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Abstract   

Since recently Mozambique is actively developing its large reserves of coal, natural gas and hydropower. 

Against this background, we present in this paper the first integrated long-run scenario model of the 

Mozambican energy sector. Our model makes use of the LEAP framework and is calibrated on the basis 

of recently developed local energy statistics, demographic and urbanization trends as well as cross-

country based GDP elasticities for biomass consumption, sector structure and vehicle ownership. We 

develop four scenarios to evaluate the impact of the anticipated surge in natural resources exploration on 

aggregate trends in energy supply and demand, the energy infrastructure and economic growth in 

Mozambique. Our analysis shows that until 2030, primary energy production is likely to increase at least 

six-fold, and probably much more. This is roughly 10 times the expected increase in energy demand; most 

of the increase in energy production is destined for export. As a result, Mozambique is rapidly developing 

into an important player at international energy markets. Therefore, a major challenge for energy policy in 

Mozambique is to strike a balance in meeting domestic and international demand for energy, such that 

energy production benefits the entire Mozambican population.  
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1. Introduction 

Since recently Mozambique is actively developing its large reserves of coal, natural gas and hydropower. 

Once developed, this could make Mozambique an important player in regional and global energy markets. 

The recent IEA Africa Energy Outlook refers to Mozambique as an emerging large energy producer 

(together with Tanzania), that soon will join the group of leading energy producers in Africa, including 

Nigeria, South Africa and Angola (IEA 2014). Against this background, we present in this paper a new 

integrated long-run scenario model of the Mozambican energy sector.  

Our scenario model is based on newly developed and locally collected energy statistics for the 

recent past as well as information about the latest developments and future plans as regards the production 

and transformation of energy in Mozambique. These data are supplemented with demographic and 

urbanization trends as well as cross-country based GDP elasticities with respect to biomass consumption, 

sector structure and vehicle ownership. The analysis makes use of LEAP, the Long range Energy 

Alternatives Planning System – an integrated modeling tool that can be used to track energy consumption, 

production and resource extraction in all sectors of an economy (Heaps, 2012). Hence, we name the 

model MOZLEAP. 

To the best of our knowledge, MOZLEAP is the first integrated energy modeling and future 

planning model for Mozambique in the energy studies literature.1 Our analysis fits in the literature of 

LEAP-based studies presenting energy planning scenarios at the country level. Recent examples include 

studies on China (Wang and Zhang 2011), Greece (Argiro et al. 2012), Japan (Takase and Suzuki 2011) 

and Taiwan (Huang et al. 2011, Yophi et. al. 2011). In addition, and more often, LEAP has been used for 

sector-level analysis in a country or region, often focusing on the power sector (Bautista 2012, Dagher 

and Ruble 2011, Kale and Pohekar 2014, McPherson and Karney 2014), but also on renewable energy 

planning (Jun et al. 2010).  

Our modelling period starts with historical trends since 2000 and subsequently covers the 

anticipated surge in natural resources exploration until 2030. We model energy demand by households, 

transport and extractive industries, as well as the sectors agriculture, manufacturing, services, government 

and other. Also we specify electricity demand from neighboring countries in the region, given their essential 

role in developing the Mozambican electricity market. As regards the supply side, we model electricity 

                                                           
1 It should be noted that, in an unpublished ministerial report, Mulder (2007) used the LEAP framework to draft a 
rudimentary first version of an energy scenario study for Mozambique, based on data for the period 2000-2005. 
Other (consultancy) energy planning studies for Mozambique, using different frameworks, typically consider one 
dimension or subsector of the energy system, like for example the electricity sector (Ministry of Energy /Norconsult 
2009, Norconsult, 2011). 

 



production on a project by project basis, as well as gas exploration, coal mining, mineral (heavy) sands  

mining and charcoal production. We use the model to explore the potential impact of the expected surge in 

natural source exploration on aggregate trends in energy supply and demand, the energy infrastructure and 

economic growth in Mozambique. Because of space constraints, we present in a separate paper a more 

detailed energy outlook for Mozambique based on our scenario model, including the underlying shifts in 

energy mix and economic structure that drive the aggregate trends presented and discussed in this paper. 

The structure of the paper is as follows. In section 2 we present our methods: the database that 

we developed in order to build our scenario model as well as the modelling framework and our scenarios. In 

Section 3 we present and discuss the main results of our modelling exercise. Section 4 concludes and 

discusses key policy implications.   

 

2. Methods 

 

2.1 Modeling framework 

As mentioned in the introduction, our model makes use of the LEAP framework. LEAP is intended as a 

medium to long-term modeling tool, designed around the concept of long-range scenario analysis2.  Our 

model includes a historical period that comprises the period 2000-2010, in which the model is run to test 

its ability to replicate known statistical data. Subsequently, our model generates multiple forward looking 

scenarios for the period 2011–2030. LEAP supports a wide range of different modeling methodologies. 

