When measure matters: coresident sample selection bias in estimating intergenerational mobility in developing countries

M. Shahe Emran and William H Greene and Forhad Shilpi

When measure matters: coresident sample selection bias in estimating intergenerational mobility in developing countries

M. Shahe Emran
IPD, Columbia University

William Greene
New York University

Forhad Shilpi
DECRG, World Bank

July 30, 2015

ABSTRACT

Potential biases from coresident sample selection have been a major stumbling block for research on intergenerational mobility in developing countries. We use two rich data sets from Bangladesh and India to provide evidence on the extent of coresidency bias in standard measures of intergenerational mobility: intergenerational regression coefficient (IGRC) and intergenerational correlation (IGC). Estimates for parents-children, father-son, and mother-daughter persistence in schooling show that the IGRC estimates are severely biased downward (average 30 percent). In contrast, the bias in IGC estimates is much lower (average less than 10 percent, in many cases less than 5 percent). Truncation due to coresidency criterion in a survey biases the IGRC estimate downward, but it also biases upward the estimate of the ratio of the standard deviations of parental to children’s schooling. The IGC estimate suffers from lower bias because the upward bias in the estimate of the ratio of standard deviations partly cancels out the downward bias in the IGRC estimate. The evidence suggests that the available household surveys in developing countries can be fruitfully used to understand intergenerational mobility if one focuses on IGC. The findings have important implications for cross-country comparison of intergenerational economic mobility.

Key Words: Coresidency, Sample Selection Bias, Intergenerational Mobility, Intergenerational Regression Coefficient (IGRC), Intergenerational Correlation (IGC), Bangladesh, India

JEL Codes: O12, J62

1We would like to thank Gabriela Aparicio for help with data at the early stage of this project. The standard disclaimers apply. Email for correspondence: shahe.emran@gmail.com
1. Introduction

There is a large and growing literature in economics on intergenerational persistence in socio-economic status with a long and distinguished pedigree (see Becker and Tomes (1979), Solon (1999), Arrow et al. (2000), World Development Report (2006), Black and Devereux (2011), Corak (2013), Bjorklund and Salvanes (2011)). The focus on intergenerational mobility has, however, become much sharper over the last few decades, with a heightened concerns about widening inequality despite significant growth and poverty reduction in many developed and developing countries (World Development Report (2006), The Economist (2012)). But intergenerational economic persistence in developing countries remains largely an under-researched area. An important constraint faced by a researcher interested in intergenerational economic mobility in developing countries is the data limitations. Although there are good quality household surveys available for almost all of the developing countries now, the data may not be suitable for understanding intergenerational persistence in income, education, and occupation.²

A major issue that has plagued progress in this research agenda is that the standard household surveys suffer from sample selection, because coresidency is used as a criterion to define the household membership. Thus a standard household survey such as the Living Standard Measurement Survey (LSMS) done by the World Bank usually include only the coresident parents and children. Some of the children of the household head may not be part of the household at the time of the survey because they have left for higher eduction and job, or because of marriage and household partition. Since the pattern of coresidence is not random, but determined by economic and cultural factors, most of the studies suffer from

²The economics literature on developing countries has focused on intergenerational educational mobility, with relatively few studies on occupational mobility. In contrast, occupational mobility has been the central focus of a large literature in Sociology. The lack of long-term income data in developing countries makes it impossible to analyze intergenerational income elasticity which has been the focus of a large literature on developed countries.
potentially serious sample selection bias when estimating intergenerational persistence in economic status in developing countries. This has discouraged research on intergenerational economic mobility in developing countries, even though there is a broad consensus that inequality and economic mobility are central policy issues in most of these countries (World Bank (2014), World Development Report (2006), The Economist (2012)).

Although potential bias from coresidency restriction has been a major stumbling block, curiously, there is no evidence on the magnitude of the coresidency bias in the standard measures of intergenerational persistence in developing countries. Are the estimates from the coresident sample biased to such an extent that they are not at all useful for understanding economic mobility? Are the different measures of intergenerational persistence affected by coresidence bias to the same degree, or are some of the measures more robust and can be relied upon to understand the persistence in economic status with relatively small error (and little worry)? To the best of our knowledge, there is no analysis of these interrelated questions in the existing literature. This paper provides a first analysis of these questions using rich data sets from Bangladesh and India.

To understand the implications of coresident sample selection bias, it is necessary to find surveys that include the children and parents irrespective of their residency status. We also need to identify the subset of individuals coresident in a household at the time of the survey. The full sample allows us to estimate measures of intergenerational persistence free of coresidency bias, and then compare the unbiased estimates with the estimates from the

3Increasing inequality has become a focus of policy makers in developing countries and international organizations such as World Bank and IMF. The World Economic Forum 2015 adopted a 14-point plan to tackle global inequality. In the 17th congress, the Chinese Communist Party identified income inequality as a major issue and instructed the party officials and cadres to place efforts to build a “harmonious society” at the top of agenda (Peoples Daily, Sept 29, 2007). Some observers believe that the economic reform in India has been “unprecedented success” in terms of economic growth, but an “extraordinary failure” in terms of improvements in the living standards of general people and social indicators (Dreze and Sen (2011)).
coresident sample. We take advantage of two high quality household surveys of villages in India and Bangladesh, and estimate two most widely used measures of intergenerational persistence in the literature: intergenerational regression coefficient (henceforth IGRC) and intergenerational correlation (henceforth IGC). Since reliable income data are not available for long enough time period, we focus on intergenerational educational mobility, using years of schooling as the relevant indicator of economic status.4 This is motivated partly by the recent research on intergenerational economic mobility in developing countries which has concentrated largely on estimating educational persistence across generations (see, for example, Lillard and Willis (1995), Binder and Woodruff (2002), Hertz et al. (2007), Behrman et al. (2001), Azam and Bhatt (2012), Jalan and Murgai (2008), Maitra and Sharma (2010), Emran and Shilpi (2015)).5

The evidence presented below in this paper shows that IGRC (i.e., intergenerational regression coefficient), the most widely used measure of intergenerational persistence, suffers from significant coresidency bias; the estimates from coresident samples are consistently smaller than those from the full samples. In contrast, the bias in the estimated IGC (i.e., intergenerational correlation) in coresident samples is much smaller; in many cases, less than one third of the bias in the corresponding IGRC estimate. In the sample of household head’s children, the average bias in IGRC estimates is 29.7 percent in the case of Bangladesh, while the corresponding bias in IGC estimates is only 8.7 percent. The

4 An extensive literature in the context of USA shows that data on income for more than a decade at appropriate stages of the life cycle are required to estimate the intergenerational persistence in income. See, for example, Solon (1992), Mazumder (2005). For an excellent discussion on education as a measure of socio-economic status and its relation to intergenerational income persistence, see Hertz et al. (2007). For a recent analysis that combines parents’ education and occupation as a broader measure of economic status in the absence of required income data, see Emran and Sun (2014).

5 There is a broad consensus that addressing educational inequality is the most important policy instrument for tackling income inequality without stifling the dynamism of private entrepreneurship and risk taking central to economic growth. See, for example, Stiglitz (2012), Rajan (2010), The Economist (2012), World Development Report (2006).
extent of coresident sample selection bias in India is smaller because of higher coresidency rates observed in the data. However, the IGRC estimates in India are also substantially biased downward; the average bias is 17.6 percent in the IGRC estimates. Again, the corresponding bias in the IGC estimates is much smaller at 10.4 percent.

We put forth an explanation for the empirical findings that the IGC estimates suffer from significantly less coresidency bias when compared to that in the IGRC estimates. The intuition derives from the fact that IGRC (denoted as β) and IGC (denoted as ρ) are related in a simple way: $\rho = \beta \left(\frac{\sigma_p}{\sigma_c} \right)$, i.e., we can get the IGC estimate by multiplying the IGRC estimate with the ratio of standard deviation of parent’s schooling to that of children’s schooling. Coresidency restriction in the standard household surveys results in a truncated sample, as the surveys do not gather any information on the family members who do not satisfy the coresidency criterion. It is well-known that truncation biases the estimate of β in an OLS regression (Hausman and Wise (1977)). An equally important implication of truncation in our context is that it also affects the estimate of the ratio of standard deviations in schooling of parents to children. The IGC estimate cancels out part of the downward bias in IGRC by multiplying it with an upward biased estimate of the ratio of standard deviation of parental schooling to that of children’s schooling.

