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I. Introduction 

The indirect evolutionary approach (IEA), initiated by Güth and Yaari (1992), 

has become an established rationale for preferences which are deviating from the 

standard payoff-maximizing preference. For a formal description of the IEA, see 

Königstein and Müller (2000). The IEA is used primarily within the fields of 

social preferences and fairness preferences. See for example: Güth (1995); 

Bester and Güth (1998); Kockesen, Ok and Sethi (1998); Güth and Ockenfels 

(2000); Possajennikov (2000); Ok and Vega-Redondo (2001); Sethi (2001); Fehr 

and Henrich (2004); Güth et al. (2007). 

The IEA differentiates from the standard evolutionary approach, in that it is 

based on preference parameters, in lieu of evolutionary strategies. Hence the 

object of heredity is not the strategy, but the preference parameter. This 

preference parameter specifies a utility function which represents a preference 

order. An assumption is made that agents behave rationally in the sense of 

selecting a strategy which maximizes their utility function. A preference is 

evolutionary stable if it induces a strategy, which is an evolutionary stable 

strategy. (Güth and Yaari, 1992). Hence, preferences influence behavior and in 

turn behavior influences the preference distribution within the population.  

It is important to note that in this approach, a phenotype is represented by a 

given, unchangeable preference parameter and by a time - invariant utility 

function. The related preference parameter is inherited by an agent’s 

descendants. As the preferences of any agent cannot change over time, the 

phenotype is unchangeable, too.  

So far, the IEA excludes the phenomenon of phenotype plasticity. In its 

current manifestation, it is the population composition which changes and not 
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individual preferences. The paradigm of stable preferences, which was 

introduced by Becker and Stigler (1977), rules the IEA.  

Some authors, who use the IEA, stress explicitly that, in their model, the 

individual preferences are not subject to change. Some examples are; Güth and 

Yaari (1992), Ockenfels (1993), Bester and Güth (1998), Güth and Kliemt 

(2007). Other authors use the assumption of stable preferences, without any 

reasoning. Altogether, the IEA literature does not provide any suitable argument 

why to preclude ex ante phenotype plasticity (that is time - variant individual 

preferences) from the analysis of the indirect evolutionary approach. In the face 

of the vast amount of literature which indicates that phenotype plasticity can be 

advantageous in an unstable environment (West - Eberhard, 2003), and  also in a 

stable environment, due to social interactions (Fagen, 1987), the following 

question arises: Can time - variant preferences be a stable phenomenon in a 

stable environment? “Stable environment” means that selection mechanism does 

not change with time.  

In our paper, we provide evidence that there are conditions where mutants with 

unstable preferences have greater fitness than mutants with stable preferences. 

We provide a population model with random and pairwise matching in which 

agents live for more than one period. They choose their strategies in accordance 

with their preference. Individual fitness depends on the amount of material 

resources gained through pairwise social interaction. Agents of the non - plastic 

phenotype cannot change their preference, whereas agents of the plastic 

phenotype can do so. 

For 2x2 symmetric evolutionary games, we identify conditions under which a 

population of non - plastic phenotypes can be invaded by mutants of a plastic 

phenotype, but not by mutants of a non - plastic phenotype. 

The rest of the paper is organized as follows: In section two, we develop the 

model. In section three, we analyze this model and isolate conditions under 
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which mutants with a plastic phenotype can invade a population, but mutants 

with a stable phenotype cannot. In section four, we discuss our findings and give 

some hints for further research.  

 

II. The Model 

First, we arrange the population structure, to ensure a population dynamic with 

limited growth (see section A). In section B, using a game, we describe the 

environment, in which the agents struggle for material resources. Next, we 

provide an appropriate definition of fitness (section C), and define and 

operationalize phenotype plasticity (section D). This leads to the final model 

specification (section E).  

 

A. Population Structure 

Consider a large population which is of size 𝑁𝑁𝑡𝑡, at time t. The population 

consists of two classes of agents. These are plastic agents and non - plastic 

agents. 

 In this context ‘plasticity’ means that an agent’s phenotype can change over 

time, and ‘non-plasticity’ means that it is unchangeable over time. A plastic 

agent’s phenotype at time t is denoted with 𝑏𝑏𝑡𝑡 ∈ 𝐵𝐵 = �𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗�, where 𝛽𝛽𝑖𝑖 ≠ 𝛽𝛽𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗 ∈ ℝ.  A non - plastic agent’s phenotype is time invariant, so that we can 

write 𝑏𝑏𝑡𝑡 = 𝑏𝑏. We assume 𝑏𝑏 ∈ 𝐵𝐵. Thus, at time t in the population, there are four 

different types of agents available: non - plastic agents of phenotype 𝛽𝛽𝑖𝑖 (non – 

plastic - 𝛽𝛽𝑖𝑖), non - plastic agents of phenotype 𝛽𝛽𝑗𝑗 (non – plastic - 𝛽𝛽𝑗𝑗), plastic 

agents of phenotype 𝛽𝛽𝑖𝑖 (plastic - 𝛽𝛽𝑖𝑖) and plastic agents of phenotype 𝛽𝛽𝑗𝑗 (plastic - 𝛽𝛽𝑗𝑗). Thus, the total population consists of four different subpopulations.  
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The number of plastic - 𝛽𝛽𝑖𝑖 agents at time t is denoted by 𝑊𝑊𝑡𝑡, the number of 

non-plastic - 𝛽𝛽𝑖𝑖 agents by 𝑋𝑋𝑡𝑡, the number of plastic - 𝛽𝛽𝑗𝑗 agents by 𝑌𝑌𝑡𝑡 and the 

number of non – plastic - 𝛽𝛽𝑗𝑗 agents by 𝑍𝑍𝑡𝑡. At any time t it holds: 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡 + 𝑌𝑌𝑡𝑡 +𝑍𝑍𝑡𝑡 = 𝑁𝑁𝑡𝑡. We denote the corresponding fractions of each agent type with small 

letters 𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑧𝑧𝑡𝑡. 
In the following, we assume limited population growth. We define the 

dynamics on numbers of agents and restrict the population size to  𝑁𝑁𝑡𝑡 ≤ 𝐾𝐾 for all 𝑡𝑡 = 1, … ,𝑇𝑇. 𝐾𝐾 > 0 denotes the population’s carrying capacity. In the following, 

we are assuming the population size (and thus the carrying capacity) to be large 

enough for the approximation  
1𝑁𝑁𝑡𝑡 ≈ 0 to hold.     

Let 𝑅𝑅𝑊𝑊𝑡𝑡 denote the net adds of individuals in subpopulation of plastic - 𝛽𝛽𝑖𝑖 
agents, 𝑅𝑅𝑋𝑋𝑡𝑡 the net adds of individuals in the subpopulation of non-plastic - 𝛽𝛽𝑖𝑖 
agents, 𝑅𝑅𝑌𝑌𝑡𝑡  the net adds of plastic - 𝛽𝛽𝑗𝑗  - agents and 𝑅𝑅𝑧𝑧𝑡𝑡 the net adds of non-plastic 

- 𝛽𝛽𝑗𝑗  - agents from time t to time t+1.  

The population dynamics with limited growth is of the following form. 

(1) 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑊𝑊𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  

(2) 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝑅𝑅𝑋𝑋𝑡𝑡 ∙ (𝐾𝐾 −𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  

(3) 𝑌𝑌𝑡𝑡+1 = 𝑌𝑌𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  

(4) 𝑍𝑍𝑡𝑡+1 = 𝑍𝑍 + 𝑅𝑅𝑍𝑍𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  
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B. The Environment 

The agents are matched randomly and pairwise to play a symmetric two - 

person normal form game 𝐺𝐺 = (𝐼𝐼 ;  𝑆𝑆𝑚𝑚 ;  𝑆𝑆𝑚𝑚′ ;  𝑣𝑣𝑚𝑚 ;  𝑣𝑣𝑚𝑚′) with complete 

information. 𝐼𝐼 = {𝑚𝑚,𝑚𝑚′} denotes the set of players, 𝑣𝑣𝑚𝑚 the payoff of player 𝑚𝑚 

and 𝑣𝑣𝑚𝑚′ the payoff of player 𝑚𝑚′. 𝑚𝑚,𝑚𝑚′ ∈ 𝑀𝑀 = {𝑖𝑖, 𝑗𝑗}. 𝑆𝑆 = 𝑆𝑆𝑚𝑚 × 𝑆𝑆𝑚𝑚′ denotes the 

set of all nonempty pure strategy vectors and 𝑠𝑠𝑚𝑚 ∈ 𝑆𝑆𝑚𝑚 a pure strategy of player 𝑚𝑚 and 𝑠𝑠𝑚𝑚′ ∈ 𝑆𝑆𝑚𝑚′ a pure strategy of player 𝑚𝑚′. As G is a symmetric game, it 

holds 𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑚𝑚′ and 𝑣𝑣𝑚𝑚(𝑠𝑠𝑚𝑚, 𝑠𝑠𝑚𝑚′) = 𝑣𝑣𝑚𝑚′(𝑠𝑠𝑚𝑚′, 𝑠𝑠𝑚𝑚). Here, we assume 𝑆𝑆𝑚𝑚 to 

contain two elements and thus G to be a symmetric 2x2 game.  

