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Abstract

Klein and Vella (2010) and Lewbel (2012) respectively propose estimators that

utilize the heteroscedasticity of the error terms to identify the coefficient of the en-

dogenous regressor in a standard linear model, even when there are no exogenous

excluded instruments. The assumptions on the form of heteroscedasticity are dif-

ferent for these two estimators, and whether they are robust to misspecification is

an important issue because it is not straightforward how to justify which form of

heteroscedasticity is true. This paper presents some simulation results for the finite-

sample performance of the two estimators under various forms of heteroscedasticity.

The results reveal that both estimators can be substantially biased when the form

of heteroscedasticity is of the wrong type, meaning that they lack robustness to

misspecification of the form of heteroscedasticity. Moreover, the J statistics of the

over-identification test for the Lewbel (2012) estimator has low power under the

wrong form of heteroscedasticity in the cases considered. The results suggest that

it is not enough for researchers to justify only the existence of heteroscedasticity

when using the proposed estimators.
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1 Introduction

A common problem for empirical researchers attempting to obtain a reliable estimate of

the causal effect from a regressor of interest is that the regressor may be endogenous.

One major solution is to make use of exogenous instruments, such as quasi-experimental

variations, that are excluded from the structural equation. However, this is often not

an easy task. Klein and Vella (2010) and Lewbel (2012) respectively propose methods

to identify the coefficient of the endogenous regressor by using the heteroscedasticity of

the error terms, even when there are no excluded instruments.1 They impose different

assumptions for identification. Klein and Vella (2010) assume that the heteroscedasticity

is multiplicative to the whole structural and first-stage error terms. In contrast, Lewbel

(2012) assumes that the heteroscedasticity only applies to the component of the first-stage

error term that is uncorrelated to the structural error term.2

The different assumptions may be violated in subtle ways. On one hand, the as-

sumptions of heteroscedasticity for the Lewbel (2012) estimator would be violated if

the unobserved common factor affecting both the outcome variable and the endogenous

regressor is heteroscedastic, or if the effect of the unobserved variable on either the en-

dogenous regressor or outcome variable varies with regressors that are used to generate

the Lewbel-type instrument. For example, if the endogenous regressor is an income mea-

sure in a year, but is taken as a proxy for a permanent measure of income, then the

measurement error is reflected in the error terms, and gives rise to the common factor of

the two error terms. Such a measurement error can have different variances at different

ages due to different variances of income over the lifecycle. Another example is about

the return to education. One unobserved common factor is ability, but ability can have

different loadings on earnings and education over different ages because their ability may

affect their human capital accumulation process and the job search process differently

1Klein and Vella (2009a) propose a method similar to Klein and Vella (2010), but that is for the case
of binary endogenous regressor. One major difference is that for the binary endogenous regressor case,
heteroscedasticity in the latent-variable first-stage equation leads to a change in the conditional mean
(probability) of the observed variable, which is not the case for a continuous endogenous variable.

2In Lewbel (2012), this point is only clearly presented in the example of single-factor model, and so,
it can be easily overlooked. More discussions are presented in this paper.
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over the lifecycle, and age may also carry cohort information that affects the education

distribution. It may not be straightforward to determine whether these kinds of problems

exist in a particular context. On the other hand, it may also not be straightforward to

justify the form of heteroscedasticity that applies to all of the components of the error

term that the Klein and Vella (2010) estimator assumes.

If researchers want to test the assumptions on the form of heteroscedasticity directly

with data, there is also difficulty since the error terms are unobservable. Lewbel (2012)

suggests using the Breusch and Pagan (1979) test and the overidentifying restriction J

test (Hansen, 1982) to check the validity of assumptions. However, the former tests for

heteroscedasticity of the whole first-stage error term rather than only its uncorrelated

component, which will then detect also the wrong type of heteroscedasticity. Moreover, if

all the generated instruments lead to similar biases from the wrong form of heteroscedas-

ticity, the overidentification test may have little power detecting such violations even

when the estimator is biased. Some researchers are also tempted to use the extra in-

struments from heteroscedasticity to test the validity of an existing excluded instrument.

Nevertheless, if the true form of heteroscedasticity is not clear, a wrong form of het-

eroscedasticity may also provide us with a wrong conclusion. We may not be able to

reject the null hypothesis in the cases that produce biased estimators. When it can reject

the null, we remain uncertain whether it is the problem of excluded instrument or the

form of heteroscedasticity.

The two estimators, especially the Lewbel estimator, are becoming more popular

because they are easy to implement3 and heteroscedasticity is common in data. Some

examples of recent applications include Emran and Shilpi (2012), Denny and Oppedis-

ano (2013), Emran and Hou (2013), Chowdhury et al. (2014), and Millimet and Roy

(2015). Most of these studies use these estimators for comparison alongside with the

usual instruments from exclusion restrictions. Among these studies, only Emran and

Shilpi (2012) and Millimet and Roy (2015) have some a priori justification for the right

type of heteroscedasticity. Therefore, it is useful to investigate how good the estimators

3Lewbel’s estimator can now be implemented by user written procedures in Stata (ivreg2h, see Baum
and Schaffer, 2012) and R (ivlewbel, see Fernihough, 2014).
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are robust to the wrong forms of heteroscedasticity and whether diagnostic tests such as

Hensen’s (1982) J test are sufficient for detecting problems, particularly in finite samples.

It would be good news if the bias is small and results are reasonably robust. If the bias is

substantial, merely checking for heteroscedasticity is not enough to guarantee a reliable

estimate from these two estimators.

This study investigates the finite sample properties of the above two estimators under

various forms of heteroscedasticity through Monte Carlo simulation to study the robust-

ness of misspecification in the form of heteroscedasticity. I simulated data from a standard

linear model with one endogenous regressor with three different types of multiplicative

heteroscedasticity: 1) applicable to the whole error terms (consistent with Klein-Vella);

2) applicable only to the uncorrelated parts of the error terms (consistent with Lew-

bel); 3) applicable only to the correlated part of the error terms (consistent with neither

estimator), estimated with the above methods and investigated the size and direction

of bias if the form of heteroscedasticity is incorrect. I also considered the case when

one weak exogenous instrument is also included, alongside with the heteroscedasticity to

identify the parameter. Lewbel (2012) has explicitly considered including also excluded

instruments, while Klein and Vella (2010), and their accompanying applied papers, Klein

and Vella (2009b) and Farre, Klein and Vella (2013), do not incorporate any information

from excluded exogenous instruments. Nevertheless, it is straightforward to extend their

framework to allow for excluded instruments in the first-stage equation.

The simulation results show that the two estimators are substantially biased when

the form of heteroscedasticity in the true data generating process is not consistent to

the form assumed for the estimator. This means that the estimators are not robust to

misspecification of the form of heteroscedasticity. The Lewbel (2012) estimator tends

to bias towards the OLS, but not always, and the power of the J test can be low even

when the estimator is substantially biased. The Klein and Vella (2010) estimator can be

biased severely under the wrong form of heteroscedasticity, especially when the maximum

likelihood method is used. Its bias can be on either side of the true value.

In Section 2, the two methods and the underlying assumptions are discussed. In
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particular, more details about the potential sources of bias due to wrong form of het-

eroscedasticity for the Lewbel (2012) estimator are presented. Section 3 describes the

simulation setting and presents the simulation results. Section 4 presents the replication

of the example in Lewbel (2012) of Engel curve estimation and compares the results with

the Klein and Vella (2010) method. Section 5 concludes.

2 Model and Estimators

This study considers the most popular linear regression model with one endogenous re-

gressor (the triangular system). The structural (outcome) equation is specified as:

y1 = y2β1 +Xβ2 + ε (1)

where y2 is an endogenous regressor and X contains exogenous regressors and a constant.

The first-stage equation is give by

y2 = Zγ1 +Xγ2 + u (2)

where Z contains excluded exogenous instruments. In this context, Z can be empty, and

we have to depend solely on the heteroscedasticity of u and ε to identify consistently the

parameter β1.

The following discusses the identification assumptions and the estimation procedures

of the two estimators.

2.1 The Lewbel Estimator

For the Lewbel (2012) estimator, the key identifying assumptions of the above triangular

system are that there exists some variables Z2, which may be variables in X, such that

E(Wε) = 0

E(Wu) = 0
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E((Z2 � µ2)uε) = 0 (3)

E((Z2 � µ2)u
2) 6= 0

where W = [X,Z] are the available exogenous variables. The first two conditions simply

require that the exogenous regressors X are uncorrelated to the structural and first stage

error terms, which are true by definition of exogeneity. The third condition requires that

the covariance between the product of errors uε and Z2 is zero, while the fourth condition

requires that the first stage error u is heteroscedastic in terms of Z2. Put it in another

way, the last two conditions imply that (Z2 � µ2)u can be used as an instrument.

The estimation can be carried out by two-stage-least-squares (2SLS) using (Z2�Z̄2)û,

and Z if available, as instruments. The model can also be estimated by Generalized

Method of Moments (GMM) using the first three conditions in (3), which can improve

efficiency by using the optimal weight matrix.4 The J statistic, which is the value of the

GMM objective function with optimal weight matrix, allows us to perform the overiden-

tifying restriction test (Hensen, 1982) to see whether a single set of parameters can make

all moments close to zero. If it fails to do so, the moment conditions may be invalid.

To clarify what is required for the last two moment conditions in (3) to hold, we can

decompose the two mean-zero error terms in the following way:

ε = e1 + v1 (4)

u = e2 + v2

where all correlation between u and ε is captured by the first component so that condi-

tional on X and Z, cov(e1, e2) 6= 0 whenever cov(ε, u) 6= 0, while conditional on X and

Z, cov(v1, v2) = 0 and cov(ei, vj) = 0 for all i, j = 1, 2.5 Denote z2 = Z2 � µ2 to simplify

4This can be done by a two-step approach, where the first step is to obtain a consistent estimator
either using 2SLS or GMM with identity weight matrix, then we can use the consistent estimator to
construct the optimal weight matrix and apply GMM.