On the supply side, we model electricity production, gas exploration, coal mining and mineral (heavy) 

sands mining on a project by project basis, using information that we collected about the latest 

developments and future plans as regards the production and transformation of energy in Mozambique 

(see below). In addition we develop and integrate into the LEAP framework a simple biomass model to 

calculate future paths of charcoal production and biomass consumption in Mozambique. On the demand 

side we adopt a mix of these methodologies to model energy demand by households, transport and 

extractive industries, as well as the sectors agriculture, manufacturing, services, government and other. 

Also we specify electricity demand from neighboring countries in the region, given their essential role in 

developing the Mozambican electricity market.  

In essence, the LEAP accounting framework calculates (future) energy demand as the product of 

activity levels (such as GDP, population, physical production levels) and energy intensity per unit of 

                                                           
2 For more information see www.energycommunity.org 



activity. Our energy demand modeling is based on a combination of historical energy and activity level 

data that we collected and information on demographic and urbanization trends supplied by external 

sources, locally collected bottom-up information as regards future electricity distribution and cross-

country econometric modeling of GDP elasticities with respect to biomass consumption, sector structure 

and vehicle ownership. Figure 1 and Table 1 summarize, respectively, the structure of the MOZLEAP 

modelling framework and the MOZLEAP model itself. In the next section we describe this approach and 

its results in more detail. 
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Figure 1. Structure of the MOZLEAP modelling framework 

 

  



Table 1. The structure of the MOZLEAP modeling framework. 

Category, Sector Subsector Activity  Energy type 

    
DEMAND     

 Residential Electrified # Households Electricity, LPG, Kerosene, Charcoal, 

Fuelwood 

  Non Electrified # Households Kerosene, Charcoal, Fuelwood 

 Agriculture    Electricity, Diesel 

 Manufacturing MOZAL Metric Tonne Fuel Oil, Natural Gas, Electricity 

  Other Industry GDP Fuel Oil, Natural Gas, Electricity, Diesel 

 Services Commercial Services GDP Electricity, LPG, Fuelwood, Charcoal 

  Public Lighting Not applicable Electricity 

 Government  GDP Electricity 

 Extractive Industries Coal Mining*  Metric Tonne Electricity, Diesel 

  Natural Gas 

Exploration  

GDP Natural Gas 

  Heavy Sands Mining*  Metric Tonne Electricity, Diesel 

 Other Sectors  GDP Electricity 

 Transport Road Passenger Cars # Vehicles Gasoline, Ethanol 

  Trucks  # Vehicles Diesel, Methanol 

  Motorcycles  # Vehicles Gasoline, Ethanol 

  Tractors  # Vehicles Diesel, Methanol 

 Regional Electricity Demand  South Africa Not applicable Electricity 

  Zimbabwe Not applicable Electricity 

  Other Not applicable Electricity 

STATISTICAL DIFFERENCES    

 Primary  All primary 

 Secondary  All secondary 

TRANSFORMATION    

 Transmission and Distribution   Electricity, Natural Gas 

 Electricity Generation Solar PV    Electricity 

  Hydro  Electricity 

  Thermal Natural Gas  Electricity 

  Thermal Coal  Electricity 

 Charcoal Making Existing  Charcoal 

  New Efficient  Charcoal 

 Coal Mining   Coal 

 Natural Gas Exploration   Natural Gas 

STOCK CHANGES    

  Primary  All primary 

  Secondary  All secondary 

RESOURCES    

  Primary  All primary 

  Secondary  All secondary 



2.2 Data  

Most of the energy statistics for Mozambique that we use in our analysis were collected and processed by the 

Directorate of Studies and Planning (DEP) of the Mozambican Ministry of Energy (ME, 2012). Underlying data 

have been provided by a range of local institutions, including National Institute of Petroleum (INP), National 

Company of Hydrocarbons (ENH), Mozambique Petroleum Company (PETROMOC), Cahora Bassa Hydroelectric 

(HCB), Mozambique power utility (EdM), Mozambique Transmission Company (MOTRACO), National Energy 

trust-Fund (FUNAE), South African multinational gas and Oil company (SASOL), Matola Gas Company (MGC), 

Portuguese Petroleum and Gas Company (GALP), VidaGas, National Institute of Statistics (INE), Mozambique 

Petroleum Import (IMOPETRO) and the Ministry of Planning and Development (MPD). Historical data on 

consumption of traditional biomass have been estimated on the basis of combined information from national 

survey data published by INE and international data published by the IEA and FAO.  

