~N(0,1)
with the weighting (correlation) coefficient p € [0; 1] which is the measure of systematic dependence
(also often referred to as “R-squared” in credit portfolio models).

It follows that the unconditional distribution of 7;, (i.e. the distribution when the realization of both
Y, and &; ¢ is unknown) is then standard normal as well:

E(ri,)=04+0=0
Var(rn,) = (Jp) 1+ (Jp—1) 1=1

ri,t ~N (0' 1)

Application to TTC/PIT PDs

The systematic factor Y, in the above framework can be interpreted as one single macroeconomic
factor affecting all obligors in the portfolio under consideration. Then, the through-the cycle (TTC) PD,
which was defined above as the expected default rate without the knowledge of the macroeconomic
state, amounts for each obligor to the unconditional PD:

PD[T¢ = P(r;, <RP,) = ®(RY, (3)
with & denoting the cumulative standard normal distribution function.

The TTC PDs PDl-TtTC can be typically assumed to be exogenously known (e.g. from an internal or
external credit rating). Then, the implicit unknown barrier th can be directly derived from the known
TTC PD by inverting the @ function:

RP, = @~ (PDTC (4)

it
The point-in-time (PIT) PD assumes, on the other hand, the knowledge about the systematic factor i,

in particular that it is equal to a certain value W,. This PD can thus be viewed as the conditional PD:

PD{[" =P(r;y <RD |y =¥,) =

= P(Yefp + eie/1—p <RP|Y: = ;)

and, upon substitution from (4) :
PDIIT = P (W,\/p + £i0y/T— p < ®71(PDITC)) =

o~1(PD{[¢) -
:P<€i,t< ( Lt ) t\/ﬁ)
vi=p

Thus, finally:

PDgT=(p<¢_%PDﬂT)—“#J5> ;

J1-p
The above framework basically derives the PIT PD from the known TTC PD, p coefficient and known

realization W, of the systematic factor. It can however be reversed to endogenously calculate the
unknown macroeconomic factor:



v, :< ~1(pDITC) — 3;1(PDPIT)\/1—_p>

More realistically, for the current period Ty, on the portfolio of Ny obligors with various (known) TTC
PDs, the actual PIT PDs of obligors would be unknown, but there can be observed a total number of
N, defaults. Then, making use of:

oy _ \"VTo _pir
E(NR) = . PDfY!

the unknown systematic factor can be estimated such that:

TTC
e =$ pprr = 0 g (2 (PPI) — PP
To — . it . (6)
i=1 =1 \/ 1-— P

where @TO denotes the estimator of the systematic/macroeconomic factor for the period T,. For the

estimator to be accurate enough, the number of defaults N#O has to be sufficiently large (higher than
10 or even 20 as the rule of thumb).

PIT PD Forecasts

Given the above framework, the natural interpretation for the PIT PD forecast for a future period T
with an uncertain (stochastic) macroeconomic factor lpr would be the statistical expectation which

can be derived analogously from (5) as follows:

PDEMT = E (PDEIT) =

@ (PDIEY) ~ ¥, /o 7
v1=p

The future TTC PDs PDLTTTfC are assumed to be known. We further assume a normal distribution for the

=E|®D

stochastic factor wa, with parameters E (wa) and Var (l/JTf) which reflect correspondingly the

expectation and the uncertainty of future macroeconomic conditions. We make the following
substitution:

1-p
Then:
o O 0E) B (0,)
1-p
Var(x) = Varl(f 7:)/)

and, exploiting the following property (see Appendix):

E(x) )
V14 Var(x)

for x~N(E(x),Var(x))

E(®e(x)) = q><



we finally arrive at the closed-form expression for the prediction of future PIT PDs:

q)/q) (PDLTTTfC) (I’Z’Tf)‘/E (8)

pDPIT —
\/1 —p+Var (1/)Tf)p

le

Thus, given a description for the future uncertain macroeconomic factor wa, in the form of its

expected (predicted) value E (wa) and its variance (uncertainty) Var (wa), the portfolio modelling

framework allows to easily derive the forecasted PIT PD in that period. It is important to note that not
only the expected value of the macroeconomic factor affects the PIT forecast, but also its variance. In

most realistic cases, the nominator ®~1 (PDlT?TfC) (l/)Tf) ﬁ would be negative, and thus, the

higher the variance of the future macroeconomic factor, the higher the PIT PD forecast.