The agents are programmed to maximize their individual utility function 

u𝑚𝑚: S → ℝ over strategy sm ∈ Sm for all m ∈ M = {i, j}. Sm denotes the 

nonempty set of phenotype 𝛽𝛽𝑚𝑚’s pure strategies. Thus 𝑆𝑆 = 𝑆𝑆𝑖𝑖 × 𝑆𝑆𝑗𝑗 . The 

individual utility function depends on the phenotype specific parameter b𝑡𝑡 ∈ B.  

Thus, for a given 𝛽𝛽𝑖𝑖 ∈ ℝ and 𝛽𝛽𝑗𝑗 ∈ ℝ, the optimal choice of phenotype 𝛽𝛽𝑖𝑖 in a 

game with an agent of phenotype 𝛽𝛽𝑗𝑗 is 𝑠𝑠𝑖𝑖∗�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗� = arg𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑖𝑖∈𝑆𝑆𝑖𝑖𝑢𝑢𝑖𝑖�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗� and 

in a game with phenotype 𝛽𝛽𝑖𝑖 it is 𝑠𝑠𝑖𝑖∗(𝛽𝛽𝑖𝑖,𝛽𝛽𝑖𝑖) = arg𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑖𝑖∈𝑆𝑆𝑖𝑖𝑢𝑢𝑖𝑖(𝛽𝛽𝑖𝑖,𝛽𝛽𝑖𝑖).  

Similarly, we define 𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑗𝑗� = arg𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑗𝑗∈𝑆𝑆𝑗𝑗𝑢𝑢𝑗𝑗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑗𝑗� and 𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗,𝛽𝛽𝑖𝑖� =

arg𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠𝑗𝑗∈𝑆𝑆𝑗𝑗𝑢𝑢𝑗𝑗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑖𝑖�. The payoff of an agent of phenotype 𝛽𝛽𝑖𝑖, who is playing 

the game with an agent of phenotype 𝛽𝛽𝑗𝑗, is given by 𝑣𝑣𝑖𝑖∗�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗� ≡𝑣𝑣𝑖𝑖 �𝑠𝑠𝑖𝑖∗�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗�, 𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗,𝛽𝛽𝑖𝑖��. Playing the game with an agent of phenotype 𝛽𝛽𝑖𝑖 leads 

to 𝑣𝑣𝑖𝑖∗(𝛽𝛽𝑖𝑖,𝛽𝛽𝑖𝑖) ≡ 𝑣𝑣𝑖𝑖�𝑠𝑠𝑖𝑖∗(𝛽𝛽𝑖𝑖,𝛽𝛽𝑖𝑖), 𝑠𝑠𝑖𝑖∗(𝛽𝛽𝑖𝑖,𝛽𝛽𝑖𝑖)�.  
For an agent of phenotype 𝛽𝛽𝑗𝑗 , we have 𝑣𝑣𝑗𝑗∗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑖𝑖� ≡ 𝑣𝑣𝑗𝑗 �𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑖𝑖�, 𝑠𝑠𝑖𝑖∗�𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗�� 

and 𝑣𝑣𝑗𝑗∗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑗𝑗� ≡ 𝑣𝑣𝑗𝑗 �𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑗𝑗�, 𝑠𝑠𝑗𝑗∗�𝛽𝛽𝑗𝑗,𝛽𝛽𝑗𝑗��. Here, the payoff of the game 𝐺𝐺 is 

assumed to be a materialistic item which is, among others, used for survival and 

for raising an agent’s descendants.  
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C. Defining and Measuring Fitness 

Concerning the definition of fitness, which “has plagued evolutionary 

biologists for many years, partly because the term has been applied differently 

and with different definitions” (Barker, 2009, 4), we rely on the propensity 

interpretation of fitness introduced by Mills and Beatty (1979, reprint 2006). For 

an overview of the vast amount of concepts which operate under the name of 

“fitness,” see Barker (2009).  

 

Definition 1: Fitness  

The individual fitness of a specific organism in a specific environment 

is defined as the expected number of descendants which this organism 

will leave in this environment and the fitness of a type (genotype or 

phenotype) is defined as the average individual fitness. 

Thus the fitness of a type reflects the contribution of a particular trait to the 

expected descendant contribution i.e., the individual fitness of those descendants 

possessing the  trait. (Mills and Beatty, 2006, 12). This notion of fitness can be 

measured by the amount of viable offspring born in the next generation. Hence, 

we treat fitness on par with the average number of viable offspring of a specific 

phenotype. Thus, comparative growth rates of specific phenotypes can serve as a 

measure of fitness too. In line with this notion of fitness, we characterize an 

agent by the distribution of its viable offspring.  

As here, agents of the same phenotype are assumed to be identical, we define 

the distribution of viable offspring in period t for each phenotype and take into 

account that the game payoff influences the amount of viable offspring. In 

contrast to the literature on evolution of preferences, we relate this distribution to 

a single period t, and not to the entire lifespan of an agent. This is because the 
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capability of having viable offspring depends on the game payoff, and thus on 

the preference parameter which is assumed for plastic agents to be changeable 

from period to period. For simplicity, we assume every agent to have only one 

descendant per period who can either survive or not. This leads us to define the 

distribution of viable offspring: 

 

Definition 2: Distribution of viable offspring 

Let 𝜃𝜃:ℝ × ℝ → [0,1], 𝜃𝜃�𝑣𝑣𝑚𝑚∗ (𝛽𝛽𝑚𝑚 ;  𝛽𝛽𝑚𝑚′)� ≡ 𝜃𝜃𝑚𝑚𝑚𝑚′ with 𝑚𝑚,𝑚𝑚′ ∈ {𝑖𝑖, 𝑗𝑗}. 

Then, the distribution of viable offspring of an agent of type 𝑚𝑚 ∈ {𝑖𝑖, 𝑗𝑗}, 

who encountered an agent of type 𝑚𝑚′ ∈ {𝑖𝑖, 𝑗𝑗} at time t is represented by 

the density function  𝑓𝑓𝑚𝑚𝑚𝑚′(𝑥𝑥) = 𝜃𝜃𝑚𝑚𝑚𝑚′𝑥𝑥 ∙ (1 − 𝜃𝜃𝑚𝑚𝑚𝑚′)1−𝑥𝑥   , where: 𝑥𝑥 ∈
{0,1}.  

In the following, we assume (weak) payoff-monotonicity, i.e. 
𝜕𝜕𝜃𝜃𝑚𝑚𝑚𝑚′𝜕𝜕𝜕𝜕𝑚𝑚∗ ≥ 0.  That 

is, the more resources a parental agent manages to acquire, the greater the 

probability its offspring will survive.  

As a matter of fact, the average number of viable offspring of a specific 

phenotype depends on the design of the matching mechanism, as it is the 

matching mechanism that puts in motion a stochastic process. Thus, analyzing 

stochastic processes as deterministic systems, is a widespread and accepted 

approach in economics and evolutionary biology. For some discussions of this 

approximation, see Boylan (1992), and Duffie and Sun (2012). In line with the 

vast amount of literature using this approximation, we assume that in a large 

population with two types 𝑖𝑖 and 𝑗𝑗, by the law of large numbers and the central 

limit theorem, the probability with which a single agent of any type 𝑖𝑖 meets an 

agent of type 𝑗𝑗 equals the proportion of agents with type 𝑗𝑗.  
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Note that the fraction of agents who are of phenotype 𝛽𝛽𝑖𝑖 at time t equals 
𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡  

and the fraction of agents who are of phenotype 𝛽𝛽𝑗𝑗 at time t equals  
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 . Thus, 

the death rates among the offspring of any phenotype 𝑚𝑚 = {𝑖𝑖, 𝑗𝑗} are given by 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑚𝑚𝑖𝑖) +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑚𝑚𝑗𝑗). The average amount of viable offspring of 

any specific type of agents is determined by the number of births at time t minus 

the number of deaths among those born at time t. Thus, for the average amount 

of viable offspring of the four different types of agents lemma 1 holds: 

 

Lemma 1: Average amounts of viable offspring 

If 
1𝑁𝑁𝑡𝑡 ≈ 0, the average amount of viable offspring of non – plastic - 𝛽𝛽𝑖𝑖 - 

agents at time t+1 is given by 𝑋𝑋𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑖𝑖 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑗𝑗�, of plastic –

 𝛽𝛽𝑖𝑖 - agents by 𝑊𝑊𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑖𝑖 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑗𝑗�, of plastic - 𝛽𝛽𝑗𝑗 - agents by 𝑌𝑌𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑖𝑖 +

𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑗𝑗� and of non – plastic – 𝛽𝛽𝑗𝑗 - agents by 𝑍𝑍𝑡𝑡 ∙�𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑖𝑖 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑗𝑗�. 