5The common factor example in Lewbel (2012) is a special case where e1 = α1θ and e2 = α2θ for
some α1,α2.
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notation. The third condition requires

E(z2uε) = E(z2(e2 + v2)(e1 + v1))

= E(z2e1e2) + E(z2v2e1) + E(z2e2v1) + E(z2v2v1) (5)

= E(z2E(e1e2|z2)) + E(z2E(v2e1|z2)) + E(z2E(e2v1|z2)) + E(z2E(v2v1|z2)) = 0

The last three terms are zero because the two error components are not correlated condi-

tional on z2 within and across equations, except for e1, e2. The first term can be written

as

E(z2e1e2) = E(z2E(e1e2|z2))

= E(z2cov(e1, e2|z2)) (6)

= E(z2ρ12(z2)σ1(z2)σ2(z2))

Thus, since E(z2) = 0 and ρ12(z2), σ1(z2), σ2(z2) 6= 0, one sufficient condition for zero

expectation is to have the variance and correlation between e1 and e2 independent of z2,

so that E(z2e1e2) = ρ12σ1σ2E(z2) = 0. If there is heteroscedasticity in terms of z2, σ1

and σ2 are then functions of z2. The term then involves higher moments of z2, which are

likely non-zero, especially for even moments. This then leads to a non-zero expectation

unless the terms can exactly be canceled out in very particular ways. This point is more

explicit in Lewbel (2012) when he discusses the single factor model, where he states that

z2 has to be uncorrelated to the square of the common factor, but correlated to square

of v2 defined above. However, in other models of his paper, he discusses in terms of the

whole error term u (ε2 in his notation) which makes this distinction implicit.

Another way that the identifying condition (5) is violated is when the effect of the

common factor is related to z2. Let e1 = a1(z2)θ and e2 = a2(z2)θ, then this term becomes

E(z2(a1(z2)θ)(a2(z2)θ)) = E(z2a1(z2)a2(z2)E(θ2|z2)) (7)
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and then even when θ is homoscedastic, with E(θ2|z2) = σ2

θ
which does not depends on

z2, the term E(z2a1(z2)a2(z2)) involves higher moments of z2 which are non-zero. This

leads to the violation of identification assumption.

For the fourth condition, we require

E(z2u
2) = E(z2(e2 + v2)

2)

= E(z2e
2

2
) + E(z2v

2

2
) + 2E(z2e2v2) 6= 0 (8)

The third term is zero because e2 and v2 are uncorrelated conditional on z2. The condition

(5) requires e2 to be homoscedastic with respect to z2, then the first term is also zero.

Therefore, the only way for the above expectation to be non-zero is to have the second

term non-zero, which requires v2 to be heteroscedastic in terms of z2.

For illustration, I have derived the probability limit of the estimator for the simple

case where there is a binary Z2 variable and no X variable. As shown in the Appendix,

the probability limit can be expressed as

βLB =
E(uy1|Z2 = 1)� E(uy1|Z2 = 0)

V ar(u|Z1 = 1)� V ar(u|Z1 = 0)
= β +

E(e1e2|Z2 = 1)� E(e1e2|Z2 = 0)

V ar(v2|Z2 = 1)� V ar(v2|Z2 = 0)
(9)

This expression shows that for consistency of the estimator, the variances of the first-stage

error for the two groups defined by Z2 have to be different, with the difference driven by

the idiosyncratic component v2, while at the same time, the covariances between the the

correlated components e1 and e2 have to be the same for two groups.

We may also assess the direction of bias with (9) if there is a violation of the identi-

fication condition. The numerator of the bias is given by

E(e1e2|Z2 = 1)� E(e1e2|Z2 = 0) = ρ1σe1,1σe2,1 � ρ2σe1,0σe2,0 (10)

where the second subscript represents the group defined by value of z2. The denominator
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of the bias is given by

V ar(u|Z1 = 1)� V ar(u|Z1 = 0) = V ar(e2 + v2|Z2 = 1)� V ar(e2 + v2|Z2 = 0)

= (σ2

e2,1
� σ2

e2,0
) + (σ2

v2,1
� σ2

v2,0
) (11)

As a whole, the sign of the bias depends on how the variance of correlated and idiosyn-

cratic components are correlated to z. Under the assumptions of the Klein and Vella

(2010) estimator, ρ is a constant, then the numerator becomes ρ(σe1,1σe2,1 � σe1,0σe2,0)

and if the standard deviation of e1 and e2 are both correlated to Z2 in the same direction,

then its sign is given by the product of ρ and the correlation between σe2 and Z2. On

the other hand, since e and v are under the same form of heteroscedasticity, the sign of

the denominator is given by the sign of correlation between σe2 and Z2. As a result, in

this case, the bias is of the same sign as ρ. Since the sign of ρ is also the sign of bias

for the OLS estimator, the bias is then in the same direction as the OLS. However, if

heteroscedasticity in e1 are correlated to Z2 in a different direction than that for e2, the

sign of bias will then depend on the resulting sign of the difference in (10).

In summary, one subtle requirement for consistency of the Lewbel estimator is that

the heteroscedasticity of u should come from the idiosyncratic component v2, which is

uncorrelated to the structural error ε, while the component correlated to the structural

error has to have no heteroscedasticity with z2. The identification condition is also

violated when the common factor in the two error terms has loadings that vary with z2.

For example, unobserved ability can be the common factor that it can affect outcomes

and endogenous regressors differently at different ages. Then, age cannot be used as z2

variable even it seems to induce heteroscedasticity in u.

It is also worth noting that in case of discrete (in particular, binary) endogenous

regressors, the first-stage error is heteroscedastic by construction if we use a linear model

for the first stage, but such heteroscedasticity applies to the whole error term, and so,

from the above results, the consistency assumption for the Lewbel (2012) estimator are

not satisfied and it should not be used.
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Lewbel (2012) proposes using Breusch and Pagan (1979) test to test for the het-

eroscedasticity required in the first-stage error term u. But as shown above, if het-

eroscedasticity in the correlated component e2 can lead to inconsistency, but this test

does not distinguish the correlated component and idiosyncratic component v2, and so,

this test may identify wrong type of heteroscedasticity. Lewbel (2012) also proposes using

Hansen (1982) J test to test if the validity of assumptions, but as will be shown in the

simulation results, this test can be far from powerful when all Z2 carry wrong form of

heteroscedasticity.

2.2 The Klein-Vella Estimator

Klein and Vella (2010) proposes using multiplicative heteroscedasticity of the whole error

terms with constant correlation coefficient ρ to identify the model. In particular,

ε = Sε(X)ε⇤

u = Su(X)u⇤

(12)

where Sε(X), Su(X) describe how the standard deviations of the error terms depend on

X.6 ε⇤ and u⇤ are homoscedastic with constant correlation,

cov(ε⇤, u⇤) = ρ. (13)

This in turns implies that the correlation coefficient of ε and u conditional on X is a

constant ρ. Under these assumptions, a control function approach can be used, and OLS

estimator for the coefficients of the following equation is then consistent:

y1 = y2β1 +Xβ2 + ρ0
Ŝε(X)

Ŝu(X)
û+ ε̃ (14)

The term [Ŝε(X)/Ŝu(X)]û is added as a control function so that β1 and β2 can be consis-

tently estimated. Therefore, for this estimator to be valid, the heteroscedasticity should

6We can consider a subset of X for the variance function if we are confident that other variables does
not enter this function.
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be multiplicative and applies to the whole structural and first-stage error terms. Identi-

fication also requires that Sε(X)/Su(X) depends on X and is not reduced to a constant

or a linear function of X, and the correlation ρ is a constant that does not depend on X.

However, justifying this structure by economic theory or by the nature of the problem is

not a straightforward task.7

For estimation, Klein and Vella (2009b, 2010) propose a semiparametric approach

in estimating Sε(X) and Su(X). First they assume single index functions Sε(Xδε) and

Su(Xδu) and then, they estimate the parameters δε and δu as well as non-parametrically

estimate the functions Sε and Su. Farre, Klein and Vella (2013) consider a parametric

implementation, which is also used in this study and is detailed below. First, they assume

the functional form of variance functions as

Sεi =
q

exp(X 0

iδε) (15)

Sui =
q

exp(X 0

iδu)

These have the advantage that they are by definition positive and monotonic to the single

linear indices. Following Farre, Klein and Vella (2013), the model can be estimated in

multiple steps:

1. Use OLS on the first-stage regression (2) and obtain the residuals û.

2. Regress ln(û2) on X and obtain the coefficient δ̂u. Construct Ŝu = exp(X δ̂u).
8

3. To improve efficiency, we may repeat step 1 and 2 using FGLS with Ŝu obtained

above.

4. Estimate non-linearly the parameters β1, β2 and ρ by minimizing

n
X

i=1

(y1i � β1y2i �X 0

iβ2 � ρ

q

exp(X 0

i δ̂ε)
q

exp(X 0

i δ̂u)
ûi)

2 (16)

7It is not straightforward to deduce the bias term under wrong type of heteroscedasticity for this
estimator, and thus I leave it to the simulation exercise to investigate the direction of bias.

8The constant term is not used in constructing Su here, because it is not consistently estimated
by the log-linear regression, while the functional form assumption implies that the constant term is
multiplicative, allowing the constant terms to be combined with ρ.
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For estimation of δε, define ε̂i = y1i � β1y2i �X 0

iβ2 for the given trial values of β1

and β2, then regress ln(ε̂2i ) on X, obtain the coefficients δ̂ε and then put back into

the expression (16) to calculate the value of the objective function. 9

5. Use the minimized value of β1 and β2 to construct the control function term and per-

form an OLS by regressing y1i on y2i, Xi and the control function
✓

q

exp(X 0

i δ̂ε)/
q

exp(X 0

i δ̂u)
◆

ûi

and then obtain the final estimate.10

Thereafter, this estimator is called the two-step estimator because we estimate the first-

stage equation first and then the structural equation separately. Though not considered

by Klein and Vella (2010), it is straight-forward to include excluded instruments Z in step

1 and 2 above. In this study, if an excluded instrument Z is present, Z is also present in

the first stage error variance function Su, but not in the structural variance function Sε.

