
Munich Personal RePEc Archive

Long-Run Equilibrium Shift and

Short-Run Dynamics of U.S. Home Price

Tiers during the Housing Bubble

Damianov, Damian S and Escobari, Diego

Durham University, The University of Texas - Pan American

21 July 2015

Online at https://mpra.ub.uni-muenchen.de/65765/

MPRA Paper No. 65765, posted 25 Jul 2015 19:33 UTC



Long-Run Equilibrium Shift and Short-Run Dynamics of U.S.

Home Price Tiers during the Housing Bubble∗

(Journal of Real Estate Finance and Economics, Forthcoming)

Damian S. Damianov† Diego Escobari‡

July 21, 2015

Abstract

We use vector error correction models to examine the interdependence between the

high and the low price tiers during the latest housing market boom and bust. For

118 of the 364 US statistical areas analyzed, the tiered price indexes are bound by

a long-run relationship. In general, low tier homes appreciated more than high tier

homes in the past two decades. In contrast to previous periods of high volatility,

however, low tier homes appreciated more during the boom and lost more value during

the bust of the market. We find a shift in the long-run equilibrium during the bubble

—the cointegration parameter that ties the tiers together is greater in absolute value

during the bubble period compared to the periods of more moderate appreciation and

depreciation rates. Moreover, the shift in the long-run equilibrium can be explained by

differences in subprime originations across housing markets. We also find that short

run price dynamics is driven by momentum in both segments of the market.
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1 Introduction

The dynamics of U.S. housing prices has been extensively studied in the literature since

the real estate market boom and bust of the past decade. Most of the analyses exam-

ine the dynamics of price indices for the nation and for different geographic regions. As

a result, we now have a better understanding of the contributing forces to the bubble

and the relationship between housing prices and various fundamental factors, e.g. con-

struction costs,1 loan-to-value and price-to-rent ratios,2 interest rates, lending standards,3

demographic variables, etc. (see, e.g. Mayer 2011 for a survey).

Most studies are based on aggregate indices that condense the appreciation and depre-

ciation rates of all houses in a metropolitan area into a single measure. While this approach

provides insights into the relationship between aggregate prices and fundamentals, it masks

the effects arising from the interactions among different segments of the housing market.

Recent life cycle models, however, demonstrate that these interactions are important as

they have implications not only for the relationship between various house price tiers, but,

through their effects on credit constraints, on the price dynamics of the entire housing

market (Stein 1995, Ortalo-Magné and Rady 1999 and 2006). Thus, identifying trends and

relationships between segments of local housing markets facilitates not only a comparison

across time periods and geographic areas, but also affords tests of market efficiency and

informs future theoretical research on housing markets.

In this paper we study the housing price dynamics at a disaggregated level in 364

U.S. statistical areas using the Zillow Home Value tiered indices during the time period

from April 1996 through November 2014. These indices are constructed with a hedonic

adjustment methodology intended to capture effects that are due to market trends only.

The entire market is stratified in three tiers according to market value —bottom, middle,

and top— and the indices track the appreciation and depreciation rates of these three

1Glaeser et al. (2008) discuss the role of supply elasticity for the severity and duration of housing bubble

periods.
2Gallin (2006) shows that for the time period 1970-2005 prices and rents are cointegrated. Price-rent

ratios tend to predict future changes of both prices and rents whereby the corrective response of prices is

greater than that of rents.
3See e.g. Mian and Sufi (2009) and Pavlov and Wachter (2011).
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segments over time.

We estimate a vector error correction model which accounts not only for the long run

relationship between price tiers, but also for their short run dynamics. We then allow the

cointegrating parameters to vary over time by using a rolling regression specification. We

thus create a panel of estimated cointegrating parameters and examine how the cointe-

grating relationship between tiers differs during the period before and during the housing

bubble.

Our analysis generates a number of new insights. First, in agreement with studies of

previous time periods (see, e.g. Poterba 1991 and Mayer 1993 for the period 1970-1990

in a number of metropolitan areas) we find that, for the entire data panel,4 and for the

time series of about half of the metropolitan areas,5 the low and the high price tiers are

non-stationary in levels but are stationary in first differences (i.e. are integrated of order

one).

Our second and probably most unexpected finding is the tendency of low tier homes

to appreciate faster than properties at the high end of the market prior to the housing

market bust. After the burst of the bubble, however, low tier homes depreciate faster

than high tier properties. As we discuss in more detail in the next sections, this pattern

stands in contrast to previous periods of market volatility. We quantify the extent of this

phenomenon for all metropolitan areas using cointegration tests between the price tiers.

We find that price tiers are cointegrated, i.e. they are bound by a long run relationship

in 118 statistical areas. This suggests that the price tiers are driven by the same common

factors that pull the series together in the long run (Mayer 1993). Cointegration in our

context can also be interpreted as evidence in support of the efficient market hypothesis in

the long run. Meese and Wallace (1994) find that house prices are cointegrated with home

owner cost of capital and rents for the time period 1970-1988, a finding that they similarly

interpret as evidence for the efficient market condition in real estate. They find, however,

that the present value relation does not hold in the short run.

4Panel augmented Dickey-Fuller unit root tests as proposed by Pesaran (2007) reject the null of a unit

root in the first difference both for the low and the high tier at the 1% significance level.
5Augmented Dickey-Fuller unit root test cannot reject the null of a unit root in levels and reject the null

of a unit root in first differences at conventional statistical levels for 176 out of the 364 statistical areas.
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Third, the short run dynamics between the tiers exhibits strong positive correlation

between current appreciation rates and lagged appreciation rates for both high and low

tier homes. As suggested by Case and Shiller (1990), this is evidence for momentum

and information inefficiency in the housing market. While Case and Shiller (1990) report

autoregressive coefficients on the magnitude of 0.3, when broker down in tiers, we find

coefficients for the majority of the metropolitan areas in excess of 0.5. Because we find that

tiers are cointegrated, commonly used univariate models or vector autoregressive models

to assess momentum (as the ones presented in Case and Shiller 1990) would be subject to

an omitted variable bias. Our assessment of momentum relies on estimates from vector-

error correction models thus taking into account the long-run relationship between tiers.

Our finding that dynamics of real estate prices is driven by momentum in both market

segments also accords well with the recent empirical evidence on social influences in the

housing market. Pan and Pirinsky (2013), for instance, show that the probability of a

household to purchase a home is positively correlated with the home ownership rate of

ethnic peers residing in the same area and report that this effect is particularly strong

among younger, less educated, and poorer individuals. As these individuals are likely to

be the buyers of starter homes, we also conduct formal tests and find that momentum is

significantly stronger for the low tier market segment in about half of the geographic areas.

Fourth, the cointegrating parameter β is smaller than negative one. That is, for each

dollar of price appreciation in the high tier, the low tier appreciates by a greater amount

in the long run. This result is consistent with recent life cycle models of housing markets.

Ortalo-Magné and Rady (2006) show that, after a positive income shock or shock to credit

constraints, “starter” homes appreciate proportionally and “trade up” homes appreciate

less than proportionally to the magnitude of the shock in the new steady state. However,

Ortalo-Magné and Rady (2006) also find that the high tier is more volatile in the transition

to the new steady state —a feature that does not accord to our results. Using vector error

correction models, Gallin (2006) studies the time series of prices, rents, and the rent-to-

price ratios for the period 1994-2005. He finds that this ratio helps predict changes in real

prices (but not real rents) over a 4-year period. To our knowledge, we are the first to study

the short run and long run dynamics of the time series of different segments of the market

during the recent market bubble.
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Finally, we estimate a rolling regression specification of a vector-error correction model

by estimating the cointegrating factor β for windows of 100 months thus obtaining a time

series of realizations of this parameter for the 118 statistical areas in which the price tiers are

cointegrated. With the resulting panel of metropolitan areas we test for differences between

the cointegrating parameters for the periods prior to and during the bubble. We find a

statistically and economically significant shift in the long run equilibrium. As statistical

areas enter into the bubble period, the cointegration coefficient increases in absolute value

reaching a peak around the time when the local housing market bubble bursts. That is,

prices of low tier homes are relatively more volatile compared to the prices of high tier homes

during the bubble period. We also find that the cointegration relationship between the tiers

is sensitive to percentage of subprime originations in local areas while the dependence on

demographic factors such as population and income is not statistically significant.