Two partial cases of the above equation are important. First, an exactly known future macroeconomic
factor might be technically described by the assumptions E (lpr) = ‘I’Tf and Var (l/)Tf) = 0. In that

case, the expression (8) reduces to the simple conditional PD (as seen in (5)):

- TTC
PD{, = @ ® (P lif) e
Ji-p

Second, if we use the unconditional distribution from the classical setting, i.e. E(lpr) = 0and

Var (wa) = 1, the expression (8) reduces to the TTC PD forecast:

PIT __ TTC
PD{fT = D1

We now return to our factor estimate LT’TO in (6) for the current period Ty and assume that it is accurate
enough, so that, formally, W7, can be assumed to be known exactly: ¥y, = @To. It becomes evident
that, for a future forecast period Ty, Tf > Ty, the distribution Ofll)Tf conditional on Wy should be such
that:

for (T = To) = 0: g, |Wr, > N(¥r,,0) (9)
for (T = To) = i Y, |Wr, » N(0,1)

If the above conversion conditions are satisfied, the PIT PD would show the “continuity” seen in
practice for default rates and macroeconomic indicators, meaning that for the time shortly after T,
the PIT PD would not differ much from the default rate seen in Ty, and the macroeconomic conditions
can also be assumed to be similar. For a remote forecast period (Tf — Ty — 00) on the other hand, no
assumptions about the macroeconomic conditions can be made, apart from their long-term
distribution, producing the PIT PD forecast which equals the TTC PD forecast.

Autoregression

The credit portfolio framework (in particular as in equation (5)) is specified generally, for each and
every period. There are no immediate assumptions about serial dependencies and correlations
between the systematic factors 4 and P, for T1 # T2.

The intuitively expected “continuity” for the ¥, process, along with the convergence criteria for the
conditional distribution of lpr|‘PT0 in (9) can be easily satisfied through the assumption of an

autoregressive process for the macroeconomic factor ;.



In its simplest form, the autoregressive order-1 process (AR(1)) is specified for a stochastic variable
x; as follows:

X¢ = Qg + a1X¢_q + &, &~N(0,0,) (10)
with parameters a,, a; and o,.

The distributional properties of the AR(1) process are as follows. The conditional distribution of X,
given the knowledge of xp, = X7, with T > T, can be shown (see e.g. Mills (2000), Johnston &
DiNardo (1997)) to be normal with:
E (xr, |7, ) = Xp,aa 77T + (1i—0a1)(1 — a,TrTo)
1 — q,2(TfTo) (11)
Var (fo|XTO) = g,? — a7 1 a2
The unconditional distribution, which is also the asymptotic distribution for Ty — Ty » oo, is:

E (xr,) = ﬁ
0.2
Var (fo) = 1_—a12

(12)

If we now assume the AR(1) specification (10) for the systematic factor 1), the convergence criteria
(9) can be achieved via a suitable parametrization restriction. In particular, for Ty — Ty — o:

E(¥r,)=0= ap=0
Var (wa) =1= o0,2=1-a,*
a; €10,1)

(13)

Given these restrictions, the convergence for Ty — T, — 0 is satisfied as well, as can be seen from (11).
Thus, there remains only one free parameter a;, which also determines the convergence speed. Given
the restrictions in (13), the expressions for a conditional distribution in (11), applied to the systematic
factor wa, simplify to:

E (¢Tf|l‘pT0) =W a, "o

var (1, [¥r,) = 1 — 0,277
Now, substituting (14) to (8), we finally obtain the forecast for the PIT PD based on the AR(1)

assumption for the systematic factor:
fo o) v o)

\/1 — palz(Tf_TO)

(14)

PIT,AR(1) _

Dy, = @

(15)

with current systematic risk being e.g. estimated from (6): Wz, = ‘T’TO.