The findings in this paper have important and wide ranging implications for the research on inequality and economic mobility in developing countries. First, the evidence reported here implies that much progress in understanding intergenerational mobility (and thus the nature of inequality) can be made with the household surveys currently available in many developing countries even though they suffer from coresidency restrictions. These data sets are currently shun by most of the researchers because of the worry that the estimates from the coresident sample may be misleading. The evidence reported in this paper shows that...
the coresident sample bias is small, often ignorable, if one focuses on IGC rather than IGRC as the measure of persistence. Second, the results in this paper can be helpful in sorting out often conflicting evidence on intergenerational mobility in developing countries in the existing literature where conclusions differ depending on whether one uses IGRC or IGC as the measure. Our analysis suggests that one should focus on the IGC estimates in such instances. Third, our results have important implications for cross-country comparison of economic mobility. The extent of sample selection due to coresidency restriction is likely to vary across countries significantly, and as a result, the ranking according to IGRC estimates are more likely to be incorrect when making cross-country comparisons of intergenerational mobility.\footnote{The extent of coresidency may vary significantly even among developing countries. In our data sets, the sample selection is much higher in Bangladesh compared to that in India. Also, note that while we focus on IGRC, any measure of mobility or inequality that is estimated as a slope parameter in a linear regression model with non-standardized variables is likely to suffer significantly due to coresident sample bias.}

The rest of the paper is organized as follows. Section 2 provides a brief discussion on the related literature, especially focusing on developing countries, and thus puts the contribution of this paper in perspective. The next section (section 3) discusses the data sources and variables used in the analysis. Section (4) reports the estimate of IGRC and IGC in educational attainment for Bangladesh and India data, both for the full and the coresident samples. The next section (section (5)) provides an explanation for the findings that the coresident sample bias in the IGC estimates is small, often ignorable, especially when compared to the bias in the IGRC estimates. The paper concludes with a summary of the results and their implications for the emerging literature on intergenerational mobility in developing countries.
2. Related Literature

The literature on intergenerational economic mobility in developed countries is vast, but the corresponding literature on developing countries is limited at best. The economics literature on intergenerational mobility in developed countries has focused on intergenerational income correlations, with an especial emphasis on the link between fathers and sons (see, for example, Solon (1992, 1999), Mazumder (2005), Blanden et al. (2005), Corak and Heisz (1999), Bowles et al. (2005), Black et al. (2005)). The relative neglect of research on developing countries is evident from the fact that, in his survey for the Handbook of Labor Economics, Solon (1999) cites only two papers: Lam and Schoeni (1993) on Brazil, and Lillard and Kilburn (1995) on Malaysia. Pranab Bardhan, the editor of Journal of Development Economics for almost two decades (1985-2003), identified intergenerational mobility as one of the underdeveloped research areas in development economics (Bardhan (2005)).

The research on intergenerational economic persistence in developing countries has been constrained primarily by two types of data limitations. First, the income data on parents and children are not available for more than a few years to allow reliable estimation of permanent income across generations. As shown by a substantial body of literature on developed countries, it is necessary to have good quality income data over a period of more than a decade to address the attenuation bias in the estimate of income persistence (Solon (1992), Mazumder (2005)). The household surveys available in developing countries usually provide income information only for a single year, and estimating individual income may be a daunting task in rural areas where self employment, work sharing, and informal activities predominate (Deaton (1997)). The second challenge which constitutes the focus of this paper comes from the coresidency restriction; most of the surveys suffer from sample
selection due to coresidency used to define household membership. As noted before, this has been a strong discouraging factor for researchers worried about rejection by their peers, journal referees and the editors.

The recent economics research on intergenerational economic mobility in developing countries includes Behrman et. al. (2001), Hertz et al. (2007), Binder and Woodruff (2002), Thomas (1996), Lillard and Willis (1995), Lam and Schoeni (1993), Daude (2011), Asadullah (2012), Emran and Shilpi (2011, 2015), Emran and Sun (2011, 2014), Bossuroy and Cogneau (2013), Maitra and Sharma (2010), Assad and Saleh (2013)). Most of the studies on economic mobility in developing countries rely on education and occupation as markers of economic status, because reliable data on income for long enough time periods to calculate permanent income is not available. Most of them also use data selected non-randomly due to residency requirement for household membership. There is, however, no uniformity in the definitions of ‘household’ across different surveys, although all are concerned with ‘living together’, ‘eating together’, and sometimes with the ‘pooling of funds’ (Deaton (1997)). Examples of household surveys that usually include coresidency as a defining criteria include Household Income and Expenditure Survey (HIES), Demographic and Health Survey (DHS), and Living Standard Measurement Survey (LSMS). There are some household surveys which include limited information on the parents of household head and spouse, but do not include the nonresident children of the household head. Hertz et al. (2007) use household surveys from 21 developing countries (10 Asian, 4 African, and 7 Latin American) and 8 formerly Communist countries where household surveys provide information on parents’ education for household head and spouse, but do not include the

8The data on the income of parental generation is especially difficult to find. Preponderance of home based economic activities including own-farming in parental generation makes it challenging to estimate income in many developing countries.
When non-resident children are excluded from the survey, it results in truncation of the sample, the information on both the dependent and explanatory variables for them is missing from the data set. This also implies that, in most of the cases, it is not possible to estimate a sample selection equation (a la Heckman) to correct for the biases, because it is not possible to identify if a household is missing children from the survey. The maximum likelihood approach developed by Bloom and Killingsworth (1985) can be applied in this case if multivariate normality is a reasonable assumption.

Although non-random sample selection due to coresidency has been a major methodological issue in the research on intergenerational mobility, evidence on the magnitude of coresidency bias has been scarce, with the exception of the analysis of occupational mobility in the UK by Francesconi and Nicoletti (2006). In an interesting paper, they use British Household Panel Survey to estimate the extent of coresidency bias in the estimates of intergenerational persistence in occupational prestige between father and son(s). They use the occupational prestige index due to Goldthorpe and Hope (1974), and estimate intergenerational elasticity as a measure of persistence. The evidence reported in their paper shows that the coresidency bias is substantial, ranging between 20-40 percent. They, however, do not address the question whether intergenerational correlation (IGC) and intergenerational regression coefficient (IGRC) are affected differently by the coresident sample selection, which is the focus of our analysis.

We are not aware of any analysis of coresidency bias in the context of educational mobility, either in developed or developing countries. Our analysis can also claim broader

9Hertz et al (2007) are careful about sample selection bias, and they do not focus on the subsample of household head’s children as has been the case in many recent studies that rely on data without non-resident children. To the best of our knowledge, the only survey in Hertz et al. list of countries that cover all of the non-resident children in the survey is that for Bangladesh.

10They provide an extensive analysis of alternative econometric approaches for selection correction. Their findings indicate that the inverse probability weighted estimator is the most reliable to tackle coresident sample selection bias among a number of approaches including Heckman selection correction.
applicability as we use data from two developing countries with substantial differences in the coresidency rates, and provide evidence on both father-son and mother-daughter links in educational persistence.

3. Data and Variables

We use two rich data sets particularly suited for the analysis of the extent of coresident sample bias in the standard measures of intergenerational persistence. The source of data on India is the 1999 Rural Economic and Demographic Survey done by the National Council for Applied Economic Research, and the data on Bangladesh comes from the 1996 Matlab Health and Socioeconomic Survey (MHSS). The Bangladesh survey collected information on three generations of individuals (household head and spouse’s all children, parents and siblings) from 4538 households in Matlab thana of Chandpur district.\(^\text{11}\) This information can be used to construct a family tree spanning two generations for each household including any non-resident member. The India survey also collected information on all of household head’s children from current marriage and on all siblings and fathers but not non-coresident mothers of children from earlier marriage(s). We utilize these information to create data sets containing education and other personal characteristics of parents and children. Both of these surveys focus on rural areas in respective countries. The advantage of rural sample is that the bias from censoring due to non-completion of younger children may not be as important, because only few go on to have more than middle school (or high school). The children who go for more than high school education (10 years of schooling in Bangladesh and India) are also the children who leave the village household, because the “colleges” (for grades 11 and 12) and universities (for three-four year undergraduate, and graduate study)

\(^{11}\)The MHSS 1996 is a collaborative effort of RAND, the Harvard School of Public Health, the University of Pennsylvania, the University of Colorado at Boulder, Brown University, Mitra and Associates and the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B).
are not located in villages.

Our main sample consists of household head and spouse, and their children, including those from other marriages in the case of Bangladesh. For the empirical analysis, we use alternative samples defined by different age ranges for the children. Our main results are based on a sample of children aged 13-60 years. To test the sensitivity of our conclusions with respect to the specific age-cut offs, we estimate the IGRC and IGC for a number of alternative age ranges; 16-60; 20-69 and 13-50 years. As part robustness checks, we carry out all of the estimations for an extended family sample which includes household head and spouse’s siblings and parents in addition to their children (i.e., all three generations) also.