The rest of the paper is organized as follows. Section 2 presents a description of the

dataset and provides details on the Zillow tiered home price indices. Sections 3, 4 and 5

present the empirical results, and deal with stationarity of the time series and unit root

tests, long run and short run dynamics, and equilibrium stability, respectively. In Section

6 we review the similarities and differences between the latest and previous housing market

cycles. Section 7 explores the extent to which demographic variables, lending practices and

autocorrelation in appreciation rates (momentum) can explain the observed price dynamics

during the bubble period. Section 8 concludes.

2 Data

This study uses the seasonally adjusted monthly low and high tier segments of the Zillow

Home Value Index (ZHVI).6 The ZHVI as well as the Case-Shiller index (CSI) capture

changes in single-family home prices over time. We opted for the ZHVI over the CSI for

two key reasons. First, the ZHVI is a hedonic price index that, as explained in Dorsey

et al. (2010), overcomes limitations of repeat-sales indexes such as the CSI. The ZHVI is

constructed from the same deed records as the CSI but includes also the properties that

6The data is obtained from the online real estate database Zillow, available at

http://www.zillow.com/research/
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sold just once during the relevant period in addition to the repeat sales transactions used for

the construction of the CSI index. Further, ZHVI utilizes attributes of individual houses

such as size and the number of bedroom and bathrooms thus capturing their changes

over time. Guerrieri et al. (2013) provides a detailed discussion on the similarities and

differences between the two indices and reports a correlation coefficient of 0.96 between

their appreciation rates during the time period from 2000 to 2006. Second, while the CSI

exists only for twenty metropolitan statistical areas, the ZHVI exists for a much larger

number of areas. Our sample includes the low tier and high tier segments of the ZHVI for

364 statistical areas and spans the period from April 1996 through November 2014.7 This

allows us not only to study the dynamics for a large number of areas, but also to exploit

existing cross-sectional differences.8

The ZHVI and CSI are monthly indexes designed to reflect changes due to market trends

only and not to physical changes in individual houses or neighborhoods. The tiered indexes

are obtained by assigning properties into one of three price tiers. The thresholds for the

price tiers are determined from the distribution of home values within each statistical areas

such that an equal number of homes appear in each tier. The repeat sales methodology

used in the CSI entails forming pairs of recorded prices from arms-length transactions of the

same property. While repeat-sales indexes contain valuable information on the dynamics of

prices, there are some concerns when using repeat sales indices to estimate autoregressive

model specifications as the ones studied here. They are related to the potential bias and

efficiency loss due to the inclusion only of properties which sold more than once in a given

period. These houses constitute only a relatively small subsample of the entire market.

The ZHVI that we use is created from estimated sales prices of every home, not just for

the homes just sold. Hedonic measures of house prices is a more accurate way to control

for changes in the characteristics of individual houses, but requires high quality data on a

number of additional characteristics of houses. The ZHVI uses home attributes that include

7The statistical areas include both metropolitan and micropolitan statistical areas.
8An alternative index that can be used for an analysis of house price dynamics is the repeat sales index

constructed by the Office of Federal Housing Enterprise Oversight (OFHEO). This index, however, is limited

to houses for which mortgages were provided by Fannie Mae and Freddy Mac thus excluding the subprime

segment of the market. For a discussion on the use of indexes in studying house price dynamics see Miao

et al. (2011).
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physical facts about the home and land, prior sale transactions, tax assessment information

and geographic location.

[Table 1, about here]

The Appendix presents the list of the 364 statistical areas used in this study. For

practical reasons, in Table 1 we present the summary statistics of the low tier (LowTier)

and the high tier (HighTier) indexes for only a selected group of areas. In particular,

following an alphabetical order, we include the first four and the last four areas as well as

the sample statistics for the whole sample. We have 224 geographic area time series in the

sample comprising a total of 81,536 tiered index observations. All indices are equal to 100

on April 1996.

3 Existence of a Long-Run Equilibrium and Price Conver-

gence

We denote by LowTiersa
t and HighTier

sa
t the low and high price tiers, respectively, for a

given statistical area (SA) during month t. With the following linear combination of these

two price tiers,

LowTier
sa
t + βHighTier

sa
t = dsat , (1)

we say that a long-run equilibrium exists if for a given constant β the difference dsat is

stationary. That is, short-run deviations away from the long-run equilibrium LowTier
sa
t =

−βHighTier
sa
t are observed when dsat 6= 0. However, the stationarity of dsat means that

these deviations are by definition only transitory. If a long-run equilibrium exists, we say

that LowTier
sa
t and HighTier

sa
t are cointegrated with vector [1, β]; moreover, the price

tiers are integrated of order one, I(1), while dsat is integrated of order zero, I(0).

We also define convergence between price tiers if the long-term forecast of both price

tiers is the same:

lim
k→∞

Et

(

LowTier
sa
t+k

∣

∣Ωt) = lim
k→∞

Et

(

HighTier
sa
t+k|Ωt

)

, (2)

where Ωt denotes the information set at time t. Price convergence is first tested by restrict-

ing β in Equation 1 to be equal to negative one. There is a number of unit root tests that
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can be used to analyze the stationarity of dsat in Equation 1 and convergence in Equation 2.

In this paper we employ the GLS augmented DF tests as originally proposed by Dickey and

Fuller (1979) along with the more recent panel unit root test proposed by Pesaran (2007).9

We initially test the stationarity for the variables in levels (LowTier
sa
t andHighTier

sa
t ),

the variables in first-differences (∆LowTier
sa
t and ∆HighTier

sa
t ), and the difference in

price tiers (LowTier
sa
t − HighTier

sa
t ). This is done for every time series in the sample

as well as for the pooled panel. Table 2 presents the unit root test results for the first

four and the last four statistical areas —organized in alphabetical order— as well as the

panel unit root test forall the 364 SAs in our panel. The first and fifth columns report the

ADF t-statistics, τdf, for the tiers in levels showing very little evidence of stationarity. We

reject the unit root null at at least 10% level for LowTier
York, LowTier

Yuba City, and

LowTier
Yuma. All the other SA high and low tiers reported in the table have a unit root,

which means that shocks are permanent. Overall at a 10% significance level 306 (364− 58)

of the 364 low tiers and 320 (364 − 44) of the 364 high tiers have a unit root. Columns

three and seven show that for the series in differences the low tiers in 244 SAs and the high

tiers in 255 SAs are stationary. Combining these results with the results in levels we find

that at 10% significance level, 176 of the series are integrated of order one, I(1). Keeping

track of these 176 SAs is important because this is the set of SAs for which we will test for

a cointegrating relationship. The bottom part of Table 2 shows the Pesaran (2007) panel

results. Both levels are non-stationary, while both first-differences are stationary. The null

hypothesis in this test is that all series are non-stationary and the alternative is that only

a fraction of the series are stationary.

[Table 2, about here]

Column 9 in Table 2 presents the tests for the existence of a long-run equilibrium

9The Pesaran (2007) test uses a system of ADF regressions:

∆
(

LowTier
sa

t −HighTier
sa

t

)

= ρ
sa
(

LowTier
sa

t−1 −HighTier
sa

t−1

)

+

kj
∑

j=1

φ
sa(j)∆

(

LowTier
sa

t−j −HighTier
sa

t−j

)

+ ε
sa

t ,

where the statistic of interest (z̄adf) is distributed standard normal and it is based on means of individual

ADF t-statistic (τdf) for each SA.
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while imposing the restriction that β in Equation 1 is equal to one. This test for the

stationarity of LowTier
sa
t − HighTier

sa
t can also be viewed as a test for the existence

of price convergence between tiers as defined in Equation 2. The results show important

evidence of price convergence (and long-run equilibrium) between price tiers. From the

eight SAs we report, only for York and Yuma there is no evidence of convergence at a

10% significance level. Overall at a 10% level there is no evidence of convergence for 97

of the 364 SAs in the sample (i.e., there is evidence of convergence for about 3/4 of the

areas). In line with these findings the z̄adf statistic for the panel fails to reject the null that

price convergence (long-run equilibrium) exists. The constraint in these tests is that it is

assumed that β = −1. In the next section we provide cointegration tests that analyze the

existence of a long-run equilibrium with an unrestricted β.