In this study, I also implement this method using maximum likelihood and compare

the results with the above two-step method. Assuming the error terms ε and u in (1)

and (2) are distributed in bivariate normal, the log-likelihood function is given by

L(β, γ, δ, ρ) =
n
X

i=1

"

�ln(2π)� ln(su,isε,i)�
1

2
ln(1� ρ2)�

1

2(1� ρ2)
(ũ2

i + ε̃2i � 2ρũiε̃i)

#

(17)

where

ε̃i =
y1i � y2iβ1 �Xiβ2

q

exp(Xiδε)
(18)

ũi =
y2i � Ziγ1 �Xγ2

q

exp(Xiδu + Zδu,z)
(19)

sε,i =
q

exp(Xiδε) (20)

su,i =
q

exp(Xiδu + Zδu,z) (21)

One advantage of this approach is that it is fully efficient under the assumptions and

9The constant term is again omitted and combined with ρ. A computational point to note is that,
since some residuals are likely to be close to zero, I find that the calculated log squared residuals are
rather sensitive to the parameter values and the objective function is not smooth. I smooth the objective
function by using ln(ε̂i

2 + 1/n) to avoid logarithm of very small numbers.
10This step is recommended by Farre, Klein and Vella (2013).
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it can be performed in one step. The simulation results in this study will provide us

evidence about its strength and weaknesses.

Klein and Vella (2009b, 2010) do not explicitly propose specification tests for the

existence of heteroscedasticity for identification or tests for validity of overidentifying

restrictions. However, the Breusch and Pagan (1979) test can be useful in detecting

heteroscedasticity for the first stage error, but it cannot test for heteroscedasticity of the

structural error as well as to test whether there is the collinearity of control function term

with regressors X.

3 Simulation Schemes and Results

3.1 Simulation Scheme

The simulation in this study follows the data generating process below. The basic model

is

y1i = β0 + β1y2i + x0

iβ2 + εi (22)

y2i = γ0 + γ1Zi + x0

iγ2 + ui

where in some cases there is one excluded instrument Zi, which is distributed in standard

normal, and in some cases there are no excluded instrument. There are K exogenous

regressors xi, which are independent and distributed in standard normal. Since the key is

to study the finite sample property of the estimators under wrong forms of heteroscedas-

ticity, we consider three forms of heteroscedasticity with a common factor that generates

the correlation between structural and first-stage errors.

Case 1: Klein-Vella Type

εi =
q

exp(x0

iδε) (α1θi + v1i) (23)

ui =
q

exp(x0

iδu) (α2θi + v2i)
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where the heteroscedasticity affects the whole error term.

Case 2: Lewbel Type

εi = α1θi +
q

exp(x0

iδε)v1i (24)

ui = α2θi +
q

exp(x0

iδu)v2i

where the heteroscedasticity affects only the idiosyncratic component.

Case 3: Correlated Component Only

εi =
q

exp(x0

iδε)α1θi + v1i (25)

ui =
q

exp(x0

iδu)α2θi + v2i

where it affects only the correlated component. δε and δu control the degree of het-

eroscedasticity. θi, v1i and v2i are distributed in independent standard normal distribution

in the simulation.

Simulated data from the above models are used to estimate the structural parameters

β using the methods described above.11 Here I use all X as Z2 variables without using

other selection criteria.12 I will also present the distribution of Breusch and Pagan (1979)

(BP) and J statistics in order to investigate whether they are effective tests for relevant

and valid instruments. The BP test is conducted by regressing the squared first-stage

residual on X and Z (if available) and making use of the associated nR2, which is dis-

tributed χ2 of degree of freedom equal to number of non-constant regressors.13 I also

present the robust first-stage F statistic for the endogenous regressor using the Lewbel

generated instruments and other exogenous instrument Z.14 Median, 10th and 90th per-

centiles for the point estimators are presented to assess the biasedness and skewness of

the estimators. 15

11I code the Klein-Vella estimator using R, while I use the ’ivlewbel’ package by Fernihough (2014) to
estimate with the Lewbel estimator.

12The ’ivreg2h’ in Stata default to use all exogenous regressors for Z2.
13Here the standard one is used rather than using the log of squared residuals more directly related to

the Klein-Vella estimator.
14This is provided by the ’ivlewbel’ R package.
15Mean and standard deviation are not used since some estimators do not have moments. Also, the
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Without further specification, I take β1 = 0, and therefore the value of mean and

median of bootstrap samples represent mean and median bias respectively. β0 = α0 = 0,

β2k = γ2k = 1 for all k. α1 and α2 are set to 1 and the associated correlation between

ε and u is about 0.5.16 The number of observation for each sample considered is 500.17

The number of replications is 5000 for each design. To distinguish the cases where

heteroscedasticity is equally spread across variables versus being concentrated on one

variable, I allow different heteroscedastic parameters δu1 and δε1 for the first variable,

and δu2 and δε2 for all remaining variables. Here, δε2 is always set to zero. For the case

of exogenous instruments, the associated parameter γ1 in the first stage equation is set

so that by itself the first-stage F (non-robust) is about 3, which is moderately weak.

3.2 Simulation Results

Table 1 and Table 2 show the results for Case 1, the Klein-Vella type heteroscedasticity,

with and without an exogenous excluded instrument, respectively. The results show that

the Lewbel estimator is severely biased in this case, while at the same time, the rejection

rate of the overidentifying restriction J test is only close to its nominal size, meaning that

it does not have power in detecting such misspecification. The bias tends to be in the

same direction as the OLS when the heteroscedasticity in the structural error is small.

The bias is smaller if the δu and δε are of different signs because their effects may cancel

out each other. If δε1 is very negative and δu1 is positive, the bias can be in the opposite

direction of bias of the OLS. These are consistent with the discussions in Section 2.1.

For the Klein and Vella estimator, the maximum likelihood method provides estimators

with very small median bias and a smaller spread between percentiles, while the two-step

estimator has a finite sample bias and a larger spread. They both show some skewness

towards the negative side. The finite sample (median) bias is larger when we have more

variables in X, and Z2. The bias is substantially larger when there are only one variable

among the ten variables in Z2 that is truly heteroscedastic. The finite sample bias is also

high and low percentiles provide information on the skewness of the estimators, besides their spread.
16The actual correlation is smaller than 0.5 because the form of heteroscedasticity implies a mean of

the multiplicative factor slightly higher than 1.
17Results for n = 100 are also available in the Appendix.
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larger when heteroscedasticity is weak.

With a weak exogenous excluded instrument, as shown in Table 2, the results are very

similar to the case without the excluded instrument. In comparison, the bias and spread

are slightly smaller than those without the excluded instrument, while the J statistic

is still small and so, the rate of rejection of overidentifying restrictions is still close to

its nominal size. When the excluded instrument is stronger, the bias is smaller and the

rejection rate of overidentification test increases. However, the bias is still substantial and

the power of J test is still small. Therefore, these results imply that Lewbel estimator is

not robust to misspecification of the form of heteroscedasticity, and failing to reject the

overidentifying restriction J test is insufficient to conclude that there is no substantial

bias, even when a valid excluded instrument is available. On the other hand, it may also

be problematic to use J test to justify the validity of the excluded instrument by also

using the Lewbel’s heteroscedasticity instrument when reseachers are uncertain about the

true form of heteroscedasticity, because they can both lead to a similar bias, where the J

test lacks the power to detect.

Table 3 and Table 4 show the results for Case 2, the Lewbel type heteroscedasticity,

with and without the exogenous instrument, respectively. In this case, the Lewbel esti-

mator provides a median unbiased estimator with approximately symmetric distribution.

The finite sample bias is larger when the heteroscedasticity for identification is weak, or

when we include many weakly heteroscedastic variables, similar to the Klein-Vella esti-

mator for Case 1. As the specification is correct, it is desirable that the rejection rate

of the J test is a close to its nominal size. In contrast, the Klein-Vella estimators are

seriously biased, mainly in the opposite direction of the bias of the OLS estimator for

the specifications considered. Under misspecification, the maximum likelihood estimator

is more seriously biased with wider confidence interval, while the two-step estimator has

a lower bias and a smaller spread. This is reasonable because the maximum likelihood

approach takes all assumptions together, while the two-step method breaks down the

estimation of the two equations separately, making the latter more robust to misspecifi-

cation. Similar to the Lewbel estimator in Case 1, if the directions of heteroscedasticity
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for first-stage and structural errors are different, the bias tends to be smaller or even

in another direction, as biases from different directions tend to cancel out each other.

Similar to Case 1, if a weak valid excluded instrument is included, as shown in Table 4,

the bias for the Klein-Vella estimators are reduced, so as the spread for all estimators.

Table 5 and Table 6 show the results for Case 3, where heteroscedasticity only applies

to the correlated component of the error terms. The results show that both estimators are

biased substantially, sometimes the bias is even larger than that of the OLS, while both

estimators are biased in the same direction as the OLS in the specifications considered.

Thus, the Lewbel estimator has the same direction of bias as in Case 1 while the Klein-

Vella estimator has an opposite direction of bias as in Case 2. Similar to the cases before,

the bias goes into the opposite directions if the direction of heteroscedasticity for first-

stage and structural errors are opposite to each other and the latter is stronger than the

former. The overidentifying J test again has low power in detecting the related source

of bias for the Lewbel estimator. Inclusion of a weak excluded instrument, as shown in

Table 6, reduces the bias and spread slightly.

In summary, the simulation results show that both Lewbel and Klein-Vella estimators

are not robust to misspecification of the form of heteroscedasticity, while the overiden-

tifying restriction test, the Hansen’s J test, for Lewbel’s estimator, has low power in

detecting such violations. The sign of bias is not always the same, depending on the

nature of violation in the form of heteroscedasticity and on the direction of heteroscedas-

ticity of structural and first-stage errors with respect to Z2 variables. Including many

Z2 variables with weak heteroscedasticity also increases finite sample bias even when

the form of heteroscedasticity is correct. Including some excluded instruments may not

always help us detect if we have the wrong form of heteroscedasticity.

4 Empirical Example

Lewbel (2012) has demonstrated an empirical example where he estimates the Engel

curve: the effect of log total expenditure on food share. This study replicates his results
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and further estimates the model using the Klein-Vella approach for comparison. As

Lewbel (2012) describes, the data consist of the same set of demographically homogeneous

households, which were used by Banks, Blundell, and Lewbel (1997) to analyze Engel

curves. These are all households in the United Kingdom Family Expenditure Survey

1980–1982, composed of two married adults without children, living in the Southeast

(including London).18 Other control variables include age, spouse’s age, squared ages,

seasonal dummies, and dummies for whether the spouse working, whether having gas

central heating, whether owning a washing machine, whether owning one car, and whether

owning two cars. The total number of observations is 854. The total expenditure can

potentially be endogenous because of measurement errors, in particular from infrequently

purchased items (see, e.g. Meghir and Robin 1992).