 

For proof of Lemma 1 see appendix A.  

 

Note that here we have defined fitness slightly differently than in standard 

evolutionary game theory. There, fitness is equalized with the game payoff. 

Agents are either programmed to play a certain strategy (direct evolutionary 

approach), or choose their strategy by maximizing their utility (indirect 

evolutionary approach). The preference is defined on the game payoff and thus 

on fitness. But we think defining a preference on fitness (that is on the average 

amount of offspring) is not appropriate. Here, the payoff of the underlying game 
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represents an amount of tangibles, i.e. resources which are used among others for 

surviving and raising descendants. Thus, the game payoff represents fitness only 

indirectly via the function 𝜃𝜃. The function 𝜃𝜃 induces an evolutionary game in 

which the phenotypes 𝛽𝛽𝑚𝑚, represent the strategies, and 𝜃𝜃𝑚𝑚𝑚𝑚′  with and 𝑚𝑚′ ∈ {𝑖𝑖, 𝑗𝑗} 

represents the current fitness of an agent of type 𝑚𝑚, who encountered an agent of 

type 𝑚𝑚′. If the agent were to live for one period only, then the fitness values 

would be the same as those used in standard evolutionary game theory. But, as 

an agent’s strategies can change over time, the life span of an agent influences 

fitness as well. So, besides the mechanism of phenotype change, the lifespan will 

play a crucial role in our analysis. In the next step we clarify this process of 

phenotype change.  

 

D. Defining and Operationalizing Phenotype Plasticity 

“Plasticity is the ability of an organism to react to an internal or external 

environmental input with a change in form, state, movement or rate of activity. It 

may or may not be adaptive.” (West-Eberhard, 2003). That is, plasticity is 

composed of two distinct components; the plastic trait and the switching rule. It 

specifies the environmental input or event which causes a change of the trait, and 

it specifies the new manifestation of the plastic trait which will occur. We refer 

to reversible plasticity only. That is, an agent can alter the plastic trait several 

times and can alter it back to its original form.  

Here, phenotype plasticity is defined within the framework of the indirect 

evolutionary approach by Güth and Yaari (1992), so its components are defined 

within the paradigm of utility theory. Hence, we define the plastic trait as a 

preference parameter, which represents a class of attitudes, such as; attitudes 

concerning the received game payoff, the division of game payoffs among 



10 

 

players, the intentions of players, etc. . By this definition a specific parameter 

value represents a certain attitude. Examples for preferences which deal with 

attitudes can be found in the literature on fairness preferences or social 

preferences. For examples, see: Levine (1997); Fehr and Schmidt (1999), Cox, 

Friedman and Gjerstad (2007). 

With this specification, an agent’s phenotype is represented by a time variant 

preference parameter of its utility function. Hence, this utility function is time - 

variant. The utility function 𝑢𝑢𝑡𝑡(𝑏𝑏𝑡𝑡) ∶ 𝑆𝑆 × 𝑇𝑇 → ℝ represents an agent’s preference 

at time t whose phenotype 𝑏𝑏𝑡𝑡 ∈ 𝐵𝐵 = �𝛽𝛽𝑖𝑖,𝛽𝛽𝑗𝑗� can alter from time to time. 𝑢𝑢𝑡𝑡(𝑏𝑏𝑡𝑡) is continuous, and twice differentiable, concerning the game payoffs. 

For convenience, we assume that all mutant agents switch their phenotype 

according to the same switching rule. We use a switching rule which is similar to 

that defined by Schmitt (2010). This consists of two elements; the activator and a 

specification by which the current preference parameter value is being replaced. 

The activator is an occurrence which activates switching the parameter. Here, we 

assume that the death of the current offspring, for reasons of not having gained 

enough material resource in period t, activates switching the preference 

parameter from 𝑏𝑏𝑡𝑡 ∈ 𝐵𝐵 to 𝑏𝑏𝑡𝑡+1 ≠ 𝑏𝑏𝑡𝑡 ∈ 𝐵𝐵. This changes both fractions of plastic - 𝛽𝛽𝑖𝑖 - agents and plastic - 𝛽𝛽𝑗𝑗  - agents in accordance with the following lemma 2. 

 

Lemma 2 (switching rule) 

In average 
𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) ∙ 𝑊𝑊𝑡𝑡 +

𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑖𝑖𝑗𝑗� ∙ 𝑊𝑊𝑡𝑡 plastic - 𝛽𝛽𝑖𝑖 - 
agents and 

𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑖𝑖� ∙ 𝑌𝑌𝑡𝑡 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑗𝑗� ∙ 𝑌𝑌𝑡𝑡  plastic - 𝛽𝛽𝑗𝑗  - 

agents suffer death of their descendant in period t for resource scarcity, 

and thus change their preference from 𝛽𝛽𝑖𝑖 to 𝛽𝛽𝑗𝑗 respectively or vice versa. 
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Schmitt (2010) embeds this switching rule into a cognitive framework and 

relies on theories of cognitive dissonance, in particular on Cooper and Fazio 

(1984), and on Aronson (1992). For the detailed psychological foundation of the 

switching rule, we point to Schmitt (2010).  

Here, we will not focus on any details of the cognitive process which yields 

switching. Instead we will look at the outcome only, and the effect switching has 

on the population composition. Thus, we treat the cognitive process as a black 

box. This behavioristic approach is a reasonable simplification, as we are 

considering 2x2 games with two (pure) strategies and two preference parameters 

only. In this setting, changing behavior implies playing the other strategy, and 

changing the preferences parameter implies switching to the other parameter.  

In the next step, we embed the switching rule into the model. Switching the 

preference parameter is similar to migration and immigration between 

subpopulations. Thus, the preference switch affects the net gains 𝑅𝑅𝑊𝑊𝑡𝑡, 𝑅𝑅𝑌𝑌𝑡𝑡 . 
 

 

E. The Final Model Specification 

The net gains (growth factors) 𝑅𝑅𝑊𝑊𝑡𝑡, 𝑅𝑅𝑋𝑋𝑡𝑡 , 𝑅𝑅𝑌𝑌𝑡𝑡 , 𝑅𝑅𝑍𝑍𝑡𝑡  depend crucially on the life 

span of the (adult) agents. Adult agents are assumed to live for an indefinite time 

but will eventually die in the long run. So we allow a fraction of 𝑙𝑙 ∈ ]0; 1[ adult 

agents to die in each period. Death occurs independently of any individual trait, 

and independently of others agents’ deaths. On the individual level, this 

corresponds to the assumption that for each adult agent, there is the same 

independent probability to survive. From lemma 1, lemma 2 and the death rate 𝑙𝑙 ∈ ]0; 1[ among adult agents, it follows that the net gains 𝑅𝑅𝑊𝑊𝑡𝑡, 𝑅𝑅𝑋𝑋𝑡𝑡 , 𝑅𝑅𝑌𝑌𝑡𝑡 , 𝑅𝑅𝑍𝑍𝑡𝑡  are 

of the following form: 
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Lemma 3: 𝑅𝑅𝑊𝑊𝑡𝑡 = −𝑊𝑊𝑡𝑡 + �𝑚𝑚 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑏𝑏 ∙ 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ 𝑊𝑊𝑡𝑡 ∙ (2 − 𝑙𝑙) + 

�1 −𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑐𝑐 − 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑑𝑑� ∙ (1 − 𝑙𝑙) ∙ 𝑌𝑌𝑡𝑡  
𝑅𝑅𝑋𝑋𝑡𝑡 = −𝑙𝑙 ∙ 𝑋𝑋𝑡𝑡 + �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑚𝑚 +

𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑏𝑏� ∙ 𝑋𝑋𝑡𝑡 
𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑌𝑌𝑡𝑡 + �𝑐𝑐 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑑𝑑 ∙ 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ 𝑌𝑌𝑡𝑡 ∙ (2 − 𝑙𝑙) + 

�1 −𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑚𝑚 − 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑏𝑏� ∙ (1 − 𝑙𝑙) ∙ 𝑊𝑊𝑡𝑡 
𝑅𝑅𝑍𝑍𝑡𝑡 = −𝑙𝑙 ∙ 𝑍𝑍𝑡𝑡 + �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑐𝑐 +

𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑑𝑑� ∙ 𝑍𝑍𝑡𝑡 
 

For proof see appendix B. 