Table A.1 reports the summary statistics of the relevant variables for both the Bangladesh and India data sets for our main estimation sample [children in the age range 13-60 year]. Several interesting observations and patterns are noticeable in our data sets. The average schooling attainment remains low in rural areas of both Bangladesh and India at the time of the survey years. The mean and median years of schooling are 4.97 and 5 respectively for Bangladesh, and 6.23 and 7 for India. The relatively lower education attainments in Bangladesh compared with India were present during parents’ generation as well: median years of father’s education was 2 years in Bangladesh compared with 2.50 years in India. The average number of children per household in Bangladesh is about 5.74 compared with 3.53 in India. Part of this difference reflects the fact that Bangladesh data include information on children from other marriages while India data do not. There are some differences in the age distribution of children also: median age for Bangladesh data is 30 years compared with 33 years for India. The gender gap in education between boys and girls is about 1 year in Bangladesh in contrast with 2 years in India.
Table A.1 also reports the ratio of standard deviation of parent’s education to that of children’s education for both all and coresident children in columns 3 and 7. The ratio is unambiguously smaller in the full sample (including both coresident and non-resident children) compared with that in the coresident sample. This is consistent with the observation noted above that a higher estimate of this ratio in a coresident sample is likely to partially offset the biases in IGC estimates.

4. Empirical Results

We begin the discussion with graphical presentation of the data, following the classic analysis of truncation in Hausman and Wise (1977). Figures 1 and 2 report the bivariate linear plots of children’s schooling against parents’ schooling for both the full and the coresident samples for Bangladesh and India respectively. The coresidency rate is much higher in India data compared to that in Bangladesh data, thus the implied sample selection bias is likely to be relatively lower in India. For example, in the father sons sample the coresidency rate is 79 percent in India, while the corresponding rate is only 52 percent in Bangladesh. In the mother-daughter samples, the coresidency rates are lower: 39 percent in India and 26 percent in Bangladesh, reflecting the fact that women leave the natal family following marriage in both countries.

The graphs are generated from the sample of household head’s (and spouse’s) children which is also the focus of the empirical analysis below. The corresponding graphs for the extended family sample are similar and thus are omitted for the sake of brevity. For each country we present three graphs: (i) son-father, (ii) daughter-mother, and (iii) all children-father. If the coresident sample is missing children in a nonrandom fashion, it is likely to affect the slope of the line fitted to the data. The figures show that the slope of the fitted line is, in fact, different across the coresident and full samples; the slope is smaller in the
coresident sample which is consistent with Hausman and Wise (1977). The widely held belief that the coresident sample bias in the estimate of IGRC is substantial thus appears clearly visible in the data, especially in case of Bangladesh where coresidency rate is lower.

In the graphs for the “all children” sample (including both sons and daughters), the coresident line intersects the full sample line from above (see Figures 1A for Bangladesh and 2A for India). This implies that the surveys miss less educated children from households with low parental education, but miss better educated children from households with high parental education. We thus have both truncation from above and from below.

A closer look at the other graphs reveal some interesting differences across gender and countries. In Bangladesh, the fitted lines in father-son sample (see figure 1.B) intersect each other at a very low level of father’s education, implying that most of the coresident line lies below the full sample line. This implies that, for most of the distribution, the better educated sons leave the parental household. For Mother-daughter sample in Bangladesh (figure 1.C) the pattern of selection is different; the line for the coresident sample intersects the full sample line from above at about 5 years of mother’s schooling which is very high given that the average education for mothers is only 1.47 years. This implies that that coresident line lies above the full sample line for most of the cases; the girls with relatively lower education leave the parental household (presumably following marriage, they relocate to husband’s house). Also, the gap between the coresident and full sample lines becomes smaller as the parental education increases, which suggests that the probability of a less educated girl leaving her parental household becomes smaller when parent’s education is higher. This can be interpreted as suggestive evidence that better educated parents are less likely to marry off their daughters without completing high school (10th grade in both Bangladesh and India).
The figures for India are broadly similar, although the effect of non-random sample selection on the slope is smaller compared to the case of Bangladesh, especially in father-son sample, which reflects the fact that coresidency rate is very high for sons in India. However, the graphs again tell a consistent story; in all three groups, the coresident fitted line has lower slope than that in the fitted line in the full sample. The intersection points of the coresident and full sample lines are, however, more centered, implying that for the lower educated parents, it is the low educated children that leave the household, and for the high educated it is the opposite. The intersection for the daughters’ is at a higher level of father’s schooling, implying that the low educated daughters are non-resident for most of the cases.

While the graphical exploration provides suggestive evidence that coresidency restriction in the definition of household membership in the surveys can cause significant bias in the estimate of the slope of the linear regression line, to get a measure of the extent of bias in IGRC and IGC, we now turn to the estimates for both Bangladesh and India. We first discuss the results for the all children sample (i.e., that includes both sons and daughters). These provide average estimates across gender, and are useful as summary measures. We then provide estimates for the father-son and mother-daughter intergenerational persistence which have been the focus of most of the economics literature.

The regression specification used for estimating the IGRC and IGC is motivated by Solon (1992) and includes age and age squared of both the child and the father. As robustness checks, we also estimate a number of alternative specifications, starting with a simple bivariate model where no controls are used. In addition to the quadratic age formulation standard in the literature, we use a completely flexible specification of the effects of age by including dummies for different years of age. The estimates are very

\footnote{Mother’s age is missing for a significant proportion of children.}
robust; the numerical magnitudes of IGRC and IGC estimates vary little, if at all, across different specifications.

To help keep track of the discussion across different samples, we note here again the terminology used. We call “all children” when the sample includes both sons and daughters. A “full sample” includes both coresident and non-resident members, and “coresident sample” includes only the members coresident in the household at the time of the survey.

4.1 Estimates for All Children (Sons and Daughters)

Evidence from Bangladesh

Table 1 reports the estimates of IGRC and IGC for all children in Bangladesh data, i.e., sons and daughters combined together. The first two columns in Table 1 reports the estimates of IGRC for the full and coresident samples (top panel) and the implied bias (bottom panel). We use three different measures of parental education: father’s schooling, mother’s schooling, and the average of father’s and mother’s schooling. Note that some researchers also use maximum schooling (of mother’s and father’s) as a measure of parental education. In our data sets, the father has higher schooling in most of the cases, and the correlation between the maximum parental schooling and father’s schooling is high enough to yield virtually identical estimates of IGRC and IGC. In addition to the quadratic age controls, we also include a dummy for gender of the child in the regression specification.13

This implies that any common factors (such as cultural norms) that might affect the average schooling attainment of girls irrespective of parental socio-economic status are absorbed as a shift in the intercept.

The estimates in the top panel of Table 1 provide strong evidence that the the coresident sample selection bias in the IGRC estimates is substantial for all three definitions of parental

13The estimates and the conclusions, however, do not depend on the inclusion of the gender dummy.
education. Consistent with the expectation based on the graphs discussed above, the IGRC estimate in the coresident sample is significantly biased downward. The null hypothesis that the estimate from the coresident sample is equal to the estimate from the full sample is rejected unambiguously with P-values equal to 0.00 in all of the different cases.\footnote{We, however, note here that the formal test of equality of estimates may not be very useful in our context. Even with very small numerical difference between the estimates from the full and coresident samples, one can reject the null of equality simply because the standard errors are extremely small (see, for example, the IGC estimates). So the focus should be on the magnitude of the bias not the statistical test of equality of estimates.} The pattern is remarkably consistent, and justifies the widespread opinion that there are good reasons to expect the IGRC estimates to be biased downward due to non-random sample selection bias because of coresidency requirement used in the household surveys.

To get a better sense of the implied magnitudes, we report normalized bias defined as follows (using IGRC as an example),

\[
Normalized\ Bias = \frac{(IGRC_F - IGRC_{CR}) \times 100}{IGRC_{CR}}
\]

where \(IGRC_{CR}\) denotes the estimate from a coresident sample, while \(IGRC_F\) is the unbiased estimate from the corresponding full sample including non-resident household members.

The first column in the bottom panel of Table 1 reports the normalized bias in the IGRC estimates from the coresident sample. The evidence is clear: the estimate from coresident sample is biased downward, and the magnitude of bias is substantial across all three indicators of parental education.\footnote{Since we report only the normalized biases in the tables, we will use “bias” and “normalized bias” interchangeably.} The bias is the highest when mother’s schooling is the indicator of parental education (34 percent), and the lowest in the case of average parental schooling (24 percent), with an average bias of 29.7 percent.\footnote{It is the simple average of the three bias estimates in the bottom panel.} A 30 percent bias
(normalized) on an average vindicates the unease among the researchers and editors of journals that the available household surveys in developing countries may not be particularly helpful in understanding the magnitude of intergenerational persistence in economic status.