Table 7 reports the results of this exercise. The results for OLS, 2SLS using the

excluded instrument log total income, and the Lewbel’s GMM estimator using both

heteroscedasticity-generated instruments together with log total income as excluded in-

strument are close to what Lewbel (2012) reports. My result for the specification where

only the Lewbel’s heteroscedasticity-generated instruments are used have a noticeable

discrepancy from the results reported in Lewbel (2012). My result, however, is very close

to what Baum (2013) reports when he demonstrates the use of the related Stata com-

mand. Therefore, my results are consistent to the best estimates using these methods.

The coefficients for the total expenditure are about -0.05 to -0.09 and they are statistically

significant except for the Lewbel’s approach with only heteroscedasticity related instru-

ments. Reported J statistics do not lead us to reject the null of validity of overidentifying

restrictions. One concern is that the related first-stage F statistics for Lewbel’s approach

are rather small19, indeed they are even smaller than the statistical significance level.

Moreover, the BP statistics are also low and fail to reject the null of homoscedasticity

when no excluded instrument is used. One possible source of the problem is that it uses

all exogenous regressors to generate heteroscedastic instruments, but it may give rise to

18The data is obtained from the database directed from Baum and Schaffer (2012) Stata user-written
command ivreg2h.

19The statistic is heteroscedasticity robust F statistic on excluded and generated instruments reported
by ivlewbel package for R.
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many weak instruments problem in this case. This may lead to a larger finite sample bias

and unreliable asymptotic standard errors. It may be advisable to reduce the number

of heteroscedasticity generated instruments by using only the variables with the highest

level of heteroscedasticity.

Table 7 also reports the results for the Klein and Vella estimator, both two-stage

and maximum likelihood estimators in parametric form. The results for the two-stage

method are close to what the Lewbel estimator provides, which is close to the pattern

for Case 3 in the simulation results above. However, the maximum likelihood estimator

provides a very noisy estimator for the case without excluded instrument. This feature

is close to those in Case 2 in the simulation results above, where the Lewbel’s form of

heteroscedasticity is correct. Since the forms of heteroscedasticity investigated above are

not exhaustive, and there is mixed evidence, so I cannot draw conclusion from the results

about which form of heteroscedasticity is more likely to be true.

Besides asymptotic standard errors, the standard errors obtained by bootstrap are

also presented. Pair bootstrap at observation level with 500 repetitions is used. It shows

that the bootstrap standard errors are very close to the asymptotic standard errors for

OLS and 2SLS, and are slightly larger for Lewbel’s GMM estimators. The asymptotic

standard errors for the Klein-Vella maximum likelihood estimator seem to have under-

estimated the true standard errors more substantially, especially for the cases that use

only heteroscedasticity for identification.20 I only obtain the bootstrap standard errors

for the Klein-Vella two-step estimator, and the bootstrap standard errors are also close

to those from the Lewbel estimator.

5 Conclusion

In this paper, simulation exercises are performed to investigate the degree of bias and

other finite sample properties for the Lewbel (2012) and the Klein and Vella (2010)

estimators under various form of heteroscedasticity. The results clearly show that the

estimators are not robust to misspecification of the form of heteroscedasticity: whether it

20The problem may be that the global maximum fluctuates between two very different local minima.
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applies to the whole error term or only to the idiosyncratic components of the structural

and first-stage error terms do matter. Moreover, the over-identification test, in particular,

Hansen’s (1982) J test, has low power to reject the null when there is a wrong form of

heteroscedasticity, with or without other exogenous variables as excluded instruments.

Therefore, researchers should be cautious when using these estimators. It is not

sufficient to justify only the existence of heteroscedasticity in the error term. We should

also justify which form of heteroscedasticity appears in the error terms. Moreover, since

the biases of both estimators can be on the both sides of the true value and are not always

on the same side of the bias of OLS, it is also not safe to conclude that these estimators

are bounds for the true value without examining further conditions. Further theoretical

investigations for appropriate tests about the form of heteroscedasticity existed in the

data or the conditions required to take the estimates from these two methods as bounds

on the true value are valuable future research directions.
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Appendix

A Simplified Case

To illustrate the conditions required for consistency, consider a simplified case where there

is no covariates X, and y1 and y2 are mean zero and also the heteroscedasticity related

variable Z2 is a binary variable. We may consider y1 and y2 as their residuals of the

regression on other covariates. The model can be expressed in terms of variables with

mean zero

y1 = y2β + ε (26)

y2 = u

Then, the probability limit of the Lewbel’s IV estimator using (Z2 � µ2)u as instrument

is given by

βL =
cov((Z2 � µ2)u, y1)

cov((Z2 � µ2)u, y2)
=

E((Z2 � µ2)uy1)

E((Z2 � µ2)uy2)
=

E((Z2 � µ2)E(uy1|Z2))

E((Z2 � µ2)E(uy2|Z2))
(27)
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where µ2 = E(Z2). Since Z2 is a dummy variable, µ2 = E(z2) = Pr(Z2 = 1). Denoting

this probability as p, we have

E((Z2 � µ2)E(uy1|Z2)) = p(1� p)E(uy1|z2 = 1) + (1� p)(�p)E(uy1|Z2 = 0) (28)

= p(1� p) [E(uy1|z2 = 1)� E(uy1|Z2 = 0)]

Similarly, the denominator can also be expressed as

E((Z2�µ2)E(uy2|Z2)) = p(1�p) [E(uy2|Z2 = 1)� E(uy2|Z2 = 0)] = V ar(u|Z1 = 1)�V ar(u|Z1 = 0)

(29)

since u = y2.

As a result, the Lewbel estimator has a probability limit

βLB =
E(uy1|Z2 = 1)� E(uy1|Z2 = 0)

E(uy2|Z2 = 1)� E(uy2|Z2 = 0)
=

E(uy1|Z2 = 1)� E(uy1|Z2 = 0)

V ar(u|Z1 = 1)� V ar(u|Z1 = 0)
(30)

which is the ratio of the differences in covariance between two groups for u and y and

difference in variance of u between the two groups defined by Z2. Further, putting

y1 = y2β + ε, the numerator becomes

E(uy1|Z2 = 1)� E(uy1|Z2 = 0) = [E(uy2|Z2 = 1)� E(uy2|Z2 = 0)]β (31)

+E(uε|Z2 = 1)� E(uε|Z2 = 0)

= [E(u2|Z2 = 1)� E(u2|Z2 = 0)]β

+E(e1e2|Z2 = 1)� E(e1e2|Z2 = 0)

The last equality holds because conditional on Z2, cov(v1, v2) = 0 and cov(ei, vj) = 0 for

all i, j = 1, 2. On the other hand, the denominator becomes

V ar(u|Z1 = 1)� V ar(u|Z1 = 0) = V ar(e2 + v2|Z2 = 1)� V ar(e2 + v2|Z2 = 0)

= [V ar(e2|Z2 = 1)� V ar(e2|Z2 = 0)] (32)

+[V ar(v2|Z1 = 1)� V ar(v2|Z = 0)]
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If we require the covariance between e1 and e2 to be independent of Z2, then it is very

unlikely we can have heteroscedasticity in e2 itself. Therefore, the difference in variance

has to be driven by any difference in conditional variance in v2.

Therefore,

βLB = β +
E(e1e2|Z2 = 1)� E(e1e2|Z2 = 0)

V ar(v2|Z2 = 1)� V ar(v2|Z2 = 0)
(33)

This implies βL = β only when E(e1e2|Z2 = 1) = E(e1e2|Z2 = 0). That means, the

two groups defined by the dummy variable z2 must have different conditional variances

for v2, but they must have the same covariance for the correlated component in the two

error terms. This highlights the requirement that heteroscedasticity can only appear in

the uncorrelated component of the error terms.
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Table 1: Simulation Results for Data from Klein and Vella Form of Heteroscedasticity without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.4 0.4 0 0.4452 52.35 0.2246 61.03 0.4398 0.0120 0.0053

(0.396,0.493) (26.18) (0.118,0.323) (0.999) (0.045) (-0.356,0.202) (-0.227,0.185)

500 2 0.4 0.4 0.2 0.4547 52.27 0.2812 61.23 0.8484 0.0138 0.0067

(0.406,0.507) (26.14) (0.176,0.391) (1.00) (0.114) (-0.507,0.258) (-0.291,0.230)

500 2 0.4 0.4 -0.2 0.4360 52.13 0.1613 61.09 0.7380 0.0093 0.0014

(0.389,0.486) (26.07) (0.061,0.253) (1.00) (0.097) (-0.257,0.160) (-0.167,0.141)

500 2 -0.4 -0.4 0.2 0.4384 52.51 0.1635 61.23 0.7373 0.0043 -0.0013

(0.389,0.486) (26.25) (0.058,0.251) (1.00) (0.097) (-0.257,0.161) (-0.165,0.132)

500 2 -0.4 -0.4 -0.2 0.4543 52.41 0.2803 61.90 0.8150 0.0152 -0.0022

(0.406,0.506) (26.20) (0.168,0.386) (1.00) (0.113) (-0.487,0.254) (-0.307,0.228)

500 2 0.4 -0.4 0.2 0.4562 52.41 0.2796 62.10 0.8320 0.0110 -0.0039

(0.406,0.505) (26.20) (0.170,0.385) (1.00) (0.110) (-0.468,0.253) (-0.292,0.232)

500 2 0.2 0.2 0.2 0.4930 18.23 0.3669 9.5920 0.8106 0.1116 0.0084

(0.442,0.542) (9.12) (0.151,0.570) (0.472) (0.114) (-0.601,0.986) (-0.998,0.592)

500 2 0.5 0 0.2 0.4700 43.90 0.3291 43.310 0.4435 0.0477 -0.0028

(0.420,0.520) (21.95) (0.198,0.454) (1.00) (0.0402) (-0.639,0.418) (-0.548,0.358)

500 2 0.5 0 -0.8 0.4457 44.65 -0.1222 44.84 0.3683 -0.0085 -0.0005

(0.392,0.503) (22.33) (-0.284,-0.004) (1.00) (0.034) (-0.165,0.107) (-0.070,0.063)

500 10 0.2 0.2 0.2 0.4379 65.16 0.2458 19.33 9.094 0.0629 0.0024

(0.391,0.488) (6.516) (0.143,0.344) (0.969) (0.052) (-0.140,0.233) (-0.235,0.188)