 

Inserting the net gains 𝑅𝑅𝑊𝑊𝑡𝑡, 𝑅𝑅𝑋𝑋𝑡𝑡 , 𝑅𝑅𝑌𝑌𝑡𝑡 , 𝑅𝑅𝑍𝑍𝑡𝑡  into the population dynamics and 

carrying out some mathematical operations leads to the final model specification. 

 

Final model (limited growth): 

(5) 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 + �−𝑊𝑊𝑡𝑡 + �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 𝑚𝑚 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 𝑏𝑏�𝑊𝑊𝑡𝑡(2 − 𝑙𝑙) +�1 − 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 𝑐𝑐 − 𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 𝑑𝑑� (1 − 𝑙𝑙) 𝑌𝑌𝑡𝑡 � 𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  

(6) 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + �−𝑙𝑙 𝑋𝑋𝑡𝑡 + �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡  𝑚𝑚 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡  𝑏𝑏�  𝑋𝑋𝑡𝑡�  

𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  
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(7) 𝑌𝑌𝑡𝑡+1 = 𝑌𝑌𝑡𝑡 + �−𝑌𝑌𝑡𝑡 + �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 𝑐𝑐 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 𝑑𝑑�  𝑌𝑌𝑡𝑡 (2 − 𝑙𝑙) + �1 −𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡  𝑚𝑚 − 𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡  𝑏𝑏� (1 − 𝑙𝑙) 𝑊𝑊𝑡𝑡� 𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  

(8) 𝑍𝑍𝑡𝑡+1 = 𝑍𝑍𝑡𝑡 + �−𝑙𝑙 𝑍𝑍𝑡𝑡 + �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡  𝑐𝑐 +
𝑌𝑌𝑡𝑡+𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡  𝑑𝑑�  𝑍𝑍𝑡𝑡�  

𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  

(9) 𝑊𝑊𝑡𝑡+1𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡 + 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡 = 𝑁𝑁𝑡𝑡 
 

The final model is a discrete nonlinear dynamic system. As we are interested 

in the fitness differences of plastic and non-plastic mutants, in the next section 

we discuss the differences in growth factors. 

 

 

III. Discussion: Fitness of Plastic and Non - Plastic Mutants 

In this section, we are searching for differences in the abilities of plastic and 

non - plastic mutants to invade a population of non - plastic agents. For that 

purpose, we apply the above formulated model to detect those environment - 

related parameter constellations �𝑙𝑙,𝜃𝜃𝑖𝑖𝑖𝑖 , 𝜃𝜃𝑖𝑖𝑗𝑗 ,𝜃𝜃𝑗𝑗𝑖𝑖 ,𝜃𝜃𝑗𝑗𝑗𝑗� for which a plastic mutant 

who can switch between phenotype 𝛽𝛽𝑗𝑗 and 𝛽𝛽𝑖𝑖 is able to invade a monomorphic 

population of non – plastic - 𝛽𝛽𝑖𝑖 – agents, whereas a non – plastic - 𝛽𝛽𝑗𝑗 - mutant is 

not able to invade. Here, it is important to bear in mind that the number of plastic 

agents at any time t is given by 𝑊𝑊𝑡𝑡 + 𝑌𝑌𝑡𝑡. Thus, we will find the parameter values 

in question by ascertaining those cases for which 𝑅𝑅𝑍𝑍𝑡𝑡 < 0 and 𝑅𝑅𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 ≥ 0. 

We can identify certain classes of symmetric 2x2 games, in which plastic 

mutants can enter a population which cannot be invaded by non - plastic 

mutants. Whether the non - plastic mutants, whose growth rates are negative, 
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become extinct or not depends on the number of time steps left from the time of 

mutation occurrence to the time when the capacity constraint of the population 

starts to become apparent. That is, the factor 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  is becoming so small that the 

products of 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  and the growth factors are reaching zero before the non - plastic 

mutants go extinct. 

A.  Invasion of Mutants 

In order to find those parameters which allow for an invasion of non – plastic - 𝛽𝛽𝑗𝑗 - mutants into a monomorphic population of non – plastic - 𝛽𝛽𝑖𝑖 – agents, we 

need to set 𝑊𝑊𝑡𝑡 = 0 and 𝑌𝑌𝑡𝑡 = 0 for all times t. If we are seeking parameters which 

allow an invasion of plastic - mutants able to switch between phenotype 𝛽𝛽𝑗𝑗 and 𝛽𝛽𝑖𝑖 in the same monomorphic population of non-plastic - 𝛽𝛽𝑖𝑖 – agents, we set 𝑍𝑍𝑡𝑡 =

0 for all times t. For analysis of an invasion of non – plastic - 𝛽𝛽𝑗𝑗 - mutants in the 

case of limited growth, this leads to the following model specification: 𝑋𝑋𝑡𝑡+1 =𝑌𝑌𝑡𝑡 + 𝑅𝑅𝑋𝑋𝑡𝑡 ∙ (𝐾𝐾 −𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  and 𝑍𝑍𝑡𝑡+1 = 𝑍𝑍𝑡𝑡 + 𝑅𝑅𝑍𝑍𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄   with 𝑅𝑅𝑋𝑋𝑡𝑡 = −𝑙𝑙 ∙ 𝑋𝑋𝑡𝑡 +�𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑚𝑚 +
𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑏𝑏� ∙ 𝑋𝑋𝑡𝑡 and 𝑅𝑅𝑍𝑍𝑡𝑡 = −𝑙𝑙 ∙ 𝑍𝑍𝑡𝑡 + �𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑐𝑐 +

𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑑𝑑� ∙ 𝑍𝑍𝑡𝑡. If the number of 

mutants at time 𝑡𝑡 = 0 is denoted with M, then 𝑍𝑍0 = 𝑀𝑀 and 𝑁𝑁0 = 𝑀𝑀 + 𝑋𝑋0.  The 

following net gains result: 

(10)  𝑅𝑅𝑋𝑋0 = −𝑙𝑙 ∙ 𝑋𝑋0 + � 𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑚𝑚 +
𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑏𝑏� ∙ 𝑋𝑋0  

(11) 𝑅𝑅𝑍𝑍0 = −𝑙𝑙 ∙ 𝑀𝑀 + � 𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑐𝑐 +
𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑑𝑑� ∙ 𝑀𝑀 

 

The specifications for analyzing the invasion of plastic - 𝛽𝛽𝑗𝑗  - mutants in the 

same population are: 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑊𝑊𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  and 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝑅𝑅𝑋𝑋𝑡𝑡 ∙
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(𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄  and 𝑌𝑌𝑡𝑡+1 = 𝑌𝑌𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 ∙ (𝐾𝐾 − 𝑁𝑁𝑡𝑡) 𝐾𝐾⁄ . As here, 𝑍𝑍𝑡𝑡 = 0, the net gains 

change to 𝑅𝑅𝑊𝑊𝑡𝑡 = −𝑊𝑊𝑡𝑡 + �𝑚𝑚 ∙ 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑏𝑏 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑊𝑊𝑡𝑡 ∙ (2 − 𝑙𝑙) + �1 − 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑐𝑐 − 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡 ∙𝑑𝑑� ∙ (1 − 𝑙𝑙) ∙ 𝑌𝑌𝑡𝑡  and  𝑅𝑅𝑋𝑋𝑡𝑡 = −𝑙𝑙 ∙ 𝑋𝑋𝑡𝑡 + �𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑚𝑚 +
𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑏𝑏� ∙ 𝑋𝑋𝑡𝑡 and 𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑌𝑌𝑡𝑡 +�𝑐𝑐 ∙ 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑑𝑑 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑌𝑌𝑡𝑡 ∙ (2 − 𝑙𝑙) + �1 − 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑚𝑚 − 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝑏𝑏� ∙ (1 − 𝑙𝑙) ∙ 𝑊𝑊𝑡𝑡. Note 

that 𝑅𝑅𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑙𝑙 ∙ (𝑌𝑌𝑡𝑡 + 𝑊𝑊𝑡𝑡) + �𝑚𝑚 ∙ 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑏𝑏 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑊𝑊𝑡𝑡 + �𝑐𝑐 ∙ 𝑊𝑊𝑡𝑡+𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑑𝑑 ∙𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑌𝑌𝑡𝑡  (See appendix C.) and that 𝑊𝑊0 + 𝑌𝑌0 = 𝑀𝑀 and 𝑁𝑁0 = 𝑀𝑀 + 𝑋𝑋0, if we denote 

the number of mutants at time 𝑡𝑡 = 0 with M. Thus, the net gains for 𝑡𝑡 = 0 can be 

written as: 

(12) 𝑅𝑅𝑋𝑋0 = −𝑙𝑙 ∙ 𝑋𝑋0 + �𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑚𝑚 +
𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0 ∙ 𝑏𝑏� ∙ 𝑋𝑋0 

(13) 𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑌𝑌0 = −𝑙𝑙 ∙ 𝑀𝑀 + �𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑊𝑊0 + �𝑐𝑐 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 +𝑑𝑑 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ (𝑀𝑀 −𝑊𝑊0). 