We now turn to the IGC estimates for Bangladesh reported in columns 4 (full sample) and 5 (coresident sample) of Table 1. The estimated IGCs for three different indicators of parental education are reported in the top panel and the implied normalized biases are reported at the bottom. The evidence is strikingly different from the IGRC; the estimate of IGC from the coresident sample is much closer to that from the full sample, and this is true for all three different indicators of parental education (top panel). The average normalized bias in the IGC estimates is 8.7 percent which is less than one third of the average normalized bias in the IGRC estimates (29.7 percent). The highest magnitude of bias is 11 percent in the case of IGC which is less than half of the lowest bias found in the IGRC estimates (24 percent). A comparison of the estimates of IGRC and IGC for Bangladesh in Tables 1 is revealing: it suggests that while the widespread caution about the coresidency bias is right on target for the IGRC estimates, the coresidency bias may not be a stumbling block when a researcher focuses on the IGC as the relevant measure of intergenerational persistence.

Evidence From India

Tables 2 reports estimates of IGRC and IGC from India data for three different indicators of parental education (father’s schooling, mother’s schooling, and average schooling of mother and father). We begin the discussion with the estimates of IGRC and the implied bias (normalized). The difference between the IGRC estimates from the coresident and full samples in the case of India are smaller in magnitude compared to the estimates from
Bangladesh (compare top panel of Table 1 to that of Table 2). The average normalized bias is about 17.6 percent. While the extent of bias is not as dramatic as in the Bangladesh data, the evidence still indicates that the coresident sample selection causes downward bias in the IGRC estimates and the magnitude of bias is substantial. The relatively lower selection bias in the India estimates reflects the fact that the proportion of coresident children is higher in India compared to Bangladesh as discussed before (61 percent in India and about 40 percent in Bangladesh).

The IGC estimates in columns (4) and (5) in Table 2 show that the coresident sample selection bias in IGC estimates is significantly smaller. The average bias in IGC for India is 10.4 percent which is much smaller than the 17.6 percent average bias found in the IGRC estimates. The evidence in Table 2 thus supports the conclusions from Bangladesh data that (i) the selection due to coresidency restriction in a survey can cause significant downward bias in the estimates of IGRC, and (ii) the corresponding bias in the IGC estimates is substantially lower.

4.2 Estimates of Father-Son and Mother-Daughter Schooling Persistence

In this subsection, we discuss the biases in the IGRC and IGC estimates for the intergenerational link between the father and sons, and the mother and daughters. While father-son intergenerational persistence in economic status has been the most widely researched topic both in developed and developing countries, it is probably equally (if not more) important from a policy perspective to understand the barriers faced by the girls in education. The results on father-son linkage are reported in the upper panel of Table 3, and the bottom panel contains the corresponding estimates for mother-daughter persistence in schooling. We report the estimates of bias, and test the null hypothesis of zero bias (i.e., that the estimates from the coresident and the full samples are equal). For the sake of
brevity, we omit the underlying estimates of IGRC and IGC. The estimates for Bangladesh are in the first two columns, and the last two columns refer to the corresponding results for India.

Bangladesh

The estimates of father-son intergenerational link in schooling for Bangladesh shows that the IGRC estimate in the coresident sample suffers from strong downward bias; the bias is 29.5 percent (see (row 1, column 1) in the top panel of Table 3). The bias in father-son IGRC estimate is thus similar to the average bias for the all children sample discussed above: 29.7 percent. The corresponding bias in the estimated IGC is much smaller: only 8.9 percent (row 2, column 1). Thus the coresidency bias in the IGC estimate is less than one third of that in the IGRC estimate in the case of father-son link.

The results for mother-daughter in Bangladesh are reported in columns 1 and 2 of the lower panel of Table 3. Consistent with the results for father-son sample, the estimate of IGRC from the coresident sample is much smaller compared to the unbiased estimate from the full sample; the bias in the IGRC estimate from the coresident sample is 45.6 percent, a very high magnitude indeed. This illustrates starkly that relying on the coresident sample can lead to grossly misleading picture of intergenerational persistence between mother and daughter(s). This reflects the fact that the degree of sample selection is very high in the daughters’ case; only 25 percent of the full sample satisfies the coresidency restriction in Bangladesh data (for sons it is 52 percent of the full sample). The bias in the IGC estimate from coresident sample is again much smaller in magnitude: 10.6 percent.

India

The estimates of father-son schooling persistence for India are reported in columns (3) and (4) of the top panel of Table 3. The IGRC estimate for India shows that the downward
bias due to coresidency is substantial; the unbiased estimate from the full sample is 29.5 percent higher than the estimate in the coresident sample.17 The bias in the father-son sample is thus significantly larger than the average bias we found earlier for the sample of all children across different measures of parental education (17.6 percent). In sharp contrast, the IGC estimate suffers from very little coresidency bias: 2.4 percent only. The estimated bias in the IGC estimate for father-son in India is thus ignorable, while the IGRC estimate suffers from strong downward bias from coresident sample selection.

The bias estimates for mother-daughter schooling persistence in India are reported in columns (3) and (4) of the lower panel of Table 4. The bias in the IGRC estimate for mother-daughter is smaller for India when compared to Bangladesh, but the magnitude of bias is still substantial 21.8 percent. The corresponding biases in IGC estimates is 9.7 percent which is less than half of the bias in the IGRC estimate.

5. Additional Evidence

(5.1) Alternative Age Ranges for the Children

In this section, we discuss the estimates of IGRC and IGC for coresident and full samples using alternative age ranges of the children. We estimate the IGRC and IGC for both India and Bangladesh and for the three different cases discussed above: all children, father-son, and mother daughter. The age range used so far in Tables 1-4 is 13-60 years. This is motivated by the fact that the average schooling attainments in rural Bangladesh and India remain low in the survey years. In Bangladesh, the average years of schooling is only 4.43 years; for sons it is 5.5 years and for daughters 3.4 years. The average schooling in India is 5 years, and for sons it is 7 years and for daughters 3.7 years. To explore the sensitivity of the conclusions with respect to the age range of children, we estimate the

17It is interesting that the bias estimates are identical for Bangladesh and India.
IGRC and IGC across a number of different age ranges. For the sake of brevity, we report estimates from the following age ranges: (i) 13-50 years, (ii) 16-60, and (iii) 20-69 years.

Since many children start first grade at age 6, a 13 years age cut-off implies 7 years of potential schooling as the minimum threshold in our sample (primary schooling is 5 years). The observed schooling attainment, however, may vary across 13 year old children for a variety of reasons. For example, children from poor households may start schooling later than usual, and they may also have to interrupt schooling because of negative economic shocks.18 The variations in schooling attainment at age 13 (or even younger) can thus provide us useful evidence on the role played by family background. However, one might worry that some children at age 13 have not yet completed schooling, and it is important to check if the results hold when the lower threshold for children’s schooling is raised. We thus estimate the IGRC and IGC in a series of samples, starting with 14 years and raising the lower threshold incrementally by one year at a time up to 20 years. The evidence from this exercise is very reassuring; while the magnitudes differ across the samples, the main conclusions reached on the basis of 13-60 years age range remain intact. For the sake of brevity we report estimates for 16 and 20 years as the lower age threshold for children. A 16 year age cut-off implies potentially 10 years of schooling which coincides with one of the most important public examination in both Bangladesh and India (called Secondary School Certificate (S.S.C) or ‘Matriculation’ examination). After 12 years of schooling (18 years of age cut-off), the students sit for a second important public examination, called Higher Secondary Certificate (H.S.C) or Intermediate examination. In our Bangladesh data, about 10 percent of 20 years of age or older has 10 years or more schooling, and 5 percent has 12 years or more schooling.

18According to one estimate for India, 53 percent of students drop out before completing primary (5 years). Among every 100 girls enrolled, only 40 progress to 4th grade, 18 reaches 8th grade, and only 1 is lucky enough to go up to 12th grade (India Education Report, 2005, pp. 6-7).
For each age range, we present the bias estimates and omit the underlying estimates of IGRC and IGC for full and coresident samples. This allows us to reduce the number of tables by putting together the relevant estimates for both Bangladesh and India in a single table. However, all of the underlying estimates are available from the authors upon request.