Interestingly, the expression in (15) is thus identical to the simple conditional PIT PD with adjusted
(decaying according to power law) p coefficient (compare (15) to (5)).



Another feasible alternative for the process of the systematic factor, the autoregressive order-2
process, is generally specified for a stochastic variable x; as follows:

X¢ = Qg+ A1Xe_q + Xy + &, &~N(0,0,) (16)
The unconditional distribution, which is also the asymptotic distribution for Ty — Ty = o, can be
shown to be normal (see e.g. Mills (2000), Johnston & DiNardo (1997)) with parameters:

B (1) = e = v

Var (x ) _(A-a) o’
Tr (1+a)(1—az)*—a,?
The conditional distribution, given two known observations X7, and X, has no analytical expression,

but can be derived iteratively as:

E (fo|XT0,XT_1) =ay+aE (fo—1|XT0,XT_1) + a2 E(xr,—2| X1, X7_))
E(xTo lXTo:XT—1) = XTO

(18)
E(xr_ | X, Xr_ ) = Xz,
Tf—To
Var (foleOvXT—l) = O-gzz Wtz
t=1 (19)

wp = 1,W2 =aq
Wy = QW1 + ayWe_p fort > 2

Again, adopting an AR (2) process for the systematic factor requires following parameter restrictions
to satisfy the convergence criteria (9):

ao == 0
o2 = (1+a)(1 - ay)* - a;?) (20)
£ (1-ay)

Having iteratively determined the distribution parameters E (1[1Tf|lPTo,lPT_1) and

Var (1/)Tf|‘PTO,‘PT_1) from (18) and (19), and taking into account (20), the PIT PD forecast becomes
just:

-1 TTCY _
PITAR(2) _ ¢ /CD (PDi'Tf) E (wa|LPT°’qJT—1) ‘/E (21)

PD;
Ty \/1 —p+Var (¢Tf|LPT0’LIJT—1) p

Parametrization

The equations (15) and (21) show how future PIT PDs can be forecasted within the AR(1)and AR(2)
processes of the systematic parameter respectively, based on the following inputs:

- future TTC PDs PDETTf of the obligors
- the systematic correlation coefficient p
- autoregressive coefficients a, (for the AR(1) case) or a; and a, (for the AR(2) case)

- therecent/current (estimated) macroeconomic risk factors W, Wr._ .



We have already discussed the estimation of the latter factors from default rates (see (6)), this issue
will also be discussed in the section on Bayesian estimation below. We now elaborate on how the
remaining parameters can be determined in practice

The future TTC PDs were assumed to be known so far. Generally, they can be derived using current
TTC PDs and standard rating transition matrices. The credit ratings used for matrix estimation should
be TTC ratings. The external rating agencies typically adhere to the TTC approach, and it is also
recommended for the Basel Il internal ratings of banks. The future (forward) TTC PDs, derived from
transition matrix multiplications, would normally show convergence when the forecast horizon T
increases, with both obligors with currently high TTC PDs and obligors with currently low TTC PDs
converging to some future mid TTC PDs. Apart from this general TTC PD convergence, for some kinds
of products the dynamics of TTC PDs would also depend on the origination and maturity of a loan. E.g.
defaults caused by fraudulent behavior typically occur early after the loan origination, which would be
reflected in a peak of forward PIT PDs early on. On the other hand, e.g. for bullet loans, the default risk
would tend to materialize later on, with a peak of forward PIT PDs probably near maturity.