4 Estimating the Long-Run Equilibrium and Short-Run Dy-

namics

While Equation 1 characterizes the long-run equilibrium, this simple specification is unlikely

to capture the true data generating process. We therefore estimate a more flexible vector-

error correction model which accounts both for the long-run equilibrium and the short-

run dynamics around the long-run equilibrium. The model is described by the following

equations:

∆LowTier
sa
t = aL + αL

(

LowTier
sa
t−1 + βHighTier

sa
t−1

)

+
k

∑

j=1

aLL(j)∆LowTier
sa
t−j +

k
∑

j=1

aLH(j)∆HighTier
sa
t−j + εLt, (3)

∆HighTier
sa
t = aH + αH

(

LowTier
sa
t−1 + βHighTier

sa
t−1

)

+

k
∑

j=1

aHL(j)∆LowTier
sa
t−j +

k
∑

j=1

aHH(j)∆HighTier
sa
t−j + εHt,(4)

where εLt and εHt are white-noise disturbance terms that may be correlated. The term

in parentheses is the same as dsat in Equation 1 and when equal to zero it captures the

long-run equilibrium. The left-hand side variables capture the short-run dynamics, while

αL and αH are the speed-of-adjustment coefficients. If deviations are positive (i.e., dsat > 0)
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and we have a negative β, the low tier index is relatively larger than the high tier index

and it is reasonable to believe that we will have a decrease in the low tier index (i.e.,

∆LowTier
sa
t < 0) and an increase in the high tier index (i.e., ∆HighTier

sa
t > 0). Hence,

we would expect αL to be negative and αH to be positive. The lag dependent variables

in this system of equations are included to control for serial correlation and to test for

momentum.

Note that if there is no cointegrating relationship between the price tiers, that is if

we restrict αL = αH = 0, Equations 3 and 4 define a Vector Autoregressive model. Our

vector-error correction model thus is a generalized version of an autoregressive specification

that allows us to test for the existence of momentum for each price tier. From Equations 3

and 4 we can see, for example with k = 1, that a positive coefficient aLL can be interpreted

as a momentum effect in LowTier. That is, an increase (decrease) in the low tier price

in the last period, ∆LowTier
sa
t−1, is associated with an increase (decrease) in the price

in the current period, ∆LowTier
sa
t . Likewise aHH would capture the momentum in

HighTier. While each of these coefficients aLL and aHH come from separate equations,

the estimation of the vector-error correction model as a system of equations allows us to test

whether momentum is particularly greater for a specific tier. Under the existence of a long-

run equilibrium between price tiers, simpler autoregressive (AR) or vector-autoregressive

(VAR) specifications of the first-differences of the price tiers would provide biased estimates

of the momentum coefficients. An AR would not control for the link between price tiers,

while a VAR would be missing the dynamics around the long-run equilibrium.

[Table 3, about here]

The estimation of the vector-error correction model follows the methods in Johansen

(1988) and Johansen and Juselius (1990). While Engel and Granger (1987)’s two-step error-

correction model may also be used in this context, the Johansen’s error-correction model

yields more efficient estimates of the cointegrating coefficients. This is because it is a full

information maximum likelihood estimator which allows testing for cointegration in the

system of equations in a single step without requiring a specific variable to be normalized.

Moreover, it avoids carrying over the errors from the first step into the second, and does

not require any prior assumptions regarding the causality of the variables.
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In Table 3 we present tests for the existence of a cointegration relationship between the

high and the low tier in each statistical area. As we are testing for cointegration between

two time series in each statistical area, the number of cointegrating equations can be at

most one, which occurs when a coefficient β exists such that the error terms εLt and εHt

defined in Equations 3 and 4 are stationary.10

The maximum eigenvalue statistic reported in columns 1 and 2 presents a likelihood-

ratio test of the null hypothesis that there are exactly r cointegrating equations against

the alternative that there are r + 1 cointegrating equations. Based on this test the null

hypothesis of no cointegration between the price tiers can be rejected for Aberdeen WA,

Albany GA, Winston-Salem NC, and Wooster OH at the 5% significance level. The null

hypothesis of the trace statistic reported in columns 4 and 5 is that there are no more

than r cointegrating equations. Consistent with the findings in Lütkepohl et al. (2001), the

maximum eigenvalue in columns 1 through 3 and the trace statistic in columns 4 through

6 yield similar results. The number of cointegrating equations reported in columns 3 and

6 is equal to one in 63 and 62 of the 176 statistical areas, respectively.11

We interpret this as a mixed evidence of a cointegrating relationship between tiers when

no breaks are allowed based on the maximum eigenvalue and trace statistic. The number

of cointegrating equations in a vector error correction model can also be determined by

minimizing the Hannan and Quinn information criterion (see e.g. Gonzalo and Pitakaris

1998, Aznar and Salvador 2002). For every SA in which the maximum eigenvalue and the

trace statistic found a single cointegrating equation, the minimum Hannan-Quinn statistic

also found a single cointegrating equation. However, the minimum Hannan-Quinn finds

evidence of cointegration in more statistical areas. The last column reports that a cointe-

grating relationship exists for Aberdeen WA, Albany GA, Winston-Salem NC, Wooster OH,

and Youngstown OH. Overall based on this criteria there exists a cointegrating relation-

ship in 118 of the areas. We will use this set of 118 SAs when estimating the vector-error

correction model.

10In general, with n time series, there might exist up to n − 1 cointegrating vectors. Johansen’s (1988)

approach can be used to estimate these distinct relationships.
11Notice that we only work with the 176 SAs that have both tiers integrated of order one, to follow the

definition of cointegrating relationship.
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[Table 4, about here]

It is possible that the lack of cointegration between some of the housing tiers is due to the

fact that the Johansen methods do not allow for shifts. Table 4 presents the cointegration

tests proposed by Gregory and Hansen (1996a) and Gregory and Hansen (1996b) that

include regime and trend shifts. The test’s null hypothesis is no cointegration against the

alternative of cointegration with changes in level and trend. We run this test only for the 58

statistical areas in which the minimum Hannan-Quinn statistics did not find a cointegrating

equation. The different columns in Table 4 present three test statistics, the ADF-type test,

the Zα-type test and the Zt-type test for eight of the SAs and a summary of the overall

results. These tests can be viewed as multivariate extensions of Perron (1989), Benerjee

et al. (1992), Perron and Vogelsang (1992), and Zivot and Andrews (1992). The Zα-type

statistic is the one that finds the most evidence supporting the existence of cointegrating

relationships. Overall at a 10% significance level there is a cointegrating relationship for

51 of the 58 SAs. Columns 2, 5, and 7 estimate the dates of the shifts.

[Table 5, about here]

Table 5 presents the maximum likelihood estimation of the system of equations 3 and 4

for each of the 118 SAs that have both tiers integrated of order one and for which a

cointegration equation exists.12 The lag length is selected based on the Akaike Information

criterion. The long-run equilibrium is captured by the cointegrating vector [1, β], with the

estimates of β being reported in column 9. The results show that there exists important

heterogeneity in the point estimates of β across SAs with the average β being −1.121. This

long-run equilibrium has an interesting interpretation. On average we have LowTiert =

1.121 ·HighTiert. That is, a one point increase in the high tier price index is linked with

a 1.121 points increase in the low tier index. Without any assumptions of the causality

between LowTier and HighTier, a β coefficient that is greater than one (in absolute

value) means that fluctuations of the low tier are larger than fluctuations in the high tier.

In the next section we analyze the role of the housing bubble for the stability of β.