500 10 0.5 0 0.2 0.4683 50.84 0.3427 11.07 8.3720 0.1737 0.0134

(0.419,0.520) (5.084) (0.212,0.469) (0.601) (0.034) (-0.131,0.574) (-0.726,0.512)
The total number of repetition is 5000. The correlation between the first stage and structural error is set at about 0.5. δu1 is the coefficient
for the variance function for the first variable of X, while δu2 is the coefficient for all remaining X variables. Similarly, δε1 is the coefficient
of the variance function for the first variable in X, while that for all remaining X variables are zero. BP test is the nR2 statistic of
regressing squares of first-stage residuals on all K exogenous regressors X. BP/K is then having FK,∞ distribution for comparison. F
is the first-stage (robust) F statistics using Lewbel generated instruments, and the J statistic is the corresponding statistic under Lewbel
GMM method. For estimators, median, 10th and 90th percentiles are presented to understand the bias, spread and symmetry of the
estimators.
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Table 2: Simulation Results for Data from Klein and Vella Form of Heteroscedasticity with Excluded Instruments

n K δu1 δu2 δε1 γ1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.4 0.4 0 0.13 0.4402 0.0203 53.19 0.2180 43.36 1.556 0.0400 -0.0005

(0.393,0.489) (-1.043,0.600) (17.73) (0.118,0.315) (1.00) (0.062) (-0.223,0.211) (-0.217,0.178)

500 2 0.4 0.4 0.2 0.13 0.4528 0.0261 53.34 0.2735 43.07 2.190 0.0542 -0.0006

(0.403,0.502) (-0.995,0.615) (17.78) (0.162,0.377) (1.00) (0.117) (-0.260,0.258) (-0.293,0.222)

500 2 0.4 0.4 -0.2 0.13 0.4331 0.0271 52.76 0.1596 42.84 1.872 0.0243 -0.0017

(0.386,0.480) (-1.041,0.630) (17.59) (0.063,0.250) (1.00) (0.089) (-0.182,0.162) (-0.158,0.130)

500 2 -0.4 -0.4 0.2 0.13 0.4347 0.0271 52.66 0.1614 42.61 1.815 0.0300 0.0030

(0.387,0.481) (-0.986,0.609) (17.55) (0.062,0.253) (1.00) (0.080) (-0.175,0.173) (-0.155,0.139)

500 2 -0.4 -0.4 -0.2 0.13 0.4522 0.0242 52.97 0.2717 43.10 2.186 0.0506 -0.0022

(0.404,0.502) (-0.985,0.614) (17.66) (0.162,0.380) (1.00) (0.111) (-0.259,0.258) (-0.274,0.214)

500 2 0.4 -0.4 0.2 0.13 0.4519 0.0235 52.96 0.2717 42.87 2.169 0.0517 -0.0021

(0.400,0.502) (-1.061,0.600) (17.65) (0.162,0.381) (0.999) (0.129) (-0.271,0.263) (-0.296,0.223)

500 2 0.4 0.4 0.2 0.5 0.4102 0.0055 53.10 0.1790 65.34 4.755 0.0194 0.0002

(0.362,0.459) (-0.173,0.151) (17.70) (0.080,0.273) (1.00) (0.382) (-0.139,0.147) (-0.149,0.129)

500 2 0.2 0.2 0.2 0.13 0.4896 0.0120 19.25 0.3262 8.169 2.340 0.1140 -0.0047

(0.439,0.540) (-1.112,0.600) (6.417) (0.112,0.518) (0.336) (0.137) (-0.350,0.490) (-0.717,0.416)

500 2 0.5 0 0.2 0.13 0.4657 0.0218 45.46 0.3148 31.62 1.813 0.0821 -0.0062

(0.415,0.515) (-1.037,0.595) (15.15) (0.186,0.434) (0.995) (0.090) (-0.336,0.354) (-0.455,0.308)

500 2 0.5 0 -0.8 0.13 0.4434 0.0235 45.69 -0.1027 31.77 1.304 0.0086 0.0004

(0.391,0.500) (-1.055,0.793) (15.23) (-0.259,0.009) (0.994) (0.043) (-0.138,0.122) (-0.068,0.063)

500 10 0.2 0.2 0.2 0.13 0.4346 0.0372 66.31 0.2375 18.12 10.29 0.0776 -0.0069

(0.385,0.484) (-1.100,0.639) (6.028) (0.139,0.339) (0.957) (0.062) (-0.112,0.231) (-0.229,0.175)

500 10 0.5 0 0.2 0.13 0.4664 0.0255 51.77 0.3262 10.630 9.90 0.1561 0.0034

(0.414,0.517) (-1.014,0.626) (4.706) (0.198,0.456) (0.562) (0.049) (-0.101,0.444) (-0.597,0.391)
Refer to the notes of Table 1. The first stage coefficient on excluded instrument is set so that the first stage F is about 3. The first-stage
(robust) F statistics include also the excluded instrument z. First-stage F statistics also include the effect of the excluded instrument z.
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Table 3: Simulation Results for Data from Lewbel Form of Heteroscedasticity without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.5 0.5 0 0.4393 30.98 0.0103 18.16 0.4292 -0.48039 -0.8238

(0.387,0.490) (15.49) (-0.175,0.161) (0.845) (0.038) (-1.442,-0.033) (-1.941,-0.267)

500 2 0.5 0.5 0.2 0.4374 31.18 0.0069 18.35 0.4128 -0.5825 -1.3098

(0.386,0.489) (15.59) (-0.185,0.169) (0.852) (0.036) (-1.704,0.134) (-2.902,-0.282)

500 2 -0.5 -0.5 0.2 0.4375 31.11 0.0057 18.17 0.4064 -0.3539 -0.4497

(0.387,0.490) (15.56) (-0.180,0.156) (0.853) (0.040) (-1.138,0.002) (-1.040,-0.114)

500 2 -0.5 -0.5 -0.2 0.4376 31.07 0.0061 18.50 0.3783 -0.5784 -1.3340

(0.385,0.491) (15.53) (-0.187,0.166) (0.859) (0.034) (-1.675,0.116) (-2.912,-0.325)

500 2 0.5 -0.5 0.2 0.4394 30.70 0.0018 18.06 0.3936 -0.5816 -1.3423

(0.386,0.492) (15.35) (-0.198,0.165) (0.835) (0.037) (-1.691,0.126) (-2.956,-0.310)

500 2 0.3 0.3 0.2 0.4784 12.13 0.0318 5.102 0.3605 -0.2106 -0.7134

(0.425,0.530) (6.064) (-0.323,0.283) (0.152) (0.043) (-1.259,1.605) (-2.660,3.148)

500 2 0.7 0 0.2 0.4405 30.43 0.0050 17.61 0.4003 -0.6173 -1.7284

(0.388,0.492) (15.22) (-0.190,0.168) (0.831) (0.037) (-1.893,1.357) (-3.135,3.264)

500 2 0.5 0.5 -0.2 0.4385 31.07 0.0077 18.30 0.3981 -0.3514 -0.4294

(0.387,0.491) (15.53) (-0.177,0.157) (0.857) (0.038) (-1.146,0.003) (-0.980,-0.106)

500 2 0.7 0 -1.0 0.4388 30.32 0.0170 17.70 0.3815 0.1169 0.0476

(0.384,0.492) (15.16) (-0.201,0.183) (0.832) (0.036) (-0.094,0.287) (-0.094,0.172)

500 10 0.3 0.3 0.2 0.3910 55.31 0.0278 11.44 7.775 -0.2519 -0.7950

(0.336,0.446) (5.531) (-0.100,0.146) (0.614) (0.033) (-0.531,-0.032) (-1.861,-0.327)

500 10 0.7 0 0.2 0.4393 37.15 0.0716 5.075 8.051 -0.1685 -1.4321

(0.386,0.492) (3.715) (-0.102,0.237) (0.086) (0.047) (-0.507,0.981) (-3.209,3.454)
Refer to the notes of Table 1.
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Table 4: Simulation Results for Data from Lewbel Form of Heteroscedasticity with Excluded Instruments

n K δu1 δu2 δε1 α1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.5 0.5 0 0.13 0.4340 0.0377 31.94 0.0105 14.24 1.346 -0.2286 -0.6357

(0.385,0.485) (-0.979,0.629) (10.65) (-0.163,0.160) (0.744) (0.042) (-0.657,0.026) (-1.544,-0.203)

500 2 0.5 0.5 0.2 0.13 0.4374 0.0271 31.39 0.0169 13.75 1.245 -0.2544 -0.9751

(0.385,0.488) (-1.020,0.595) (10.46) (-0.170,0.168) (0.738) (0.045) (-0.723,0.067) (-2.620,-0.247)

500 2 0.5 0.5 -0.2 0.13 0.4363 0.0252 31.79 0.0169 14.01 1.324 -0.1640 -0.3724

(0.386,0.488) (-1.036,0.610) (10.60) (-0.156,0.158) (0.747) (0.038) (-0.530,0.062) (-0.864,-0.063)

500 2 -0.5 -0.5 0.2 0.13 0.4359 0.0211 31.60 0.0192 14.07 1.276 -0.1653 -0.3588

(0.386,0.487) (-1.014,0.601) (10.53) (-0.154,0.160) (0.745) (0.044) (-0.543,0.061) (-0.852,-0.071)

500 2 -0.5 -0.5 -0.2 0.13 0.4337 0.0430 31.98 0.0121 14.00 1.304 -0.2570 -0.9994

(0.382,0.486) (-0.995,0.627) (10.66) (-0.171,0.166) (0.753) (0.045) (-0.721,0.060) (-2.692,-0.277)

500 2 0.5 -0.5 0.2 0.13 0.4360 0.0258 31.47 0.0162 13.98 1.329 -0.2640 -0.9514

(0.384,0.489) (-1.002,0.596) (10.49) (-0.166,0.164) (0.744) (0.045) (-0.712,0.066) (-2.646,-0.254)

500 2 0.5 0.5 0.2 0.5 0.3959 0.0024 31.43 0.0065 34.25 1.222 -0.0754 -0.1468

(0.345,0.446) (-0.184,0.152) (10.48) (-0.126,0.116) (1.00) (0.038) (-0.245,0.068) (-0.374,0.037)

