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Abstract

We explore the validity of the 2-stage least squares estimator with l1−regularization in both

stages, for linear models where the numbers of endogenous regressors in the main equation

and instruments in the first-stage equations can exceed the sample size, and the regression co-

efficients belong to lq− “balls” for q ∈ [0, 1], covering both exact and approximate sparsity

cases. Standard high-level assumptions on the Gram matrix for l2−consistency require careful

verifications in the two-stage procedure, for which we provide detailed analysis. We establish

finite-sample bounds and conditions for our estimator to achieve l2−consistency and variable-

selection consistency. Practical guidance for choosing the regularization parameters is provided.

JEL Classification: C13, C31, C36

Keywords: High-dimensional statistics; Lasso; sparse linear models; endogeneity; two-stage es-

timation

1 Introduction

The objective of this paper is consistent estimation and selection of regression coefficients in models

with a large number of endogenous regressors. We consider the linear model

Yi = XT
i β∗ + ǫi =

p∑

j=1

Xijβ∗
j + ǫi, i = 1, ..., n (1)

where ǫi is a zero-mean random error possibly correlated with Xi and β∗ is an unknown vector of

parameters of our main interests. The jth component of β∗ is denoted by β∗
j . The jth component of

Xi is endogenous if E(Xijǫi) 6= 0 and exogenous if E(Xijǫi) = 0. Without loss of generality, we will

assume all regressors are endogenous throughout the rest of this paper for notational convenience

(a modification to allow mix of endogenous and exogenous regressors is straightforward.). When

∗I thank James Powell, Martin Wainwright, and Demian Pouzo for useful discussions and comments. I am
also grateful to the editor Jianqing Fan, the AE, and the anonymous referees for detailed feedback and suggested
improvement on this paper. All errors are my own. This work was financially supported by Haas School of Business
at UC Berkeley.
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endogenous regressors are present, the classical least squares estimator will be inconsistent for β∗

(i.e., β̂OLS
p
9 β∗) even when the dimension p of β∗ is small relative to the sample size n. The

two-stage least squares (2SLS) estimation plays an important role in accounting for endogeneity

that comes from individual choice or market equilibrium (e.g., Wooldridge, 2002), and is based on

the following “first-stage” equations for the components of Xi,

Xij = ZT
ijπ∗

j + ηij =

dj∑

l=1

Zijlπ
∗
jl + ηij , i = 1, ...., n, j = 1, ..., p. (2)

For each j = 1, ..., p, Zij is a dj × 1 vector of instrumental variables, and ηij a zero-mean random

error which is uncorrelated with Zij , and π∗
j is an unknown vector of nuisance parameters. We will

refer to the equation in (1) as the main equation (or second-stage equation) and the equations in (2)

as the first-stage equations. Without loss of generality, the assumption E(Zijǫi) = E(Zijηij) = 0

for all j = 1, ..., p and E(Zijηij′ ) = 0 for all j 6= j
′

implies a triangular simultaneous equations

model structure.

High dimensionality arises in (1) and (2) when the dimension p of β∗ is large relative to the

sample size n (namely, p ≍ n or even p ≫ n) or when the dimension dj of π∗
j is large relative to

the sample size n (namely, dj ≍ n or dj ≫ n) for at least one j. This paper concerns the case

where p ≫ n and dj ≪ n, or the case where p ≫ n and dj ≫ n, and β∗ and π∗
j (for j = 1, ..., p) are

“sparse” in a way to be defined in Section 2. The analysis for the case p ≍ n or p ≫ n is useful, for

example, when we have the model Yi = f(Xi) + ǫi where ǫi ∼ N (0, σ2), E(ǫi|Xi) 6= 0 for all i, and

f(·) is an unknown function of interest and can be approximated by linear combinations of some

set of basis functions, i.e., f(Xi) =
∑p

j=1 βjφj(Xi).

An empirical example of the case p ≍ n or p ≫ n concerns the estimation of network or

community influence. For example, Manresa (2014) looks at how a firm’s production output is

influenced by the investment of other firms. As a future extension, she suggests an alternative

model that looks at the network influence in terms of the output of the other firms rather than

their investment:

Yit = αi + XT
it θ +

∑

j∈{1,...,n}, j 6=i

βjiYjt + ǫit

for i = 1, ..., n and t = 1, ..., T , where Xit denotes a vector of exogenous regressors specific to firm

i at period t (e.g., investment), and αi is the fixed effect of firm i. Notice that Yjt, the output

of other firms enters the right-hand-side of the equations above as additional regressors and βji’s,

j = 1, ..., n, and j 6= i are interpreted as the network influence arising from firm j’s output on

firm i’s output. Furthermore, the influence on firm i from firm j is allowed to differ from the

influence on firm j from firm i. Endogeneity arises from the simultaneity of the output variables

when cov(ǫit, ǫjt) 6= 0 (e.g., presence of unobserved network characteristics that are common to all

firms’ output). As a result, the number of endogenous regressors in the model above is of the order

O(n), which exceeds the number of periods T in the application considered by Manresa (2014).

In the literature on high-dimensional sparse linear regression models, a great deal of attention

has been given to the l1−penalized least squares. In particular, the Lasso is the most studied

technique (see, e.g., Tibshirani, 1996; Candès and Tao, 2007; Bickel, Ritov, and Tsybakov, 2009;

Belloni, Chernozhukov, and Wang, 2011; Belloni and Chernozhukov, 2011b; Loh and Wainwright,
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2012; etc.). Variable selection when the dimension of the problem is larger than the sample size has

also been studied in the likelihood method setting with penalty functions other than the l1−norm

(see, e.g., Fan and Li, 2001; Fan and Lv, 2011; Fan and Liao, 2014). Lecture notes by Koltchinskii

(2011), as well as recent books by Bühlmann and van de Geer (2011) and Wainwright (2015) have

given a more comprehensive introduction to high-dimensional statistics.

Recently, these l1−penalized techniques have been applied in a number of econometrics papers.

Caner (2009) studies a Lasso-type GMM estimator. Rosenbaum and Tsybakov (2010) study the

high-dimensional errors-in-variables problem where the non-random regressors are observed with

additive error and they present an application to hedge fund portfolio replication. Belloni, Chen,

Chernozhukov, and Hansen (2012) estimate the optimal instruments using the Lasso and in an em-

pirical example dealing with the effect of judicial eminent domain decisions on economic outcomes,

they find the Lasso-based instrumental variable estimator outperforms an intuitive benchmark. Fan,

Lv, and Li (2011) review the literature on sparse high-dimensional econometric models and also

cover other regularization methods for several models including the vector autoregressive model

for measuring the effects of monetary policy, panel data model for forecasting home price, and

volatility matrix estimation in finance.

For the triangular simultaneous equations structure (1) and (2), the case where dj ≫ n for

at least one j but p ≪ n has been considered by Belloni and Chernozhukov (2011b), where they

showed the instruments selected by the Lasso technique in the first-stage regression can produce

an efficient estimator with a small bias at the same time. In the case where p ≫ n and dj ≪ n

for all j, we can obtain the fitted regressors by a standard least squares estimation on each of the

first-stage equations separately as usual and then apply the Lasso using these fitted regressors in

the second-stage regression. Similarly, in the case where p ≫ n and dj ≫ n for all j, we can

obtain the fitted regressors by performing a regression with the Lasso on each of the first-stage

equations separately and then apply another Lasso estimation using these fitted regressors in the

second-stage.

Compared to existing 2SLS techniques which either limit the number of regressors entering the

first-stage equations or the second-stage equation or both, our two-stage estimation procedures with

l1−regularization in both stages are more flexible and particularly powerful for applications in which

the vector of parameters of interests is sparse and there is lack of information about the relevant

explanatory variables and instruments. In terms of implementations, our high-dimensional 2SLS

procedures are intuitive and can be easily implemented using built-in routines in software packages

(e.g., matlab and R) for the standard Lasso estimation of linear models without endogeneity. We

also provide practical guidance for choosing the regularization parameters. As we will see in Section

3, the complex structure of (1) and (2) and the nature of our regularized 2-stage least squares type

estimation render existing adaptive methods (e.g., Antoniadis, 2010; Sun and Zhang, 2010, 2012;

Belloni, et al., 2011; Gautier and Tsybakov, 2014; etc.) for setting the second-stage regularization

parameter less useful. Instead, we recommend the model-free ESCV (“Estimation Stability and

Cross Validation”) criterion proposed by Lim and Yu (2013) and applied in Yu (2013). Using the

estimates from the ESCV procedure, we also propose an alternative “plug-in” method for choosing

the second-stage regularization parameter, which in practice may be compared with the optimal

regularization parameter chosen by the ESCV criterion to determine whether the amount of penalty

is sufficient.
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In terms of analyzing the statistical properties, the extension from models with a few endoge-

nous regressors to models with many endogenous regressors (p ≫ n) in the context of triangular

simultaneous equations (1) and (2) for the two-stage estimation is not obvious. This paper aims

to explore the validity of these two-step estimators in the high-dimensional sparse setting. An-

other contribution of this paper is to introduce analysis that is suitable for showing estimation

consistency of the two-step type high-dimensional estimators. When endogeneity is absent from

model (1), there is a well-developed theory on what conditions on the design matrix X ∈ R
n×p are

sufficient for an l1−regularized estimator to consistently estimate β∗. In some situations one can

impose these conditions directly as an assumption on the underlying design matrix. However, when

employing a regularized 2SLS estimator in the context of triangular simultaneous linear equation

models in the high-dimensional setting, namely, (1) and (2), there is no guarantee that the random

matrix X̂T X̂
n (with X̂ obtained from regressing X on the instrumental variables) would automat-

ically satisfy these previously established conditions for estimation consistency. To the best of

our knowledge, previous literature has not dealt with this issue. This paper explicitly shows that

these conditions indeed hold for X̂T X̂
n with high probability under appropriate conditions. It also

establishes the sample size required for X̂T X̂
n to satisfy these conditions.

We begin in Section 2 with model assumptions imposed on (1) and (2). The high-dimensional

2SLS procedure and its theoretical properties are established in Section 3, where practical guidance

for choosing the regularization parameter is also provided. Section 4 presents simulation results

and compares the various practical choices of the regularization parameters. Section 5 concludes

this paper and discusses future extensions. The main proofs are collected in Appendices A and B.

Additional supplementary materials are included in:

https://sites.google.com/site/yingzhu1215/home/HD2SLS_Supplement.pdf.

Notation. For the convenience of the reader, we summarize here notations to be used through-

out this paper. The lq−norm of a vector v ∈ m × 1 is denoted by |v|q, 1 ≤ q ≤ ∞ where

|v|q := (
∑m

i=1 |vi|q)1/q when 1 ≤ q < ∞ and |v|q := maxi=1,...,m |vi| when q = ∞. For a matrix

A ∈ R
m×m, write |A|∞ := maxi,j |aij | to be the elementwise l∞−norm of A. The l2−operator

norm, or spectral norm of the matrix A corresponds to its maximum singular value: it is defined

as ||A||2 := supv∈Sm−1 |Av|2, where Sm−1 = {v ∈ R
m | |v|2 = 1}. The l∞ matrix norm (maxi-

mum absolute row sum) of A is denoted by ||A||∞ := maxi
∑

j |aij | (note the difference between

|A|∞ and ||A||∞). For a square matrix A, denote its minimum eigenvalue and maximum eigen-

value by λmin(A) and λmax(A), respectively. For functions f(n) and g(n), write f(n) % g(n) to

mean that f(n) ≥ cg(n) for a universal constant c ∈ (0, ∞) and similarly, f(n) - g(n) to mean

that f(n) ≤ c
′
g(n) for a universal constant c

′ ∈ (0, ∞); f(n) ≍ g(n) when f(n) % g(n) and

f(n) - g(n) hold simultaneously. For some integer s ∈ {1, 2, ..., m}, the l0−ball of “radius” s is

given by B
m
0 (s) := {v ∈ R

m | |v|0 ≤ s} where |v|0 :=
∑m

i=1 1{vi 6= 0}. Similarly, the l2−ball of

radius r is given by B
m
2 (r) := {v ∈ R

m | |v|2 ≤ r}. Also, write K(s, m, r) := B
m
0 (s) ∩ B

m
2 (r) and

K
2(s, m, r) := K(s, m, r) × K(s, m, r). For a vector v ∈ R

p, let J(v) = {j ∈ {1, ..., p} | vj 6= 0}
be its support, i.e., the set of indices corresponding to its non-zero components vj . The cardinality

of a set J ⊆ {1, ..., p} is denoted by |J |. Denote max{a, b} by a ∨ b and min{a, b} by a ∧ b. As a

general rule for the proofs, c constants denote generic positive constants that are independent of

n, p, d, Rq2 , Rq1 , and may change from place to place.
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2 Model assumptions

Throughout the rest of this paper, the following assumptions are imposed on the model (1) and (2).

Assumption 2.1: The data {Yi, Xi, Zi}n
i=1 are independent with finite second moments; for

all j = 1, ..., p and i = 1, ..., n, E(Zijǫi) = E(Zijηij) = 0 and E(Zijηij
′ ) = 0 for all j 6= j

′
.

Assumption 2.2 (Sparsity): The coefficient vector β∗ ∈ R
p belongs to the lq2−“balls” Bp

q2
(Rq2)

for a “radius” of Rq2 and some q2 ∈ [0, 1], where the lq−“balls” of “radius” R for q ∈ [0, 1] are

defined by

Bp
q (R) :=



β ∈ R

p | |β|qq =
p∑

j=1

|βj |q ≤ R



 for q ∈ (0, 1],

Bp
0(R) :=



β ∈ R

p | |β|0 =
p∑

j=1

1{βj 6= 0} ≤ R



 for q = 0.

For j = 1, ..., p, the coefficient vector π∗
j ∈ R

dj belongs to the lq1j
−“balls” Bdj

q1j (Rq1j
) for a “radius”

of Rq1j
and some q1j ∈ [0, 1], where Bdj

q1j (Rq1j
) is defined in a similar fashion as above. For nota-

tional simplicity, dj = d, q1j = q1, and Rq1j
= Rq1 for all j = 1, ..., p.

Remark. Assumption 2.2 requires the coefficient vectors to be “sparse” and formalizes the spar-

sity condition by considering the lq−“balls” Bp
q (Rq) of “radius” Rq where q ∈ [0, 1] (see, e.g., Ye

and Zhang, 2010; Raskutti, Wainwright, and Yu, 2011; Negahban, Ravikumar, Wainwright, and

Yu, 2012; this notion is also used for the Bridge estimator considered in Huang, Horowitz, and

Ma, 2008). For example, the exact sparsity on β∗ corresponds to the case of q = q2 = 0 with

Rq2 = k2, which says that β∗ has at most k2 non-zero components. In the more general setting

q2 ∈ (0, 1], membership in Bp
q2

(Rq2) has various interpretations and one of them involves how

quickly the ordered coefficients decay according to the hyperharmonic series. When q2 ∈ [0, 1), the

set Bp
q2

(Rq2) is non-convex and the l1−ball is the closest convex approximation of these non-convex

sets. In terms of estimation procedure design, the idea of approximating non-convex problems with

their closest convex member (so called “convex relaxation”) as in the Lasso provides a tremendous

computational advantage. In the rest of our analysis, we set the “radius” Rq2 =
∑p

j=1

∣∣∣β∗
j

∣∣∣
q2

when

q2 ∈ (0, 1] and Rq2 = k2 when q2 = 0. The growth conditions on (n, d, p, Rq1 , Rq2) will be specified

in Sections 3.1 and 3.2 when theoretical results are presented.