12This estimation does not take into account shifts. However, later on we estimate a rolling regression

that allows for a time-varying β, which is more in line with the evidence of shifts in the cointegrating

relationships found in Table 4.
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From the estimates of aLL and aHH reported in Table 5 we can see that there is strong

evidence for momentum in both tiers. At the 1% level aLL and aHH are both statistically

significant for all the 118 SAs in this sample. The momentum in the low tier ranges

between 0.464 for Provo, UT to 0.994 for Key West, FL and a similar range is observed for

the high tier. Given the estimate of β that indicates that fluctuations in the low tier are

larger than in the high tier, we also explore whether the momentum effect is stronger in

the low segment of the market. Column 10 provides the p-values of the null of aLL = aHH

versus the alternative aLL > aHH . The results show that at a 10% significance level we

reject the null for 63 of the 118 areas in this sample. One of the interpretations for the

observed momentum effect is buyer irrationality in the real estate market (Pan and Pirinsky,

2013). Enders (2010) p. 367 explains that at least one of the speed of adjustment terms

in equations 3 and 4 must be nonzero to establish that short run dynamics respond to

deviations from long run equilibrium. Column 11 reports the p-values of testing the null

hypothesis αL = αH = 0. We find that at 10% significance level, the null is rejected for 112

of the 118 statistical areas in the sample. We will next use these 112 SAs in our analysis

of the stability of the long-run equilibrium.

5 Stability of the Long-Run Equilibrium

The estimation of the system of equations 3 and 4 assumes that β is time invariant. This

is potentially a strong assumption given the woes faced by the housing markets since the

onset of the subprime crisis. To assess the stability of the long-run equilibrium relationship

(LowTier
sa
t−1 + βHighTier

sa
t−1) we use a rolling regression approach in which we allow β

to change over time.13 For a given window of size w we estimate the system of equations 3

and 4 using the first w observations, [1, w]. Then we estimate the system again using the

sample [2, w + 1] and so forth until we exhaust the data using the subsequent samples

[2, w + 1], [3, w + 2], . . . , [N − w + 1, N ]. This procedure generates a sequence {βt} of

coefficients that characterize the dynamics of the cointegrating equation. Because we do

13In the context of bubbles, Driffill and Sola (1998) use similar rolling regression approach in a random

walk with drift regression to provide evidence of instability and regime-switching. Swanson (1998) uses

rolling regressions in vector error correction models similar to the ones we estimate here.
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this for every statistical area i we actually obtain a panel of βit estimates.

Using this panel, we analyze how the housing bubble has affected the long-run relation-

ship between price tiers. The model we estimate is the following:

βit = δ · I|τi−t|≤θ + µi + ηit, (5)

where I is an indicator function capturing the period of bubble formation and burst. It

assumes the value of one during the time of the bubble, i.e. when |τi − t| ≤ θ, where τi

denotes the time at which the housing bubble in metropolitan area i bursts and θ is a

positive integer that captures the time distance away from the burst.14 The coefficient of

interest δ captures any shift in the cointegrating coefficient βit in the neighborhood around

the burst of the bubble. µi is the statistical area time-invariant specific effect, and ηit is

the remaining stochastic term. We use θ = (3, 6, 12) as robustness checks to account for

the uncertainty regarding the beginning and end dates of the bubble.

Figure 1 illustrates the shift in the long-run equilibrium during the bubble for the sample

of 112 SAs that comply with the conditions for a vector error correction model. In the

upper part of the figure we have the average low and average high price tiers. Averages are

obtained at every point in time across all SAs. The average burst date across statistical

areas (shown as the vertical line on December 2007) is computed as τ = 1
N

∑N
i=1 τi. In the

lower part we plot the average βs across SAs along with their 95% confidence intervals.15

[Figure 1, about here]

The salient feature of Figure 1 is that during the early years of the sample β appears very

stable and close to −1. This means that the long-run relationship between LowTier and

HighTier was very close to a one-to-one relationship —for every point in the appreciation

of the LowTier index, the HighTier index would also appreciate by one point. However,

around the date of the burst during the bubble years β appears to be larger in absolute

value suggesting a higher appreciation and depreciation of the low tier. The formal analysis

of any possible shift in the long-run relationship between LowTier and HighTier follows

14The time of the burst τi is obtained as the date in which LowTier
sa
t for the corresponding SA reaches

its maximum.
15The estimation uses a window w = 100. The lines were smoothed using the fitted cubic splines.
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the estimation of equation 5. The results are presented in Table 6. Different columns

report different sets of estimates of β prior to the bubble burst (βPre), during the bubble

(βDur), and the difference between the two (βDur − βPre). The odd-numbered columns

present pooled regression estimates while the even-numbered columns report fixed effects

estimates that control for any time-invariant SA specific characteristic. For example with

θ = 3 the estimates in the second column indicate that during the six months period around

the bubble burst, a one point increase (decrease) in the HighTier index was associated

with a 1.238 points increase (decrease) in the LowTier index. This implies that the rate

of appreciation (depreciation) of the low tier housing prices was greater than the rate of

appreciation (depreciation) of the high tier housing prices.

[Table 6, about here]

Column 2 also shows that the point estimate of βPre is closer to −1, but the p-value

associated with the null of βPre = −1 shows strong evidence against the null. The difference

between βPre and βDur is statistically significant at at least 1%. Consistent with Figure 1,

differences in the appreciation/depreciation rates between LowTier and HighTier are

greater around the bubble burst. Columns 3 through 6 present robustness checks to account

for the uncertainty about the beginning and end of the bubble periods. Columns 3 and 4

consider a six-month window (θ = 6), while columns 5 and 6 a one-year window (θ = 12).

All the point estimates are statistically significant at at least 1% level. The last row in

Table 6 (above the number of observations) presents the p-values of the null hypothesis that

βPre = βDur with the alternative that βPre > βDur. The results across columns indicate

strong evidence against the null hypothesis —the β coefficient shifted away from one around

the bubble periods. The point estimate in the last column reads that the difference in the

appreciation/depreciation rates between the two price tiers is 0.166 smaller in the years

leading to the bubble period than during the bubble.

As a robustness check and to see if a larger number of statistical areas meet the require-

ments for the estimation of vector error correction models, we take the natural logarithms of

HighTier and LowTier and follow the same steps as before for the transformed variables.

The unit root tests, cointegration tests, and the estimation of these additional vector error

correction models with the variables resulted in a set of 123 statistical areas. We obtain
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new βs from rolling regression of the variables in logarithms and then estimated equation 5

again. The results are reported in Table 7. As the new variables are logarithm transforma-

tions, the interpretation of the βs is in terms of percentage changes. Column 6 indicates

that a one percentage increase (decrease) in HighTier is associates with a 1.106% increase

(decrease) in LowTier in the period prior to the bubble. The elasticity increases to 1.289

during the bubble period with the difference between the period prior to the bubble and

the bubble period being statistically significant. The results are robust to changes in the

length of the bubble period θ as observed across different columns.

One concern when studying the link between market segments is the existence of a spu-

rious correlation if any of the segments has a trend (deterministic or stochastic). Granger

and Newbold (1974) explain that spurious correlation may still exist even after detrending.

In the estimation of the vector error correction models we need the variables to be sta-

tionary, in addition to having a cointegrating relationship. This approach means that we

only estimate the βs for the statistical areas for a reduced sample where there is a genuine

relationship and where a long-run relationship exists. Interestingly, if the focus is on the

appreciation and depreciation rates and we are not interested in distinguishing between

long- and short-run dynamics we can implement a much simpler analysis using the whole

sample.16 Figure 2 presents the scatterplots and the histograms of the returns on the low

and high segments. The histograms and data points on the scatterplot with black border

correspond to the observations prior to the bubble, while the gray histograms and data

points correspond to the periods during the bubble.