If we don’t want the original monomorphic population of non – plastic - 𝛽𝛽𝑖𝑖 - 
agents to become extinct in the long run, we need to ensure that 𝑅𝑅𝑋𝑋𝑡𝑡 ≥ 0 for 𝑊𝑊𝑡𝑡 = 0, 𝑌𝑌𝑡𝑡 = 0, 𝑍𝑍𝑡𝑡 = 0. This is the case if 𝑚𝑚 ≥ 𝑙𝑙.   

Now, we check for parameters for which 𝑅𝑅𝑍𝑍0 < 0 and 𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑦𝑦0 > 0. This 

leads to theorem 1. 

 

Theorem 1: 

Let 𝑋𝑋0 be the number of non - plastic agents of type 𝛽𝛽𝑖𝑖, 𝑍𝑍0 the number of 

non-plastic mutants of type 𝛽𝛽𝑗𝑗 and 𝑊𝑊0 + 𝑌𝑌0 = 𝑀𝑀 the number of plastic - 

mutants who can switch between type 𝛽𝛽𝑗𝑗 and 𝛽𝛽𝑖𝑖 at time 𝑡𝑡 = 0. 𝑊𝑊0 is the 
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number of plastic agents with type 𝛽𝛽𝑖𝑖 at time 𝑡𝑡 = 0. 𝑌𝑌0 is the number of 

plastic agents with type 𝛽𝛽𝑗𝑗 at time 𝑡𝑡 = 0.  

Then, for any initial state (𝑋𝑋0,𝑀𝑀) and for all parameters 𝑚𝑚 ∈ ]0,1[ 

and all 𝑏𝑏 ∈ ]0,1[ there exists a death rate 𝑙𝑙∗ ∈ � 𝑋𝑋0𝑋𝑋0+𝑀𝑀 ∙ 𝑐𝑐 +
𝑀𝑀𝑋𝑋0+𝑀𝑀 ∙ 𝑑𝑑 ;  𝑚𝑚 ∙

(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0)∙𝑊𝑊0

(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑐𝑐 ∙ (𝑀𝑀−𝑊𝑊0)∙(𝑊𝑊0+𝑋𝑋0)

(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑑𝑑 ∙ (𝑀𝑀−𝑊𝑊0)2
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀� and a 

capacity 𝐾𝐾 ≫ 𝑁𝑁0 for which 𝑀𝑀 plastic mutants can invade a population of 

non-plastic agents of type 𝛽𝛽𝑖𝑖 which is uninvadable by 𝑀𝑀 non-plastic 

mutants of type 𝛽𝛽𝑗𝑗 providing for parameters 𝑐𝑐 and 𝑑𝑑 the following holds: 

(I) 𝑐𝑐 < −𝑑𝑑 ∙ 2𝑀𝑀−𝑊𝑊0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑊𝑊0+𝑋𝑋0−𝑀𝑀   

and 

(II) 𝑑𝑑 < 𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋02𝑀𝑀−𝑊𝑊0 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊02𝑀𝑀−𝑊𝑊0 
 

For proof see appendix D 

 

Note that the definition set of the death rate 𝑙𝑙 in theorem 1 is the whole range 

from zero to 1. But we have required the parameter 𝑚𝑚 to exceed (weakly) the 

death rate 𝑙𝑙, so that a monomorphic population of non - plastic agents of type 𝛽𝛽𝑖𝑖 
will not become extinct. Thus, we need to modify theorem 1 for death rates 𝑙𝑙∗ 
below a. That is  𝑚𝑚 ∙ (𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0

(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0)∙𝑊𝑊0
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑐𝑐 ∙ (𝑀𝑀−𝑊𝑊0)∙(𝑊𝑊0+𝑋𝑋0)

(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑑𝑑 ∙
(𝑀𝑀−𝑊𝑊0)2
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 ≤ 𝑚𝑚. We find some additional restrictions for parameter c and d, and a 

new restriction for parameter b (see appendix E). We sum up these findings in 

proposition 1. 
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Proposition 1 

If the conditions for theorem 1 to hold are given and in addition for 

parameter c, d and b, the following three conditions hold, then 𝑙𝑙∗ ≤ 𝑚𝑚 

exists. 

 (I’) 𝑐𝑐 ∙≤ 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙(𝑊𝑊0+𝑋𝑋0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑊𝑊0+𝑋𝑋0)

− 𝑑𝑑 ∙ (𝑀𝑀−𝑊𝑊0)

(𝑊𝑊0+𝑋𝑋0)
 

 (II’) 𝑑𝑑 < 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙(𝑀𝑀−𝑊𝑊0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)

 

 (III’) 𝑏𝑏 < 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙𝑊𝑊0  

 

For large populations and a small mutation rate, the definition set of 𝑙𝑙∗ does 

not depend on the magnitudes of 𝑏𝑏 and 𝑑𝑑, as lim𝑋𝑋0→∞ 𝑀𝑀𝑋𝑋0+𝑀𝑀 = 0, lim𝑋𝑋0→∞ (𝑀𝑀−𝑊𝑊0)2
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 = 0, 

and lim𝑋𝑋0→∞ (𝑀𝑀−𝑊𝑊0)∙𝑊𝑊0
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 = 0. As lim𝑋𝑋0→∞ 𝑋𝑋0𝑋𝑋0+𝑀𝑀 = 1 the lower bound of 𝑙𝑙∗ is about the 

same size as 𝑐𝑐. The upper bound of 𝑙𝑙∗ is about 𝑐𝑐 +
𝑊𝑊0𝑀𝑀 (𝑚𝑚 + 𝑐𝑐), because the 

lim𝑋𝑋0→∞𝑚𝑚 ∙ (𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 + 𝑐𝑐 ∙ (𝑀𝑀−𝑊𝑊0)∙(𝑊𝑊0+𝑋𝑋0)

(𝑀𝑀+𝑋𝑋0)∙𝑀𝑀 = 𝑚𝑚 ∙ 𝑊𝑊0𝑀𝑀 + 𝑐𝑐 ∙ 𝑊𝑊0+𝑀𝑀𝑀𝑀 = 𝑐𝑐 +
𝑊𝑊0𝑀𝑀 (𝑚𝑚 + 𝑐𝑐). 

Moreover, for large populations with few mutants, theorem 1 can hold only if 𝑐𝑐 < 𝑚𝑚, which follows from the boundary value analysis of condition (I). As we 

will discuss in the next section, 𝑐𝑐 < 𝑚𝑚 implies that theorem 1, holds for the 

Prisoners Dilemma.  

We have already stated that extinction of non-plastic mutants depends on the 

number of time steps left from the time the mutation occurs to the time when the 

capacity constraint of the population starts to take effect. That is, extinction of 

non-plastic mutants does not happen if the factor 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  becomes so small that the 

product of 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  and the growth factors approach zero before 𝑍𝑍𝑡𝑡 becomes nearly 
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zero. But, as the growth factor 𝑍𝑍𝑡𝑡 of the non-plastic mutants is negative and that 

of the plastic - mutants is positive, the number of plastic - mutants exceeds the 

number of non-plastic mutants. This means that overall the plastic mutants are 

more successful. At the beginning of the operation of the dynamic system, the 

product of the growth factor and 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  of the established agents is considerably 

larger than the growth factors of the mutant agents. Hence, that the product of 𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  and the growth factor of the few mutants reaches the limit a number of time 

periods earlier than does the product of 
𝐾𝐾−𝑁𝑁𝑡𝑡𝐾𝐾  and the growth factor of the 

established agents.  

 

B.  Validity of the findings for symmetric 2x2 games 

In section 2 we have stated that our notion of fitness induces an evolutionary 

2x2 game with pure strategies only. Such a game can be represented by the 

following payoff matrix:   

 

PAYOFF MATRIX OF EVOLUTIONARY GAME 

 𝛽𝛽𝑗𝑗 𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 𝜃𝜃𝑗𝑗𝑗𝑗;𝜃𝜃𝑗𝑗𝑗𝑗  𝜃𝜃𝑗𝑗𝑖𝑖;𝜃𝜃𝑖𝑖𝑗𝑗 𝛽𝛽𝑖𝑖 𝜃𝜃𝑖𝑖𝑗𝑗;𝜃𝜃𝑗𝑗𝑖𝑖 𝜃𝜃𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖 
 

Symmetric 2x2 games can be classified into 4 categories (Weibull, 1997, 30). 