Assumption 2.3 (Restricted Identifiability): For a subset S ⊆ {1, 2, ..., p} and all non-zero

∆ ∈ C(S; q2, c∗) ∩ Sδ where

C(S; q2, c∗) := {∆ ∈ R
p : |∆Sc |1 ≤ c∗|∆S |1 + (c∗ + 1)|β∗

Sc |1} ,
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for some universal constant c∗ > 1 (with ∆S denoting the vector in R
p that has the same coordinates

as ∆ on S and zero coordinates on the complement Sc of S), and

Sδ := {∆ ∈ R
p : |∆|2 ≥ δ} ,

the matrix ΣX∗ = E

[
X∗T X∗

n

]
satisfies

∆T ΣX∗∆

|∆|22
≥ κ2 > 0,

with parameters (q2, δ, κ2), where X∗ := (Z1π∗
1, ..., Zjπ∗

j , ..., Zpπ∗
p). For j = 1, ..., p, the matrix

ΣZj
= E

[
ZT

j Zj

n

]
satisfies a similar restricted eigenvalue condition with parameters (q1, δj , κ1) for

a subset Sj ⊆ {1, 2, ..., d}. The choices of δ, δj , and S, Sj will be specified in Section 3.1.

Remarks. The following discussion is in regard to the RE condition on E

[
X∗T X∗

n

]
imposed by

Assumption 2.3 (similar argument can be made for E

[
ZT

j Zj

n

]
). When β∗ is exactly sparse (namely,

q2 = 0), we can take δ = 0 and choose S = J(β∗) (recalling J(β∗) denotes the support of β∗),

which reduces the set C(S; q2, c∗) ∩ Sδ to the following cone:

C(J(β∗); 0, c∗) :=
{

∆ ∈ R
p : |∆J(β∗)c |1 ≤ c∗|∆J(β∗)|1

}
.

Let us first consider a simple case where X∗ is observed. The sample analog of Assumption 2.3 over

the cone C(J(β∗); 0, c∗) is the so-called restricted eigenvalue (RE) condition on the Gram matrix
X∗T X∗

n , studied in Bickel, et. al. (2009), Meinshausen and Yu (2009), Raskutti, et al. (2010),

Bühlmann and van de Geer (2011), Loh and Wainwright (2012), Negahban, et. al. (2012), etc.

When β∗ is approximately sparse (namely, q2 ∈ (0, 1]), in sharp contrast to the exact sparsity

case, the set C(S; q2, c∗) is no longer a cone but rather contains a ball centered at the origin.

Consequently, it is never possible to ensure that
|X∗∆|22

n is bounded from below for all vectors ∆ in

the set C(S; q2, c∗) (see Negahban, et. al., 2012 for a geometric illustration of this issue). Therefore,

in order to obtain a general applicable theory, it is crucial to further restrict the set C(S; q2, c∗) for

q2 ∈ (0, 1] by intersecting it with the set Sδ := {∆ ∈ R
p : |∆|2 ≥ δ}. Provided the parameter δ and

the set S are properly defined, the intersection C(S; q2, c∗) ∩ Sδ excludes many “flat” directions

(with eigenvalues of 0) in the space for the case of q2 ∈ (0, 1]. To the best of our knowledge,

the necessity of this additional set Sδ, essential for the approximately sparse case of q2 ∈ (0, 1], is

first recognized explicitly in Negahban, et. al. (2012). We use this idea to derive a general upper

bound on the l2−error of the high-dimensional 2SLS estimator when β∗ and π∗
j (j = 1, ..., p) satisfy

Assumption 2.2, which covers a spectrum of sparsity cases (exact and approximate).

In our problem, X∗ is unknown and needs to be estimated. When applying the l1−regularized

2SLS procedure to estimate β∗, there is no guarantee that the random matrix X̂T X̂
n (where X̂ is

the estimate of X∗ =
[
Z1π∗

1, ..., Zpπ∗
p

]
) would automatically satisfy these previously established

conditions for estimation consistency. This paper provides results that imply the RE condition

holds for X̂T X̂
n with high probability provided Assumption 2.3 is satisfied for a sub-Gaussian matrix

X∗. Verifications of the RE condition provide finite-sample guarantees of Assumption 2.3 when the
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unknown X∗ is replaced with its estimate X̂ and the expectation is replaced with a sample average.

3 High-dimensional 2SLS estimation

For notational simplicity, in the main theoretical results presented below, we assume the regime

of interest is p ≥ n. The modification to allow p < n is trivial. For the first-stage regression, we

consider the following procedure:

π̂j ∈ argminπj∈Rd

1

2n
|Xj − Zjπj |22 + λn,j

d∑

l=1

σ̂Zjl
|πjl| (3)

for j = 1, ..., p and l = 1, ..., d, where σ̂Zjl
=
√

1
n

∑n
i=1 Z2

ijl. Denote the fitted regressors using the

first-stage estimates by X̂j := Zj π̂j for j = 1, ..., p, and X̂ =
(
X̂1, ..., X̂p

)
. For the second-stage

regression, we consider

β̂H2SLS ∈ argminβ∈Rp

1

2n
|Y − X̂β|22 + λn

p∑

j=1

σ̂X∗
j

|βj | , (4)

where σ̂X∗
j

=
√

1
n

∑n
i=1 X̂2

ij for j = 1, ..., p.

Remark. Upon solving (3), post-Lasso strategies such as thresholding or post-OLS-Lasso (which

performs an OLS with the regressors in the estimated support set J(π̂j) to obtain π̂OLS
j for

j = 1, ..., p) may be used before (4). In the third step, we apply the Lasso to estimate the main

equation parameters with these fitted regressors based on the second-stage post-Lasso estimates.

This type of procedure is in the similar spirit as the those in literature (see, e.g., Candès and Tao,

2007; Belloni and Chernozhukov, 2013).

We begin with Sections 3.1 and 3.2 by emphasizing the theoretical guarantees on parameter es-

timation and variable selection of β̂H2SLS , respectively. Note that these two sections do not deal

with practical guidance for choosing the regularization parameters, which is the focus of Section

3.3, where we discuss two existing model-free criteria in literature for regularized estimation and

then propose feasible counterparts of the theoretical choices of the regularization parameters from

Section 3.1. In the simulation experiments (Section 4), we compare the various practical choices of

the regularization parameters provided in Section 3.3.

3.1 Theoretical guarantees on the estimation of parameters

The first main result (Theorem 3.1) exhibits the non-asymptotic bound for |β̂H2SLS − β∗|2, which

establishes sufficient conditions for l2−consistency of β̂H2SLS . This result requires some regularity

conditions, which use the following definition of sub-Gaussian matrices based on Vershynin (2012)

and similar to Loh and Wainwright (2012).

Definition 3.1 (Sub-Gaussian variables and matrices). A random variable X with mean µ = E[X]

is sub-Gaussian if there is a positive number ρ such that supγ≥1 γ− 1
2 (E |X|γ)

1
γ ≤ ρ; a random

7



matrix A ∈ R
n×p is sub-Gaussian with parameters (ΣA, ρ2

A) where ΣA = E

[
AT A

n

]
, if each row

Ai ∈ R
p is sampled independently from a distribution, and for any unit vector u ∈ R

p, the random

variable uT AT
i is sub-Gaussian with parameter at most ρ2

A.

Remark. The sub-Gaussian assumption says that the variables need to be drawn from dis-

tributions with well-behaved tails like Gaussian. In contrast to the Gaussian assumption, sub-

Gaussian variables constitute a more general family of distributions. In particular, one can show

that ρ = Cσ = C
√
E[X2] when X is a zero-mean Gaussian random variable, and ρ = C

a−a
2 when

X is a zero-mean random variable supported on some interval [a, a], where C > 0 is a universal

constant (see, e.g., Wainwright, 2015).

Assumption 3.1: The error terms ǫ and ηj for j = 1, ..., p are zero-mean sub-Gaussian vec-

tors with parameters ρ2
ǫ and ρ2

ηj
, respectively; ρ2

η = maxj ρ2
ηj

. The random matrix Zj ∈ R
n×d is

sub-Gaussian with parameters (ΣZj
, ρ2

Z) for j = 1, ..., p.

Assumption 3.2: For every j = 1, ..., p, X∗
j := Zjπ∗

j . The matrix X∗ ∈ R
n×p is sub-Gaussian

with parameters (ΣX∗ , ρ2
X∗) where the jth column of X∗ is X∗

j .

Remark. Assumptions 3.1 and 3.2 are common in the literature (see, e.g., Loh and Wainwright,

2012; Negahban, et. al 2012; Rosenbaum and Tsybakov, 2013). In fact, the second part of Assump-

tion 3.1 on Zj ∈ R
n×d being sub-Gaussian for all j implies that Zjπ∗

j = X∗
j is also sub-Gaussian.

Therefore, the conditions that X∗ ∈ R
n×p is a sub-Gaussian matrix with parameters (ΣX∗ , ρ2

X∗)

where the jth column of X∗ is X∗
j (Assumption 3.2) is a mild extension.

To state the following results, we need to introduce some definitions. First, Let

T0 = max {|β∗|1T1, ρX∗ρη|β∗|1T2, ρX∗ρǫT2} , (5)

T1 = c1
κ̄

1
2
1 R

1
2
q1

κ
1− q1

2
1



√

ρ2
Zρ2

η

log(d ∨ p)

n




1− q1
2

, (6)

T2 = c2

√
log p

n
. (7)

We postpone the discussion of a practical procedure for setting the unknown parameters and

constants in T0 until Section 3.3.

Also, recall in Section 2 the sets we introduced,

C(S; q2, c∗) := {∆ ∈ R
p : |∆Sc |1 ≤ c∗|∆S |1 + (c∗ + 1)|β∗

Sc |1} ,

C(Sj ; q1, c∗) :=
{

∆ ∈ R
d : |∆Sc

j
|1 ≤ c∗|∆Sj

|1 + (c∗ + 1)|π∗
j,Sc

j
|1
}

,

for j = 1, ..., p, and some universal constant c∗ > 1, and the spherical sets

Sδ : = {∆ ∈ R
p : |∆|2 ≥ δ} ,

Sδj
: =

{
∆ ∈ R

d : |∆|2 ≥ δj

}
,
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and the intersections C(S; q2, c∗) ∩ Sδ and C(Sj ; q1, c∗) ∩ Sδj
. When β∗ and π∗

j are approximately

sparse (namely, q2, q1 ∈ (0, 1]), we choose S in C(S; q2, c∗) and Sj in C(Sj ; q1, c∗) to be the

following subsets

Sτ :=
{

j ∈ {1, 2, ..., p} :
∣∣∣β∗

j

∣∣∣ > τ
}

,

Sτ j
:=

{
l ∈ {1, 2, ..., d} :

∣∣∣π∗
jl

∣∣∣ > τ j

}
,

with the parameter τ = c∗+1
c∗−1

T0
κ2

and τ j = c0

√
ρ2

Z
ρ2

η
log(d∨p)

n

κ1
, respectively (recall the parameter κ1 and

κ2 defined in Assumption 2.3, Section 2). When β∗ and π∗
j are exactly sparse (namely, q2, q1 =

0), we set δ = δj = τ = τ j = 0 and choose S = J(β∗), Sj = J(π∗
j ), which reduces the sets

C(S; q2, c∗) ∩ Sδ and C(Sj ; q1, c∗) ∩ Sδj
, respectively, to the following cones:

C(J(β∗); 0, c∗) :=
{

∆ ∈ R
p : |∆J(β∗)c |1 ≤ c∗|∆J(β∗)|1

}
,

C(J(π∗
j ); 0, c∗) :=

{
∆ ∈ R

d : |∆J(π∗
j

)c |1 ≤ c∗|∆J(π∗
j

)|1
}

.

The first main theorem provides an upper bound on
∣∣∣β̂H2SLS − β∗

∣∣∣
2

when the first- and second-

stage estimations concern the programs in (3) and (4), respectively. This result concerns the case

where p ≥ n, d ≥ n, and β∗ and π∗
j (for j = 1, ..., p) satisfy Assumption 2.2. Before presenting the

main theorem, we provide the following lemma to ensure that the regressors are well-behaved.

Lemma 3.1: If {Zi}n
i=1 are independent with finite second moment σ2

Zjl
= E

(
1
n

∑n
i=1 Z2

ijl

)
for

j = 1, ..., p and l = 1, ..., d, then,

P

(
max

j, l

∣∣∣σ̂Zjl
− σZjl

∣∣∣ ≤ 1

2
σZ

)
≥ 1 − O (exp(−n)) ,

where σ̂2
Zjl

= 1
n

∑n
i=1 Z2

ijl and σ2
Z = maxj,l σ2

Zjl
. Furthermore, suppose Assumptions 2.1, 3.1, 3.2,

and the part related to the first-stage equations in Assumption 2.2 hold. For j = 1, ..., p and

some universal constant c∗ > 1, let Assumption 2.3 hold over the restricted sets C(J(π∗
j ); 0, c∗)

for the exact sparsity case q1 = 0 with Rq1 = k1, and over C(Sτ j
; q1, c∗) ∩ Sδj

, where δj =

c
′
κ

−1+
q1
2

1 R
1
2
q1

(√
ρ2

Z
ρ2

η log(d∨p)

n

)1− q1
2

(for a sufficiently small constant c
′

> 0) and τ j = c0

√
ρ2

Z
ρ2

η
log(d∨p)

n

κ1
,

for the approximate sparsity case (q1 ∈ (0, 1]). Also, for all vectors ∆ in these restricted sets,
∆T ΣZj

∆

|∆|22
≤ κ̄1, for j = 1, ..., p. If n ≥ c

′′
R

2
2−q1
q1 log(d ∨ p) for some sufficiently large constant c

′′
> 0

that depends on κ1, and the first-stage regularization parameters λn,j satisfy

λn,j = c0

√

ρ2
Zρ2

η

log(d ∨ p)

n
, (8)

for all j = 1, ..., p, then,

P

(
max

j=1,...,p

∣∣∣σ̂2
X∗

j
− σ2

X∗
j

∣∣∣ ≤ σX∗T1

)
≥ 1 − O

(
1

d ∨ p

)
,

9



where σ̂2
X∗

j
= 1

n

∑n
i=1 X̂2

ij , σ2
X∗ = maxj σ2

X∗
j
, and σ2

X∗
j

= E

(
1
n

∑n
i=1 X∗2

ij

)
.