[Figure 2, about here]

Figure 2 shows a relationship between the returns of the high and low segments that is

close to a one-to-one as the data points appear to be scattered around the 45o line. Moreover

the returns for both segments appear to be lower prior to the bubble. A Wilcoxon test of

the null hypothesis that the distributions are the same prior and during the bubble finds

strong evidence against the null for both price segments. In addition, simple t-tests with

16One key benefit from separating the dynamics into a long-run and a short-run dynamics is that momen-

tum is a short-run concept while the long-run shift that we find is interpreted as a shift in the permanent

components of the price indexes.
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the null of equality between means prior and during the bubble also find strong support

against the null. This evidence using the whole sample is consistent with the shifts in the

betas. In the next two sections we compare the results to previous bubble periods and

explain and discuss the empirical findings in detail. Moreover, we analyze of some cross-

sectional characteristics that might help explain the observed variation in the βs. HERE

(respond to referee in the above paragraph)

[Table 7, about here]

6 Comparison to previous bubble periods

One of the unique aspects of the recent housing bubble, as supported by our estimates of

β, was the tendency of low tier homes to appreciate faster during the boom and to fall

more precipitously during the bust of the market. This feature stands in stark contrast

to previous housing market cycles. Smith and Tesarek (1991) find that during the boom

period between 1970 and 1985 in Houston, high value homes appreciated at an annual

rate of 9% while low value homes appreciated by only 8.3%. In the subsequent downturn

period 1985-1987, however, high-quality houses lost nearly 30% of their value while low

quality houses depreciated by only 18%. Seward, Delaney and Smith (1991) document

similar price dynamics during the same time period for St. Petersburg, Florida. The only

exception known to us is the study by Case and Shiller (1994) who compare Los Angeles

and Boston during the period 1983-1993. For the most part the price tiers move closely

together in both cities, yet in Boston the low tier continued to rise as the upper tier flattened

out and then fell more sharply during the downturn of the market. The Boston housing

market exhibited a similar trend during the recent housing bubble as well.

Poterba (1991) presents a more comprehensive analysis of house prices over the time

period 1970-1982 in four cities: Atlanta, Chicago, Dallas, and Oakland. He reports that

houses in the top quartile appreciate faster than houses in the bottom quartile. Probably

most closely related to the present paper is the study by Mayer (1993). Analyzing the same

four cities, he concludes that “...homes do not appreciate at the same rate, but that more of

the volatility occurs among high-priced homes.” He offers two explanations for his findings.

The one is that periods of rising prices mitigate the down payment constraints for trade
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up homes (see, e.g. Stein 1995). The other is that periods of home appreciations improve

the “balance sheet” of households leading to an increased demand for luxury goods, in

particular more expensive houses. Our rolling regression approach leads us to conclude

that low tier homes in the entire panel appreciated faster during the price run-up and

depreciated more precipitously after the bubble burst after controlling for metropolitan

area-specific fixed effects (see Table 6).

7 Explaining the tiered price dynamics

In this section we explore to what extent demographic variables, lending practices, and

behavioural factors (momentum) can explain the observed price dynamics during the bubble

period.

7.1 Demographic variables and lending practices

When viewed as entirely investment assets, according to the efficient market hypothesis,

different houses should experience roughly the same rates of appreciation if we assume that

they are linked to the same market risk factors. Further, according to the construction cost

viewpoint, if house prices merely reflect the variation in construction inputs, in markets

without substantial frictions, price tiers should exhibit roughly the same patterns over time

(Poterba 1991). If this pattern holds in the long-run we should observe a β = −1. The

dynamics of our rolling estimates of β over time presented in Figure 1 suggests, however,

that beta drops below −1 and is generally lower during the period 2006-2010 reaching

a minimum around the time when the local housing market bubbles bursted during the

period 2007-2008. The more formal results presented in Tables 6 and 7 also support this

conclusion. We find strong evidence that β deviates away from−1 during the bubble period.

These observed equilibrium shifts may be the result of demographic factors and behavioral

forces related to demand. We therefore further investigate the impact of subprime lending

practices as well as the effect of population and income on the β coefficients.

Following Mayer and Pence (2009) we use “high-priced” loans as a proxy for subprime

loans. Under the Home Mortgage Disclosure Act (HMDA), most originators must report

attributes of mortgage applications. Avery et al. (2007) explain that HMDA covers over 80
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percent of all home loans and it is considered the most comprehensive source of mortgage

data. As in Mayer and Pence (2009), we classify a loan as “high-priced” if the annual per-

centage rate (APR) is at least three percentage points above the Treasury benchmark for

first-lien mortgages and if the APR is five percentage points over that benchmark for junior

liens. We construct the variable HigherPriced ∈ [0, 1] that measures the proportion of

higher-priced loans in the statistical area. We then augment the regression equation 5 to

include this variable along with the statistical area characteristics Population (measured

in number of individuals), and Income (measured in thousands of dollars per year). The

results from this regression are reported in Table 8. Consistent across all columns we find

that HigherPriced has a negative and statistically significant effect on β.17 Higher pro-

portion of high-priced loans is associated with a greater divergence between price segments.

There results provide further evidence for the role of the mortgage lending channel for the

housing market boom and bust. Mian and Sufi (2009) show that areas with high latent de-

mand for credit (as measured by the percentage of mortgage applications rejected in 1996)

saw the sharpest mortgage credit expansion and experienced the fastest increase in house

prices in the 2001-2005 period. Credit was extended to borrowers with low credit records,

who presumably constituted over proportionally buyers of low tier properties. Further ev-

idence for this conjecture is provided by Landvoigt et al. (2012). In their analysis of the

San Diego housing market they conclude that “cheaper credit for poor households was a

major driver of prices, especially at the low end of the market.” Along similar lines, Pavlov

and Wachter (2011) show that financial deregulation, in particular the use of interest-only

and subprime mortgages accentuates the real estate cycle and the price response to demand

shocks. Using a novel measure of a housing bubble, Berkovec et al. (2012) further show

that Alt-A and subprime market shares are correlated with the bubble.

The contribution of our analysis is in providing further evidence that the equilibrium

shift between the high and the low price tiers that we observe during the bubble period is

related to subprime lending. The estimated effects of the bubble indicator variable I|τi−t|≤θ

on our cointegration estimates β is consistent with the estimate of βDur − βPre reported

in Tables 6 and 7, while Population and Income are not statistically significant when

17The number of observations is smaller in this table as the sample starts in 2007 and was not available

for all statistical areas.
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controlling for statistical area specific characteristics in the fixed effects estimates in column

6.

7.2 Momentum effects

In his Journal of Economic Perspectives summary article to the symposium on bubbles,

Stiglitz emphasized the central role of momentum and positive feedback for the formation

of bubbles in asset markets. He wrote that a bubble occurs “if the reason that the price is

high today is only because investors believe that the selling price will be high tomorrow.”

(Stiglitz 1990, p. 13). The literature on housing market has since then taken two distinct

approaches to identifying momentum and positive feedback.

The one approach relies on surveys of households regarding their expectations about

future prices. Piazzesi and Schneider (2009) analyze responses from the Michigan Survey

of Consumers and report that in the early 2000s an increasing number of households have

become optimistic about future expected price appreciation rates after observing steady

increase in prices for several years. They dub these optimistic households “momentum

traders” and document that their percentage peaked to 20.2 percent in 2005 reaching a

25 year high. Using a search model to capture market frictions in the housing market,

they show that that even a small number of momentum traders can drive up the prices

significantly without increasing trading volume and market shares.

The other approach examines the correlation between lagged and current appreciation

rates in housing price time series exploiting the idea that in the presence of momentum

overly optimistic expectations transform into self-fulfilling prophecies during the buildup of

the bubble. These correlations are commonly taken as an indication that housing markets

are not weak form efficient.

Case and Shiller (1989 and 1990) study the housing markets in Atlanta, Chicago, Dallas,

and San Francisco/Oakland for the years 1970 to 1986 and find that appreciation rates of

the previous year enter with an estimated coefficient of 0.3 in their autoregressive model

specifications. Lags of more than one period are negatively related to current appreciation

rates, although the coefficient is not statistically significant. More recently, Beracha and

Skiba (2011) study autoregressive models of price appreciation in 381 metropolitan areas

in the US during the 1983-2008 sample period and quarterly lags. While the one period
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lag appears to be negatively correlated —an indication of a slight mean reversion— the

two and three period lags are positive and significant with coefficients on the magnitude

of 15% and 24%, respectively. Our estimates of aLL and aHH in Table 5 are in line with a

positive momentum and go beyond Case and Schiller (1989 and 1990) by providing separate

estimates for different market segments. Our empirical specification is more detailed in the

sense that we study momentum for each price tier taking into account that the price tiers

are bound by a long-run relationship. We find a strong evidence of momentum in both

market segments.