In games of category I 𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑗𝑗𝑖𝑖  and 𝜃𝜃𝑗𝑗𝑗𝑗 < 𝜃𝜃𝑖𝑖𝑗𝑗, so that these games are strictly 

dominance solvable. A well-known example is the Prisoner’s Dilemma Game. In 

games of category II, which have two symmetric Nash equilibria, it holds  𝜃𝜃𝑗𝑗𝑗𝑗 >𝜃𝜃𝑖𝑖𝑗𝑗 and 𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑗𝑗𝑖𝑖. The Coordination Game is an example of this category of 
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game. In category III, 𝜃𝜃𝑗𝑗𝑗𝑗 < 𝜃𝜃𝑖𝑖𝑗𝑗 and 𝜃𝜃𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑗𝑗𝑖𝑖. Here there are two asymmetric 

strict Nash equilibria. The Hawk - Dove Game belongs to this category. Games 

of category IV, in which 𝜃𝜃𝑗𝑗𝑗𝑗 > 𝜃𝜃𝑖𝑖𝑗𝑗 and 𝜃𝜃𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑗𝑗𝑖𝑖  are also dominance solvable, 

and structurally identical to games of category I. Thus, the Prisoner’s Dilemma is 

an example of this category. 

The boundary value analysis showed that our findings are valid for games of 

category I and category II, as there it holds 𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑗𝑗𝑖𝑖. 
In the following, we give an example for each of these categories, and simulate 

the development of the population from time 𝑡𝑡 = 0 to time 𝑡𝑡 = 𝑇𝑇, at which point 

a stable pattern has established. We assume for all examples that at time 𝑡𝑡 = 0, 

the following population condition is: 𝑋𝑋0 = 106 , 𝑀𝑀 = 5, 𝑊𝑊0 = 1, 𝑌𝑌0 = 4. The 

population carrying capacity is 𝐾𝐾 = 109. For this carrying capacity, the stable 

pattern is reached after less than 100 time steps. The simulations were carried out 

in the software environment R. 

 

3.2.1 Example Category (I): The Prisoner’s Dilemma 𝜽𝜽𝒊𝒊𝒊𝒊 > 𝜽𝜽𝒋𝒋𝒊𝒊 and 𝜽𝜽𝒋𝒋𝒋𝒋 < 𝜽𝜽𝒊𝒊𝒋𝒋 
Let 𝜃𝜃𝑖𝑖𝑖𝑖 = 0.4, 𝜃𝜃𝑖𝑖𝑗𝑗 = 0.7, 𝜃𝜃𝑗𝑗𝑖𝑖 = 0.3 and 𝜃𝜃𝑗𝑗𝑗𝑗 = 0.5. We receive the following 

evolutionary game payoff matrix: 

 

THE PRISONER’S DILEMMA   

 𝛽𝛽𝑗𝑗 𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 0.5;0.5 0.3;0.7 𝛽𝛽𝑖𝑖 0.7;0.3 0.4;0.4 

 

Then 𝑙𝑙∗ ∈ ]0.3 ;  0.32[. For 𝑙𝑙∗ = 0.31 the development of non - plastic mutants 

of type 𝛽𝛽𝑗𝑗, which enter a population of non-plastic established agents of type 𝛽𝛽𝑖𝑖 
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is pictured in figure 1 for 100 time steps and the development of plastic mutants 

in figure 2. After 100 time steps, the population composition does not change, as 

the carrying capacity was reached. In both cases 𝑀𝑀0 = 10. 

 

 

 
FIGURE 1: DEVELOPMENT OF NON-PLASTIC MUTANTS IN THE PRISONER’S DILEMMA 

GAME 

FIGURE 2: DEVELOPMENT OF PLASTIC MUTANTS IN THE PRISONER’S DILEMMA 

GAME 
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The development of plastic and non-plastic mutants which occurred 

simultaneously in a population of non-plastic agents of type 𝛽𝛽𝑖𝑖 is depicted in 

figure 3 for 100 time steps. Here, 𝑊𝑊0 = 1, 𝑌𝑌0 = 4 and 𝑍𝑍0 = 5. 

 

 

 

 

 

 

 

 

 

FIGURE 3: DEVELOPMENT OF SIMULTANEOUSLY OCCURRED PLASTIC AND NON-PLASTIC MUTANTS IN THE PRISONER’S DILEMMA 

GAME 



22 

 

3.2.2 Example Category (II): The Coordination Game 𝜽𝜽𝒋𝒋𝒋𝒋 > 𝜽𝜽𝒊𝒊𝒋𝒋 and 𝜽𝜽𝒊𝒊𝒊𝒊 >𝜽𝜽𝒋𝒋𝒊𝒊 
The Coordination Game for which 𝜃𝜃𝑖𝑖𝑖𝑖 = 0.4, 𝜃𝜃𝑖𝑖𝑗𝑗 = 0.2, 𝜃𝜃𝑗𝑗𝑖𝑖 = 0.2 and 𝜃𝜃𝑗𝑗𝑗𝑗 =

0.3 yields the following evolutionary game payoff matrix: 

 

THE COORDINATION GAME   

 𝛽𝛽𝑗𝑗 𝛽𝛽𝑖𝑖 𝛽𝛽𝑗𝑗 0.3;0.3 0.2;0.2 𝛽𝛽𝑖𝑖 0.2;0.2 0.4;0.4 

 

Then 𝑙𝑙∗ ∈ ]0.2 ;  0.24[. For 𝑙𝑙∗ = 0.22 the development of non-plastic mutants 

of type 𝛽𝛽𝑗𝑗, which occurred in a population of non-plastic agents of type 𝛽𝛽𝑖𝑖, is 

depicted in figure 4, and the development of plastic mutants in figure 5: 

FIGURE 4: DEVELOPMENT OF NON-PLASTIC MUTANTS IN THE COORDINATION GAME 
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The development of plastic and non - plastic mutants which occurred 

simultaneously in a population of non-plastic agents is depicted in figure 6.  

FIGURE 5: DEVELOPMENT OF PLASTIC MUTANTS IN THE COORDINATION GAME 
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In the coordination game, the population reaches its stable pattern faster than in 

the prisoner’s dilemma.  

Mutant agents which can change their phenotype become a stable phenomenon 

in both examples. The number of plastic mutants increases about twelve - fold in 

the coordination game, and about ten - fold in the prisoner’s dilemma game. The 

number of non-plastic agents stabilizes at a lower value than the initial one. 

Here, it is about by one half.   

 

FIGURE 6: DEVELOPMENT OF SIMULTANEOUSLY OCCURRED PLASTIC AND NON-PLASTIC MUTANTS IN THE COORDINATION GAME 
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IV. Conclusion 

We have shown that there exist conditions which cause plastic mutants to 

feature higher fitness than non - plastic mutants.  

If the fitness of agents of the original phenotype 𝛽𝛽𝑖𝑖, who encounter agents of 

the same phenotype 𝛽𝛽𝑖𝑖, exceeds the fitness of agents of the mutant phenotype 𝛽𝛽𝑗𝑗, 
who encounter agents of the original phenotype 𝛽𝛽𝑖𝑖, that is 𝜃𝜃𝑖𝑖𝑖𝑖 > 𝜃𝜃𝑗𝑗𝑖𝑖, then there 

exists a death rate 𝑙𝑙∗, so that mutant agents who can switch their preference 

exhibit higher fitness than mutant agent who cannot. In the present model the 

death rate represents an agent’s (expected) life span. The higher the death rate, 

the shorter an agent’s lifetime. Here, we have opted for an exogenously given 

(expected) life span, because it makes the resulting model more comparable to 

models which work with the standard assumption that each agent lives 1 period. 

A life span which lasts longer than one (decision) period of an organism is an 

important feature that paves the way for the ability to change the phenotype. 

Thus, further research should tie in with this and endogenize the life span of 

agents. That is, the death rate of adult agents could depend on the outcome of 

strategic interactions, and thus could become an object of evolution, too. This 

would be a model of coevolution of preferences and life-span.  

If the carrying capacity of a population is sufficiently large in comparison to 

the population size at the time the mutation has occurred, then the non-plastic 

mutants become extinct before the population pattern stabilizes. Conversely the 

number of plastic - mutants stabilizes at a value above the initial number at the 

time of mutation occurrence. Thus, there exist conditions under which 

simultaneously non - plastic mutants are detained from entering, and plastic - 

mutants are enabled to enter a large population of non-plastic agents.  

It appears that preference flexibility provides a greater fitness than preference 

inflexibility for symmetric 2x2 evolutionary games, which are dominance 
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solvable or which have two symmetric Nash equilibria. Prominent examples 

were the Prisoner’s Dilemma and the Coordination Game.  

This outcome enriches the discussion on instability versus stability of tastes. In 

the economists’ tradition, preferences are viewed as something given with which 

a decision maker is endowed before making a decision. Preferences are stable. 