Remark. The first part of Lemma 3.1 is implied by Lemma B.1 and the second part is proved

in Section A.2. We assume in the following that the regressors Zj are normalized such that

σ̂Zjl
≤ 1 (j = 1, ..., p and l = 1, ..., d), σZ = 1, and X̂j are normalized such that σ̂X∗ :=

maxj=1,...,p

√
1
n

∑n
i=1 X̂2

ij ≤ 1, σX∗ = 1, in Lemma 3.1.

Theorem 3.1: Let the first-stage regularization parameters λn,j satisfy (8) for j = 1, ..., p, and the

second-stage regularization parameter λn satisfies

λn =
c∗ + 1

c∗ − 1
T0 (9)

for some universal constant c∗ > 1, with T0 defined in (5). Suppose: (i) Assumptions 2.1, 2.2,

3.1, and 3.2 hold; (ii) Assumption 2.3 holds over the restricted sets C(J(β∗); 0, c∗), for the exact

sparsity case q2 = 0 with Rq2 = k2, and over C(Sτ ; q2, c∗) ∩ Sδ where δ = c3κ
−1+

q2
2

2 R
1
2
q2T 1− q2

2
0 and

τ = c∗+1
c∗−1

T0
κ2

, for the approximate sparsity case (q2 ∈ (0, 1]); (iii) Assumption 2.3 concerning the

first-stage matrices ΣZj
= E

[
ZT

j Zj

n

]
for j = 1, ..., p holds according to the specifications in Lemma

3.1; (iv) for all vectors ∆ in the restricted sets subject to those defined in Lemma 3.1,
∆T ΣZj

∆

|∆|22
≤ κ̄1,

for j = 1, ..., p; (v) for some constant c4 > 0 that depends on κ2, the condition

c4Rq2τ−q2

(
log p

n
∨ T1

)
≤ 1 (10)

holds with T1 defined in (6). Then,

|β̂H2SLS − β∗|2 ≤ cR
1
2
q2

κ
1− q2

2
2

T 1− q2
2

0 (11)

with probability at least 1 − O
(

1
p

)
, where c > c3 > 0 are some universal constants.

Remarks

The proof for Theorem 3.1 is provided in Sections A.1-A.3. If
R

1
2
q2

κ
1−

q2
2

2

T 1− q2
2

0 → 0 as n → ∞, then

β̂H2SLS is l2−consistent for β∗. If ηij ’s, ǫi’s, Zijl’s, and X∗
ij ’s are independent Gaussian random

variables, then ρη = Cση = C maxj

√
E[ 1

n

∑n
i=1 η2

ij ], ρǫ = Cσǫ = C
√
E[ 1

n

∑n
i=1 ǫ2

i ], ρZ = CσZ = C,

and ρX∗ = CσX∗ = C, where C > 0 is a universal constant. The term
√

ρ2
Zρ2

η
log(d∨p)

n in (6), T1, as

well as in (8), the condition for λn,j (which contrasts with
√

ρ2
Zρ2

η
log d

n for the Lasso estimation in

a single equation problem) comes from the union bound

P

(
max

j=1,...,p

∣∣∣∣
1

n
ZT

j ηj

∣∣∣∣
∞

≤ t

)
≥ 1 − O

(
exp

((
−nt2

ρ2
Zρ2

η

∧ −nt

ρZρη

)
+ log d + log p

))
,

10



by setting t ≍
√

ρ2
Z

ρ2
η log(d∨p)

n to ensure the tail probability of the order O
(

1
d∨p

)
(the notation

| 1
nZT

j ηj |∞ := maxl=1,...,d | 1
nZT

jlηj |). So, we set the first-stage regularization parameters λn,j =

c∗+1
c∗−1 t = c0

√
ρ2

Z
ρ2

η log(d∨p)

n for all j = 1, ..., p to take into account the fact that there are p endogenous

regressors in the main equation and hence, p regressions to perform in the first-stage. The term T1

in (6) provides a sharp upper bound on the first-stage prediction error

max
j=1,...,p

√√√√ 1

n

n∑

i=1

(Zij π̂j − Zijπ∗
j )2

when π∗
j (for all j = 1, ..., p) satisfies a sparsity condition as in Assumption 2.2.

The factor |β∗|1 that appears in the first two terms of (5) and therefore the choice of λn in (9),

as well as the upper bound on |β̂H2SLS −β∗|2, is related to the fact that the second-stage procedure

(4) plugs in the first-stage estimates X̂j = Zj π̂j as the surrogate of the unknown X∗
j = Zjπ∗

j .

Indeed, our simulation results suggest that the amount of regularization needed for (4) to perform

well in both estimation and selection increases with |β∗|1. Other surrogate-type Lasso estimators

such as the ones in Rosenbaum and Tsybakov (2013) and Zhu (2014) also involve the factor |β∗|1.

For the case of approximately sparse β∗ with q2 ∈ (0, 1], the rate
cR

1
2
q2

κ
1−

q2
2

2

T 1− q2
2

0 in (11) can be

interpreted as follows. Suppose only the top s2 components of β∗ in absolute values are estimated.

The fast decay imposed by the lq2− “balls” assumption on β∗ implies that the remaining p − s2

components have relatively smaller effects, so we can view the rate for q2 ∈ (0, 1] intuitively as one

that would be achieved if we were to choose k2 = s2 =
Rq2

κ−q2
2

T −q2
0 for an exactly sparse problem

with q2 = 0, which would yield the rate
c
√

s2

κ2
T0 =

cR
1
2
q2

κ
1−

q2
2

2

T 1− q2
2

0 .

With the conditions (in Theorem 3.1) imposed on the triangular structure (1) and (2), the upper

bound (11) on |β̂H2SLS − β∗|2 and the growth requirement (10) on (n, d, p, Rq1 , Rq2) are sharp.

Let us consider some simpler cases of Theorem 3.1. First, suppose ρη = 0 so the upper bound in

Theorem 3.1 reduces to |β̂H2SLS − β∗|2 ≤ cR
1
2
q2

κ
1−

q2
2

2

(√
ρ2

X∗ ρ2
ǫ log p

n

)1− q2
2

, which is the minimax-optimal

rate of the Lasso for the usual high-dimensional linear regression model (1) with E(Xiǫi) = 0 and

β∗ satisfies a sparsity condition as in Assumption 2.2 (see, Raskutti, Wainwright, and Yu, 2011).

Moreover, if β∗ is exactly sparse (q2 = 0), then |β̂H2SLS − β∗|2 ≤ c
κ2

(√
ρ2

X∗ ρ2
ǫ k2 log p

n

)
, the well-

known optimal rate of the Lasso for the usual exactly sparse high-dimensional linear regression

model (1) with E(Xiǫi) = 0.

Now, suppose ρη 6= 0, and β∗, π∗
j (j = 1, ..., p) are exactly sparse (q2 = q1 = 0). Theorem 3.1

implies that, if the second-stage regularization parameter λn satisfies λn = c∗+1
c∗−1T0 with T0 in (5)

taking the following form

T0 = max



c1|β∗|1

κ̄
1
2
1

κ1

√

ρ2
Zρ2

η

k1 log(d ∨ p)

n
, c2|β∗|1

√
ρ2

X∗ρ2
η log p

n
, c2

√
ρ2

X∗ρ2
ǫ log p

n



 , (12)

11



then, we have

|β̂H2SLS − β∗|2 ≤ c
√

k2

κ2

T0 (13)

with probability at least 1 − O
(

1
p

)
. If ρη 6= 0, d ≥ p, k1 ≥ 1, and |β∗|1 = O(1), then aside

from factors involving ρZ , ρη, κ̄1, κ1, and κ2, (13) is of the order O

(√
k2

[
|β∗|1

√
k1 log d

n

])
, which

differs from the optimal first-stage Lasso rate
√

k1 log d
n by

√
k2 |β∗|1. Just as the role

√
k2 plays in

the typical rate
√

k2 log p
n ≍

√
k2λn = c

′√
k2t (where

∣∣∣XT ǫ
n

∣∣∣
∞

= O(t)) for the usual exactly sparse

high-dimensional linear regression model (1) with E(Xiǫi) = 0, the factor
√

k2 appears in the rate

for |β̂H2SLS − β∗|2. The presence of the factor |β∗|1 is explained above.

Condition (10) in Assumption (v) of Theorem 3.1 ensures that with high probability, X̂T X̂
n

satisfies the RE condition over the restricted sets subject to those in Theorem 3.1. This result is

formalized in the following corollary.

Corollary 3.1: If λn,j (j = 1, ..., p) satisfy (8) and λn satisfies (9), under Assumptions (i)-(v)

in Theorem 3.1, for some universal constant c
′

> 0,

∆T X̂T X̂∆

n |∆|22
≥ c

′
κ2

with probability at least 1 − O
(

1
p∨d

)
for all non-zero ∆ in the restricted sets subject to those in

Theorem 3.1.

Remark. When β∗ and π∗
j (j = 1, ..., p) are exactly sparse, condition (10) implies that n %

k1k2
2 log(d ∨ p). When

∣∣∣π̂j − π∗
j

∣∣∣
2

is of the same order O(
√

k1 log(d∨p)
n ) for all j = 1, ..., p, the scaling

O
(
k1k2

2 log(d ∨ p)
)

on n required for X̂T X̂
n to satisfy the RE condition for the case of exactly sparse

β∗ and π∗
j (j = 1, ..., p) is attained and cannot be improved under the conditions of Theorem 3.1.

Note that, if
∣∣∣π̂j − π∗

j

∣∣∣
2

= 0 for “most” j’s (which is possible if the number of coefficients with

values 0 included in π̂j is “small”), then it is possible to reduce the scaling O(k1k2
2 log(d ∨ p)) to

O(k1k2 log(d ∨ p)) in condition (10) for the case of exactly sparse β∗ and π∗
j (j = 1, ..., p). This

result is stated in the following Theorem (Theorem 3.2), which requires additional assumptions as

below.

Assumption 3.3: For every j = 1, ..., p, Wj := Zjvj where vj ∈ K(c0k1, d, R) := B
d
0(c0k1)∩B

d
2(R)

and R = 2 maxj=1,...,p

∣∣∣π∗
j

∣∣∣
2
. The matrix W ∈ R

n×p is sub-Gaussian with parameters (ΣW , ρ2
W )

where the jth column of W is Wj . For all such W ’s, the matrix E

[
W T W

n

]
satisfies

∆T E

[
W T W

n

]
∆

|∆|22
≥

κW > 0 for all non-zero ∆ ∈ C(J(β∗); 0, c∗) (the constant c0 is defined in the following assump-

tion.).

Assumption 3.4: For every j = 1, ..., p, |J(π̂j)| ≤ c0k1 with probability at least 1 − O
(

1
d∨p

)
,

where c0 > 0 is some universal constant and |J(π̂j)| denotes the cardinality of the support of π̂j .
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Remark. Assumption 3.4 can be interpreted as an exact sparsity constraint on the first-stage

estimate π̂j for j = 1, ..., p, in terms of the l0− “ball”,

B
d
0(c0k1) :=

{
π̂j ∈ R

d |
d∑

l=1

1{π̂jl 6= 0} ≤ c0k1

}

for j = 1, ..., p. In the simplest case where the dimension of π∗
j is fixed and small relative to n for

all j = 1, ..., p (e.g., in the empirical example discussed in Section 1, each endogenous regressor,

firm j’s output, is instrumented with an exogenous variable, firm j’s investment), Assumption 3.4 is

satisfied trivially. For d ≥ n, it holds under the bounded “sparse eigenvalue condition” (e.g., Bickel,

et. al, 2009; Belloni and Chernozhukov, 2013), which is sufficient for the sparsity of π̂j to be of the

order k1 (the sparsity of π∗
j when it is exactly sparse). With sufficient “separation” requirement on

minl∈J(π∗
j

) |π∗
jl|, Assumption 3.4 also holds for the thresholded π̂j which removes false inclusions of

elements that are outside the support of π∗
j . The term O

(
1

d∨p

)
in the probability guarantee again

comes from the application of a union bound which takes into account the fact that there are p

endogenous regressors in the main equation and hence, p regressions to perform in the first-stage.

Theorem 3.2: Suppose Assumptions 2.1, 3.1, 3.3, and 3.4 hold. Also, assume: (i) β∗ and π∗
j

(j = 1, ..., p) are exactly sparse with at most k2 and k1 non-zero coefficients, respectively; (ii)

Assumption 2.3 holds over the restricted sets C(J(β∗); 0, c∗) and C(J(π∗
j ); 0, c∗) (j = 1, ..., p),

respectively, for the exact sparsity case q2 = 0 with Rq2 = k2 and q1 = 0 with Rq1 = k1. If

n ≥ c0k1k2 log(p ∨ d) for some sufficiently large constant c0 > 0, then, ∆T X̂T X̂∆
n|∆|22

≥ c
′
κ2 with proba-

bility at least 1−O
(

1
p∨d

)
, for a constant c

′
> 0 and all non-zero ∆ in C(J(β∗); 0, c∗). Consequently,

if λn,j satisfies (8) and λn = c∗+1
c∗−1T0 for T0 defined in (12), and for all vectors ∆ in C(J(π∗

j ); 0, c∗),
∆T ΣZj

∆

|∆|22
≤ κ̄1, j = 1, ..., p, then, with probability at least 1 − O

(
1
p

)
, (13) with κ2 replaced by κW

holds.

Remark. The proof for Theorem 3.2 is provided in Section A.4. Under Assumption 3.4, for

the case of exactly sparse β∗ and π∗
j (j = 1, ..., p), Theorem 3.2 requires k1k2 log d

n = O(1) (in con-

trast with
k1k2

2 log d
n = O(1) required by Theorem 3.1) to ensure that X̂T X̂

n satisfies the RE condition

over C(J(β∗); 0, c∗) with high probability.

3.2 Variable-selection for exactly sparse β∗

This section addresses the question of variable selection when β∗ is exactly sparse (q2 = 0). The

property P[J(β̂H2SLS) = J(β∗)] → 1 is referred to as variable-selection consistency. We present

two results regarding achievability of this property in the following, where the first one is based on

thresholding and the second one based on the “incoherence condition”.
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3.2.1 Variable-selection consistency with thresholding

Theorem 3.3: Suppose the assumptions in Lemma 3.1 hold and c
′
k2

(
log p

n ∨ T1

)
≤ 1 for some

sufficiently large constant c
′

> 0. Assume: (i) β∗ is exactly sparse with at most k2 non-zero coeffi-

cients; (ii) Assumption 2.3 holds over the restricted sets C(J(β∗); 0, c∗) for the exact sparsity case

q2 = 0 with Rq2 = k2. If the regularization parameters λn,j (j = 1, ..., p) satisfy (8), λn satisfies (9),

and minj∈J(β∗) |β∗
j | > c

√
k2

κ2
λn = B, then, J(β̂H2SLS) ⊇ J(β∗) with probability at least 1 − O

(
1
p

)
.

Moreover, let the thresholded estimator β̄j = β̂j,H2SLS1
{∣∣∣β̂j,H2SLS

∣∣∣ > B1

}
for j = 1, ..., p and

B1 > B. If minj∈J(β∗) |β∗
j | > B1, then, J(β̄) ⊆ J(β∗).