A natural choice for the correlation coefficient p are the values used in asset-based credit portfolio
models, either internal models of banks, or the implicit regulatory portfolio model from Basel Il (see
BCBS (2002)). As to the latter, the current EU regulations (CRR) prescribe following values for this
coefficient (denoted in the CRR text as “R” coefficient):

Non-retail obligors (CRR article 153):

- General setting: 12% (for PD=100%) to 24% (for PD=0%)

- Financial large and non-regulated companies: as above, multiplied with a factor of 1.25

- SMEs with sales under EUR 50M: as above, with up to 4% deduction, depending on the firm’s
sales

Retail obligors (CRR article 154):

- General setting: 3% (for PD=100%) to 16% (for PD=0%)
- Loans secured by real estate (residential mortgages): 15%
- Certain qualifying revolving loans (credit cards and similar): 4%

Thus, the Basel formulas generally assume some dependence of p on the PD (with riskier companies
being less dependent on systematic factors). This is quite a questionable assumption, although
implementing this dependency would not be problematic in the above framework, as the current and
future TTC PDs are assumed to be known. Also, the Basel settings realistically account for the company
size: the larger a company, the greater its dependency on macroeconomic conditions and thus the
higher the systematic risk portion of its return (see (2)).

It is important to note that the above CRR retail settings for p implicitly embed penalties for longer
maturities (see BCBS (2002)). This explains why the (long-term) residential mortgages have that much
higher settings compared to (short-term or cancellable) revolving loans. This distorts the p as a
measure for the systematic risk. For non-retail exposures, Basel Il accounts for the maturities
separately (in the so called “M” term), so that the “R” coefficient seems to capture well the systematic
risk.

The above Basel Il settings for the p do have the advantage of an “official” source. They were estimated
empirically in the early 2000s using the default statistics collected and aggregated by national banks.
For this reason, the current internal credit portfolio models of banks might be a more suitable choice
as the source for p. Most of these models nowadays follow the asset based approach presented above,

9



with risk decomposition into systematic and idiosyncratic parts. Normally in internal models, the p is
assigned to obligors based on their industry and/or region. Some models also account for the company
size. Generally, for non-retail exposures the models seem to rely on p values in the range of 10% to
40%, and for retail exposures — in the range of 0.5% to 5%.

If using the p setting from internal credit models, it is important to ensure the coefficient is estimated
in a similar way as it is used in the above framework. In particular, data involved for the estimation
should cover at least 1-2 credit cycles of default statistics and the PDs used for the estimation should
be the TTC PDs. The technical routines for p estimation (see e.g. Kalkbrener & Onwunta (2009)) do not
typically account for the serial correlation patterns; however, that does not affect the estimates
considerably, given long enough estimation data.

As to the autoregressive coefficients a; and a,, there would not be many immediate external sources,
and they should be rather based on available data, expert judgements, as well as common knowledge
about the macroeconomic credit cycles in the business segments involved. The forecasts from the
simple AR(1) process would generally show a mean-reverting behavior, the coefficient a; determining
the speed of reverting. The lower this coefficient, the sooner the forecasted PIT PDs converge to their
forecasted TTC PDs (in the extreme case, if a; = 0, all forecasted PIT PDs are equal to the forecasted
TTC PDs). The AR(1) process does not show a clear cyclicality/periodicity, in the sense that after
reverting to the mean, the process is equally likely to move on in either direction. However, the
periodicity can be approximated with some proxies, e.g. using the criterion of “double crossing” (see
Figure 1 in lllustration section below).

Using various sources, the range of 0.6 to 0.95 seems to be the most suitable for the AR(1) a;
coefficient. The value of 0.8 results in the average double crossing periodicity of some 10 years, which
seems to be also the average length of recent credit cycles (1990-2001, 2001-2009).

Using the more complicated AR(2) process results in refraining from the simple intuitive solution for
forward PDs in the AR(1) case (see (15)), but does offer some advantages. In particular, the AR(2)
processes are better able to realistically capture the cyclical behavior because — apart from the mean
reverting — they can show the so called momentum. With momentum, a process crossing its mean
from above is more likely to move on below the mean before returning to the mean (see Figure 2). In
technical/statistic terms, the AR(2) process with a suitable parametrization would also show a
frequency peak in terms of its spectral density, with the peak frequency calculated as:

1 ai(a; — 1)
= cos—1( 12 7 22
f 27Tcos ( 4q, (22)

The periodicity (in years) is then just 1/f. For these formulas to be valid, further parameter restrictions
are necessary (which actually facilitates the parameter choice):

-1<a,<1
a, —a; <1
a, +ta; <1
4a,2+a, <0
The values of a; around 1.2 to 1.4 and a, around -0.5 to -0.7 result in a realistic series behavior. With
a, = 1.3 and a, = —0.65, the theoretical spectral periodicity according to (22) is approximately 10
years (and the “double-crossing” periodicity is about 9 years).