Constructivism views preferences as something that is constructed by the 

decision maker during the process of decision making on the basis of context 

factors (Ariely and Hoeffler 1999). Preferences are learned, and are thus 

unstable. Our model supports the view of unstable preferences, as we are able 

show that even within a stable environment (that is, the game payoffs are time 

independent), an unstable preference can provide greater fitness than stable 

preferences. We conclude that, time variant preferences should not be excluded 

from the economic standard logic, but instead should become a part of it. 
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IV. Appendix 

 

Appendix A: Proof of Lemma 1 

 

The average amount of viable offspring of plastic agents of type 𝛽𝛽𝑖𝑖 at time t is 

given by: 

𝑉𝑉𝑊𝑊𝑡𝑡 = 𝑊𝑊𝑡𝑡 − �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑗𝑗)� ∙ 𝑊𝑊𝑡𝑡 

 ⇔   𝑉𝑉𝑊𝑊𝑡𝑡 = 𝑊𝑊𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑗𝑗� 

 

The average number of viable offspring of non-plastic agents of type 𝛽𝛽𝑖𝑖 at time 

t is given by: 

𝑉𝑉𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡 − �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑗𝑗)� ∙ 𝑋𝑋𝑡𝑡 

 ⇔   𝑉𝑉𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑗𝑗� 

 

The average amount of viable offspring of plastic agents of type 𝛽𝛽𝑗𝑗 at time t is 

given by: 𝑉𝑉𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡 − �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑖𝑖� +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 �1 − 𝜃𝜃𝑗𝑗𝑗𝑗�� ∙ 𝑌𝑌𝑡𝑡 

 ⇔  𝑉𝑉𝑦𝑦𝑡𝑡 = 𝑌𝑌𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑗𝑗� 
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The average amount of viable offspring of plastic non-plastic agents of type 𝛽𝛽𝑖𝑖 
at time t is given by: 

𝑉𝑉𝑍𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 − �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑗𝑗𝑖𝑖) +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑗𝑗𝑗𝑗)� ∙ 𝑍𝑍𝑡𝑡  

 ⇔   𝑉𝑉𝑍𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑗𝑗� 

 

 

Appendix B: Proof of Lemma 3 

 

The net gains can be calculated as the number of viable offspring minus the 

number of deceased adult agents plus the number of immigrants and emigrants 

due to phenotype switch. With regard to lemma 1 and lemma 2 and the death rate 𝑙𝑙, we get the following net gains: 

𝑅𝑅𝑊𝑊𝑡𝑡 = 𝑉𝑉𝑊𝑊𝑡𝑡 − 𝑙𝑙 ∙ 𝑊𝑊𝑡𝑡  
+ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑖𝑖� ∙ 𝑌𝑌𝑡𝑡 +

𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑗𝑗� ∙ 𝑌𝑌𝑡𝑡� ∙ (1 − 𝑙𝑙) 

−�𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) ∙ 𝑊𝑊𝑡𝑡 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑖𝑖𝑗𝑗� ∙ 𝑊𝑊𝑡𝑡� ∙ (1 − 𝑙𝑙) 

 ⇔   𝑅𝑅𝑊𝑊𝑡𝑡 = −𝑊𝑊𝑡𝑡 + �𝜃𝜃𝑖𝑖𝑖𝑖 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝜃𝜃𝑖𝑖𝑗𝑗 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ 𝑊𝑊𝑡𝑡 ∙ (2 − 𝑙𝑙) 

+ �1 − 𝜃𝜃𝑗𝑗𝑖𝑖 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 − 𝜃𝜃𝑗𝑗𝑗𝑗 ∙ 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ (1 − 𝑙𝑙) ∙ 𝑌𝑌𝑡𝑡 
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𝑅𝑅𝑌𝑌𝑡𝑡 = 𝑉𝑉𝑌𝑌𝑡𝑡 − 𝑙𝑙 ∙ 𝑌𝑌𝑡𝑡  
−�𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑖𝑖� ∙ 𝑌𝑌𝑡𝑡 +

𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑗𝑗𝑗𝑗� ∙ 𝑌𝑌𝑡𝑡� ∙ (1 − 𝑙𝑙) 

+ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ (1 − 𝜃𝜃𝑖𝑖𝑖𝑖) ∙ 𝑊𝑊𝑡𝑡 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ �1 − 𝜃𝜃𝑖𝑖𝑗𝑗� ∙ 𝑊𝑊𝑡𝑡� ∙ (1 − 𝑙𝑙) 

 ⇔   𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑌𝑌𝑡𝑡 + �𝜃𝜃𝑗𝑗𝑖𝑖 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝜃𝜃𝑗𝑗𝑗𝑗 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ 𝑌𝑌𝑡𝑡 ∙ (2 − 𝑙𝑙) 

+ �1 − 𝜃𝜃𝑖𝑖𝑖𝑖 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 − 𝜃𝜃𝑖𝑖𝑗𝑗 ∙ 𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 � ∙ (1 − 𝑙𝑙) ∙ 𝑊𝑊𝑡𝑡 
The net adds 𝑅𝑅𝑋𝑋𝑡𝑡and 𝑅𝑅𝑍𝑍𝑡𝑡  are not influenced by the switching rule, so the 

following holds: 

𝑅𝑅𝑋𝑋𝑡𝑡 = 𝑉𝑉𝑋𝑋𝑡𝑡 − 𝑙𝑙 ∙ 𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖𝑗𝑗� − 𝑙𝑙 ∙ 𝑋𝑋𝑡𝑡 

𝑅𝑅𝑍𝑍𝑡𝑡 = 𝑉𝑉𝑍𝑍𝑡𝑡 − 𝑙𝑙 ∙ 𝑍𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 ∙ �𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑖𝑖 +
𝑌𝑌𝑡𝑡 + 𝑍𝑍𝑡𝑡𝑁𝑁𝑡𝑡 ∙ 𝜃𝜃𝑗𝑗𝑗𝑗� − 𝑙𝑙 ∙ 𝑍𝑍𝑡𝑡  

 

Appendix C: 𝑹𝑹𝑾𝑾𝒕𝒕 + 𝑹𝑹𝒀𝒀𝒕𝒕 𝑅𝑅𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑊𝑊𝑡𝑡 + (1 − 𝑙𝑙) ∙ 𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡 + (1 − 𝑙𝑙) ∙ 𝑊𝑊𝑡𝑡  
+ �𝑚𝑚 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑏𝑏 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� (𝑊𝑊𝑡𝑡 ∙ (2 − 𝑙𝑙) − (1 − 𝑙𝑙) ∙ 𝑊𝑊𝑡𝑡)
+ �𝑐𝑐 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑑𝑑 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� (𝑌𝑌𝑡𝑡 ∙ (2 − 𝑙𝑙) − (1 − 𝑙𝑙) ∙ 𝑌𝑌𝑡𝑡) 
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 ⇔   𝑅𝑅𝑊𝑊𝑡𝑡 + 𝑅𝑅𝑌𝑌𝑡𝑡 = −𝑙𝑙 ∙ (𝑌𝑌𝑡𝑡 + 𝑊𝑊𝑡𝑡) 

+ �𝑚𝑚 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑏𝑏 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑊𝑊𝑡𝑡 + �𝑐𝑐 ∙ 𝑊𝑊𝑡𝑡 + 𝑋𝑋𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑑𝑑 ∙ 𝑌𝑌𝑡𝑡𝑁𝑁𝑡𝑡� ∙ 𝑌𝑌𝑡𝑡 
 

Appendix. D: Proof of Theorem 1  

Case 1: 𝑴𝑴 > 𝑾𝑾𝟎𝟎. Hence: 𝒀𝒀𝟎𝟎 > 𝟎𝟎 and 𝑾𝑾𝟎𝟎 > 𝟎𝟎. 

M non-plastic mutants have a negative fitness at the time of their occurrence if: 

 𝑅𝑅𝑍𝑍0 < 0  

 ⇔− 𝑙𝑙 ∙ 𝑀𝑀 + � 𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑐𝑐 +
𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑑𝑑� ∙ 𝑀𝑀 < 0  

(D.1) 
 ⇔𝑙𝑙 >

𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑐𝑐 +
𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑑𝑑 

The same number of M plastic mutants have a positive fitness at the time of their 

occurrence if:  

𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑦𝑦0 > 0  

 ⇔− 𝑙𝑙 ∙ 𝑀𝑀 + �𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑊𝑊0 + �𝑐𝑐 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑑𝑑 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙
(𝑀𝑀−𝑊𝑊0) > 0  

(D.2) 
 ⇔�𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑊𝑊0𝑀𝑀 + �𝑐𝑐 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑑𝑑 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀 > 𝑙𝑙 
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Let 𝑙𝑙∗ be a death rate which fulfills both inequalities, (D.1) and (D.2). Hence, 

such a death rate 𝑙𝑙∗ exists, if there exist parameter 𝑚𝑚, 𝑏𝑏, 𝑐𝑐,𝑑𝑑  for which the 

following holds: 

(D.3) �𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑊𝑊0𝑀𝑀 + �𝑐𝑐 ∙ 𝑊𝑊0+𝑋𝑋0𝑀𝑀+𝑋𝑋0 + 𝑑𝑑 ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀+𝑋𝑋0� ∙ 𝑀𝑀−𝑊𝑊0𝑀𝑀 >𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑐𝑐 +
𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑑𝑑 

We solve (D.3) for parameter c. 