Remark. The proof for Theorem 3.3 is provided in Section A.5. Theorem 3.3 is analogous to

results in literature (e.g., Meinshausen and Yu, 2009; Belloni and Chernozhukov, 2011a). The first

claim says as long as the minimum value of |β∗
j | over j ∈ J(β∗) is not too small, then the two-stage

Lasso does not falsely exclude elements that are in the support of β∗ with high probability. The

second claim says that with a stronger condition on minj∈J(β∗) |β∗
j |, additional thresholding can

remove false inclusions of elements that are outside the support of β∗.

3.2.2 Variable-selection consistency with “incoherence condition”

Under additional assumptions, it is possible for β̂H2SLS to achieve perfect selection without thresh-

olding, as we will see in the following result.

Theorem 3.4: Suppose the assumptions in Lemma 3.1 hold and c
′
k2T1 ≤ 1, n ≥ c

′′
k3

2 log p,

for some sufficiently large constant c
′
, c

′′
> 0. Assume: (i) β∗ is exactly sparse with at most k2

non-zero coefficients; (ii)

∥∥∥∥E
[
X∗T

J(β∗)cX∗
J(β∗)

] [
E(X∗T

J(β∗)X
∗
J(β∗))

]−1
∥∥∥∥

∞
= 1 − φ (14)

for some φ ∈ (0, 1]. If the regularization parameters λn,j satisfies (8) and

λn =

(
2 − (c̄−2)φ

(c̄−1)

)
(c̄ − 1)

(c̄ − 2 − ς)φ
T0 (15)

for some universal constant c̄ > 2 and any small number ς > 0, with T0 defined in (5), then,

with probability at least 1 − O
(

1
p

)
: (a) program (4) has a unique optimal solution β̂H2SLS ; (b)

J(β̂H2SLS) ⊆ J(β∗); (c)

|β̂H2SLS,J(β∗) − β∗
H2SLS,J(β∗)|∞ ≤ λn


 (c̄ − 2 − ς)φ(

2 − (c̄−2)φ
(c̄−1)

)
(c̄ − 1)

+ 1




∥∥∥∥∥∥∥


X̂T

J(β∗)X̂J(β∗)

n




−1
∥∥∥∥∥∥∥

∞

= B2,

14



where, for some constant c0 > 1,

∥∥∥∥∥∥∥


X̂T

J(β∗)X̂J(β∗)

n




−1
∥∥∥∥∥∥∥

∞

≤ c0

√
k2

λmin

(
E

[
1
nX∗T

J(β∗)X
∗
J(β∗)

]) ; (16)

(d) if minj∈J(β∗) |β∗
j | > B2, then, J(β̂H2SLS) ⊇ J(β∗). As a consequence, J(β̂H2SLS) = J(β∗).

Remark. The main proof for Theorem 3.4 is provided in Section A.6. Theorem 3.4 shows

that under a population “incoherence condition” (14) similar to Wainwright (2009), we have

J(β̂H2SLS) ⊆ J(β∗) with high probability. The “incoherence condition” is a refined version of

the “irrepresentable condition” by Zhao and Yu (2006) and the “neighborhood stability condition”

by Meinshausen and Bühlmann (2006). Bühlmann and van de Geer (2011) shows this type of con-

ditions is sufficient and “essentially necessary” for the Lasso to correctly excludes elements that are

outside the support of β∗ with high probability. If each row of X∗ ∈ R
n×p is sampled independently

from N (0, ΣX∗) with the Toeplitz covariance matrix

ΣX∗ =




1 ̺X∗ ̺2
X∗ · · · ̺

p−1
X∗

̺X∗ 1 ̺X∗ · · · ̺
p−2
X∗

̺2
X∗ ̺X∗ 1 · · · ̺

p−3
X∗

...
...

...
. . .

...

̺
p−1
X∗ ̺

p−2
X∗ · · · ̺X∗ 1




,

condition (14) is satisfied (see, e.g., Wainwright, 2009); moreover, evidence from our numerical

integration suggests that φ = 1 − ̺X∗ . The correlations between explanatory variables of agents of

various proximity in a network or community can be naturally interpreted by the Toeplitz structure.

For example, in the empirical example discussed in Section 1, firms that are “closer” might share

more similarities in terms of production levels and the correlation between two firms’ production

levels decays geometrically in the degree of their “closeness”. Note that the second-stage regular-

ization parameter λn in (15) increases as the parameter φ decreases. Higher dependence between

the components X∗
ij with j ∈ J(β∗) and X∗

ij
′ with j

′ ∈ J(β∗)c leads to higher penalty level in

(15); consequently, in order to ensure variable-selection consistency, the choice in (15) is generally

greater than the choice in (9), which concerns parameter estimation and does not need to account

for the correlation between the regressors. However, when the components of X∗
i are independent

of each other so that φ = 1, and as long as c̄ > 2 (ς > 0) in (15) is sufficiently large (respectively,

sufficiently small) and c∗ > 1 in (9) is sufficiently large, then (15) and (9) are approximately equal.

Imperfect variable selection and post-penalized procedures

The variable selection consistency of β̂H2SLS is a desirable property; not only it guarantees the

sparsity of β̂H2SLS to be the same as the sparsity of β∗, most importantly it allows us to conduct

post-selection inference by performing low-dimensional procedures on the selected model. However,

we recognize that the conditions required in Theorem 3.3 or Theorem 3.4 are strong and perfect

variable selection might be hard to achieve in practice. We briefly discuss a few solutions to the

issue of imperfect variable selection in the following.
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If the interest is only the sparsity of β̂H2SLS , the bounded “sparse eigenvalue condition” (e.g.,

Bickel, et. al, 2009; Belloni and Chernozhukov 2011a, 2013) is sufficient for the number of additional

unnecessary components selected by β̂H2SLS to be of the order k2. “Sparse eigenvalue conditions”

are also useful for analyzing a post β̂H2SLS estimator similar to Belloni and Chernozhukov (2011a,

2013), which may attain a rate no slower than β̂H2SLS . If the interest is post-selection inference,

it is possible to build another type of post procedure which uses β̂H2SLS as an initial estimate to

construct confidence intervals for individual coefficients and linear combinations of several of them

(similar to Zhang and Zhang, 2013). Given that our focus here is the validity of the traditional

2SLS estimator with the l1−regularization in both stages under high-dimensional scenarios, these

aforementioned post strategies are beyond the scope of this paper but they are definitely worthwhile

exploring in future research.

3.3 Choosing the regularization parameters

Because of the complex structure of model (1) and (2) and the nature of our two-stage estimation,

existing adaptive methods (e.g., Antoniadis, 2010; Sun and Zhang, 2010, 2012; Belloni, et al., 2011;

Gautier and Tsybakov, 2014; etc.) for setting the second-stage regularization parameter λn are less

useful as they only have to deal with one unknown parameter related to the size of noise in a single

linear regression model. As we have seen in (9), the choice of our λn depends on several unknown

parameters: ρX∗ , ρǫ, |β∗|1, ρZ , ρη, κ̄1, κ1, and Rq1 . Data-driven regularization parameter selection

with theoretical guarantee turns out to be a particular challenge for the problem of our interest.

In the following, we discuss two model-free criteria for choosing the regularization parameters in

literature and also propose a feasible counterpart of the theoretical choice of the regularization

parameter in (9). We then compare in our simulation experiments (Section 4) the amount of

regularization imposed by these model-free criteria with the feasible counterpart of the theoretical

choice.

When the Lasso is applied to estimate the standard high-dimensional sparse linear regression

model (1) with exogenous X, Cross-Validation (CV) is the most popular approach for choosing data-

driven regularization parameters (Allen 1974; Stone 1974). When facilitated by data resampling

and parallel computing, CV finds a regularization parameter that locally minimizes the prediction

error at a feasible computational cost (Breiman 1995, 1996, 2001; Hastie et al. 2002). However,

Lasso+CV tends to overfit the model and perform poorly in parameter estimation especially when

the regressors are correlated (see e.g., Bach, 2008; Meinshausen and Bühlmann, 2010; Lim and Yu,

2013; Yu, 2013). By combining a new metric, “Estimation Stability” (ES), with the CV, Lim and

Yu (2013) propose an alternative model-free criterion ESCV, which yields a smaller-size model but

similar performance in prediction relative to the CV choice. According to Lim and Yu (2013) as

well as Yu (2013), the ESCV outperforms the CV in variable selection and substantially reduces

false positive rates for exactly sparse models, and also outperforms the CV in parameter estimation

for models with correlated regressors. To define the ES criterion, they adopt the idea of cross-

validation data perturbation where n observations are randomly assigned into T subsamples of size

(n − L) with L =
⌊

n
T

⌋
. Given a regularization parameter λm and the subsample t, the Lasso is
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performed to obtain β̂t(λ
m) and Ŷt(λ

m) = Xβ̂t(λ
m). For m = 1, ..., M , Lim and Yu then form

ES(λm) :=
V̂ar(Ŷ (λm))
∣∣∣ ¯̂Y (λm)

∣∣∣
2

n

=
L

n − L

1

Z2(λm)
(17)

where

V̂ar(Ŷ (λm)) :=
1

T

T∑

t=1

∣∣∣Ŷt(λ
m) − ¯̂

Y (λm)
∣∣∣
2

n
, (18)

Z2(λm) :=
¯̂
Y (λm)√

n−L
L V̂ar(Ŷ (λm))

|w|2n := 1
n

∑n
i=1 w2

i ,
¯̂
Y (λm) := 1

T

∑T
t=1 Ŷt(λ

m). Note that (18) is proportional to the average pairwise

squared Euclidean distance:

A(λm) :=
1(
T

2

)
∑

t6=t′

∣∣∣Ŷt(λ
m) − Ŷt′ (λm)

∣∣∣
2

n
. (19)

They further point out that ES (17) is in fact the reciprocal of a test statistic for testing H0 :

Xβ∗ = 0. To deal with the high noise situation where ES may not have a well-defined minimum,

Lim and Yu suggest the combined ESCV criterion: Choose λm such that it minimizes ES(λm)

over all m and
∑p

j=1 σ̂Xj

∣∣∣β̂j(λm)
∣∣∣ (σ̂Xj

=
√

1
n

∑n
i=1 X2

ij and β̂j(λm) is the Lasso estimate based

on λm using the entire sample) is no greater than the one resulting from the optimal CV choice.

They recommend a grid-search algorithm to find a local minimum of ES as often done for CV.

Consequently, the ESCV enjoys a similar computational advantage to that of the CV and they

both work well in the parallel computing paradigm.

To test the applicability of the model-free criteria discussed above in our problem, we simu-

late data sets with various model structures in Section 4 and apply either the Lasso+CV or the

Lasso+ESCV in both (3) and (4). An estimate β̂ of β∗ is a function of
(
λ

mj

n,j

)p

j=1
and λm

n where

mj = 1, ..., M for j = 1, ..., p, and m = 1, ..., M . Ideally, the best λm
n should be selected as the

optimum that minimizes the CV or the ESCV criterion over all combinations
[
λm

n , (λ
mj

n,j)p
j=1

]
. This

procedure, however, is computationally expensive when p is large as the number of combinations

scales as Mp. Instead, we use the heuristic which selects λm
n only as the optimum that minimizes

the CV or the ESCV criterion over combinations

[
λm

n , (λ
m∗

j

n,j )p
j=1

]
where λ

m∗
j

n,j is the optimum choice

for estimating the jth equation in the first-stage. We then compare such λm
n := λm∗

n with the

feasible (plug-in) counterpart of the theoretical choice in (9).

To construct the feasible (plug-in) counterpart of (9), instead of trying to deal with all the

unknown parameters and constant c1 in T1 (6) (which bounds the first-stage prediction error

maxj=1,...,p

√
1
n

∑n
i=1(Zij π̂j − Zijπ∗

j )2 from above), we suggest estimating 1
n

∑n
i=1(Zij π̂j − Zijπ∗

j )2
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directly by the formula as in (19):

T̂1,j :=
1(
T

2

)
∑

t6=t′

∣∣∣∣Zj π̂jt(λ
m∗

j

n,j ) − Zj π̂jt
′ (λ

m∗
j

n,j )

∣∣∣∣
2

n
(20)

using the optimal first-stage regularization parameters λ
m∗

j

n,j , j = 1, ..., p according to either the CV

or the ESCV criterion. For the second-stage regularization parameter selection, when either the

ES criterion (17) or the feasible plug-in method is used, it adjusts the amount of regularization to

account for the noise from the first-stage estimates X̂j as the surrogate of the unknown X∗
j = Zjπ∗

j

in the second-stage estimation (4).

Apart from the first-stage prediction error, the second-stage regularization parameter λn in (9)

also depends on β∗, ρη, ρǫ, and ρX∗ . Upon the Lasso+CV or Lasso+ESCV estimates π̂j = π̂j(λ
m∗

j

n,j )

of π∗
j from (3) for all j = 1, ..., p and β̂ = β̂(Λn) (Λn =

[
λm∗

n , (λ
m∗

j

n,j )p
j=1

]
) of β∗ from (4), we can esti-

mate the unknown parameters β∗ by β̂, ρη by ρ̂η = maxj supγ≥1 γ− 1
2

(
1
n

∑n
i=1 |Xij − Zij π̂j |γ

) 1
γ , ρǫ

by ρ̂ǫ = supγ≥1 γ− 1
2

(
1
n

∑n
i=1

∣∣∣Yi − Xiβ̂
∣∣∣
γ) 1

γ
, and ρX∗ by ρ̂X∗ = maxj supγ≥1 γ− 1

2

(
1
n

∑n
i=1

∣∣∣X̂ij

∣∣∣
γ) 1

γ
.

The computation of the “sup” part in ρ̂η, ρ̂ǫ, and ρ̂X∗can be carried out numerically for a suffi-

ciently wide range of γ ≥ 1. With all the estimated pieces from above in hand, the feasible plug-in

counterpart λf
n of the theoretical choice in (9) can be formed by

λf
n =

c∗ + 1

c∗ − 1
max

r=1,2,3
Q̂r, (21)

where Q̂1 =
∣∣∣β̂
∣∣∣
1

maxj=1,...,p T̂1,j , Q̂2 = c
′
ρ̂X∗ ρ̂η

∣∣∣β̂
∣∣∣
1

√
log p

n , and Q̂3 = c
′
ρ̂X∗ ρ̂ǫ

√
log p

n . In practice,

one may “standardize” the choice of the constant c
′

in Q̂2 and Q̂3 according to some convenient

distributions of X∗
ij , ηij (j = 1, ..., p), and ǫi; for example, c

′
=

√
2 + ς0 for any small number ς0 > 0

if X∗
ij ’s, ηij ’s, ǫi’s are independent Gaussian random variables, 1√

n
|X∗

j |2 ≤ 1, and E(ηij |X∗
ij) =

E(ǫi|X∗
ij) = 0 for all i = 1, ..., n and j = 1, ..., p; under such “standardization”, we can replace ρ̂η by

σ̂η = maxj

√
1
n

∑n
i=1 (Xij − Zij π̂j)2, ρ̂ǫ by σ̂ǫ =

√
1
n

∑n
i=1

(
Yi − Xiβ̂

)2
, and ρ̂X∗ by 1 (σ̂X∗ ≤ 1 for

normalized X̂j). This “standardization” is similar to the usual practice in kernel density estimation

for choosing bandwidth parameters (e.g., the “Silverman rule”; see Section 3.4.2 of Silverman,

1986). In terms of the constant c∗+1
c∗−1 > 1, we recommend in practice choosing c∗+1

c∗−1 so that the

resulting λf
n is not substantially different from the regularization parameter λm∗

n := λESCV
n to obey

the “data faithfulness” requirement imposed by the ESCV criterion.
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4 Simulations

We now turn to the Monte-Carlo simulation experiments. The data is generated according to (1)

and (2) where

(ǫi, ηi) ∼i.i.d. N







0

0
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0




,




σ2
ǫ ̺σǫση · · · · · · ̺σǫση
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... 0 σ2
η · · · ...