The estimates for three different age ranges for the all children sample including both sons and daughters are presented in Table 4. Following the earlier results, we report estimates of bias for three alternative indicators of parental education: father’s schooling, mother’s schooling, and the average of father’s and mother’s schooling. The estimates, both for India and Bangladesh, lead to the same set of conclusions derived from the 13-60 years age range in section (4). The IGRC estimates, in general, suffer from substantial downward bias because of coresident sample selection. In Bangladesh, the bias in the coresident sample estimate of IGRC is more than 10 percent in seven out of nine cases, with an average bias of 18.35 percent. Consistent with the earlier evidence, the extent of bias in the case of India is smaller, the average is 14.7 percent, but still the bias is more than 10 percent in seven out of nine cases. In contrast, the coresidency bias in the IGC estimates are again much smaller, in only one out of nine cases the bias is more than 10 percent in Bangladesh (10.9 percent when father’s age is the indicator of parental education and the age range for children is 13-50 years). The average bias in the IGC estimate for Bangladesh is only 5 percent, less than one third of that in the IGRC estimates (18.35 percent). The estimates for India are similar; in three out of nine cases the bias is more than 10 percent, the highest being 12.1 percent, and the average is 8.9 percent, significantly smaller than the corresponding average for IGRC (14.7 percent).

Table 5 reports estimates for the father-son and mother-daughter persistence in school-
ing attainment for different age ranges of children. As to be expected, the magnitudes of the estimates vary across different age ranges, but the main conclusions of the paper remain valid. The coresident sample bias in the IGRC estimates is very high in the estimates for Bangladesh; the lowest bias is 15 percent and the highest 45.6 percent, with an average of 27.5 percent, a very high bias by any standard. The bias estimates for India are smaller in magnitude consistent with its higher coresidency rates. However, the average bias in IGRC is still more than 10 percent (10.6 percent). More important for the research on intergenerational mobility in developing countries constrained by the coresident samples is the clear evidence that in all 16 cases reported in Table 5, the bias in the IGC estimate is much smaller than that in the corresponding IGRC estimate. The average normalized bias in the IGC estimates is only 7.3 percent in Bangladesh (27.5 percent for IGRC), and 4.6 percent in India (10.6 percent for IGRC).

5.2 Extended Family Sample

The evidence discussed above comes from samples where household head and his/her family is the focus (spouse and their children). This is motivated by the fact that most of the household surveys in developing countries contain information on coresident children of household head, and thus the results are relevant for the analysis of inequality and mobility in a large number of developing countries. However, some household surveys may also include information on the extended family members if they are coresident at the time of the survey, including grandparents (parents of household head and spouse) and siblings of household head and spouse. In this section, we check if the main conclusions regarding the coresidency bias hold in a sample that includes extended family members. The estimates for the ‘all children’ group (including both male and female) are presented in the top panel of Table 6, and the lower panel contains the estimates for father-son and mother-daughter
schooling persistence. Again, for the sake of brevity, we only report the bias estimates for IGRC and IGC, both for India and Bangladesh in each Table. The underlying estimates of IGRC and IGC are available from the authors.

The estimates for the extended family in Bangladesh provide dramatic confirmation of the conclusions reached above on the basis of the sample of children of household head and spouse. The IGRC estimates suffer from strong downward bias; the lowest bias is 21 percent, and the average is 27 percent. Consistent with the evidence from household head’s children sample in Tables 1-3, the magnitude of bias in the IGRC estimates is somewhat smaller in the case of India; but it is still large enough to justify the worry that coresident sample selection can result in misleading estimates of intergenerational persistence. The lowest estimate of bias in the IGRC is 14 percent, and the average is 19 percent in the case of India.

5.3 Coresidency Rates and The Extent of Bias

An interesting aspect of the results presented above is that there is significant variation in the coresidency rates across Bangladesh and India data, and the bias estimates reflect the differences in the severity of selection. Since we estimated the bias in IGRC and IGC for a number of different samples including the extended family sample, one might wonder how the magnitude of the bias relate to the degree of selection (or alternatively coresidency rates) across different samples. Figure 3 shows the relation between the coresidency rate and the estimated bias for both IGRC and IGC estimates. There is a clear negative relation between coresidency rate and the magnitude of bias, implying that comparing IGRC estimates from different data sets may be inappropriate. In contrast, there is no discernible relation between the bias in IGC estimates and the coresidency rate.
6. Towards an Understanding of the Results: Why is the Bias in IGC Estimates So Low?

The evidence presented above is strikingly consistent and clear: when a researcher works with a data set from a survey that uses coresidency for defining the household, the IGRC estimates are likely to be seriously biased downward; but the estimates of IGC in coresident samples are, in general, much closer to the unbiased estimates from the full sample. The estimates of IGC in schooling attainment for Bangladesh and India presented and discussed above show that the widely available household surveys such as LSMS and HIES that use coresidency criterion to define household membership can be profitably used to understand intergenerational economic mobility as long as the researchers move away from the current emphasis on estimating IGRC. If one focuses on the IGC as a measure of mobility, these data sets could be relied upon to provide credible evidence on the magnitude of intergenerational economic persistence in a large number of developing countries.

It is important to appreciate that the coresident sample bias common in the household surveys in developing countries is best modeled as a truncation, not censoring. The most common problem in the context of household surveys in developing countries is that there is no information (on both dependent and independent variables) for the the non-resident children resulting in truncation of the sample. The evidence presented above suggests that the non-resident children are not randomly distributed, both in Bangladesh and India: they come mostly from the tails of the schooling distribution. The truncation can be from below, especially for the daughters, if the more educated daughters marry late and thus are more likely to be observed as household member given a specific residency criterion in a survey. On the other hand, truncation can also be from above, because in the context of rural areas in developing countries, the available evidence indicates that the probability of
migration is a positive function of education. This would imply that most of the missing children (especially sons) due to the residency requirement belong to the right tail of the distribution. However, the result that the bias in IGC is much smaller does not depend on whether the coresidency criterion in a survey cuts out children from the upper or lower tail of the schooling distribution (or both tails).

6.1 Coresidency Restriction and Truncation Bias in a Simple Model

6.1.1 Bias in the IGRC Estimate

Consider the standard model of sample truncation widely discussed in the econometrics and statistics literature, as adapted to our application (for the econometric literature see Heckman (1979), Greene (2012), and for a statistical treatment, see Cohen (1991)). The truncation is from below and based on a level of schooling of the children \(T > 0 \); so a girl \(i \) with schooling level \(S_i^c \leq T \) leaves the household for marriage, for example, and thus is not included in the survey. A simple model of the marriage decision is as follows (assuming parent’s decide marriage for girls):

\[
M_i = \begin{cases}
1 & \text{if } v_i - wS_i^c > 0 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]

where \(v_i \) is payoff (indirect utility) from marrying off child \(i \), \(wS_i^c \) is the labor market earnings forgone as a girl leaves the natal family after marriage, and \(S_i^c \) is the schooling level of girl \(i \). The marriage decision \(M_i \) is a binary indicator that takes on the value of 1 when a girl is married (and lives in a separate household).

Denote the set of individuals included in the survey by \(D \). So child \(i \) is unmarried and thus coresident with the parents and is included in the survey, i.e., \(i \in D \), if the following
holds:

\[S_i^c > \frac{v_i}{w} \equiv T_i \]

So we have the following model of the population relation and data generation:

\[S_i^c = \beta_0 + \beta S_i^p + \epsilon_i; \ i \in D, \ if \ S_i^c > T_i > 0 \quad (2) \]

where \(S_i^p \) denote years of schooling of parents. We assume that \(\epsilon_i \sim N(0, \sigma_e^2) \).

For simplicity of exposition, we ignore other control variables such as age of parents and child. A standard result in the literature is that OLS regression in the coresident sample suffers from omitted variables bias, because the conditional expectation function is not linear (Greene (2012), Heckman (1979)):

\[S_i^c = \beta_0 + \beta S_i^p + v \epsilon_i + \epsilon_i \quad (3) \]

where \(v \epsilon_i \) is the covariance between \(v_i \) and \(\epsilon_i \), and \(\sigma_v \) is the standard deviation of \(v_i \).