500 2 0.3 0.3 0.2 0.13 0.4728 0.0149 12.85 0.0440 5.104 1.281 -0.0720 -0.5503

(0.423,0.524) (-1.067,0.578) (4.284) (-0.260,0.277) (0.097) (0.055) (-0.579,0.844) (-2.616,0.821)

500 2 0.7 0 0.2 0.13 0.4382 0.0278 31.08 0.0170 13.35 1.310 -0.2799 -1.3348

(0.385,0.490) (-0.989,0.628) (10.36) (-0.173,0.176) (0.719) (0.042) (-0.765,0.096) (-3.075,-0.316)

500 2 0.7 0 -1.0 0.13 0.4376 0.0211 30.82 0.0232 13.49 1.325 0.1181 0.0464

(0.384,0.493) (-1.138,0.741) (10.27) (-0.171,0.185) (0.722) (0.037) (-0.075,0.281) (-0.091,0.172)

500 10 0.3 0.3 0.2 0.13 0.3884 0.0329 56.11 0.0309 10.95 8.787 -0.1831 -0.6878

(0.335,0.442) (-0.997,0.672) (5.101) (-0.096,0.146) (0.590) (0.032) (-0.414,-0.0003) (-1.546,-0.280)

500 10 0.7 0 0.2 0.13 0.4357 0.0251 37.93 0.0768 5.13 9.108 -0.1087 -1.0880

(0.383,0.491) (-1.046,0.626) (3.448) (-0.092,0.241) (0.067) (0.047) (-0.390,0.279) (-2.767,0.938)
Refer to the notes of Table 1 and 2.
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Table 5: Simulation Results for Data from Heteroscedasticity on Correlated Component without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.5 0.5 0 0.4673 30.83 0.4190 17.99 0.4765 0.4140 0.3930

(0.420,0.513) (15.41) (0.285,0.552) (0.847) (0.042) (0.151,0.634) (0.188,0.598)

500 2 0.5 0.5 0.2 0.4814 31.16 0.5128 18.30 0.9609 0.5381 0.5231

(0.436,0.526) (15.58) (0.379,0.665) (0.851) (0.137) (0.234,0.862) (0.295,0.796)

500 2 0.5 0.5 -0.2 0.4573 30.72 0.3289 17.99 0.8143 0.2840 0.2559

(0.411,0.505) (15.36) (0.188,0.469) (0.846) (0.126) (-0.056,0.495) (0.044,0.451)

500 2 -0.5 -0.5 0.2 0.4580 30.95 0.3319 18.19 0.9206 0.2848 0.2559

(0.411,0.504) (15.48) (0.194,0.470) (0.849) (0.125) (-0.035,0.499) (0.055,0.452)

500 2 -0.5 -0.5 -0.2 0.4803 30.84 0.5164 18.15 0.9443 0.5470 0.5332

(0.435,0.527) (15.42) (0.383,0.662) (0.849) (0.141) (0.242,0.858) (0.308,0.795)

500 2 0.5 -0.5 0.2 0.4798 30.95 0.5134 18.31 0.9420 0.5403 0.5259

(0.436,0.526) (15.47) (0.381,0.661) (0.849) (0.137) (0.232,0.860) (0.295,0.785)

500 2 0.3 0.3 0.2 0.4979 12.05 0.6275 5.024 0.7460 0.6710 0.7052

(0.449,0.545) (6.025) (0.382,0.918) (0.149) (0.1116) (-0.221,1.379) (0.103,1.493)

500 2 0.7 0 0.2 0.4863 30.42 0.5579 17.69 0.4489 0.6246 0.6235

(0.440,0.532) (15.21) (0.424,0.703) (0.835) (0.046) (0.364,0.959) (0.394,0.896)

500 2 0.7 0 -1.0 0.4438 30.33 -0.1476 17.71 0.3589 -0.0676 -0.0992

(0.390,0.502) (15.17) (-0.414,0.031) (0.823) (0.031) (-0.381,0.124) (-0.266,0.042)

500 10 0.3 0.3 0.2 0.4459 55.39 0.4037 11.59 9.552 0.3788 0.3524

(0.403,0.491) (5.539) (0.303,0.516) (0.625) (0.071) (0.175,0.583) (0.188,0.538)

500 10 0.7 0 0.2 0.4855 37.29 0.5470 5.088 8.188 0.6107 0.6230

(0.439,0.531) (3.729) (0.414,0.686) (0.084) (0.033) (0.277,0.870) (0.344,1.005)
Refer to the notes of Table 1.
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Table 6: Simulation Results for Data from Heteroscedasticity on Correlated Component with Excluded Instruments
n K δu1 δu2 δε1 α1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

500 2 0.5 0.5 0 0.13 0.4628 0.0458 31.90 0.3983 14.04 2.055 0.3671 0.3420

(0.418,0.511) (-0.946,0.618) (10.63) (0.269,0.527) (0.748) (0.121) (0.083,0.564) (0.132,0.544)

500 2 0.5 0.5 0.2 0.13 0.4766 0.0434 31.99 0.4890 13.98 3.167 0.4583 0.4607

(0.431,0.523) (-0.946,0.618) (10.66) (0.355,0.625) (0.739) (0.232) (0.048,0.695) (0.206,0.716)

500 2 0.5 0.5 -0.2 0.13 0.4541 0.0296 31.88 0.3138 14.07 2.277 0.2612 0.2271

(0.408,0.499) (-0.977,0.599) (10.63) (0.177,0.447) (0.750) (0.139) (-0.023,0.449) (0.031,0.411)

500 2 -0.5 -0.5 0.2 0.13 0.4541 0.0314 32.16 0.3150 14.48 2.341 0.2608 0.2280

(0.408,0.500) (-1.004,0.608) (10.72) (0.180,0.445) (0.753) (0.144) (-0.022,0.448) (0.0264,0.411)

500 2 -0.5 -0.5 -0.2 0.13 0.4762 0.0139 31.74 0.4851 13.98 3.261 0.4563 0.4555

(0.431,0.521) (-1.072,0.582) (10.58) (0.356,0.623) (0.748) (0.226) (0.026,0.691) (0.206,0.706)

500 2 0.5 -0.5 0.2 0.13 0.4775 0.0347 31.66 0.4902 13.83 3.133 0.4615 0.4616

(0.429,0.525) (-1.062,0.619) (10.55) (0.354,0.623) (0.737) (0.229) (0.046,0.691) (0.210,0.700)

500 2 0.5 0.5 0.2 0.5 0.4325 0.0031 32.23 0.2641 34.39 10.95 0.0909 0.1315

(0.388,0.477) (-0.186,0.151) (10.74) (0.128,0.384) (1.00) (0.837) (-0.101,0.270) (-0.031,0.273)

500 2 0.3 0.3 0.2 0.13 0.4934 0.0087 13.16 0.5274 5.22 3.449 0.3642 0.4039

(0.446,0.543) (-1.034,0.567) (4.386) (0.296,0.754) (0.0928) (0.257) (-0.289,0.806) (-0.382,1.001)

500 2 0.7 0 0.2 0.13 0.4830 0.0272 31.09 0.5248 13.66 2.743 0.5224 0.5336

(0.437,0.528) (-0.964,0.594) (10.36) (0.397,0.657) (0.738) (0.185) (0.136,0.741) (0.285,0.803)

500 2 0.7 0 -1.0 0.13 0.4410 0.0226 31.20 -0.1151 13.66 1.310 -0.0386 -0.0929

(0.388,0.498) (-1.117,0.712) (10.40) (-0.341,0.048) (0.734) (0.048) (-0.272,0.138) (-0.251,0.043)

500 10 0.3 0.3 0.2 0.13 0.4417 0.0393 56.36 0.3901 11.12 11.26 0.3502 0.3264

(0.400,0.487) (-1.011,0.614) (5.124) (0.291,0.500) (0.594) (0.096) (0.152,0.534) (0.162,0.494)

500 10 0.7 0 0.2 0.13 0.4830 0.0260 37.99 0.5193 10.82 5.23 0.5218 0.5286

(0.436,0.529) (-1.038,0.614) (3.454) (0.391,0.657) (0.087) (0.071) (0.190,0.760) (0.223,0.869)
Refer to the notes of Table 1 and 2.

Table 7: Engel Curve Estimation
Lewbel Lewbel K-V K-V K-V K-V

OLS 2SLS1 GMM2 GMM3 2-stage 2-stage ML ML
With external IV x x x x

Use heteroscedasticity x x x x x x
coefficient on Y2:γ1 -0.127 -0.0858 -0.0523 -0.0868 -0.0516 -0.0898 -1.231 -0.0793

Asymptotic SE (0.0084) (0.0198) (0.0550) (0.0180) (0.284) (0.0186)
Boostrap SE [0.0084] [0.0205] [0.0609] [0.0207] [0.0590] [0.0219] [0.6166] [0.0237]
J statistics 12.48 16.279

p-value 0.328 0.179
First-stage F 0.906 2.486
BP statistic 15.018 22.943

p-value 0.2404 0.0424
The data is the same as Lewbel (2012), which is obtained through the Stata package ivreg2h (Baum and Schaffer, 2012).
Following Lewbel (2012), all exogenous regressors are used to construct Lewbel type instruments. Asymptotic standard errors
are White’s robust standard errors for OLS, 2SLS and GMM. K-V ML asymptotic standard errors are obtained by the Hessian
of negative of the log-likelihood function. Bootstrap standard errors are obtained by pair boostrap with 500 repetitions. BP test
refers to the test for heteroscedasticity of residuals of first stage regression using all first stage regressors. First-stage F is the
robust F statistics including the Lewbel-type instruments and excluded instruments.
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Unpublished Appendix: Extra Tables

Table 8: Simulation Results for Data from Klein and Vella Form of Heteroscedasticity without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.7 0.7 0 0.3545 18.32 0.1813 47.37 0.5465 0.0208 0.0067

(0.255,0.465) (9.159) (0.037,0.326) (0.991) (0.0432) (-0.439,0.234) (-0.296,0.220)

100 2 0.7 0.7 0.2 0.3693 18.53 0.2153 47.59 0.5972 0.0214 0.0070

(0.260,0.481) (9.263) (0.0501,0.378) (0.990) (0.053) (-0.496,0.293) (-0.370,0.267)

100 2 0.5 0.5 0.2 0.4307 14.23 0.2600 23.65 0.5717 0.0642 0.0076

(0.319,0.545) (7.113) (0.032,0.473) (0.859) (0.051) (-0.615,0.513) (-0.754,0.439)