...
...

...
. . . 0

̺σǫση 0 · · · 0 σ2
η







.

The matrix ZT
i is a p×d matrix of Gaussian random variables with identical variances σZ = σzjl

= 1

for all j = 1, ..., p, l = 1, ..., d, and ZT
ij is independent of (ǫi, ηi1, ..., ηip) for all j = 1, ..., p. We set

the correlation level ̺ = 0.1 between ǫi and ηij for all j = 1, ..., p. With this setup, we sim-

ulate 100 sets of i.i.d. (Yi, XT
i , ZT

i , ǫi, ηi)
n
i=1 where n is the sample size in each set, and con-

struct Monte Carlo simulation experiments with different model parameters (β∗, σǫ, and ση) and

the design of Zi. In terms of the dimensions, we set d = 46, p = 50, n = 45. In the first 5

experiments, (π∗
j,1, ..., π∗

j,4) = 0.5, (π∗
j,5, ..., π∗

j,46) = 0 for all j = 1, ..., 50; as a result, we have

σX∗ = σX∗
j

= 1 for all j = 1, ..., 50. In addition, we set (β∗
1 , ..., β∗

4) = 0.5, (β∗
5 , ..., β∗

50) = 0 for

the first 4 experiments; and (β∗
1 , ..., β∗

4) = 1, (β∗
5 , ..., β∗

50) = 0 for Experiment 5. Experiment 2

sets the ratio σǫ

σX∗
to 1 : 2 while the rest of experiments set it to 1 : 10; Experiment 3 sets the

ratio
ση

σX∗
(=

ση

σZ
) to 1 : 2 while the rest of experiments set it to 1 : 10. Experiment 4 introduces

correlations between the “purged” regressors X∗
j and X∗

j
′ by setting Corr(Zijl, Zij

′
l) = 0.5|j−j

′ | for

all l = 1, ..., 46 and j, j
′

= 1, ..., 50. Table 4.1 summarizes the designs of these experiments. We

include four additional experiments (Experiments 6-9) in Section S.2 of the supplementary materi-

als (https://sites.google.com/site/yingzhu1215/home/HD2SLS_Supplement.pdf) for approximate

sparsity scenarios as in Assumption 2.2.

Table 4.1: Designs of the Monte-Carlo simulation experiments

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

β∗
j (0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0) (1, 0)

π∗
jl

(0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0) (0.5, 0)

σǫ

σX∗
1 : 10 1 : 2 1 : 10 1 : 10 1 : 10

ση

σX∗
1 : 10 1 : 10 1 : 2 1 : 10 1 : 10

Corr(Zijl, Z
ij

′
l
) 0 0 0 0.5|j−j

′

| 0

For each simulation run h = 1, ..., 100, we first apply the Lasso+CV in both (3) and (4) and

also apply the Lasso+ESCV in the same way; following the methods described in Section 3.3,

we then compute the quantities in (21): Q̂h
r (r = 1, ..., 3) with c

′
=

√
2 + 0.01 in Q̂h

2 and Q̂h
3 ,

and set c∗+1
c∗−1 = 1.01. Table 4.2 displays the amount of second-stage regularization averaged

over 100 simulations according the CV criterion (column “CV”) and the ESCV criterion (col-

umn “ESCV”) as well as the feasible plug-in choices λ
f
n := 1.01 maxr=1,2,3

1
100

∑100
h=1 Q̂h

r (columns
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“PLUG-1” and “PLUG-2”); column “PLUG-1” (column “PLUG-2”) are choices that use the CV

estimates (respectively, the ESCV estimates) to form X̂ in (4) and ρ̂η, T̂1,j , ρ̂ǫ, ρ̂X∗ , and β̂j in (21).

Under the CV, the ESCV, and the feasible plug-in choices, respectively, Table 4.2 also displays

the mean of the l2−errors, 1
100

∑100
h=1 |β̂h − β∗|2 as well as the mean of the selection percentages,

1
100

∑100
h=1

1
50

∑p
j=1 1{sgn(β̂h

j ) = sgn(β∗
j )}.

Table 4.2 shows that the two-stage Lasso+ESCV outperforms the two-stage Lasso+CV in vari-

able selection while giving similar l2−errors; the two-stage Lasso+CV procedure overfits the models

by under penalizing and selects more “irrelevant” variables (ones whose true coefficients are zero).

As a consequence, when computing the plug-in quantities Q̂r, we noticed that Q̂1 and Q̂2 with β̂j

obtained from the CV estimates tend to be greater than those from the ESCV estimates, while

Q̂3 with ρ̂ǫ obtained from the CV estimates tend to be smaller than those from the ESCV esti-

mates. Experiment 5 shows that the amount of regularization needed for (4) to perform well in

both estimation and selection increases with |β∗|1, and the ESCV procedure appears to do better

at accounting for the increasing |β∗|1 than the CV. From Table 4.2, we see that overall, the choices

which use the ESCV estimates to produce λ
f
n (column “PLUG-2”) tend to over penalize but still

give satisfactory performance in parameter estimation and variable selection; except when the ratio
ση

σX∗
is sufficiently high as in Experiment 3, the “plug-in” choices result in significant reduction of

true positive rates (given that the mean of the l2−errors is greater than β∗
j = 0.5 for j = 1, ..., 4).

Based on these simulation results, the Lasso+ESCV procedure described in Section 3.3 for (3) and

(4) appears to be the most effective method in terms of both estimation and selection. In practice,

one may also consider our alternative “plug-in” method (21) using the estimates from the ESCV

procedure and compare it with the optimal regularization parameter chosen by the ESCV criterion

to determine whether the amount of regularization is sufficient.

Table 4.2: 2nd-stage regularization level, l2−error, and selection %

Exp CV ESCV PLUG-1 PLUG-2

# reg l2−err sel % reg l2−err sel % reg l2−err sel % reg l2−err sel %

1 0.020 0.081 89.2 0.045 0.071 97.2 0.154 0.323 99.9 0.113 0.204 99.8

2 0.078 0.345 89.9 0.120 0.337 94.3 0.168 0.414 96.9 0.198 0.444 98.1

3 0.057 0.268 87.7 0.121 0.278 94.3 0.956 0.998 92.1 0.728 1.014 92.0

4 0.024 0.073 92.2 0.056 0.063 99.1 0.155 0.162 100 0.116 0.097 99.9

5 0.028 0.113 88.9 0.070 0.098 97.2 0.305 0.642 99.9 0.230 0.416 99.9

5 Conclusion and extensions

This paper has explored the validity of the l1−regularized 2SLS estimation for linear models where

the number of endogenous regressors in the main equation and the number of instruments in the

first-stage equations can exceed the sample size n, and the regression coefficients belong to lq−
“balls” for q ∈ [0, 1], which covers both exact and approximate sparsity cases. Standard high-level

assumptions on the Gram matrix for l2−consistency require careful verifications in the two-stage

procedure, for which we provide detailed theoretical analysis. Conditions for estimation consistency

in l2−norm and variable-selection consistency of the high-dimensional two-stage estimators have
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been established. We also provide practical methods for choosing the regularization parameters

and the effectiveness of these methods is demonstrated on simulated data sets.

In addition to the research directions already proposed in the previous sections for the future,

we discuss some more extensions in the following. First, as pointed out by a reviewer, it would

be ideal to test the performance of our procedure on real data sets to see the shortcoming of our

estimator and the way the regularization parameters are chosen. Second, as an alternative to the

l1−regularized 2SLS procedure proposed here, a high-dimensional two-stage estimator based on the

“control function” approach would be interesting to explore.

Third, it may be worthwhile to extend our analysis to allow non-sub-Gaussian errors ǫ and η

in (1) and (2). There are a couple of ways to relax the sub-Gaussian condition on the error terms.

For example, the square-root Lasso (as in Belloni, Chernozhukov, and Wang, 2011) and the pivotal

Dantzig selector (as in Gautier and Tsybakov, 2014) whose “score” functions (the first derivative

of the sample square root of the residual sum of squares loss evaluated at the true parameters)

allow these authors to evoke a bound for moderate deviations of self-normalized sums of random

variables (Lemma 2.11 by Jing, Shao and Wang, 2003). The bound in Jing, et al. does not

require sub-Gaussian tails. However, compared to the standard Lasso, the square-root Lasso or the

pivotal Dantzig selector involves a more sophisticated optimization algorithm computation-wise.

Another paper by Minsker (2014) that uses a “trick” originally noted in Nemirovski and Yudin

(1983) is also able to avoid imposing a sub-Gaussian condition on the error terms when deriving

the nonasymptotic bounds for the standard Lasso. It is possible to apply these techniques in our

problem, albeit doing so would distract the main focus of this paper; therefore, we leave these

extensions to future research.

A Appendix: Main Proofs

For notational simplicity, in the following proofs, assume dj = d for all j = 1, ..., p; additionally, as

in most high-dimensional statistics literature, we assume the regime of interest is p ≥ n and d ≥ n.

The modification to allow p < n or d < n or dj 6= dj′ for some j and j
′

is straightforward. Also, as

a general rule for the proofs, c constants denote generic positive constants that are independent of

n, p, d, Rq2 , Rq1 , and may change from place to place.

A.1 Lemmas A.1-A.3

Lemma A.1 (General upper bound on the l2−error). Let Γ̂ = 1
nX̂T X̂, D̂ = diag

[
σ̂X∗

1
, ... , σ̂X∗

p

]
,

and e = (X∗ − X̂)β∗ + ηβ∗ + ǫ. For some universal constant c∗ > 1, if λn in program (4) satisfies

λn ≥ c∗ + 1

c∗ − 1
|D̂−1 1

n
X̂T e|∞ > 0,

and c
′
Rq2τ−q2

(
log p

n ∨ T1

)
≤ 1 for some constant c

′
> 0 that depends on κ2, then there is a constant

c > 0 such that under Assumption 2.2,

|β̂H2SLS − β∗|2 ≤ c

κ
1− q2

2
2

R
1
2
q2λ

1− q2
2

n .
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Proof. First, write

Y = Xβ∗ + ǫ = X∗β∗ + (Xβ∗ − X∗β∗ + ǫ)

= X∗β∗ + (ηβ∗ + ǫ)

= X̂β∗ + (X∗ − X̂)β∗ + ηβ∗ + ǫ

= X̂β∗ + e,

where e := (X∗ − X̂)β∗ + ηβ∗ + ǫ. Define the thresholded subset

Sτ :=
{

j ∈ {1, 2, ..., p} :
∣∣∣β∗

j

∣∣∣ > τ
}

where τ = λn

κ2
is the threshold parameter. For any p−dimensional vector v, denote |v|1,n =

∑p
j=1 σ̂X∗

j
|vj |, the l1−norm weighed by σ̂X∗

j
s. Define v̂0 = β̂H2SLS − β∗ and the Lagrangian

L(β; λn) = 1
2n |Y − X̂β|22 + λn |β|1,n. Since β̂H2SLS is optimal, we have

L(β̂H2SLS ; λn) ≤ L(β∗; λn) =
1

2n
|e|22 + λn|β∗|1,n,

which yields

0 ≤ 1

2n
|X̂v̂0|22 ≤ 1

n
eT X̂v̂0 + λn

{
|β∗

Sτ |1,n + |β∗
Sc
τ

|1,n − |(β∗
Sτ + v̂0

Sτ , β∗
Sc
τ

+ v̂0
Sc
τ

)|1,n

}
(22)

≤ |D̂v̂0|1|D̂−1 1

n
X̂T e|∞ + λn

{
|v̂0

Sτ |1,n − |v̂0
Sc
τ

|1,n + 2|β∗
Sc
τ

|1,n

}
(23)

≤ λn
c∗ − 1

c∗ + 1

{
2c∗

c∗ − 1
|v̂0

Sτ |1,n − 2

c∗ − 1
|v̂0

Sc
τ

|1,n +
2(c∗ + 1)

c∗ − 1
|β∗

Sc
τ

|1,n

}

≤ λn
c∗ − 1

c∗ + 1

{
3c∗

c∗ − 1
|v̂0

Sτ |1 − 3

c∗ − 1
|v̂0

Sc
τ

|1 +
3(c∗ + 1)

c∗ − 1
|β∗

Sc
τ

|1
}

(24)

where the third inequality holds as long as λn ≥ c∗+1
c∗−1 |D̂−1 1

nX̂T e|∞, and the last inequality follows

from (37). Consequently,

|v̂0|1 ≤ (c∗ + 1)|v̂0
Sτ |1 + (c∗ + 1)|β∗

Sc
τ

|1 ≤ (c∗ + 1)
√∣∣Sτ

∣∣|v̂0|2 + (c∗ + 1)|β∗
Sc
τ

|1.

We now upper bound the cardinality of Sτ in terms of the threshold τ and the lq− “ball” with

“radius” of Rq2 condition on β∗. Note that we have

Rq2 ≥
p∑

j=1

∣∣∣β∗
j

∣∣∣
q2 ≥

∑

j∈Sτ

∣∣∣β∗
j

∣∣∣
q2 ≥ τ q2

∣∣Sτ
∣∣

and therefore
∣∣Sτ

∣∣ ≤ τ−q2Rq2 . To upper bound the approximation error |β∗
Sc
τ

|1, we use the fact

that β∗ ∈ Bp
q2

(Rq2) and have

|β∗
Sc
τ

|1 =
∑

j∈Sc
τ

∣∣∣β∗
j

∣∣∣ =
∑

j∈Sc
τ

∣∣∣β∗
j

∣∣∣
q2
∣∣∣β∗

j

∣∣∣
1−q2 ≤ Rq2τ1−q2 .
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Putting the pieces together yields

|v̂0|1 ≤ (c∗ + 1)
√

τ−q2Rq2 |v̂0|2 + (c∗ + 1)Rq2τ1−q2 . (25)

Let us first prove the case of q2 ∈ (0, 1]. Note that from (22), (23), and (37), we have

1

2n
|X̂v̂0|22 ≤ |v̂0|1,n|D̂−1 1

n
X̂T e|∞ + λn

{
|v̂0

Sτ |1,n − |v̂0
Sc
τ

|1,n + 2|β∗
Sc
τ

|1,n

}

≤ 2

[
|v̂0|1|D̂−1 1

n
X̂T e|∞ + λn

{
|v̂0

Sτ |1 − |v̂0
Sc
τ

|1 + 2|β∗
Sc
τ

|1
}]

≤
(

c0

√
τ−q2Rq2 |v̂0|2 + c1Rq2τ1−q2

)
λn

≤ c0

√
τ−q2Rq2 |v̂0|2λn + c1δ (26)

≤ max

{
c0R

1
2
q2κ

q2
2

2 λ
1− q2

2
n |v̂0|2, c1δ

}

where the third and fourth inequalities follow from our choices of τ = λn

κ2
and δ = Rq2λnτ1−q2 .