(D.4) 
 ⇔𝑐𝑐 < 𝑑𝑑 ∙ 𝑊𝑊0−2𝑀𝑀𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 

Note that (D.4) can hold only if the right side of (D.4) is positive. Thus: 

(D.5) 𝑑𝑑 ∙ 𝑊𝑊0−2𝑀𝑀𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 + 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑊𝑊0+𝑋𝑋0−𝑀𝑀 > 0 

We solve (D.5) for parameter d.  

(D.6) 𝑑𝑑 < −𝑚𝑚 ∙ 𝑊𝑊0+𝑋𝑋0𝑊𝑊0−2𝑀𝑀 − 𝑏𝑏 ∙ 𝑀𝑀−𝑊𝑊0𝑊𝑊0−2𝑀𝑀 

As in this case, we have assumed that both phenotypes of the plastic mutant exist 

at time 𝑡𝑡 = 0, that is: 𝑀𝑀 > 𝑊𝑊0, it holds 𝑊𝑊0 − 2𝑀𝑀 < 0, the right side of (3.10) is 

positive for all parameter 𝑚𝑚. 𝑏𝑏 ∈ [0; 1].  

Case 2: 𝑴𝑴 = 𝑾𝑾𝟎𝟎. Hence 𝒀𝒀𝟎𝟎 = 𝟎𝟎.  

We insert 𝑴𝑴 = 𝑾𝑾𝟎𝟎 into equation (13) and get: 

𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑌𝑌0 = −𝑙𝑙 ∙ 𝑊𝑊0 + 𝑚𝑚 ∙ 𝑊𝑊0 
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If 𝑚𝑚 > 𝑙𝑙 then 𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑌𝑌0 > 0 for all 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ [0,1] at time 𝑡𝑡 = 0. At next time 𝑡𝑡 = 1 there it holds Y1 > 0 which is similar to case 1. 

Case 3: 𝑴𝑴 = 𝒀𝒀𝟎𝟎. Hence: 𝑾𝑾𝟎𝟎 = 𝟎𝟎 : 

We insert 𝑀𝑀 = 𝑌𝑌0 into (13) and get: 

𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑌𝑌0 = −𝑙𝑙 ∙ 𝑌𝑌0 + �𝑐𝑐 ∙ 𝑋𝑋0𝑌𝑌0 + 𝑋𝑋0 + 𝑑𝑑 ∙ 𝑌𝑌0𝑌𝑌0 + 𝑋𝑋0� ∙ 𝑌𝑌0 

𝑅𝑅𝑊𝑊0 + 𝑅𝑅𝑌𝑌0 > 0 if:  

(D.7) 𝑐𝑐 ∙ 𝑋𝑋0𝑌𝑌0+𝑋𝑋0 + 𝑑𝑑 ∙ 𝑌𝑌0𝑌𝑌0+𝑋𝑋0 > 𝑙𝑙 
We solve (D.7) for c: 

𝑐𝑐 > 𝑙𝑙 ∙ 𝑌𝑌0 + 𝑋𝑋0𝑋𝑋0 − 𝑑𝑑 ∙ 𝑌𝑌0𝑋𝑋0 

Inserting 𝑌𝑌0 = 𝑀𝑀 leads to 

(D.8) 𝑙𝑙 < 𝑐𝑐 ∙ 𝑋𝑋0𝑌𝑌0+𝑋𝑋0 + 𝑑𝑑 ∙ 𝑌𝑌0𝑌𝑌0+𝑋𝑋0 
Note, that equation (D.1) holds.  

(D.1) 𝑙𝑙 >
𝑋𝑋0𝑀𝑀+𝑋𝑋0 ∙ 𝑐𝑐 +

𝑀𝑀𝑀𝑀+𝑋𝑋0 ∙ 𝑑𝑑 

But (D.1) contradicts (D.8) if, as we assume, the number of mutants is the 

same in both cases. That is, if 𝑊𝑊0 = 0 and 𝑌𝑌0 > 0, the growth rate at t=0 of the 

plastic mutants cannot be positive if the growth rate of the non-plastic mutants is 

negative. But, at the next point in time with 𝑡𝑡 = 1 and W1 > 0 and as a certain 

fraction of the plastic mutants change their type, they can invade the population. 
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The situation at 𝑡𝑡 = 1 equals Case 1 and for Case 1 we have already proven that 

an invasion of plastic mutants is possible provided 𝑅𝑅𝑍𝑍0 < 0. 

Thus, the theorem 1 holds for all initial population conditions. 

Appendix E: Proof of Proposition 1 

𝑙𝑙∗ ≤ 𝑚𝑚  

𝑚𝑚 ∙ (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 + 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0) ∙ 𝑊𝑊0

(𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 + 𝑐𝑐 ∙ (𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

(𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 + 𝑑𝑑
∙ (𝑀𝑀−𝑊𝑊0)2

(𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 ≤ 𝑚𝑚 

We solve this unequation for c: 

(E.1) 𝑐𝑐 ∙≤ 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙(𝑊𝑊0+𝑋𝑋0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑊𝑊0+𝑋𝑋0)

− 𝑑𝑑 ∙ (𝑀𝑀−𝑊𝑊0)

(𝑊𝑊0+𝑋𝑋0)
 

 

𝑚𝑚 ∙ (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0 + 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0) ∙ 𝑊𝑊0 + 𝑐𝑐 ∙ (𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0) + 𝑑𝑑∙ (𝑀𝑀−𝑊𝑊0)2 ≤ 𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 

𝑐𝑐 ∙ (𝑀𝑀 −𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)≤ 𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − 𝑚𝑚 ∙ (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0 − 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0) ∙ 𝑊𝑊0 − 𝑑𝑑 ∙ (𝑀𝑀−𝑊𝑊0)2 
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Case 1: 𝑀𝑀 > 𝑊𝑊0 

𝑐𝑐 ∙≤ 𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀
(𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑚𝑚 ∙ (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀 −𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑏𝑏
∙ (𝑀𝑀−𝑊𝑊0) ∙ 𝑊𝑊0

(𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)
− 𝑑𝑑 ∙ (𝑀𝑀 −𝑊𝑊0)2

(𝑀𝑀 −𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)
 

𝑐𝑐 ∙≤ 𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀− W0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑏𝑏 ∙ (𝑀𝑀−𝑊𝑊0) ∙ 𝑊𝑊0
(𝑀𝑀 −𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑑𝑑
∙ (𝑀𝑀−𝑊𝑊0)2

(𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)
 

𝑐𝑐 ∙≤ 𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑊𝑊0 + 𝑋𝑋0)

− 𝑑𝑑 ∙ (M −𝑊𝑊0)

(𝑊𝑊0 + 𝑋𝑋0)
 

 

(E.1) holds only if the right hand side of (E.1) is positive: 

𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0) ∙ (𝑊𝑊0 + 𝑋𝑋0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑊𝑊0 + 𝑋𝑋0)

− 𝑑𝑑 ∙ (𝑀𝑀 −𝑊𝑊0)

(𝑊𝑊0 + 𝑋𝑋0)
> 0 

Solving for d leads to: 

(E.2) 𝑑𝑑 < 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙(𝑀𝑀−𝑊𝑊0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)

 

This holds provided the right hand side is positive: 
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𝑚𝑚 ∙ (𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0) ∙ (𝑀𝑀 −𝑊𝑊0)

− 𝑏𝑏 ∙ 𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)

> 0 

(E.3) 𝑏𝑏 < 𝑚𝑚 ∙ (𝑀𝑀+𝑋𝑋0)∙𝑀𝑀−(𝑊𝑊0+𝑋𝑋0)∙𝑊𝑊0
(𝑀𝑀−𝑊𝑊0)∙𝑊𝑊0  

(E.3) holds only if: 

(𝑀𝑀 + 𝑋𝑋0) ∙ 𝑀𝑀 − (𝑊𝑊0 + 𝑋𝑋0) ∙ 𝑊𝑊0 > 0 

𝑀𝑀2 + 𝑋𝑋0𝑀𝑀−𝑊𝑊02 − 𝑋𝑋0𝑊𝑊0 > 0 

𝑀𝑀2 −𝑊𝑊02 + 𝑋𝑋0(𝑀𝑀−𝑊𝑊0) > 0 

As 𝑀𝑀,𝑊𝑊0,𝑋𝑋0 ≥ 1 and 𝑀𝑀 > 𝑊𝑊0, this is fulfilled. 
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