(23)

Low Default Portfolios and Bayesian Estimation

The above framework requires the knowledge or estimation of the last realized systematic factor Wr,
(in the AR(1) case) or the last two factors Wr, W7 (in the AR(2) case). These generally unknown

10



factors can in principle be estimated from the known default statistics (as shown in (6) for ‘T’TO). The
uncertainty of such estimates depends primarily on the number of defaults N%; or N%)_l. With only a
small number of defaults (below 10), the estimates would be unreliable and volatile.

Fortunately, the problem can be elegantly cured in the above framework. For the simple AR(1) case,
instead of using the fixed estimates (Wr, = lT’TO), we can just assume that Wr is a random variable
with a distribution f(l,bTo). Then, the uncertainty of the estimate can just be embedded in the above
autoregressive process. In particular, if we assume E(l/)TO) and Var(l/)To) to be the expected value
and the variance of the distribution f(l/)TO), the distributional properties of the future systematic
factors in the simple AR(1) case become:

E (‘pr) = E(ir,) a, "o
Var (szf) = Var(l/)To)alz(Tf—To) +1— alz(rf-To) _ .

2(Tf-T
=1+ (Var(yr,) - 1ay (7=1)
Compared to the fixed estimate Wy, (14), the above adjustments:

- substitute the fixed estimate with its expected value for the short-term expectation
- do not change the long-term expectation (which still converges to 0)

- inflate the short-term variance of the systematic factor

- do not change the long-term variance (which still converges to 1)

If f(W;) is normal or approximately normal, the variance and expected value ofl,be can just be directly

used in (8) to arrive at the PIT PD forecasts which now account for the uncertainty in the current
systematic factor Wy, .

Now, turning our attention to deriving the distribution f(1/)T0) itself, the natural choice might be a
Bayesian-type modeling. In the Bayesian framework, there is an initial belief (in form of a “prior”
distribution) about a parameter to estimate. That belief changes (to a “posterior” distribution) if a new
evidence is encountered. We can assign (omitting the T, index):

- the uncertain current systematic factor ¥ as the parameter under investigation

- the unconditional distribution N(0,1) as its prior distribution

- the default count observation N? (out of N obligors) as the data evidence

- the (unknown) distribution f(lIJ|ND) as the posterior distribution of the systematic factor

We also assume the knowledge of (in this case, common for all obligors) TTC PDs and p coefficient.

Then, the posterior distribution can be estimated using the Bayes rule:

FAF(NP
f(WINP) = W (25)

with:

) = [ NP ) F

f(N°|w) = B(N,N?, PDP""|y) (26)
-1 TTCY _
-p

where B stands for the binomial distribution density.

11



As it turns out, the posterior distribution is quite close to normal (see Figure 3). Upon calculation, its
expected value and variance can be estiamted and used for the Bayesian forecast of PIT PDs as outlined
above in (24).

It is important to stress that the Bayesian approach implicitly accounts for the sample size. Holding the
default rate ND/N constant, an increasing N leads to a narrower posterior distrubution with its peak
getting more extreme and approaching the systematic factor W which is defined by PDP1T|‘P =
ND/N (see Figure 3).

Last but not least, the above Bayesian methodology allows for an easy way to embed expert
judgements about the current macroeconomic enviroment. To this end, the prior N(0,1) just needs to
be appropriately adjusted, e.g.to N(—1,1) for a judgement of a mild economic depression.

Application for IFRS 9 Lifetime PDs

In July 2014, the final version of the new IFRS 9 accounting standard was issued by the IASB. Upon the
endorsement through EU (currently ongoing) the standard is going to become the new ruleset for
accounting of financial instruments. One or the most important innovations of IFRS 9, compared to
previous regulation IAS 39, lies in the application of the expected lifetime credit losses for accounting
of a large class of risky credit exposures.