Now we proceed by cases. If

max

{
c0R

1
2
q2κ

q2
2

2 λ
1− q2

2
n |v̂0|2, c1δ

}
= c0R

1
2
q2κ

q2
2

2 λ
1− q2

2
n |v̂0|2,

and if c
′
Rq2τ−q2

(
log p

n ∨ T1

)
≤ 1 for some constant c

′
> 0 that depends on κ2, we have

|v̂0|2 ≥ c3κ
−1+

q2
2

2 R
1
2
q2λ

1− q2
2

n ≥ δ∗ (27)

where δ∗ = c2

κ
1
2
2

Rq2τ1−q2

(√
T1 ∨ b0 log p

n

)
and b0 = κ2

(
1

κ2
2

∨ 1
)
. Consequently, (24) and (27) to-

gether imply that

v̂0 ∈ K(δ, Sτ ) := C(Sτ ; q2, c∗) ∩
{

v0 ∈ R
p :

∣∣∣v0
∣∣∣
2

≥ δ∗
}

(28)

where

C(Sτ ; q2, c∗) =

{
v0 ∈ R

p : |v0
Sc
τ

|1 ≤ c∗|v0
Sτ |1 + (c∗ + 1)|β∗

Sc
τ

|1
}

.

By Lemma A.2 and Lemma A.4, the random matrix Γ̂ = X̂T X̂
n satisfies the RE condition over

C(Sτ ; q2, c∗) ∩
{

v0 ∈ R
p :

∣∣∣v0
∣∣∣
2

≥ δ∗
}

, (29)

therefore, we have

c
′′
κ2|v̂0|22 ≤ 1

2n
|X̂v̂0|22 ≤ c0R

1
2
q2κ

q2
2

2 λ
1− q2

2
n |v̂0|2,

so the claim follows. It is sufficient to set δ in Assumption 2.3 to δ = c3κ
−1+

q2
2

2 R
1
2
q2λ

1− q2
2

n ≥ δ∗ where

c > c3 > 0. On the other hand, if

max

{
c0R

1
2
q2κ

q2
2

2 λ
1− q2

2
n |v̂0|2, c1δ

}
= c1δ,
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then

|v̂0|2 ≤ cκ
−1+

q2
2

2 R
1
2
q2λ

1− q2
2

n

so again the claim follows.

To prove the case of q2 = 0, simply choose Sτ = J(β∗) and δ = 0 in (24) and (26), respectively,

and the claim follows trivially from the above argument.�

Remark. Inequality (25) implies that |v̂0|1 - κ
q2−1
2 Rq2λ1−q2

n .

Lemma A.2: Define the thresholded subset

Sτ :=
{

j ∈ {1, 2, ..., p} :
∣∣∣β∗

j

∣∣∣ > τ
}

.

Under the assumptions in Theorem 3.1 and the choice τ = λn

κ2
, if

c0Rq2τ−q2

(
b0 log p

n
∨ T1

)
≤ κ2,

the RE condition holds for X̂T X̂
n over the set

C(Sτ ; q2, c∗) ∩
{

v0 ∈ R
p :

∣∣∣v0
∣∣∣
2

≥ δ∗
}

where δ∗ = c1

κ
1
2
2

Rq2τ1−q2

(√
T1 ∨ b0 log p

n

)
and b0 = κ2

(
1

κ2
2

∨ 1
)
, for some universal constant c∗ > 1.

Proof. The argument is similar to what is used in the proof of Lemma 2 from Negahban, et.

al (2010). For any v0 ∈ C(Sτ ; q2, c∗), we have

|v0|1 ≤ (c∗ + 1)|v0
Sτ |1 + (c∗ + 1)|β∗

Sc
τ

|1

≤ (c∗ + 1)
√

Rq2τ− q2
2 |v0|2 + (c∗ + 1)Rq2τ1−q2 ,

where we have used the bound in (25) from the proof of Lemma A.1. Therefore, for any vector

∆ ∈ C(Sτ ; q2, c∗) and the choice τ = λn

κ2
, substituting the upper bound (c∗ + 1)

√
Rq2τ− q2

2 |v0|2 +

(c∗ + 1)Rq2τ1−q2 on |v0|1 into condition (38) from Lemma A.4 yields

∣∣∣∣∣v
0T X̂T X̂

n
v0

∣∣∣∣∣ ≥ |v0|22
{

cκ2 − c0Rq2τ−q2

(
T1 ∨ b0 log p

n

)}
− c0R2

q2
τ2−2q2

(
T1 ∨ b0 log p

n

)
,

for some sufficiently small c0, where b0 = κ2

(
1

κ2
2

∨ 1
)
. With the choice of

c1

κ
1
2
2

Rq2τ1−q2



√

T1 ∨ b0 log p

n


 = δ∗,
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for some sufficiently small c1, and if

c0Rq2τ−q2

(
b0 log p

n
∨ T1

)
≤ cκ2

2
,

we have ∣∣∣∣∣v
0T X̂T X̂

n
v0

∣∣∣∣∣ ≥ c
′
κ2

{
|v0|22 − |v0|22

2

}
= c

′′
κ2|v0|22

for any v0 such that
∣∣v0
∣∣
2 ≥ δ∗. �

Lemma A.3: Suppose the assumptions in Lemma 3.1 hold. If π̂j solves program (3) with the

regularization parameter λn,j ≥ c0ρZρη

√
log(d∨p)

n for j = 1, ..., p, then,

max
j=1,...,p

{
1

n

n∑

i=1

[
ZT

ij π̂j − ZT
ijπ∗

j

]2
}

≤ c1κ̄1

κ
2−q1
1

Rq1

(
ρ2

Zρ2
η

log (d ∨ p)

n

)1− q1
2

with probability at least 1 − O
(

1
d∨p

)
.

Proof. Applying Lemma B.1 with t = c0ρZρη

√
log(d∨p)

n and a union bound yields

P


 max

j=1,...,p

∣∣∣∣
1

n
ZT

j ηj

∣∣∣∣
∞

≤ c0ρZρη

√
log (d ∨ p)

n


 ≥ O

(
1

p ∨ d

)
.

We can use (40) in Lemma B.3 with s = c1
n

log(d∨p)
κ

1+
q1
2

1
κ̄1

, U = Zj , and κ = κ1 to show that

|Zjvj |22
n

≥ κ1

2
|vj |22 − c

κ̄1

κ
q1
2

1

log(d ∨ p)

n
|vj |21,

for any vj in the restricted set subject to C(Sτ j
; q1, c∗) ∩ Sδj

, j = 1, ..., p, where τ j =
λn,j

κ1
and

δj = c2κ
−1+

q1
2

1 R
1
2
q1λ

1− q1
2

n,j for some sufficiently small constant c2 > 0. Follow the argument in Lemmas

A.1 and A.2 where we set

δ∗
j = O


κ

− 1
2

1 Rq1τ
1−q1
j

√
log(d ∨ p)

n




for all j = 1, ..., p so that δ∗
j ≤ δj . If n ≥ c

′
R

2
2−q1
q1 log(d ∨ p) for some sufficiently large constant

c
′

> 0 that depends on κ1, we have, for some c3 > c2 > 0,

∣∣∣π̂j − π∗
j

∣∣∣
2

≤ c3
√

κ̄1

κ
1− q1

2
1

R
1
2
q1


ρZρη

√
log (d ∨ p)

n




1− q1
2

, (30)
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and

|v̂j |1 ≤ c4κ
q1−1
1 Rq1λ

1−q1
n,j = c5κ

q1
2

1 R
1
2
q1 |v̂j |2



√

ρ2
Zρ2

η log(d ∨ p)

n




− q1
2

, (31)

where v̂j = π̂j − π∗
j for j = 1, ..., p. The bound (41) in Lemma B.3 with s = c1

n
log(d∨p)

κ
1+

q1
2

1
κ̄1

then

implies

∣∣Zj v̂j
∣∣ 2

2

n
≤ 3κ̄1

2

∣∣∣v̂j
∣∣∣ 2

2 +
κ̄1

2c1κ
1+

q1
2

1

log(d ∨ p)

n

∣∣∣v̂j
∣∣∣ 2

1

≤ 3κ̄1

2

∣∣∣v̂j
∣∣∣ 2

2 +
κ̄1Rq1

2c1κ
1− q1

2
1



√

log(d ∨ p)

n




2−q1

|v̂j |22

≤ (3 + ς)κ̄1

2

∣∣∣v̂j
∣∣∣ 2

2 (32)

for any vj in the restricted set subject to C(Sτ j
; q1, c∗) ∩ Sδj

, where the last inequality follows as

long as

κ̄1Rq1

2c1κ
1− q1

2
1



√

log(d ∨ p)

n




2−q1

≤ ςκ̄1

2

for any ς > 0. Combining (32) and (30) yields the claim.

A.2 Proof for Lemma 3.1

Proof. We provide a proof for a more general result that implies Lemma 3.1. This more general

result is useful for proving Theorem 3.1 later on. Note that we have

∣∣∣∣∣
X̂T X̂ − X∗T X∗

n

∣∣∣∣∣
∞

≤
∣∣∣∣∣
X∗T (X̂ − X∗)

n

∣∣∣∣∣
∞

+

∣∣∣∣∣
(X̂ − X∗)T X̂

n

∣∣∣∣∣
∞

≤
∣∣∣∣∣
X∗T (X̂ − X∗)

n

∣∣∣∣∣
∞

+

∣∣∣∣∣
(X̂ − X∗)T X∗

n

∣∣∣∣∣
∞

+

∣∣∣∣∣
(X̂ − X∗)T (X̂ − X∗)

n

∣∣∣∣∣
∞

.(33)

To bound the term

∣∣∣∣
X∗T (X̂−X∗)

n

∣∣∣∣
∞

, first note that by Lemma A.3, we have

max
j=1,...,p

√√√√ 1

n

n∑

i=1

[
Zij(π̂j − π∗

j )
]2

≤ c

√
κ̄1R

1
2
q1

κ
1− q1

2
1



√

ρ2
Zρ2

η log(d ∨ p)

n




1− q1
2

with probability at least 1 − c1 exp(−c2 log(d ∨ p)). As a consequence, we apply a Cauchy-Schwarz
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inequality and obtain

max
j

′
, j

∣∣∣∣
1

n
X∗T

j
′ (X̂j − X∗

j )

∣∣∣∣ = max
j

′
, j

∣∣∣∣∣
1

n

n∑
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X∗
ij

′ Zij(π̂j − π∗
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∣∣∣∣∣

≤
√√√√ 1

n

n∑

i=1

X∗2
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′

√√√√ 1

n

n∑

i=1

[
Zij(π̂j − π∗
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√
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1
2
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κ
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2
1



√

ρ2
Zρ2

η log(d ∨ p)
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1− q1
2

, (34)

where σX∗ = maxj=1,...,p σX∗
j
. To bound the term

∣∣∣∣
(X̂−X∗)T (X̂−X∗)

n

∣∣∣∣
∞

, we again apply a Cauchy-

Schwarz inequality and obtain

∣∣∣∣∣
(X̂ − X∗)T (X̂ − X∗)

n

∣∣∣∣∣
∞

≤ c
′ κ̄1Rq1

κ
2−q1
1

(
ρ2

Zρ2
η

log(d ∨ p)

n

)1− q1
2

(35)

with probability at least 1−c1 exp(−c2 log(p∨d)). Putting everything together, if n ≥ c
′
R

2
2−q1
q1 log(d∨

p) for some sufficiently large constant c
′

> 0, we have

∣∣∣∣∣
X̂T X̂ − X∗T X∗

n

∣∣∣∣∣
∞

≤ cσX∗

√
κ̄1R

1
2
q1

κ
1− q1

2
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√

ρ2
Zρ2

η log(d ∨ p)
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1− q1
2

.

The bound above implies

P

(
max

j

∣∣∣∣
1

n
X̂T

j X̂j − σ2
X∗

j

∣∣∣∣ ≤ σX∗T1

)
≥ 1 − O

(
1

d ∨ p

)
, (36)

as long as n ≥ c
′
R

2
2−q1
q1 log(d ∨ p) for some sufficiently large constant c

′
> 0. �

Remark. In the rest of proofs, we assume the regressors X̂j (j = 1, ..., p) are normalized such

that σX∗
j

= 1. So long as T1 ≤ 1, (36) implies that

P

(
max

j

∣∣∣∣∣

√
1

n
X̂T

j X̂j − 1

∣∣∣∣∣ ≤ 1

)
≥ 1 − O

(
1

d ∨ p

)
. (37)

A.3 Theorem 3.1

To apply Lemma A.1 to show Theorem 3.1, we need to show Lemmas A.4 and A.5.

Lemma A.4 (RE condition): Under the conditions in Lemma 3.1, we have

|X̂v0|22
n

≥ κ2

2

∣∣∣v0
∣∣∣
2

2
− c0κ2

(
1

κ2
2

∨ 1

)
log p

n
|v0|21 − T1

∣∣∣v0
∣∣∣
2

1
, (38)
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for any v0 in the restricted set subject to (29), with probability at least 1 − c1 exp(−c2 log(p ∨ d)).

Proof. Note that
∣∣∣∣∣v

0T X̂T X̂

n
v0

∣∣∣∣∣+
∣∣∣∣∣v

0T
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n

)
v0

∣∣∣∣∣ ≥
∣∣∣∣∣v

0T X∗T X∗

n
v0

∣∣∣∣∣ .

From (33), we have

∣∣∣∣∣v
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n
v0

∣∣∣∣∣ ≥
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0T X∗T X∗

n
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∣∣∣∣∣−
∣∣∣∣∣
X∗T (X̂ − X∗)

n
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∞
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∣∣∣
2

1

−
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n
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∞
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∣∣∣
2

1
−
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(X̂ − X∗)T (X̂ − X∗)

n

∣∣∣∣∣
∞

∣∣∣v0
∣∣∣
2

1
.

Using (34) and (35), under the condition n ≥ c
′
R

2
2−q1
q1 log(d ∨ p) for some sufficiently large c

′
> 0,

and applying (40) in Lemma B.3 with s = 1
c0

n
log p(κ2

2 ∧ 1), U = X∗, and κ = κ2, we have
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n
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′
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1
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√
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1− q1
2 ∣∣∣v0

∣∣∣
2

1

for any v0 in the restricted set subject to (29), with probability at least 1 − c2 exp(−c3 log(p ∨ d)).

Notice the last inequality can be written in the form of (38).�

Lemma A.5 (Upper bound on | 1
nD̂−1X̂T e|∞): Under the conditions for Lemma 3.1, we have

∣∣∣∣∣D̂
−1 X̂T e

n

∣∣∣∣∣
∞

≤ T0,

with probability at least 1 − c
′

1 exp(−c
′

2 log p).