100 2 0.5 0.5 -0.2 0.4089 14.13 0.1672 23.64 0.5262 0.0227 0.0031

(0.306,0.522) (7.063) (-0.033,0.351) (0.865) (0.0432) (-0.467,0.286) (-0.372,0.267)

100 2 -0.5 -0.5 0.2 0.4115 14.04 0.1665 23.66 0.5161 0.0178 -0.0020

(0.304,0.521) (7.020) (-0.039,0.339) (0.856) (0.044) (-0.509,0.291) (-0.385,0.266)

100 2 -0.5 -0.5 -0.2 0.4324 14.06 0.2605 22.99 0.5662 0.0641 -0.0006

(0.321,0.547) (7.030) (0.038,0.476) (0.859) (0.050) (-0.632,0.514) (-0.752,0.440)

100 2 0.5 -0.5 0.2 0.4333 14.11 0.2558 23.65 0.5491 0.0569 -0.0018

(0.322,0.548) (7.055) (0.027,0.476) (0.861) (0.051) (-0.640,0.493) (-0.738,0.422)

100 2 1.0 0 0.2 0.3704 18.64 0.2253 48.09 0.5717 0.0266 -0.0014

(0.266,0.482) (9.319) (0.062,0.394) (0.993) (0.0432) (-0.549,0.311) (-0.430,0.284)

100 2 1.0 0 -1.5 0.3242 18.71 -0.0642 48.51 0.4306 -0.0375 0.0024

(0.211,0.469) (9.355) (-0.249,0.041) (0.992) (0.0274) (-0.229,0.102) (-0.050,0.049)

100 10 0.5 0.5 0.2 0.2226 26.71 0.1303 49.20 8.661 0.0138 0.0071

(0.130,0.331) (2.671) (0.029,0.254) (0.989) (0.0118) (-0.164,0.151) (-0.204,0.157)

100 10 1.0 0 0.2 0.3694 24.18 0.2521 17.690 8.762 0.0874 0.0131

(0.262,0.487) (2.418) (0.074,0.446) (0.800) (0.020) (-0.236,0.463) (-0.941,0.520)
Total number of repetition is 5000. The correlation between the first stage and structural error is set at about 0.5. δu1 is the coefficient for
the variance function for the first variable of X, while δu2 is the coefficient for all remaining X variables. Similarly, δε1 is the coefficient of
the variance function for the first variable in X, while that for all remaining X variables are zero. BP test is the nR2 statistic of regressing
squares of first-stage residuals on all K exogenous regressors X. BP/K is then having FK,∞ distribution for comparison. F is the first-stage
(robust) F statistics using Lewbel generated instruments, and the J statistic is the corresponding statistic under Lewbel GMM method.
For estimators, median, 10th and 90th percentiles are presented to understand the bias, spread and symmetry of the estimators.
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Table 9: Simulation Results for Data from Klein and Vella Form of Heteroscedasticity with Excluded Instruments

n K δu1 δu2 δε1 γ1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.7 0.7 0 0.3 0.3446 0.0522 19.29 0.1775 34.680 1.563 0.0571 0.0038

(0.244,0.454) (-0.923,0.681) (6.430) (0.034,0.317) (0.977) (0.049) (-0.218,0.251) (-0.275,0.216)

100 2 0.7 0.7 0.2 0.3 0.3571 0.0523 19.19 0.2025 34.600 1.738 0.0596 0.0013

(0.256,0.468) (-0.983,0.671) (6.397) (0.047,0.359) (0.982) (0.060) (-0.263,0.288) (-0.349,0.252)

100 2 0.5 0.5 0.2 0.3 0.4180 0.0240 14.75 0.2367 18.24 1.789 0.0941 -0.0034

(0.311,0.527) (-0.940,0.614) (4.917) (0.016,0.439) (0.810) (0.064) (-0.306,0.409) (-0.557,0.367)

100 2 0.5 0.5 -0.2 0.3 0.3956 0.0276 14.76 0.1605 17.97 1.605 0.0640 0.0061

(0.295,0.501) (-1.004,0.620) (4.92) (-0.031,0.329) (0.816) (0.051) (-0.266,0.290) (-0.342,0.250)

100 2 -0.5 -0.5 0.2 0.3 0.3945 0.0037 14.68 0.1551 18.12 1.543 0.0552 -0.0068

(0.295,0.502) (-1.040,0.612) (4.893) (-0.038,0.325) (0.807) (0.049) (-0.281,0.286) (-0.346,0.243)

100 2 -0.5 -0.5 -0.2 0.3 0.4174 0.0343 14.91 0.2321 18.23 1.731 0.0897 -0.0027

(0.309,0.531) (-0.971,0.626) (4.969) (0.021,0.433) (0.81) (0.062) (-0.309,0.402) (-0.548,0.366)

100 2 0.5 -0.5 0.2 0.3 0.4152 0.0121 14.73 0.2356 18.12 1.784 0.0914 -0.0072

(0.308,0.524) (-1.059,0.595) (4.909) (0.021,0.427) (0.813) (0.065) (-0.325,0.395) (-0.582,0.348)

100 2 0.5 0.5 0.2 1.0 0.3120 0.0020 14.84 0.1050 37.08 2.434 0.0236 0.0024

(0.217,0.405) (-0.204,0.173) (4.946) (-0.049,0.247) (0.998) (0.105) (-0.161,0.179) (-0.189,0.163)

100 2 1.0 0 0.2 0.3 0.3627 0.0511 19.21 0.2204 35.12 1.713 0.0686 0.0024

(0.258,0.474) (-1.003,0.684) (6.405) (0.059,0.375) (0.986) (0.065) (-0.279,0.304) (-0.388,0.274)

100 2 1.0 0 -1.5 0.3 0.3121 0.0450 19.37 -0.0477 35.22 1.456 -0.0174 0.0019

(0.197,0.457) (-1.565,1.261) (6.458) (-0.226,0.055) (0.983) (0.029) (-0.200,0.131) (-0.051,0.049)

100 10 0.5 0.5 0.2 0.3 0.2226 0.0808 27.37 0.1346 45.97 9.693 0.0286 0.0052

(0.132,0.324) (-0.984,0.901) (2.488) (0.031,0.255) (0.988) (0.014) (-0.127,0.163) (-0.194,0.156)

100 10 1.0 0 0.2 0.3 0.3602 0.0523 24.69 0.2410 16.58 9.880 0.1028 -0.0094

(0.251,0.474) (-1.038,0.753) (2.245) (0.058,0.422) (0.779) (0.023) (-0.165,0.393) (-0.748,0.418)

Refer to the notes of Table 1. The first stage coefficient on excluded instrument is set so that the first stage F is about 3. (α1 = α2 = 1)
The first-stage (robust) F statistics include also the excluded instrument z.
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Table 10: Simulation Results for Data from Lewbel Form of Heteroscedasticity without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.9 0.9 0 0.3236 14.89 0.0043 23.25 0.4735 -0.3192 -0.5251

(0.200,0.453) (7.446) (-0.224,0.189) (0.798) (0.037) (-1.165,0.090) (-1.955,-0.039)

100 2 0.9 0.9 0.2 0.3214 15.04 -0.0007 23.44 0.4359 -0.3410 -0.6708

(0.199,0.447) (7.521) (-0.239,0.197) (0.804) (0.041) (-1.276,0.119) (-2.547,0.0199)

100 2 0.9 0.9 -0.2 0.3203 14.95 0.0025 23.35 0.4431 -0.2758 -0.3875

(0.199,0.448) (7.475) (-0.213,0.181) (0.804) (0.036) (-1.067,0.088) (-1.338,-0.003)

100 2 -0.9 -0.9 0.2 0.3200 15.21 0.0059 23.52 0.4740 -0.2644 -0.3743

(0.201,0.444) (7.606) (-0.222,0.176) (0.798) (0.036) (-1.060,0.080) (-1.313,-0.011)

100 2 -0.9 -0.9 -0.2 0.3191 14.98 -0.0012 24.04 0.4650 -0.3397 -0.6983

(0.199,0.449) (7.489) (-0.227,0.196) (0.808) (0.043) (-1.230,0.127) (-2.565,-0.016)

100 2 0.9 -0.9 0.2 0.3243 14.86 0.0015 22.41 0.4904 -0.3369 -0.6606

(0.200,0.455) (7.432) (-0.230,0.202) (0.792) (0.035) (-1.233,0.154) (-2.570,0.011)

100 2 0.6 0.6 0.2 0.4150 8.720 0.0256 6.608 0.4502 -0.1775 -0.5596

(0.295,0.541) (4.360) (-0.369,0.334) (0.346) (0.043) (-1.136,1.252) (-2.812,2.796)

100 2 1.2 0 0.2 0.3395 14.06 -0.0036 18.76 0.4598 -0.3548 -0.7772

(0.219,0.469) (7.032) (-0.259,0.218) (0.742) (0.038) (-1.362,0.252) (-2.795,0.910)

100 2 1.2 0 -1.5 0.3339 14.04 0.0217 19.83 0.4726 0.0573 -0.0025

(0.210,0.476) (7.02) (-0.253,0.245) (0.740) (0.032) (-0.287,0.376) (-0.196,0.177)

100 10 0.6 0.6 0.2 0.1777 24.25 0.0151 32.78 8.605 -0.1527 -0.3222

(0.071,0.304) (2.425) (-0.115,0.148) (0.898) (0.0172) (-0.414,0.027) (-1.457,-0.007)

100 10 1.2 0 0.2 0.3383 20.04 0.0979 8.215 8.928 -0.0900 -0.4132

(0.209,0.470) (2.004) (-0.144,0.358) (0.403) (0.0234) (-0.449,0.645) (-2.992,2.795)
Refer to the notes of Table 1.
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Table 11: Simulation Results for Data from Lewbel Form of Heteroscedasticity with Excluded Instruments

n K δu1 δu2 δε1 α1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.9 0.9 0 0.3 0.3113 0.0294 15.65 0.0072 17.91 1.414 -0.1304 -0.3916

(0.194,0.430) (-0.935,0.685) (5.216) (-0.200,0.188) (0.749) (0.046) (-0.519,0.125) (-1.408,-0.008)