The error term in the OLS regression is not \(\epsilon_i \), but \(\mu_i = \frac{\sigma_{ve}}{\sigma_v} \lambda_i + \epsilon_i \) which is correlated with \(S_i^p \) causing omitted variables bias. The omitted variable \(\lambda_i \) is called the inverse Mills ratio and given as follows:

\[\lambda_i = \lambda(\alpha_i) \equiv \frac{\phi(\alpha_i)}{1 - \Phi(\alpha_i)}, \alpha_i = \frac{T_i - \beta_0 - \beta S_i^p}{\sigma_e} \]

As discussed by Greene (2012), although the bias depends on the correlations in the data, a robust empirical regularity widely observed in the literature is that the OLS estimate is biased downward to zero (see also Hausman and Wise (1977), Cohen (1991)). Denoting

\[\text{Hausman and Wise (1977) discuss a rationale for the downward bias by showing that the OLS estimate is necessarily smaller than the maximum likelihood estimate. Please see the appendix to Hausman and} \]
the OLS estimate in the coresident sample by $\hat{\beta}_T$, the attenuation bias due to truncation in the OLS estimate can be approximated by the following relationship:\(^{20}\)

$$\text{plim} \left(\hat{\beta}_T - \beta \right) \approx (\delta - 1) \beta < 0$$

(4)

where

$$\delta = \left[1 - \alpha \lambda (\alpha) - (\lambda (\alpha))^2 \right] \in (0, 1)$$

and α is the mean of α_i. Our estimates of IGRC $\left(\hat{\beta}_T \right)$ for Bangladesh and India show that the bias implied by inequality (4) above can be serious.

6.1.2 Bias in the IGC Estimate

The IGC can be estimated from a regression where the variables are normalized so that their mean is zero and variance is 1. Denote the IGC (correlation coefficient) between father’s schooling and children’s schooling by ρ. The we have the following regression model for estimation of IGC:

$$Z^c_i = \rho Z^p_i + \sigma_{\eta \theta} \tilde{\lambda}_i + \eta_i \quad i \in D, \text{ if } Z^c_i > \tilde{T}_i \equiv \left(\frac{T_i - \bar{S}^c}{\sigma_c} \right)$$

(5)

where

$$Z^c_i = \frac{S^c_i - \bar{S}^c}{\sigma_c} \; ; \qquad Z^p_i = \frac{S^f_i - \bar{S}^f}{\sigma_f}$$

$$\tilde{\lambda}_i = \lambda (\tilde{\alpha}_i) \; ; \qquad \tilde{\alpha}_i = \tilde{T} - \rho Z^p_i \; , \; \eta_i = \frac{\epsilon_i}{\sigma_c} \; ; \; \vartheta_i = \frac{\nu_i}{\sigma_c}$$

where a bar on a variable denotes the sample mean, and σ_c and σ_f are standard deviation of children’s and father’s schooling, and $\sigma_{\eta \phi}$ is the covariance between the error terms in the children’s schooling and marriage selection equation with the schooling variables stan-

\(^{20}\)See Greene (2012) for a more complete discussion on this.
standardized. The truncation point in the standardized model is \(\tilde{T}_i = \frac{T_i - \tilde{S}_i^c}{\sigma_c} \). A comparison of equations (2) and (5) shows that the truncation points are different, and thus the extent of bias due to truncation may be different.

To see that the truncation bias is lower in OLS estimate of equation (5), note that similar to equation (4) above, we have the following approximate relation for model (5):

\[
\text{plim} (\hat{\rho}_T - \rho) \approx \left(\tilde{\delta} - 1 \right) \rho < 0
\]

(6)

where

\[
\tilde{\delta} = \left[1 - \tilde{\alpha} \lambda (\tilde{\alpha}) - (\lambda (\tilde{\alpha}))^2 \right]
\]

It is easy to check that \(\tilde{\delta} > \delta \), if \(\tilde{\alpha} < \alpha \). By using the relation that \(\beta = \frac{\sigma_f}{\sigma_c} \), we can rewrite \(\tilde{\alpha}_i \) as follows:

\[
\tilde{\alpha}_i = \left(\frac{T - \beta_0 - \beta S_i^p}{\sigma_c} \right) - \left(\frac{\tilde{S}_i^c - \beta_0 - \beta \tilde{S}_i^f}{\sigma_c} \right) = \alpha_i - \left(\frac{\tilde{S}_i^c - \beta_0 - \beta \tilde{S}_i^f}{\sigma_c} \right)
\]

(7)

Now \(\tilde{\alpha}_i < \alpha_i \) follows from the observation that \((\tilde{S}_i^c - \beta_0 - \beta \tilde{S}_i^f) > 0 \) in a truncated sample because \(\tilde{S}_i^c = E(S_i^c \mid S_i^c > T_i) = \beta_0 + \beta \tilde{S}_i^f + E(\epsilon_i \mid \epsilon_i > T_i - \beta_0 - \beta S_i^f) \) and \(E(\epsilon_i \mid \epsilon_i > T_i - \beta_0 - \beta S_i^f) > 0 \).

6.2 Discussion

The preceding section shows that the attenuation bias due to truncation of the sample caused by coresidency restriction is likely to be smaller when we estimate IGC as a measure of intergenerational persistence instead of the IGRC which has been by far the most widely used measure in economics literature. This provides a conceptual basis for the empirical evidence from Bangladesh and India presented in the earlier part of this paper. Here we
discuss alternative ways to think about the coresidency bias in the IGC and IGRC estimates which may provide additional intuitions.

We focus on the following relationship between IGRC and IGC widely known in the literature (see, for example, Solon (1999)):

$$\rho = \beta \frac{\sigma_p}{\sigma_c}$$ \hspace{1cm} (8)

A simple way to understand the evidence presented in this paper is that truncation biases the estimate of β downward, but it also results in upward bias in the estimate of ratio of standard deviations in schooling $\frac{\sigma_p}{\sigma_c}$. As a result, the net bias in IGC (ρ) is smaller than the bias in IGRC (β) estimate. Estimate of the ratio of the standard deviations in our data sets confirms that the magnitude is larger in the truncated samples (see Table A.1).

A standard result from the literature is that truncation reduces the variance of a variable (Greene (2012)). Since truncation is based on children’s schooling, it affects the variance of children’s schooling directly:

$$Plim (\hat{\sigma}_c) = \sqrt{\delta} (\sigma_c)$$ \hspace{1cm} (9)

If the estimate of standard deviation of parental education is not biased significantly when truncation is based on children’s schooling, we can put together the relations in inequality (4), and equations (8) and (9) to derive the following approximate relation:

$$Plim (\hat{\rho}_T - \rho) \approx \left(\sqrt{\delta} - 1 \right) \rho$$ \hspace{1cm} (10)

Now observe that $\sqrt{\delta} > \delta$, because $\delta \in (0, 1)$, and as a result, the bias represented by the
right hand side of approximation (10) is much smaller than the bias in approximation (4). To give a sense of the magnitudes, \(\delta = 0.9 \) implies a value of \(\sqrt{\delta} = 0.949 \), and \(\delta = 0.8 \) implies \(\sqrt{\delta} = 0.90 \). Thus the IGC estimates from coresident sample suffer from much less bias when compared to the most widely used measure of intergenerational persistence: IGRC. If the bias in IGRC is 10 percent, the corresponding bias in IGC is half of that (5 percent), and when the IGRC estimate is biased downward by 20 percent, the corresponding bias in IGC is about 10 percent. The actual biases estimated in the data, however, would also reflect sampling variability, and thus we are not likely to see the square root relation between the bias factors to be exactly borne out. However, the important point here is that we should expect the bias in the IGC estimates to be lower, in general.

Note that the standard household surveys in developing countries include a random sample of parents, and thus the bias in the estimate of the standard deviation of parents schooling is not likely to be substantial. In contrast, the standard deviation of the children’s schooling is affected directly by coresidency in the survey as truncation is based primarily on children’s schooling. Also, note that truncation based on children’s education is unlikely to affect the variance of parents schooling in a significant way even when the focus is on household head and spouse as children in the older generation (i.e., grandparents-parents intergenerational persistence). Most of the parents in a developing country such as Bangladesh and India live with their adult children, as the market for old-age home and assisted living for seniors is limited and underdeveloped at best. This is especially true in the rural areas where such markets are virtually non-existent.\(^{21}\) The scarcity of land and high costs of housing also preclude independent living by the ageing parents of household head and spouse in India and Bangladesh (cost of health care is also important). When

\(^{21}\)Recent evidence suggests that 80 percent of seniors (more than 60 years old) in India live in villages (Pal (2006)).
a significant proportion of the parents of household head and spouse live in retirement villages and old-age homes as is the case in a developed country such as USA and UK, the sample of parents (i.e., grandparents) captured in a randomly selected cross-section of households may suffer from selection bias. In the context of developing countries, the sample of parents of household head and spouse in a cross-section survey can be treated as approximately random, but the sample of children they coreside with is clearly a selected sample. As noted above, the income of children is an important consideration in a parent’s coresidency, and a positive correlation between income and education implies that we would likely to miss lower educated children when we focus on the coresident sample of household head, his/her spouse and their parents.22

Figures 4.A (Bangladesh) and 4.B (India) plot the probability of nonresidency at the time of the survey against the schooling of children. The graphs in both Bangladesh and India show that probability of nonresidence is higher in the tails, as noted before. Also, the probability of nonresidence is higher for girls at any given level of schooling, although the gender gap closes substantially at the right tail in the case of Bangladesh.