Proof. By (36), we have
∣∣∣D̂−1 X̂T e

n

∣∣∣
∞

≤ c
′
∣∣∣D−1 X̂T e

n

∣∣∣
∞

, where D = diag
[
σX∗

1
, ... , σX∗

p

]
= diag [1]

and c
′

> 1. Furthermore,

1

n
X̂T e =

1

n
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[
(X∗ − X̂)β∗ + ηβ∗ + ǫ

]

=
1

n
X̂T (X∗ − X̂)β∗ +

1

n
X∗T [ηβ∗ + ǫ] +

1

n
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Hence,

| 1

n
X̂T e|∞ ≤ | 1

n
X̂T (X̂ − X∗)β∗|∞ + | 1

n
X∗T ηβ∗|∞ + | 1

n
X∗T ǫ|∞ (39)

+| 1

n
(X̂ − X∗)T ηβ∗|∞ + | 1

n
(X̂ − X∗)T ǫ|∞.

We need to bound each of the terms on the right-hand-side of the above inequality. Let us first

bound | 1
nX̂T (X̂ − X∗)β∗|∞. We have

1

n
X̂T (X̂ − X∗)β∗ =
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j
1
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1
n
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 .
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= 1, ..., p, we have
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n
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∞

|β∗|1.

We apply Lemma A.3 and a Cauchy-Schwarz inequality to bound
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∞

and obtain
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.

The last inequality follows because we normalize X̂ij′ for j
′

= 1, ..., p so that maxj′

√
1
n

∑n
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,

with probability at least 1 − c
′

1 exp(−c
′

2 log(p ∨ d)). For the term | 1
nX∗T ηβ∗|∞, we have
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n
X∗T ηβ∗|∞ ≤ max

j′ , j
| 1

n
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with probability at least 1 − c
′

1 exp(−c
′

2 log p). The last inequality follows from Lemma B.1 and

Assumption 2.1 that E(Zij′ ηij) = 0 for all j
′
, j as well as Assumptions 3.1 and 3.2. For the term

| 1
n(X∗ − X̂)T ηβ∗|∞, applying (31) to bound maxj′ |π̂j′ − π∗
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′ |1 and applying Lemma B.1 to bound
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n

∑n
i=1 ZT

ij′ ηij |∞ by setting t =

√
ρ2

Z
ρ2

η log(d∨p)

n yields

| 1

n
(X∗ − X̂)T ηβ∗|∞ ≤ max

j
′

|π̂j
′ − π∗

j
′ |1 max

j
′
, j

| 1

n

n∑

i=1

ZT
ij

′ ηij |∞|β∗|1

≤ c3|β∗|1
√

κ̄1κ
−1+q1
1 Rq1

(
ρ2

Zρ2
η log(d ∨ p)

n

)1− q1
2

,

with probability at least 1 − c
′

1 exp(−c
′

2 log(p ∨ d)). To bound the term | 1
nX∗T ǫ|∞, note under

Assumptions 3.1 and 3.2 as well as Assumption 2.1, again by Lemma B.1,

| 1

n
X∗T ǫ|∞ ≤ c2ρX∗ρǫ

√
log p

n
,

with probability at least 1 − c
′

1 exp(−c
′

2 log p). For the term | 1
n(X∗ − X̂)T ǫ|∞, we apply similar

techniques used for bounding | 1
n(X∗ − X̂)T ηβ∗|∞ and obtain

| 1

n
(X∗ − X̂)T ǫ|∞ ≤ c4

√
κ̄1κ

−1+q1
1 Rq1ρǫρ

1−q1
η

(
ρ2

Z log(d ∨ p)

n

)1− q1
2

with probability at least 1 − c
′

1 exp(−c
′

2 log(p ∨ d)). Putting everything together, as long as

c
′

3κ
q

2
1 R

1
2
q1



√

log(d ∨ p)

n




1− q1
2

≤ 1,

c
′

4 |β∗|−1
1 κ

q

2
1 R

1
2
q1



√

log(d ∨ p)

n




1− q1
2

≤ 1,

for some constants c
′

3 > 0 and c
′

4 > 0 depending on ρZ , ρη, and ρǫ, the claim in Lemma A.5 follows.

�

Now, by applying Lemma A.1 and setting λn according to (9), we obtain

|β̂H2SLS − β∗|2 ≤ cR
1
2
q2

κ
1− q2

2
2

T 1− q2
2

0

with probability at least 1 − O
(

1
p

)
.�

A.4 Theorem 3.2

The verification of the RE condition for X̂T X̂
n in Theorem 3.2 is done via Lemma A.6.
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Lemma A.6 (RE condition): Let r ∈ [0, 1]. Under Assumptions 2.1, 3.1, 3.3, 3.4, and the

condition n ≥ c0k1 log(p ∨ d) for some sufficiently large positive constant c0, we have,

|X̂v0|22
n

≥ κW

2
|v0|22 − cκW

k1 log(p ∨ d)

n
|v0|21,

for any v0 in the restricted set subject to C(J(β∗); 0, c∗) for some universal constant c∗ > 1, with

probability at least 1 − c1 exp(−c2 log(p ∨ d)).

Proof. Under Assumption 3.4, we have |J(π̂j)| ≤ c0k1 for some universal constant c0 > 0. To

bound
∣∣∣v0T X̂T X̂

n v0
∣∣∣, I apply a discretization argument motivated by the idea in Loh and Wain-

wright (2012). This type of argument is often used in statistical problems requiring manipulating

and controlling collections of random variables indexed by sets with an infinite number of elements.

For the particular problem in this paper, I work with the space Ω = K(2s, p, 1)×K
2(c0k1, d1, R)×

... × K
2(c0k1, dp, R) where dj = d for all j = 1, ..., p. For s ≥ 1 and L ≥ 1, recall the notation

K(s, L, R) := {v ∈ R
L | |v|2 ≤ R, |v|0 ≤ s}. Given V j ⊆ {1, ..., d} and V 0 ⊆ {1, ..., p}, define

SV j = {v ∈ R
d : |v|2 ≤ R, J(v) ⊆ V j} and SV 0 = {v ∈ R

p : |v|2 ≤ 1, J(v) ⊆ V 0}. Note that

K(c0k1, d, R) = ∪|V j |≤c0k1
SV j and K(2s, p, 1) = ∪|V 0|≤2sSV 0 . If Vj = {t

j
1, ..., tj

mj
} is a R

9 −cover

of SV j (V0 = {t0
1, ..., t0

m0
} is a 1

9−cover of SV 0), for every vj ∈ SV j (v0 ∈ SV 0), we can find

some t
j
i ∈ Vj (t0

i′ ∈ V0) such that |△vj |2 ≤ R
9 (|△v0|2 ≤ 1

9), where △vj = vj − t
j
i (respectively,

△v0 = v0 − t0
i
′ ). By Ledoux and Talagrand (1991), we can construct Vj with |Vj | ≤ 81c0k1 and

|V0| ≤ 812s. Therefore, for v0 ∈ K(2s, p, 1), there is some SV 0 and t0
i ∈ V0 such that

v0T X̂T X̂

n
v0 = (t0

i + v0 − t0
i )T X̂T X̂

n
(t0

i + v0 − t0
i )

= t0T
i

X̂T X̂

n
t0
i + 2△v0T X̂T X̂

n
t0
i + △v0T X̂T X̂

n
△v0

with |△v0|2 ≤ 1
9 . For the (j

′
, j) element of the matrix X̂T X̂

n , we have

1

n
X̂T

j′ X̂j =
1

n

n∑

i=1

π̂T
j′ ZT

ij′ Zij π̂j .

Notice that, under Assumption 3.4, |J(π̂j)| ≤ c0k1 for every j = 1, ..., p and as long as n ≥
c0k1 log(p ∨ d) for some sufficiently large constant c0 > 0, (so that by (30) specialized to q1 = 0,

maxj |π̂j |2 ≤ R := 2 maxj=1,...,p

∣∣∣π∗
j

∣∣∣
2
), we have π̂j ∈ K(c0k1, d, R) = ∪|V j |≤c0k1

SV j . Therefore,

there are some SV j and S
V j

′ with |V j | ≤ c0k1 and |V j
′

| ≤ c0k1, t
j

i
′ ∈ Vj and t

j
′

i
′′ ∈ Vj

′

(where

Vj = {t
j
1, ..., tj

mj
} is a R

9 −cover of SV j and Vj
′

= {t
j

′

1 , ..., tj
′

m
j

′
} is a R

9 −cover of S
V j

′ ) such that

1

n
π̂T

j′ ZT
j′ Zj π̂T

j = (tj
′

i
′′ + π̂T

j′ − t
j

′

i
′′ )

T
ZT

j′ Zj

n
(tj

i
′ + π̂T

j − t
j

i
′ )

= t
j

′
T

i′′

ZT
j′ Zj

n
t
j

i′ + t
j

′
T

i′′

ZT
j′ Zj

n
△vj + △vj

′
T

ZT
j′ Zj

n
t
j

i′ + △vj
′
T

ZT
j′ Zj

n
△vj
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with |△vj |2 ≤ R
9 and |△vj

′

|2 ≤ R
9 . Denote a matrix A by

[
Aj′ j

]
M

, where the (j
′
, j) element of A

is Aj
′
j , and let Aj

′
j =

ZT

j
′ Zj

n −E

(
ZT

j
′ Zj

n

)
Define v = (v0, v1, ..., vp) ∈ SV := SV 0 × S2

V 1 × ... × S2
V p .

Hence, ∣∣∣∣∣∣
v0T




X̂T
j

′ X̂j

n
− E

X̂T
j′ X̂j

n




M

v0

∣∣∣∣∣∣
≤
∣∣∣∣v

0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣

≤ max
i
′′

, i
′
, i

∣∣∣∣t
0T
i

[
t
j

′
T

i′′ Aj
′
jt

j

i′

]

M
t0
i

∣∣∣∣+ sup
v∈SV

∣∣∣∣t
0T
i

[
t
j

′
T

i
′′ Aj

′
j△vj

]

M
t0
i

∣∣∣∣

+ sup
v∈SV

∣∣∣∣t
0T
i

[
△vj

′
T Aj′ jt

j

i
′

]

M
t0
i

∣∣∣∣+ sup
v∈SV

∣∣∣∣t
0T
i

[
△vj

′
T Aj′ j△vj

]

M
t0
i

∣∣∣∣

+ sup
v∈SV

2

∣∣∣∣△v0T
[
t
j

′
T

i′′ Aj
′
jt

j

i′

]

M
t0
i

∣∣∣∣+ sup
v∈SV

2

∣∣∣∣△v0T
[
t
j

′
T

i′′ Aj
′
j△vj

]

M
t0
i

∣∣∣∣

+ sup
v∈SV

2

∣∣∣∣△v0T
[
△vj

′
T Aj

′
jt

j

i′

]

M
t0
i

∣∣∣∣+ sup
v∈SV

2

∣∣∣∣△v0T
[
△vj

′
T Aj

′
j△vj

]

M
t0
i

∣∣∣∣

+ sup
v∈SV

∣∣∣∣△v0T
[
t
j

′
T

i′′ Aj
′
jt

j

i′

]

M
△v0

∣∣∣∣+ sup
v∈SV

∣∣∣∣△v0T
[
t
j

′
T

i′′ Aj
′
j△vj

]

M
△v0

∣∣∣∣

+ sup
v∈SV

∣∣∣∣△v0T
[
△vj

′
T Aj

′
jt

j

i′

]

M
△v0

∣∣∣∣+ sup
v∈SV

∣∣∣∣△v0T
[
△vj

′
T Aj

′
j△vj

]

M
△v0

∣∣∣∣

≤ max
i′′ , i′ , i

∣∣∣∣t
0T
i

[
t
j

′
T

i
′′ Aj′ jt

j

i
′

]

M
t0
i

∣∣∣∣+
1

9
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣

+
1

9
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣+
1

81
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣

+
1

9
sup

v∈SV

2

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣+
1

81
sup

v∈SV

2

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣

+
1

81
sup

v∈SV

2

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣+
1

729
sup

v∈SV

2

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣

+
1

81
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣+
1

729
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣

+
1

729
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣+
1

6561
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣

where the last inequality uses the fact that 9△vj ∈ SV j , 9△v0 ∈ SV 0 , Vj ⊂ SV j , Vj
′

⊂ S
V j

′ , and

V0 ⊂ SV 0 . Therefore,

sup
v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj′ jvj

]

M
v0

∣∣∣∣ ≤ 6561

3122
max
i′′ , i′ , i

∣∣∣∣t
0T
i

[
t
j

′
T

i
′′ Aj′ jt

j

i
′

]

M
t0
i

∣∣∣∣

≤ 3 max
i′′ , i′ , i

∣∣∣∣t
0T
i

[
t
j

′
T

i
′′ Aj

′
jt

j

i
′

]

M
t0
i

∣∣∣∣ .
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Under Assumption 3.3, Zjt
j
i = Wj is a sub-Gaussian vector with parameter at most ρW ∗ . An

application of Lemma B.1 and a union bound yields

P

(
sup

v∈SV

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣ ≥ t

)
≤ 812sc0k1812s2 exp(−cn min(

t2

ρ2
X∗ρ2

W

,
t

ρX∗ρW
)),

where the exponent 2sc0k1 in 812sc0k1 uses the fact that there are at most 2s non-zero components

in v0 ∈ SV 0 and hence only 2s out of p entries of v1, ..., vp will be multiplied by a non-zero

scalar, which leads to a reduction of dimensions. A second application of a union bound over the(
d⌊

c0k1
⌋
)

≤ dc0k1 choices of V j and respectively, the

(
p

⌊2s⌋

)
≤ p2s choices of V 0 yields

P

(
sup
v∈Ω

∣∣∣∣v
0T
[
vj

′
T Aj

′
jvj
]

M
v0

∣∣∣∣ ≥ t

)
≤ p2sd2sc0k1 · 2 exp(−cn min(

t2

ρ2
X∗ρ2

W

,
t

ρX∗ρW
))

≤ 2 exp(−cn min(
t2

ρ2
X∗ρ2

W

,
t

ρX∗ρW
) + 2sc0k1 log d + 2s log p).