8 Conclusion

It is now generally accepted that that the bust of the US residential housing market was

a major cause for the deepest financial crisis in the US since the Great Depression (Mian

and Sufi 2009). The events leading to the financial turmoil in the US and globally raised

awareness about the systemic links between the housing market, the financial sector and

the broader economy. Thus, understanding the price dynamics of residential real estate in

the US during this period has been front and center in the recent academic literature on

real estate. Most of the studies focus on aggregate indexes to identify global trends and

information transmission mechanisms nationally and between various metropolitan areas

(Miao, Ramchander, and Simpson 2011).

This article broadens the scope of the existing literature by studying the links between

market segments within statistical areas. Taking advantage of a large sample of US statisti-

cal areas, we analyze the conditions for the existence of a long-run relationship between the

price tiers for each area. We estimate vector-error correction models with rolling windows

and create a panel of cointegration coefficients. Using this approach, we establish that the

cointegration parameter that bounds the tiers together is greater during the bubble period

compared to the period of more moderate price movements. That is, according to the

equilibrium relationship, low tier homes appreciate and depreciate at greater rates during

the bubble. We also find evidence that the shift is linked to the percentage of subprime

loan originations. While controlling for the existence of a long-run relationship, we find

strong evidence of positive momentum in both tiers. Our analysis carries implications for
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a variety of participants in the real estate market. To current homeowners and prospective

homebuyers it may suggest strategies regarding the timing of their decision to get into the

market, sell their homes, or move up the property ladder (Seward, Delaney, and Smith

1992). To real estate investors and property developers it may shed light on the sources of

financial risks. Given that mortgage default rates are linked not only to the characteristics

of the borrowers, but also to home prices, our findings bear implications also to mortgage

lenders and mortgage insurers. Probably the most important message is that mortgage

insurance premiums have to take into account not only the risk profile of borrowers but

also the price dynamics of the relevant housing market segment.
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Figure 1: Tiers and Rolling Regressions Estimates of β.
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Notes: The upper section of the figure presents the average TierLow and TierHigh across

all statistical areas. The lower section presents the average rolling regressions estimates of

the βs along with their 95% confidence intervals.
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Figure 2: LowTier and HighTier Returns.
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Notes. This figure presents the scatter plot of the returns of LowTier and HighTier along

with the corresponding histograms. The periods prior to the bubble are illustrated in the

scatter plot and histogram in grey, while the observations that correspond to the bubble

periods are in black.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LowTier HighTier

Statistical Area Obs. Mean S.D. Min Max Mean S.D. Min Max

Aberdeen, WA 224 92.22 15.19 69.32 121.1 132.5 28.81 96.38 183.5

Adrian, MI 224 117.1 20.60 86.42 153.8 131.4 18.96 100 162.8

Akron, OH 224 124.1 13.99 100 144.8 120.8 10.07 99.65 136.0

Albany, GA 224 124.6 14.32 100 147.9 134.8 17.80 100 157.1
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York, PA 224 135.9 24.98 100 175.4 138.0 27.72 98.83 184.0

Youngstown, OH 224 103.9 10.18 88.52 123.2 123.1 10.60 100 139.2

Yuba City, CA 224 170.6 72.06 100 332.7 166.6 55.65 90.68 282.6

Yuma, AZ 224 139.7 38.09 98.68 219.0 154.8 41.70 99.84 237.0

Overall (# SAs=364) 81,536 141.6 43.09 68.43 404.2 153.2 45.74 79.90 500.3

Notes: The sample contains monthly observations from 1996m4 through 2014m11. There are 224

times-series observations of LowTier and HighTier for each of the 364 metro areas.
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Table 2: Unit Root Tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LowTier HighTier LowTier−HighTier

Levels Differences Levels Differences Levels

Statistical Area τdf Lags τdf Lags τdf Lags τdf Lags τdf Lags

Aberdeen, WA -1.209 13 -8.871* 14 -2.226 14 -3.230† 12 -1.120 13

Adrian, MI -1.445 8 -1.811 7 -1.304 14 -2.555‡ 7 -1.103 8

Akron, OH -0.713 10 -2.097 8 -1.788 7 -1.780 5 -0.178 9

Albany, GA 0.488 13 -10.08* 14 -0.642 11 -5.490* 14 -0.909 9

...
...

...
...

...
...

...
...

...
...

...

York, PA -2.630‡ 3 -2.986† 13 -2.307 4 -1.465 7 -2.647‡ 4

Youngstown, OH -1.007 8 -3.763† 13 -1.481 14 -4.569* 5 -1.492 7

Yuba City, CA -2.599‡ 5 -1.923 5 -2.073 14 -2.162 13 -1.903 5

Yuma, AZ -2.730‡ 3 -1.460 7 -1.599 11 -2.449 7 -3.044‡ 10

Overall (# SAs=364):a

10% 58 244 44 255 97

5% 34 218 26 235 70

1% 15 171 7 192 23

z̄adf z̄adf z̄adf z̄adf z̄adf

Panel 0.956 12 -36.262* 11 0.734 12 -39.720* 11 -1.176 14

[0.830] [0.000] [0.769] [0.000] [0.120]

Notes: τdf is the test-statistics of the modified Dickey-Fuller Generalized Least Squares. z̄adf are the augmented

ADF z-statistic as proposed in Pesaran (2007). Figures in brackets are p-values. * significant at 1%; † significant

at 5%; ‡ significant at 10%. Critical values are -3.480 (1%); -2.811 (5%); -2.531 (10%). a number of SAs that reject

the corresponding null hypothesis at 10%, 5% and 1% significance levels.
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Table 3: Cointegration Tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Maximum Eigenvalue Trace Statistic Minimum Hannan-Quinn

Statistical Area r = 0 r = 1 # Eq. r = 0 r ≤ 1 # Eq. r = 0 r = 1 r = 2 # Eq.

Aberdeen, WA 33.25 2.176 1 41.43 2.176 1 6.392 6.288 6.297 1

Albany, GA 20.89 2.200 1 23.09 2.200 1 4.537 4.488 4.494 1

Albertville, AL 4.035 0.242 0 4.278 0.242 0 6.091 6.118 6.132 0

Albuquerque, NM 3.990 0.0167 0 4.007 0.0167 0 4.871 4.898 4.913 0
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Winston-Salem, NC 67.30 0.0168 1 67.32 0.0168 1 1.911 1.655 1.670 1

Wooster, OH 16.48 2.979 1 19.46 2.979 1 3.626 3.597 3.599 1

Yakima, WA 5.925 0.952 0 6.877 0.952 0 3.150 3.169 3.180 0

Youngstown, OH 13.55 0.00201 0 13.55 0.00201 0 3.094 3.079 3.094 1

Overall (# SAs=176):a 63 62 118

Notes: Critical values for the maximum eigenvalue for r = 0 are 14.07 (5%), 18.63 (1%); and for r = 1 are 3.76

(5%), 6.65 (1%). Critical values for the trace statistic for r = 0 are 15.41 (5%); 20.04 (1%). For r ≤ 1 are 3.76

(5%); 6.65 (1%). a number of SAs in which there is a cointegrating equation.
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Table 4: Cointegration Tests with Shifts

(1) (2) (3) (4) (5) (6) (7)

ADF-type test Zα-type test Zt-type test

Statistical Area t-stat Break Lags Zα-stat Break Zt-stat Break

Albertville AL -6.376* 2000m5 1 -6.195* 1996m12 -42.66† 1996m6

Albuquerque NM -4.896 1998m6 1 -5.758† 1998m3 -36.00 1998m4

Astoria OR -4.606 1994m7 3 -7.084* 1993m4 -23.90 2000m10

Athens TN -5.785† 2001m6 3 -7.188* 2001m11 -36.80 1996m2

.

.

.
.
.
.

.
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Wapakoneta OH -5.954† 1997m10 3 -6.550* 1997m10 -41.72† 1998m2

Wausau WI -4.922 1993m6 1 -5.073‡ 1994m4 -32.99 1993m5

Whitewater WI -6.602* 1994m5 1 -6.147* 1994m1 -38.03‡ 1994m8

Yakima WA -4.235 1999m9 1 -5.633† 2001m2 -27.22 2000m8

Overall (# SAs=58):a

10% 27 51 18

5% 16 46 11

1% 6 32 2

Notes: Optimal lag for ADF-type test chosen by Akaike criterion. All specifications model

a change in regime and trend. * significant at 1%; † significant at 5%; ‡ significant at 10%.