7. Implications for the Existing Studies and the Debate on Economic Mobility in Developing Countries

In the introduction, we briefly mentioned that it is not uncommon in the literature to find that conclusions regarding intergenerational mobility in economic status in developing countries depend on the measure used. A survey of the literature shows that the studies that rely on IGRC as the metric, in general, conclude that economic mobility has increased substantially over time (see, for example, Jalan and Murgai (2008) on India, and Hertz et al. (2007) for cross-country evidence). The evidence based on IGC on the other hand

22The available evidence suggests that the labor market returns to education has increased substantially after the economic reform in India initiated in 1991 (Kingdon (2007)).
tend to find much more stickiness in social mobility, and conclude that mobility has not improved in any significant way (Emran and Shilpi (2015) on India, and Hertz et al. (2007) for cross-country evidence).

Hertz et al. (2007) in a sample of 42 countries (21 of them developing countries) report a sustained and significant decline in the magnitudes of the estimated IGRC in schooling over time. They also report IGC estimates which show a very different picture: there is no discernible trend in the estimates; the slope of the fitted line is, in fact, close to zero. Hertz et al. (2007) are very much aware of the critical role played by the differences in the variance in schooling across generations; they emphasize the fact that the variance of children’s schooling relative to the variance of parent’s schooling has gone down over the years in the data they use, and that explains the divergence between the IGRC and IGC estimates. They, however, do not note the possible connection between the variance of the children’s schooling and the selection bias due to coresidency restriction in the survey, as the educated children are more likely to move out of parental home in the younger generations, because of improved labor market opportunities, increased geographic mobility of labor, and changes in cultural norms about age at marriage, and extended family (in favor of nuclear family) in many developing countries. Our results indicate that at least part of the declining variance may reflect the sample selection due to coresidency. A related point relevant for cross country comparisons is that the coresidency bias in the IGRC estimates is likely to vary across different countries which would depend on a variety of economic and cultural factors such as labor market opportunities for children, costs of housing, availability of public welfare schemes for ageing poor parents, among other things. As we discussed in section (5.3) above the magnitude of bias in IGRC estimate seems to vary substantially with the coresidency rate, but the bias in IGC estimate is much less sensitive (see figure

32
An immediate and important implication of this observation is that one should be cautious about the IGRC estimates for cross-country comparison of economic mobility, the focus instead should be on the estimates of IGC, especially when the conclusions are contradictory from these alternative measures.

Similar evidence can be found in recent studies on intergenerational mobility in other developing countries. Consider the case of India as an example. The extent of and trend in economic mobility in India has attracted attention of the researchers given the evidence that economic liberalization might have contributed to increased inequality while it has led to growth in income and poverty reduction. The existing estimates of intergenerational educational persistence in India lead to opposing conclusions depending on whether IGRC or IGC is used as a measure; persistence has gone down substantially according to the IGRC estimates, but it has remained largely unchanged in recent decades according to the IGC estimates (Maitra and Sharma (2010), Jalan and Murgai (2008), Emran and Shilpi (2015)). These studies focus on the parents (household head and spouse) and his/her children, and the data used in all of these studies are constrained by the coresidency restriction in the survey definition of household membership. The evidence presented in this paper implies that the widely discussed improvements in educational mobility in India in last few decades should be interpreted with due caution because they are based on IGRC estimates from coresident samples, and thus are likely to be substantially biased downward.

8. Conclusions

This paper provides an analysis of the implications of coresident sample selection for two widely used measures of intergenerational mobility: intergenerational regression coefficient (IGRC) and intergenerational correlation (IGC). Even though there has been an increasing emphasis on understanding inequality and the degree and pattern of intergenerational
persistence in economic status in developing countries, a major stumbling block for this research agenda has been the lack of appropriate data. Most of the household surveys on developing countries use coresidency as a criterion to define household, and thus estimates of intergenerational persistence from such data could potentially be severely biased as they miss children who left the parental household for education, work, or marriage, for example.

We take advantage of two rich data sets from Bangladesh and India to explore the magnitude of coresident sample selection bias in IGRC and IGC. In fact, IGRC is by far the most popular measure of intergenerational economic mobility in development economics literature. The evidence reported in this paper shows that the worry about the coresidency bias is well-justified when the focus is on estimating IGRC.23 The IGRC estimates, in general, suffer from substantial downward bias in a coresident sample vindication the worry among researchers about usefulness of data that are constrained by coresidency restriction. The bias in IGC estimates is, however, much smaller, less than one third of that in the IGRC estimates in many cases. The lower bias in IGC estimates reflects the fact that selection due to coresidency causes downward bias in the estimate of IGRC, but it also biases upward the estimate of the ratio of variances of parent’s schooling to that of children’s. The downward bias in the IGRC estimate is thus partly offset in the case of IGC by the upward bias in the estimate of the relative standard deviations of schooling across generations.

The evidence and analysis in this paper thus provide a strong rationale for focusing on the IGC as a measure of intergenerational mobility in the context of developing countries. Perhaps, the most important implication of our analysis is that the available household surveys in developing countries that use coresidency as a criterion to define household membership are not worthless in analyzing the pattern and strength of intergenerational

23(The same conclusion holds for other related measures of mobility where the focus is on a the slope parameter of a regression without normalization to take into account changes in variances.)
economic persistence. Much progress can be made if the researchers move away from the current emphasis on IGRC, and use IGC as the appropriate measure instead. Our analysis also provides guidance for interpreting the conflicting evidence on intergenerational mobility in developing countries. Since the degree of selection bias from coresidency varies across countries substantially, the IGC estimates are likely to be more reliable for cross-country comparisons of intergenerational mobility.

References

Black, Sandra E., Paul J. Devereux and Kjell G. Salvanes (2005), Why the apple does not fall far: Understanding intergenerational transmission of human capital, American Economic Review 95: 437-449.

Hertz Tom, Tamara Jayasundera, Patrizio Piraino, Sibel Selcuk, Nicole Smith and Alina

Mazumder, Bhashkar (2005): Fortunate Sons: New Estimates of Intergenerational Mo-

<table>
<thead>
<tr>
<th></th>
<th>Intergenerational Regression Coefficients (IGRC)</th>
<th>Intergenerational Correlations (IGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
<td>Co-resident</td>
</tr>
<tr>
<td>Father's Education</td>
<td>0.55***</td>
<td>0.42***</td>
</tr>
<tr>
<td>Observations</td>
<td>14,017</td>
<td>5,599</td>
</tr>
<tr>
<td>Mother's Education</td>
<td>0.86***</td>
<td>0.64***</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(35.042)</td>
<td>(31.973)</td>
</tr>
<tr>
<td>Observations</td>
<td>14,527</td>
<td>5,523</td>
</tr>
<tr>
<td>Parent's Education (average)</td>
<td>0.73***</td>
<td>0.59***</td>
</tr>
<tr>
<td>(t-stat)</td>
<td>(42.330)</td>
<td>(35.409)</td>
</tr>
<tr>
<td>Observations</td>
<td>18,505</td>
<td>5,806</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalized Biases</th>
<th>Bias (IGRC)</th>
<th>Co-residency Rate</th>
<th>Bias (IGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father's Education</td>
<td>31%</td>
<td>40%</td>
<td>11%</td>
</tr>
<tr>
<td>Mother's Education</td>
<td>34%</td>
<td>38%</td>
<td>7%</td>
</tr>
<tr>
<td>Parent's Education (average)</td>
<td>24%</td>
<td>31%</td>
<td>8%</td>
</tr>
</tbody>
</table>

* t statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%
Table 2: Intergenerational Persistence and Coresident Sample Bias: India (All Children)

<table>
<thead>
<tr>
<th></th>
<th>Intergenerational Regression Coefficients (IGRC)</th>
<th>Intergenerational Correlations(IGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full (t-stat)</td>
<td>Co-resident (t-stat)</td>
</tr>
<tr>
<td>Full Observations</td>
<td>0.49*** (40.702)</td>
<td>0.43*** (31.990)</td>
</tr>
<tr>
<td></td>
<td>0.44*** (109.23)</td>
<td>0.41*** (38.87)</td>
</tr>
<tr>
<td>Co-resident Observations</td>
<td>14,877</td>
<td>9,132</td>
</tr>
<tr>
<td></td>
<td>14,877</td>
<td>9,132</td>
</tr>
<tr>
<td></td>
<td>38.87</td>
<td></td>
</tr>
</tbody>
</table>