With the choice of s = c
′
n

k1 log(p∨d)(κ2
2 ∧ 1) and t =

κW

54 for some sufficiently large universal constant

c
′ ≥ 1, we have ∣∣∣∣∣∣

v0T




X̂T
j

′ X̂j

n
− E

X̂T
j

′ X̂j

n




M

v0

∣∣∣∣∣∣
≤ κW

54

with probability at least 1−c
′

1 exp(−c
′

2n)−c
′′

1 exp(−c
′′

2 log(p∨d)) = 1−c1 exp(−c2 log(p∨d)) provided

n ≥ c log(p ∨ d) for some sufficiently large constant c > 0. Under Assumption 3.3, applying Lemma

B.2 with Γ = X̂T X̂
n − E

(
X̂T X̂

n

)
and (40) in Lemma B.3 with the choice s = c

′
n

k1 log(p∨d)(κ2
2 ∧ 1), we

have

v0T




X̂T
j

′ X̂j

n




M

v0 ≥ κW

2

∣∣∣v0
∣∣∣
2

2
− κW

2s

∣∣∣v0
∣∣∣
2

1

≥ κW

2

∣∣∣v0
∣∣∣
2

2
− c

′
κW

k1 log(p ∨ d)

2n

∣∣∣v0
∣∣∣
2

1

for all v0 ∈ C(J(β∗); 0, c∗). �

Recalling in proving Lemma A.1, for exactly sparse β∗ (i.e., q2 = 0), upon our choice λn, we

have shown

v̂ = β̂H2SLS − β∗ ∈ C(J(β∗); 0, c∗),

and |v̂0|21 ≤ c0|v̂0
J(β∗)|21 ≤ c0k2|v̂0

J(β∗)|22. Therefore, if n ≥ c1k1k2 log(p ∨ d) for some sufficiently large

c1, then, ∣∣∣∣∣v̂
0T X̂T X̂

n
v̂0

∣∣∣∣∣ ≥ c2κW

∣∣∣v̂0
∣∣∣
2

2
.

The above inequality implies RE on X̂T X̂
n . �
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A.5 Proof for Theorem 3.3

Proof. Note that |β̂ − β∗|∞ ≤ |β̂ − β∗|2 ≤ B, which implies that −B + β∗
j ≤ β̂j ≤ B + β∗

j . Given

B < minj∈J(β∗) |β∗
j |, for j ∈ J(β∗), if β∗

j > 0, then the left inequality ensures that β̂j > 0 and on

the other hand if β∗
j < 0, then the right inequality ensures that β̂j < 0. In either case, we must

have J(β̂H2SLS) ⊇ J(β∗). To show the correct inclusion of the thresholded estimator, note that

maxj /∈J(β∗) |β̂j | ≤ B < B1. Because the thresholded estimator β̄ excludes all components smaller

than B1, we must have J(β̄) ⊆ J(β∗). �

A.6 Main proofs for Theorem 3.4

The proof for Theorem 3.4 is based on a construction called Primal-Dual Witness (PDW) method

developed by Wainwright (2009). This method constructs a pair (β̂, µ̂). When this procedure

succeeds, the constructed pair is primal-dual optimal, and acts as a witness for the fact that the

Lasso has a unique optimal solution with the correct signed support. The procedure is described

in the following.

1. Set β̂J(β∗)c = 0.

2. Obtain (β̂J(β∗), µ̂J(β∗)) by solving the oracle subproblem

β̂J(β∗) ∈ arg min
βJ(β∗)∈Rk2

{ 1

2n
|y − X̂J(β∗)βJ(β∗)|22 + λn|βJ(β∗)|1},

and choose µ̂J(β∗) ∈ ∂|β̂J(β∗)|1, where ∂|β̂J(β∗)|1 denotes the set of subgradients at β̂J(β∗) for

the function | · |1 : R
k2 → R.

3. Solve for µ̂J(β∗)c via the zero-subgradient equation

1

n
X̂T (y − X̂β̂) + λnµ̂ = 0,

and check whether or not the strict dual feasibility condition |µ̂J(β∗)c |∞ < 1 holds.

We let J(β∗) := K, J(β∗)c := Kc, ΣKcK := E

[
1
nX∗T

KcX∗
K

]
, Σ̂KcK := 1

nX∗T
KcX∗

K , and Σ̃KcK :=

1
nX̂T

KcX̂K . Similarly, let ΣKK := E

[
1
nX∗T

K X∗
K

]
, Σ̂KK := 1

nX∗T
K X∗

K , and Σ̃KK := 1
nX̂T

KX̂K .

The proof for the first claim in Theorem 3.4 is established in Lemma A.7, which shows that

β̂H2SLS = (β̂K , 0) where β̂K is the solution obtained in step 2 of the PDW construction. The

second and third claims are proved using Lemma A.8. The last claim is a consequence of the third

claim (which can be shown in the similar way as the proof for the first part of Theorem 3.3).

Lemma A.7: If the PDW construction succeeds and if λmin(ΣKK) ≥ Cmin > 0, then the vec-

tor (β̂K , 0) ∈ R
p is the unique optimal solution of the Lasso.

Proof. The proof for Lemma A.7 adopts the proof for Lemma 1 from Chapter 6.4.2 of Wain-

wright (2015). If the PDW construction succeeds, then β̂ = (β̂K , 0) is an optimal solution with

subgradient µ̂ ∈ R
p and |µ̂Kc |∞ < 1,

〈
µ̂, β̂

〉
= |β̂|1. Suppose β̃ is another optimal solution. Letting
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F (β) = 1
2n |Y − X̂β|22, then F (β̂) + λn

〈
µ̂, β̂

〉
= F (β̃) + λn|β̃|1 and F (β̂) − λn

〈
µ̂, β̃ − β̂

〉
= F (β̃) +

λn

(
|β̃|1 −

〈
µ̂, β̃

〉)
. However, by the zero-subgradient1 optimality conditions, λnµ̂ = −∇F (β̂),

so that F (β̂) +
〈
∇F (β̂), β̃ − β̂

〉
− F (β̃) = λn

(
|β̃|1 −

〈
µ̂, β̃

〉)
. Convexity of F ensures that

the left-hand side is non-positive and consequently |β̃|1 ≤
〈
µ̂, β̃

〉
. On the other hand, since〈

µ̂, β̃
〉

≤ |µ̂|∞|β̃|1, we must have |β̃|1 =
〈
µ̂, β̃

〉
. Given |µ̂Kc |∞ < 1, this equality can only

hold if β̃j = 0 for all j ∈ Kc. Therefore, all optimal solutions must have the same support

K and can be obtained by solving the oracle subproblem in the PDW procedure. The bound

λmin(Σ̃KK) ≥ cλmin(Σ̂KK) ≥ c(1 − c
′
)λmin(ΣKK) for some c, c

′ ∈ (0, 1) (inequalities (7) and (13)

of Section S.1 from the proofs for Lemma S.2 and S.3) and the condition λmin(ΣKK) ≥ Cmin > 0

ensures that this subproblem is strictly convex and has a unique minimizer. �

Lemma A.8: Suppose the assumptions in Theorem 3.4 hold. Then, with probability at least

1 − O
(

1
p

)
: (i) |µ̂Kc |∞ ≤ 1 − ςφ

c̄−1 for some universal constant c̄ > 2 and any small number ς > 0;

(ii)

|β̂H2SLS,J(β∗) − β∗
H2SLS,J(β∗)|∞ ≤ λn


 (c̄ − 2 − ς)φ(

2 − (c̄−2)φ
(c̄−1)

)
(c̄ − 1)

+ 1




∥∥∥∥∥∥∥


X̂T

J(β∗)X̂J(β∗)

n




−1
∥∥∥∥∥∥∥

∞

= B2,

where, for some constant c
′′

> 1,

∥∥∥∥∥∥∥


X̂T

J(β∗)X̂J(β∗)

n




−1
∥∥∥∥∥∥∥

∞

≤ c
′′√

k2

λmin

(
E

[
1
nX∗T

J(β∗)X
∗
J(β∗)

]) .

Proof. By construction, the sub-vectors β̂K , µ̂K , and µ̂Kc satisfy the zero-subgradient condition

in the PDW construction. Recall e = (X∗ − X̂)β∗ + ηβ∗ + ǫ. With the fact that β̂Kc = β∗
Kc = 0,

we have

1

n
X̂T

KX̂K

(
β̂K − β∗

K

)
+

1

n
X̂T

Ke + λnµ̂K = 0,

1

n
X̂T

KcX̂K

(
β̂K − β∗

K

)
+

1

n
X̂T

Kce + λnµ̂Kc = 0.

From the equations above, by solving for the vector µ̂Kc ∈ R
p−k2 , we obtain

µ̂Kc = − 1

nλn
X̂T

KcX̂K

(
β̂K − β∗

K

)
− X̂T

Kc

e

nλn
,

β̂K − β∗
K = −

(
1

n
X̂T

KX̂K

)−1 X̂T
Ke

n
− λn

(
X̂T

KX̂K

n

)−1

µ̂K ,

1For a convex function g : R
p 7→ R, µ ∈ R

p is a subgradient at β, denoted by µ ∈ ∂g(β), if g(β+△) ≥ g(β)+〈µ, △〉
for all △ ∈ R

p. When g(β) = |β|1, notice that µ ∈ ∂|β|1 if and only if µj = sgn(βj) for all j = 1, ..., p, where sgn(0)
is allowed to be any number in [−1, 1].
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which yields

µ̂Kc =
(
Σ̃KcKΣ̃−1

KK

)
µ̂K +

(
X̂T

Kc

e

nλn

)
−
(
Σ̃KcKΣ̃−1

KK

)
X̂T

K

e

nλn
.

By the triangle inequality, we have

|µ̂Kc |∞ ≤
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

+

∣∣∣∣X̂
T
Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

∣∣∣∣X̂
T
K

e

nλn

∣∣∣∣
∞

,

where the fact that |µ̂K |∞ ≤ 1 is used in the inequality above. By Lemma S.1,
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

≤
1 − (c̄−2)φ

(c̄−1) with probability at least 1 − O
(

1
p

)
. Hence,

|µ̂Kc |∞ ≤ 1 − (c̄ − 2)φ

(c̄ − 1)
+

∣∣∣∣X̂
T
Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
∞

∣∣∣∣X̂
T
K

e

nλn

∣∣∣∣
∞

≤ 1 − (c̄ − 2)φ

(c̄ − 1)
+

(
2 − (c̄ − 2)φ

(c̄ − 1)

) ∣∣∣∣X̂
T e

nλn

∣∣∣∣
∞

.

Therefore, it suffices to show that
(
2 − (c̄−2)φ

(c̄−1)

) ∣∣∣X̂T e
nλn

∣∣∣
∞

≤ (c̄−2−ς)φ
c̄−1 with high probability, for any

small number ς > 0. This result holds if λn ≥
(

2− (c̄−2)φ

(c̄−1)

)
(c̄−1)

(c̄−2−ς)φ T0 with T0 defined in (5), Thus, we

have |µ̂Kc |∞ ≤ 1 − ςφ
c̄−1 with probability at least 1 − O

(
1
p

)
. It remains to establish a bound on the

l∞−norm of the error β̂K − β∗
K . By the triangle inequality, we have

|β̂K − β∗
K |∞ ≤

∣∣∣∣∣∣

(
X̂T

KX̂K

n

)−1
X̂T

Ke

n

∣∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥

(
X̂T

KX̂K

n

)−1
∥∥∥∥∥∥

∞

≤
∥∥∥∥∥∥

(
X̂T

KX̂K

n

)−1
∥∥∥∥∥∥

∞

∣∣∣∣∣
X̂T

Ke

n

∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥

(
X̂T

KX̂K

n

)−1
∥∥∥∥∥∥

∞

,

Using the following bound (inequality (14) of Section S.1) from the proof for Lemma S.3:

∥∥∥∥∥∥

(
X̂T

KX̂K

n

)−1
∥∥∥∥∥∥

∞

≤ c
′√

k2

λmin(Σ̂KK)
≤ c

′′√
k2

λmin(ΣKK)

for some c
′′

> c
′

> 1, and putting everything together with the choice of λn stated in Theorem 3.4

yields claim (ii). �

B Technical lemmas

Lemma B.1: If X ∈ R
n×p1 is a sub-Gaussian matrix with parameters (ΣX , ρ2

X) and each row is

sampled independently, then for any fixed (unit) vector v ∈ R
p1 , we have

P(
∣∣∣|Xv|22 − E[|Xv|22]

∣∣∣ ≥ nt) ≤ 2 exp(−cn min{ t2

ρ4
X

,
t

ρ2
X

}).
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Moreover, if Y ∈ R
n×p2 is a sub-Gaussian matrix with parameters (ΣY , ρ2

Y ) and each row is sampled

independently, then

P(|Y T X − E(Y T X)|∞ ≥ nt) ≤ 6p1p2 exp(−cn min{ t2

ρ2
Xρ2

Y

,
t

ρXρY
}),

where Xi and Yi are the ith rows of X and Y , respectively. In particular, if n % log p, then

P(|Y
T X

n
− E(

Y T X

n
)|∞ ≥ c0ρXρY

√
log(p1 ∨ p2)

n
) ≤ c1 exp(−c2 log(p1 ∨ p2)).

Remark. Lemma B.1 is Lemma 14 in Loh and Wainwright (2012), based on Lemma 5.14 and

Corollary 5.17 in Vershynin (2012).

Lemma B.2: For a fixed matrix Γ ∈ R
p×p, parameter s ≥ 1, and tolerance τ > 0, suppose

we have the deviation condition

|vT Γv| ≤ τ ∀v ∈ K(2s, p, 1).

Then,

|vT Γv| ≤ 27τ

(
|v|22 +

1

s
|v|21

)
∀v ∈ R

p.

Remark. Lemma B.2 is Lemma 12 in Loh and Wainwright (2012).

Lemma B.3: Suppose the matrix U ∈ R
n×q is sub-Gaussian with parameters (ΣU , ρ2

U ) where

the jth column of U is Uj , and each row is sampled independently, we have

v0T UT U

n
v0 ≥ v0T ΣU v0 − κ

2

(
|v0|22 +

1

s
|v0|21

)
, (40)

v0T UT U

n
v0 ≤ v0T ΣU v0 +

κ

2

(
|v0|22 +

1

s
|v0|21

)
, (41)

for all v ∈ R
q with probability at least 1 − c1 exp(−c2n + 2s log q).

Proof. First, we show

sup
v∈K(2s, q, 1)

∣∣∣∣∣v
T

(
UT U

n
− ΣU

)
v

∣∣∣∣∣ ≤ κ

54

with high probability, where ΣU = E(UT U
n ). By Lemma B.1 and a discretization argument similar

to those in the proof for Lemma A.6, we have

P

(
sup

v∈K(2s, q, 1)

∣∣∣∣∣v
T

(
UT U

n
− ΣU

)
v

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−cn min(

t2

ρ4
U

,
t

ρ2
U

) + 2s log q),
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for some universal constant c > 0. By choosing t = κ
54 , s ≥ 1, we obtain

P

(
sup

v0∈K(2s, q, 1)

∣∣∣∣∣v
T

(
UT U

n
− ΣU

)
v

∣∣∣∣∣ ≥ κ

54

)
≤ 2 exp(−c2n + 2s log q).

Now, by Lemma B.2 with the following substitutions Γ = UT U
n − ΣU and τ := κ

54 , we obtain

∣∣∣∣∣v
0T

(
UT U

n
− ΣU

)
v0

∣∣∣∣∣ ≤ κ

2

(
|v0|22 +

1

s
|v0|21

)
,

with probability at least 1 − c1 exp(−c2n + 2s log q). The claims follow from the bound above. �

S Supplementary materials

The supplementary materials include additional technical lemmas with proofs, as well as additional

simulation results (https://sites.google.com/site/yingzhu1215/home/HD2SLS_Supplement.pdf).
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