Critical values for the ADF-type test are -6.02 (1%); -5.50 (5%); -5.24 (10%). Critical levels

for the Zα-type test and the Zt-type test are different for different SAs. a number of SAs in

which there is a cointegrating equation at 10%, 5% and 1% significance levels.
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Table 5: Vector Error Correction

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆LowTier ∆HighTier H0 :

Statistical Area αL aL aLL aLH αH aH aHL aHH β aLL = aHH
a αL = αH = 0 Log Lik.

Aberdeen, WA -0.0292* -0.00183 0.670* 0.0599 -0.00191 0.0279 0.0158 0.901* -0.525* [7.80E-05] [0.000353] -432.7

(0.00739) (0.0558) (0.0492) (0.0490) (0.00485) (0.0366) (0.0323) (0.0322) (0.0653)

Adrian, MI 0.00024 -0.0386 0.597* 0.272† 0.000192 0.0483† -0.00438 0.775* -10.40‡ [0.00452] [0.260] -329.1

(0.000331) (0.0606) (0.0536) (0.107) (0.00013) (0.0238) (0.0211) (0.0419) (5.926)

Allegan, MI 0.000256 -0.00229 0.737* 0.0561 0.000364† 0.00161 -0.0327 0.831* -11.73† [0.072] [0.091] -345.7

(0.000191) (0.0484) (0.047) (0.0423) (0.000178) (0.045) (0.0438) (0.0394) (5.095)

Anderson, IN 0.00401 -0.0237 0.766* -0.0987 0.00801* 0.0119 0.114* 0.482* -2.459* [0.000134] [0.0162] -533.6

(0.00394) (0.0698) (0.049) (0.079) (0.00281) (0.0497) (0.0349) (0.0563) (0.526)
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Waterloo, IA -0.00635† -0.0371 0.656* 0.0712 -0.00246 0.0959‡ -0.0454 0.768* -0.323 [0.0735] [0.0759] -432.1

(0.00286) (0.0826) (0.0531) (0.071) (0.00197) (0.0568) (0.0365) (0.0489) (0.271)

Wausau, WI 0.00485* -0.015 0.665* 0.0991 0.00233† 0.0312‡ -0.00273 0.772* -1.569* [0.077] [0.0097] -11.52

(0.00175) (0.0251) (0.0541) (0.0713) (0.00114) (0.0163) (0.0351) (0.0463) (0.276)

Wooster, OH 4.19E-06 0.0104 0.707* 0.0679 0.00765† -5.71E-06 0.0699 0.686* -1.196* [0.398] [0.044] -203.2

(0.00377) (0.0393) (0.0512) (0.0554) (0.00353) (0.0369) (0.0479) (0.0519) (0.267)

Youngstown, OH -0.000728‡ -0.0326 0.629* 0.182† -0.000506‡ 0.0469† -0.0675† 0.753* 6.996 [0.0391] [0.0625] -180.7

(0.000438) (0.0355) (0.0511) (0.0768) (0.000264) (0.0214) (0.0308) (0.0463) (3.034)

Overall (# SAs=118):b

10% 101 6 118 52 50 41 32 118 104 63 112

5% 87 4 118 44 38 31 26 118 102 44 98

1% 57 0 118 20 18 12 14 118 97 25 60

Notes: Figures in parentheses are standard errors. Figures in square brackets are p-values. * significant at 1%; † significant at 5%; ‡ significant at 10%. a the

alternative hypothesis is Ha : aLL > aHH . b number of SAs in which the null hypothesis (of statistical significance for columns 1 through 9) is rejected at 10%, 5%

and 1% significance levels.
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Table 6: Long Run Equilibrium

(1) (2) (3) (4) (5) (6)

Within θ = 3 Within θ = 6 Within θ = 12

VARIABLES Pooled FE Pooled FE Pooled FE

βPre -1.075* -1.077* -1.067* -1.070* -1.048* -1.055*

(0.00870) (0.00685) (0.00890) (0.00701) (0.00934) (0.00737)

H0 : βPre = 0 [0] [0] [0] [0] [0] [0]

H0 : βPre = −1 [0] [0] [0] [0] [3.29e-07] [0]

βDur -1.281* -1.238* -1.265* -1.227* -1.257* -1.221*

(0.0408) (0.0322) (0.0287) (0.0227) (0.0204) (0.0161)

H0 : βDur = 0 [0] [0] [0] [0] [0] [0]

H0 : βDur = −1 [0] [0] [0] [0] [0] [0]

βDur − βPre -0.206* -0.161* -0.199* -0.157* -0.209* -0.166*

(0.0417) (0.0329) (0.0301) (0.0238) (0.0224) (0.0178)

H0 : βDur = βPre
a [7.84e-07] [1.07e-06] [0] [0] [0] [0]

Obs. 13,888 13,888 13,888 13,888 13,888 13,888

Notes: Figures in parentheses are standard errors. Figures in brackets are p-values. * sig-

nificant at 1%; † significant at 5%; ‡ significant at 10%. a the alternative hypothesis is

Ha : βDur < βPre.
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Table 7: Long Run Equilibrium (in logs)

(1) (2) (3) (4) (5) (6)

Within θ = 3 Within θ = 6 Within θ = 12

VARIABLES Pooled FE Pooled FE Pooled FE

βPre -1.127* -1.129* -1.118* -1.122* -1.099* -1.106*

(0.00904) (0.00725) (0.00925) (0.00742) (0.00972) (0.00780)

H0 : βPre = 0 [0] [0] [0] [0] [0] [0]

H0 : βPre = −1 [0] [0] [0] [0] [0] [0]

βDur -1.378* -1.339* -1.342* -1.307* -1.322* -1.289*

(0.0420) (0.0338) (0.0297) (0.0239) (0.0210) (0.0169)

H0 : βDur = 0 [0] [0] [0] [0] [0] [0]

H0 : βDur = −1 [0] [0] [0] [0] [0] [0]

βDur − βPre -0.251* -0.210* -0.224* -0.185* -0.224* -0.183*

(0.0430) (0.0345) (0.0311) (0.0250) (0.0232) (0.0187)

H0 : βDur = βPre
a [5.52e-09] [1.21e-09] [0] [0] [0] [0]

Obs. 15,252 15,252 15,252 15,252 15,252 15,252

Notes: For 123 SAs. Figures in parentheses are standard errors. Figures in brackets are p-

values. * significant at 1%; † significant at 5%; ‡ significant at 10%. a the alternative hypothesis

is Ha : βDur < βPre
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Table 8: Explaining Long Run Equilibrium Shifts

(1) (2) (3) (4) (5) (6)

VARIABLES OLS OLS OLS FE FE FE

HigherPriced -0.338* -0.338* -0.242† -0.355* -0.371* -0.383*

(0.0971) (0.0973) (0.0972) (0.0690) (0.0690) (0.0782)

I|τi−t|≤θ 0.00470 0.0479 -0.211* -0.211*

(0.0724) (0.0715) (0.0538) (0.0538)

Population -5.69e-07* 5.87e-07

(6.98e-08) (8.58e-07)

Income 0.0132* -0.00197

(0.00233) (0.00562)

Constant -1.145* -1.146* -2.107* -1.131* -1.083* -1.100†

(0.0867) (0.0882) (0.217) (0.0616) (0.0626) (0.553)

Obs. 3,015 3,015 3,015 3,015 3,015 3,015

Notes: The dependent variable is βit. The sample is from January 2007 through December

2013. Figures in parentheses are standard errors. θ = 3. * significant at 1%; † significant

at 5%; ‡ significant at 10%.
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Appendix

The following is the list of all the SAs employed in the analysis. a denotes that the SA meets only the stationarity

requirements. b denotes that the SA additionally meets the cointegration requirements. c denotes that the SA

additionally meets the requirement that at least one of the speed of adjustment coefficients in nonzero in the vector

error correction model: Aberdeen, WAc; Adrian, MI; Akron, OH; Albany, GAb; Albany, NY; Albany, OR; Albertville,

ALa; Albuquerque, NMa; Alexandria, LA; Allegan, MIc; Allentown, PA; Anderson, INc; Anderson, SC; Ann Arbor,