The following details advocate the usage of the above presented methodology for the calculation of
forward (future) PDs, with those PDs offering the basis for the calculation of expected lifetime credit
losses:

The IFRS 9 standard (see IFRS Foundation (2014)) requires that:
“An entity shall measure expected credit losses of a financial instrument in a way that reflects:

(a) an unbiased and probability-weighted amount that is determined by evaluating a range of possible
outcomes...

(c) reasonable and supportable information that is available without undue cost or effort at the
reporting date about past events, current conditions and forecasts of future economic conditions.”

IFRS 9 defines the reasonable and supportable information as “reasonably available at the reporting
date without undue cost of effort, including information about past events, current conditions and
forecasts of future economic conditions”, with no need to “undertake an exhaustive search”.

In the above framework, the probability weighting of macroeconomic outcomes is achieved through
the assumption of an autoregressive process for the systematic factor, which results in the future
factors being a stochastic variable covering all possible macroeconomic outcomes. The past events are
implicitly accounted for in the estimation of the current/past factors Wr,Wr_ . The forecasts are
basically a technical extrapolation of these (under autoregressive model parametrization), which is a
reasonable approach given that professional (expert-based) macroeconomic forecasts normally show
(at best) only very slight advantages compared to technical or even naive forecasts (such as the last
known conditions). The standard even explicitly states that “in some cases, the best reasonable and
supportable information could be the unadjusted historical information” and “the estimate ... does not
require a detailed estimate for periods that are far in the future-for such periods, an entity may
extrapolate projections form available, detailed information.”

The standard further reads that “The information used shall include factors that are specific to the
borrower, general economic conditions and an assessment of both the current as well as the forecast

12



direction of conditions...”. That also seems to correspond well to the presented approach, as it resorts
to TTC PDs, macroeconomic factors, and autoregressive extrapolation respectively.

Last but not least, the standard states that “possible data sources include internal credit loss
experience, internal ratings...”. That is also captured through embedding the default statistics and the
Basel-Il ratings in the presented approach.

13



[[lustrations

Figure 1: Simulated realizations for 100 years of systematic factor following AR(1) process with a1=0.8. Using the criterion of
“double crossing”, a full “cycle” begins e.g. in the year 75 and ends in the year 97.

Figure 2: Simulated realizations for 100 years of systematic factor following AR(2) process with a1=1.3 and a2=-0.65.
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Figure 3: Bayesian prior, posterior exact, and posterior approximated distributions for the systematic factor, with PDTTC =

3%, p = 15%, N = 10 (above) or N = 1000 (below), and observed default rate (N° /N) of 20%.
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Figure 4: Simulated PIT PDs and default rates, as well as forecasted (simple and Bayes) PIT PDs (as of T=0) for: PDTT¢ =
3%, p = 15%, N = 100, AR(1) process with a1=0.8.
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Figure 5: Simulated PIT PDs and default rates, as well as forecasted (simple and Bayes) PIT PDs (as of T=0) for: PDTT¢ =

5%, p = 15%, N = 100, AR(1) process with a1=0.8.

PD, DR
w
#

-1 -10 9 -8 -7 6 5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Pericd

— T D Default Rate = == PIT PD Forecast Simple

Figure 6: Simulated PIT PDs and default rates, as well as forecasted PIT PDs (as of T=0) for: PDTT¢ = 3%,p = 15%,N =
10,000, AR(2) process with a1=1.3 and a2=-0.65.
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Figure 7: Simulated PIT PDs and default rates, as well as forecasted PIT PDs (as of T=0) for: PDTT¢ = 3%,p =3%,N =
100,000, AR(2) process with al=1.3 and a2=-0.65.
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Appendix: Expected Value of Normal Cumulative Function
For x~N(u,0):

E(d(x)) = (\/%)

Proof:
E(®(x)) =E(®(+o0y)), y~N(0,1)

E(®(x)) =E(P(z<u+o0y)), 2z~N(01)

o) 8-y ) b=y 0= () o)
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