	Test of Equality (χ²)	
Father's Education	0.49***	0.44*** (40.702)
(t-stat)	(40.702)	(31.990)
Mother's Education	0.57***	0.37*** (32.069)
(t-stat)	(32.069)	(27.351)
Parent's Education	0.66***	0.46*** (43.360)
(t-stat)	(43.360)	(34.086)
Observations	14,877	14,877
	14,877	14,877
	23.41	

<table>
<thead>
<tr>
<th>Normalized Biases</th>
<th>Bias (IGRC)</th>
<th>Co-residency Rate</th>
<th>Bias (IGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father's Education</td>
<td>14%</td>
<td>61%</td>
<td>7%</td>
</tr>
<tr>
<td>Mother's Education</td>
<td>21%</td>
<td>61%</td>
<td>12%</td>
</tr>
<tr>
<td>Parent's Education</td>
<td>18%</td>
<td>61%</td>
<td>10%</td>
</tr>
</tbody>
</table>

t statistics in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%
<table>
<thead>
<tr>
<th></th>
<th>Bangladesh</th>
<th></th>
<th>India</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test of Null Hypo</td>
<td>Bias of No Bias (χ^2)</td>
<td>Bias of No Bias (χ^2)</td>
<td></td>
</tr>
<tr>
<td>Father-Son Persistence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergenerational Regression Coefficient</td>
<td>30%</td>
<td>69.54</td>
<td>9%</td>
<td>49.59</td>
</tr>
<tr>
<td>Intergenerational Correlation</td>
<td>9%</td>
<td>7.95</td>
<td>2%</td>
<td>9.18</td>
</tr>
<tr>
<td>Coresidency Rate</td>
<td>52%</td>
<td></td>
<td>79%</td>
<td></td>
</tr>
<tr>
<td>Mother-Daughter Persistence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intergenerational Regression Coefficient</td>
<td>46%</td>
<td>69.54</td>
<td>24%</td>
<td>31.75</td>
</tr>
<tr>
<td>Intergenerational Correlation</td>
<td>11%</td>
<td>7.95</td>
<td>13%</td>
<td>8.27</td>
</tr>
<tr>
<td>Co-residency Rate</td>
<td>26%</td>
<td></td>
<td>39%</td>
<td></td>
</tr>
</tbody>
</table>

*significant at 10%; **significant at 5%; ***significant at 1%
| Normalized Biases | Bangladesh | | | India | | |
|------------------|------------|------------|------------|--------|--------|
| | Intergenerational Regression Coeff (IGRC) | Intergenerational Correlations (IGC) | Intergenerational Regression Coeff (IGRC) | Intergenerational Correlations (IGC) |
| **16-60 Year Age group** | | | | | | |
| Father's Education | 20% | 6% | 11% | 7% |
| Mother's Education | 2% | 4% | 17% | 11% |
| Parent's Education (average) | 11% | 4% | 16% | 9% |
| **20-69 Year Age group** | | | | | | |
| Father's Education | 9% | 4% | 8% | 4% |
| Mother's Education | 11% | 2% | 18% | 11% |
| Parent's Education (average) | 2% | 2% | 12% | 7% |
| **13-50 Year Age group** | | | | | | |
| Father's Education | 31% | 11% | 14% | 10% |
| Mother's Education | 34% | 7% | 21% | 12% |
| Parent's Education (average) | 24% | 6% | 16% | 10% |
Table 5: Robustness Checks: Father-Son, and Mother-Daughter

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Bangladesh</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Father-Son</td>
<td>Mother-Daughter</td>
</tr>
<tr>
<td>16-60 Year Age group</td>
<td>20%</td>
<td>32%</td>
</tr>
<tr>
<td>Intergenerational Regression Coeff. (IGRC)</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>20-69 Year Age group</td>
<td>15%</td>
<td>18%</td>
</tr>
<tr>
<td>Intergenerational Correlations (IGC)</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>13-50 Year Age group</td>
<td>30%</td>
<td>46%</td>
</tr>
<tr>
<td>Intergenerational Regression Coeff. (IGRC)</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Intergenerational Correlations (IGC)</td>
<td>6%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 6: Extended Family Sample

<table>
<thead>
<tr>
<th>All Children</th>
<th>Bangladesh</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intergenerational</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regression Coeff (IGRC)</td>
<td>Correlations (IGC)</td>
</tr>
<tr>
<td>Father's Education</td>
<td>21%</td>
<td>2%</td>
</tr>
<tr>
<td>Mother's Education</td>
<td>26%</td>
<td>7%</td>
</tr>
<tr>
<td>Parent's Education (average)</td>
<td>23%</td>
<td>0%</td>
</tr>
<tr>
<td>Father-Son</td>
<td>26%</td>
<td>2%</td>
</tr>
<tr>
<td>Mother-Daughter</td>
<td>39%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Table A.1: Summary Statistics

<table>
<thead>
<tr>
<th>Years of Education of</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>Mean 4.97</td>
<td>Median 5.00</td>
<td>18587</td>
<td>Mean 5.52</td>
<td>Median 5.00</td>
<td>5852</td>
</tr>
<tr>
<td>Father</td>
<td>Mean 3.39</td>
<td>Median 2.00</td>
<td>14017</td>
<td>Mean 3.74</td>
<td>Median 3.00</td>
<td>5852</td>
</tr>
<tr>
<td>Mother</td>
<td>Mean 1.46</td>
<td>Median 0.00</td>
<td>14527</td>
<td>Mean 1.81</td>
<td>Median 0.00</td>
<td>5852</td>
</tr>
<tr>
<td>Average of Parents</td>
<td>Mean 2.33</td>
<td>Median 1.00</td>
<td>18505</td>
<td>Mean 2.78</td>
<td>Median 2.00</td>
<td>5806</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years of Education of</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>Mean 6.23</td>
<td>Median 7.00</td>
<td>14877</td>
<td>Mean 6.97</td>
<td>Median 8.00</td>
<td>9132</td>
</tr>
<tr>
<td>Father</td>
<td>Mean 4.37</td>
<td>Median 2.50</td>
<td>14877</td>
<td>Mean 4.74</td>
<td>Median 5.00</td>
<td>9132</td>
</tr>
<tr>
<td>Mother</td>
<td>Mean 1.83</td>
<td>Median 0.00</td>
<td>14877</td>
<td>Mean 2.12</td>
<td>Median 0.00</td>
<td>9132</td>
</tr>
<tr>
<td>Average of Parents</td>
<td>Mean 3.10</td>
<td>Median 2.50</td>
<td>14877</td>
<td>Mean 3.43</td>
<td>Median 2.50</td>
<td>9132</td>
</tr>
</tbody>
</table>

INDIA

<table>
<thead>
<tr>
<th>Years of Education of</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
<th>Both Sons and Daughters Sample</th>
<th>Sons Sample</th>
<th>Daughters Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>Mean 4.87</td>
<td>Median 5.00</td>
<td>6536</td>
<td>Mean 5.54</td>
<td>Median 6.00</td>
<td>2571</td>
</tr>
<tr>
<td>Father</td>
<td>Mean 4.46</td>
<td>Median 2.50</td>
<td>6536</td>
<td>Mean 5.14</td>
<td>Median 5.00</td>
<td>2571</td>
</tr>
<tr>
<td>Mother</td>
<td>Mean 1.84</td>
<td>Median 0.00</td>
<td>6536</td>
<td>Mean 2.45</td>
<td>Median 0.00</td>
<td>2571</td>
</tr>
<tr>
<td>Average of Parents</td>
<td>Mean 3.15</td>
<td>Median 2.50</td>
<td>6536</td>
<td>Mean 3.79</td>
<td>Median 3.25</td>
<td>2571</td>
</tr>
</tbody>
</table>
Figure 1: Correlation between parent and children’s education in Bangladesh

Figure 1a: Father-children Correlation

Figure 1b: Father-Son Correlation
Figure 1c: Mother-Daughter Correlation
Figure 2: Correlation between parent and children’s education in India

Figure 2a: Father-Children Correlation

Figure 2b: Father-Son Correlation
Figure 2c: Mother-Daughter Correlation
Figure 3: Co-residency and Biases in estimates of Intergenerational Regression coefficient and Intergenerational Correlations in Bangladesh and India.
Figure 4: Child’s Education and his/her probability of non-residency in Bangladesh and India

Figure 4a: Probability of non-residency in Bangladesh

Figure 4b: Probability of non-residency in India