MIc; Appleton, WIb; Asheville, NC; Ashtabula, OH; Astoria, ORa; Athens, GAc; Athens, TNa; Atlanta, GA;

Atlantic City, NJ; Auburn, INc; Auburn, NYa; Bainbridge, GAa; Bakersfield, CA; Baltimore, MD; Baraboo, WIa;

Batavia, NY; Battle Creek, MIc; Bay City, MIc; Beaver Dam, WIc; Bedford, INa; Bellingham, WA; Bend, OR; Big

Rapids, MIa; Binghamton, NYc; Birmingham, ALc; Bloomington, ILc; Bloomington, IN; Bloomsburg, PAa; Boise

City, ID; Boston, MA; Boulder, CO; Bremerton, WA; Burlington, NCc; Calhoun, GAa; Cambridge, MDc; Canton,

OH; Cape Cod, MA; Carson City, NV; Cedar Rapids, IAc; Cedartown, GAa; Centralia, WAc; Champaign-Urbana,

ILc; Charleston, SC; Charlotte, NC; Chattanooga, TNc; Chicago, IL; Chico, CA; Cincinnati, OH; Clarksville, TN;

Cleveland, OH; Cleveland, TNc; Clewiston, FLa; College Station, TXc; Colorado Springs, CO; Columbia, MOa;

Columbia, SC; Columbus, GAc; Columbus, OH; Concord, NH; Connersville, INc; Coos Bay, ORc; Corning, NYa;

Cortland, NYc; Corvallis, OR; Crawfordsville, INc; Cumberland, MD; Dalton, GA; Davenport, ILc; Dayton, OHc;

Daytona Beach, FL; Decatur, INa; Defiance, OH; Denver, CO; Des Moines, IAc; Destin, FL; Dover, DE; DuBois,

PAc; Dubuque, IAc; Duluth, MNc; Dunn, NCc; Durango, CO; Durham, NC; Dyersburg, TNa; Eagle Pass, TX;

East Liverpool, OHa; East Stroudsburg, PA; Easton, MDc; Eau Claire, WIc; El Centro, CA; Elizabeth City, NCc;

Elkhart, INc; Ellensburg, WAc; Elmira, NYa; Erie, PAa; Eugene, OR; Eureka, CAc; Evansville, INc; Fallon, NVa;

Fargo, NDa; Fayetteville, AR; Fayetteville, NC; Flagstaff, AZ; Florence, SC; Fond du Lac, WIc; Fort Collins, COa;

Fort Myers, FL; Fort Smith, ARa; Fort Valley, GAa; Frankfort, INc; Fremont, NEc; Fremont, OHa; Fresno, CA;

Gainesville, FL; Gainesville, GA; Georgetown, SCc; Glens Falls, NY; Gloversville, NYa; Grand Island, NEc; Grand

Junction, CO; Grand Rapids, MI; Grants Pass, ORc; Greeley, CO; Greensboro, NC; Greensburg, IN; Greenville,

OHc; Greenville, SCc; Hanford, CA; Harrisburg, PA; Hartford, CT; Heber, UTc; Hickory, NCc; Hinesville, GAa;

Holland, MIb; Honolulu, HI; Hot Springs, ARa; Houma, LAc; Humboldt, TN; Huntington, INa; Indianapolis, IN;

Ithaca, NYc; Jackson, MS; Jackson, TNc; Jacksonville, FL; Jacksonville, NCc; Jasper, IN; Jesup, GAc; Johnson

City, TNa; Kankakee, IL; Kapaa, HI; Keene, NHa; Kendallville, INc; Kennewick, WAc; Key West, FLc; Kingsport,

TNa; Kingston, NYc; Klamath Falls, OR; Knoxville, TN; La Crosse, WIa; La Follette, TNa; Lafayette, INb; Lake

Charles, LA; Lake Havasu City, AZ; Lakeland, FL; Lancaster, PA; Lancaster, SCc; Lansing, MI; Las Vegas, NV;
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Lawrenceburg, TN; Lebanon, PA; Lewisburg, TNc; Lewiston, IDc; Lexington Park, MD; Lexington, KYc; Lima, OH;

Lincoln, NEc; Lincolnton, NCc; Little Rock, ARc; Logansport, INc; Longview, WAc; Los Angeles, CA; Louisville-

Jefferson County, KYc; Macon, GA; Madera, CA; Madison, IN; Madison, WIc; Manitowoc, WIc; Marion, INc;

Martin, TN; McMinnville, TNc; Medford, OR; Melbourne, FL; Memphis, TNc; Merced, CA; Miami-Fort Lauderdale,

FL; Minneapolis-St Paul, MN; Mobile, AL; Modesto, CA; Morristown, TNa; Moses Lake, WAc; Mount Vernon, WAc;

Muskegon, MI; Muskogee, OKc; Napa, CA; Naples, FL; Nashville, TN; New Haven, CT; New London, CT; New

Philadelphia, OHa; New York, NY; Nogales, AZ; Norwalk, OHb; Oak Harbor, WAa; Ocala, FL; Ocean City, NJ;

Ocean Pines, MD; Ogden, UTc; Ogdensburg, NYa; Oil City, PA; Okeechobee, FLc; Oklahoma City, OKc; Olean,

NYc; Olympia, WA; Omaha, NEc; Orlando, FL; Oshkosh, WIa; Oxford, MSc; Pahrump, NV; Palatka, FLa; Palm

Coast, FL; Panama City, FL; Paris, TN; Payson, AZc; Pendleton, OR; Pensacola, FL; Peru, INa; Philadelphia, PA;

Phoenix Lake, CAa; Phoenix, AZ; Pittsburgh, PAa; Plymouth, INc; Port St. Lucie, FL; Portland, OR; Portsmouth,

OHc; Pottsville, PA; Poughkeepsie, NY; Prescott, AZ; Prineville, OR; Providence, RI; Provo, UTc; Pueblo, COc;

Punta Gorda, FL; Racine, WIa; Raleigh, NC; Reading, PA; Redding, CAc; Reno, NV; Richmond, INc; Richmond,

VA; Riverside, CA; Roanoke, VAc; Rochester, NYc; Rocky Mount, NCc; Rome, GAb; Roseburg, ORc; Sacramento,

CA; Saginaw, MI; Salem, OR; Salinas, CA; Salisbury, MD; Salisbury, NC; Salt Lake City, UTa; San Diego, CA; San

Francisco, CA; San Jose, CA; San Luis Obispo, CA; Sandusky, OHc; Sanford, NCc; Santa Cruz, CA; Santa Fe, NM;

Santa Rosa, CA; Sarasota, FL; Savannah, GAa; Searcy, AR; Seattle, WA; Sebring, FL; Seneca Falls, NY; Sevierville,

TN; Sheboygan, WIc; Shelbyville, TNc; Shelton, WA; Show Low, AZ; Sidney, OH; Sierra Vista, AZ; Spartanburg,

SCc; Spokane, WA; Springfield, IL; Springfield, MA; Springfield, MOc; Springfield, OHc; St. George, UTa; St.

Louis, MOc; St. Marys, GA; Stamford, CT; State College, PAa; Statesville, NCa; Stockton, CA; Syracuse, NY;

Tallahassee, FL; Tampa, FL; Terre Haute, IN; Thomasville, NCc; Tiffin, OH; Toledo, OH; Torrington, CT; Trenton,

NJ; Truckee, CAa; Tucson, AZ; Tullahoma, TNc; Tulsa, OK; Tuscaloosa, ALa; Union City, TNa; Urbana, OHc;

Utica, NYc; Vallejo, CA; Ventura, CA; Vero Beach, FLc; Vineland, NJ; Virginia Beach, VA; Visalia, CA; Wabash,

INc; Walla Walla, WAa; Wapakoneta, OHa; Warner Robins, GA; Warsaw, INc; Washington, DC; Waterloo, IAc;

Watertown, NY; Watertown, WI; Wausau, WIc; Whitewater, WIa; Willimantic, CT; Wilmington, NC; Winchester,

VA; Winston-Salem, NCa; Wooster, OHc; Worcester, MA; Yakima, WAa; York, PA; Youngstown, OHc; Yuba City,

CA; Yuma, AZ.
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