100 2 0.9 0.9 0.2 0.3 0.3119 0.0353 15.58 0.0039 17.83 1.453 -0.1500 -0.4959

(0.190,0.437) (-0.951,0.708) (5.195) (-0.212,0.195) (0.744) (0.045) (-0.569,0.152) (-1.993,0.009)

100 2 0.9 0.9 -0.2 0.3 0.3112 0.0490 15.75 0.0144 18.34 1.427 -0.1015 -0.2968

(0.196,0.433) (-0.941,0.718) (5.251) (-0.182,0.184) (0.762) (0.047) (-0.483,0.139) (-1.027,0.0306)

100 2 -0.9 -0.9 0.2 0.3 0.3166 0.0259 15.60 0.0106 17.71 1.409 -0.1093 -0.3083

(0.200,0.433) (-0.985,0.696) (5.201) (-0.191,0.183) (0.748) (0.039) (-0.488,0.132) (-1.014,0.0281)

100 2 -0.9 -0.9 -0.2 0.3 0.3128 0.0292 15.74 0.0103 17.75 1.447 -0.1407 -0.4920

(0.193,0.436) (-1.080,0.669) (5.246) (-0.209,0.192) (0.749) (0.046) (-0.549,0.157) (-2.080,-0.007)

100 2 0.9 -0.9 0.2 0.3 0.3159 0.0459 15.58 0.0093 18.09 1.512 -0.1438 -0.4857

(0.193,0.444) (-1.022,0.686) (5.194) (-0.208,0.200) (0.745) (0.049) (-0.546,0.162) (-1.997,0.001)

100 2 0.9 0.9 0.2 1.0 0.2433 -0.0006 15.48 0.0010 34.32 1.397 -0.056 -0.1125

(0.144,0.342) (-0.206,0.177) (5.159) (-0.148,0.139) (0.989) (0.040) (-0.234,0.109) (-0.355,0.081)

100 2 0.6 0.6 0.2 0.3 0.4004 0.0329 9.716 0.0447 6.719 1.421 -0.0378 -0.3822

(0.283,0.522) (-0.965,0.624) (3.239) (-0.272,0.317) (0.308) (0.045) (-0.523,0.503) (-2.484,0.381)

100 2 1.2 0 0.2 0.3 0.3318 0.0333 14.96 0.0136 15.49 1.464 -0.1346 -0.5268

(0.207,0.458) (-1.006,0.651) (4.985) (-0.221,0.221) (0.689) (0.048) (-0.550,0.209) (-2.286,0.048)

100 2 1.2 0 -1.5 0.3 0.3260 0.0310 14.88 0.0339 15.52 1.408 0.0694 -0.0025

(0.204,0.462) (-1.284,0.984) (4.96) (-0.216,0.248) (0.694) (0.035) (-0.210,0.369) (-0.193,0.174)

100 10 0.6 0.6 0.2 0.3 0.1691 0.0445 25.23 0.0153 31.33 9.664 -0.1057 -0.2828

(0.065,0.294) (-1.023,0.912) (2.294) (-0.106,0.148) (0.894) (0.018) (-0.320,0.054) (-1.219,-0.005)

100 10 1.2 0 0.2 0.3 0.3307 0.0320 20.81 0.0984 8.308 9.971 -0.0419 -0.4056

(0.206,0.461) (-0.983,0.718) (1.892) (-0.134,0.338) (0.401) (0.025) (-0.327,0.405) (-2.621,0.834)
Refer to the notes of Table 1 and 2.
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Table 12: Simulation Results for Data from Heteroscedasticity on Correlated Component without Excluded Instruments

n K δu1 δu2 δε1 βOLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median

(q10,q90) (BP/K) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.9 0.9 0 0.3865 14.81 0.3006 23.65 0.5023 0.2732 0.2451

(0.290,0.486) (7.407) (0.140,0.491) (0.796) (0.047) (-0.188,0.585) (-0.003,0.530)

100 2 0.9 0.9 0.2 0.4049 14.84 0.3549 23.31 0.5789 0.3422 0.3216

(0.310,0.501) (7.421) (0.187,0.551) (0.794) (0.051) (-0.118,0.682) (0.070,0.647)

100 2 0.9 0.9 -0.2 0.3706 15.03 0.2574 23.95 0.5418 0.2204 0.1899

(0.270,0.474) (7.514) (0.100,0.452) (0.804) (0.052) (-0.218,0.535) (-0.051,0.457)

100 2 -0.9 -0.9 0.2 0.3714 14.82 0.2563 23.48 0.5451 0.2187 0.1889

(0.274,0.472) (7.409) (0.100,0.446) (0.796) (0.051) (-0.246,0.520) (-0.052,0.453)

100 2 -0.9 -0.9 -0.2 0.4039 15.01 0.3531 23.56 0.5796 0.3332 0.3151

(0.309,0.501) (7.505) (0.188,0.551) (0.807) (0.060) (-0.126,0.680) (0.055,0.637)

100 2 0.9 -0.9 0.2 0.4028 15.05 0.3485 23.65 0.5635 0.3282 0.3135

(0.308,0.501) (7.524) (0.187,0.545) (0.806) (0.050) (-0.106,0.667) (0.059,0.628)

100 2 0.6 0.6 0.2 0.4655 8.817 0.4704 6.671 0.5321 0.4651 0.4646

(0.364,0.566) (4.409) (0.214,0.768) (0.346) (0.0498) (-0.174,1.055) (-0.053,1.067)

100 2 1.2 0 0.2 0.4235 14.18 0.3954 20.07 0.5248 0.3974 0.3813

(0.327,0.520) (7.091) (0.225,0.602) (0.740) (0.043) (-0.029,0.769) (0.101,0.739)

100 2 1.2 0 -1.5 0.3441 14.13 -0.0312 19.71 0.4427 -0.0184 -0.0537

(0.212,0.488) (7.067) (-0.344,0.183) (0.740) (0.035) (-0.411,0.295) (-0.275,0.129)

100 10 0.6 0.6 0.2 0.2674 24.40 0.2060 33.75 8.912 0.1288 0.1269

(0.167,0.371) (2.44) (0.089,0.356) (0.901) (0.016) (-0.080,0.377) (-0.030,0.387)

100 10 1.2 0 0.2 0.4219 20.16 0.4003 8.351 8.660 0.3505 0.3674

(0.324,0.524) (2.016) (0.212,0.607) (0.415) (0.014) (-0.013,0.809) (-0.262,1.251)
Refer to the notes of Table 1.
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Table 13: Simulation Results for Data from Heteroscedasticity on Correlated Component with Excluded Instruments

n K δu1 δu2 δε1 α1 βOLS β2SLS BP βLB F J βKV,2-step βKV,ML

median median median median median median median median

(q10,q90) (q10,q90) (BP/K+1) (q10,q90) (% F>10) (% p < 0.05) (q10,q90) (q10,q90)

100 2 0.9 0.9 0 0.3 0.3748 0.0504 15.38 0.2842 17.73 1.765 0.2381 0.2074

(0.279,0.474) (-0.965,0.644) (5.127) (0.131,0.456) (0.742) (0.071) (-0.138,0.497) (-0.048,0.472)

100 2 0.9 0.9 0.2 0.3 0.3944 0.0421 15.90 0.3269 18.29 2.026 0.2780 0.2590

(0.301,0.488) (-1.070,0.625) (5.302) (0.168,0.499) (0.758) (0.098) (-0.123,0.542) (-0.013,0.531)

100 2 0.9 0.9 -0.2 0.3 0.3626 0.0507 15.65 0.2452 17.72 1.777 0.2012 0.1614

(0.266,0.463) (-1.028,0.683) (5.217) (0.085,0.422) (0.747) (0.067) (-0.154,0.453) (-0.089,0.401)

100 2 -0.9 -0.9 0.2 0.3 0.3629 0.0346 15.87 0.2464 18.07 1.728 0.2005 0.1622

(0.266,0.461) (-0.927,0.673) (5.29) (0.090,0.421) (0.761) (0.075) (-0.149,0.444) (-0.080,0.400)

100 2 -0.9 -0.9 -0.2 0.3 0.3924 0.0472 15.62 0.3283 17.91 2.106 0.2750 0.2571

(0.299,0.485) (-1.006,1.163) (5.206) (0.171,0.501) (0.747) (0.086) (-0.123,0.534) (-0.013,0.527)

100 2 0.9 -0.9 0.2 0.3 0.3931 0.0465 15.64 0.3254 17.84 2.049 0.2670 0.2566

(0.299,0.487) (-0.950,0.674) (5.213) (0.161,0.510) (0.747) (0.098) (-0.135,0.544) (-0.024,0.535)

100 2 0.9 0.9 0.2 1.0 0.3040 -0.0035 15.64 0.1840 34.23 4.332 0.0690 0.0935

(0.222,0.390) (-0.217,0.162) (5.213) (0.025,0.317) (0.992) (0.315) (-0.133,0.243) (-0.079,0.240)

100 2 0.6 0.6 0.2 0.3 0.4489 0.0262 9.633 0.3923 6.830 2.169 0.2965 0.2880

(0.351,0.550) (-0.961,0.586) (3.211) (0.122,0.632) (0.309) (0.099) (-0.222,0.666) (-0.343,0.724)

100 2 1.2 0 0.2 0.3 0.4127 0.0499 14.66 0.3627 15.08 2.051 0.3044 0.2955

(0.320,0.507) (-1.021,0.647) (4.885) (0.198,0.544) (0.680) (0.096) (-0.106,0.583) (-0.012,0.598)

100 2 1.2 0 -1.5 0.3 0.3291 0.0226 14.69 -0.0203 15.16 1.409 0.0099 -0.0522

(0.205,0.470) (-1.299,1.046) (4.896) (-0.282,0.185) (0.683) (0.039) (-0.290,0.280) (-0.263,0.125)

100 10 0.6 0.6 0.2 0.3 0.2633 0.0791 25.04 0.1989 31.81 9.947 0.1316 0.1222

(0.164,0.366) (-0.965,0.848) (2.276) (0.084,0.339) (0.900) (0.022) (-0.064,0.342) (-0.039,0.343)

100 10 1.2 0 0.2 0.3 0.4126 0.0551 20.90 0.3737 8.301 10.18 0.2919 0.2891

(0.316,0.511) (-0.989,0.678) (1.900) (0.196,0.563) (0.405) (0.027) (-0.041,0.664) (-0.368,0.870)
Refer to the notes of Table 1 and 2.
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