Data on existing and future production of mineral resources (coal, natural gas and heavy sands) were 

compiled on the basis of information gathered from the Ministry of Mineral Resources (MIREME), KPMG 

International (2013), United States Geological Survey (Yager, 2012) and the US Energy Information 

Administration (EIA/DOE). In addition we collected information from press releases by private companies (in 

Bloomberg, Reuters, Mining Weekly, Mozambique Information Agency-AIM, and other national press), as well as 

from personal communications with local experts. Information on future electricity trade in the region is based on 

information published in the Integrated Resource Plan by the South African government (SA Department of 

Energy, 2011) and interviews with local experts. Finally, demographic and economic data on Mozambique were 

obtained from INE, the Ministry of Planning and Development and the Mozambique Central Bank (BM) as well as 

from the World Bank, the International Monetary Fund (IMF, 2013), the United Nations Department of Economic 

and Social Affairs (2011 Revision), and the African Development Bank (AfDB). All locally collected data, insofar 

possible, have been checked against data from international sources, including British Petroleum (BP Statistical 

Report 2012), International Energy Agency (IEA 2013a, 2014), United Nations Populations statistics and the 

World Development Indicators as published by the World Bank.  

 

 

2.3 Scenarios 

Energy scenarios are self-consistent storylines of how an energy system might evolve over time. Since this is, to 

the best of our knowledge, the first integrated energy modeling and future planning study for Mozambique in the 

energy studies literature, we chose to develop in this paper a limited number of scenarios that are intentionally 

fairly simple and straightforward. Our main goal is to introduce our newly developed scenario model MOZLEAP, 



and to use it for highlighting major trends in the transformation of the emerging Mozambican energy sector, 

including the expected consequences for both domestic and international energy markets. The development of 

richer scenarios, including more detail and variation in terms of energy policies, structure of energy demand, 

energy supply mix options and regional differences, is deliberately left for future work. 

Energy outlooks usually give three basic scenarios – medium, high and low – that are often largely defined 

by GDP and population growth expectations. We follow this approach, but add a fourth scenario that assumes 

exploitation of Mozambique’s natural resources exploration to its fullest potential. We label our three basic 

scenarios as Reference, Reference High and Reference Low. Reference is the most likely development path. 

Instead, development of GDP in the Reference scenario is based on baseline projections plus activities of new 

extractive industry and electricity generation projects that are (almost) sure to be realized, taking into account 

realistic and somewhat conservative estimates about the output price development in the extractive and aluminum 

industry. Furthermore, it adopts a medium variant of population growth scenarios, a modest decline in household 

size, a moderate speed of urbanization and somewhat conservative estimates as regards the development of energy 

intensity improvements across sectors. Reference High and Reference Low then refer, respectively, to the 

optimistic and pessimistic variant of Reference – thus assuming higher (lower) baseline economic growth, lower 

(higher) population growth, higher (lower) speed of urbanization, faster (slower) decline of household size and 

energy intensities across sectors and higher (lower) output price developments in the extractive and aluminum 

industry. We refer to Table 2 for a brief summary and overview or scenarios. 

Finally, our Extractive scenario describes the expected evolution of the Mozambican energy system if all 

potential projects of extractive and aluminum industries as well as power generation are realized, including those 

projects that are yet (very) uncertain. In other words, this scenario tells the story of the Mozambican economy and 

energy sector becoming very much extractive industry driven. Because of this focus, we assume all other leading 

dimensions of the model (population growth, household size, speed of urbanization, energy intensity improvements 

and output price developments) to be equal to the Reference or Reference High scenario (see Table 2). This 

straightforward set-up, again, is motivated by our aim to show the potential impact of an extractive industry driven 

development path as caused by the mere expansion of this activity rather than by (optimistic) energy intensity 

changes or price developments. We leave it to future work to analyze the potential impact of price volatility on 

international natural resource and commodity markets on the Mozambican economy and energy sector, detailing 

the (future) evolution of international commodity price variation across markets and sectors.  

 



Table 2. Scenarios for MOZLEAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Baseline GDP means all sectors excluding extractive industry 

Scenario Variant Description Annual 
growth 
Baseline 
GDP* 

New projects 
extractive 
industry and 
power sector  
 

Output price 
extractive 
and 
aluminum 
industry 

Population 
growth 

Household 
size 

Speed of 
urbanization 

Energy 
intensity 
improvement
s 

Reference 

Medium 

The most likely 
development 
path.  

  

Gradual 
decrease to 
4.7% in 
2030. 

 

Including 
those that are 
(almost) sure 
to be realized 

 

Realistic and 
somewhat 
conservative 
estimates   

Medium 
growth 
scenario 

 

Linear 
extrapolation 
of decreasing 
trend 

Medium 
scenario 

 

Realistic and 
somewhat 
conservative 
estimates   

Low 

The pessimistic 
variant of 
Reference-
medium.  

  

Gradual 
decrease to 
3.8% in 
2030. 

Same as 
Reference-
medium 

 

Low 
estimates   

High growth 
scenario 

 

Trend 50% 
slower than 
Reference-
medium 

Trend 50% 
slower than 
Reference-
medium  

 

Same as 
Reference-
medium 

High 

The optimistic 
variant of  
Reference-
medium.    

Gradual 
decrease to 
5.9% in 
2030. 

 

Same as 
Reference-
medium 

 

High 
estimates   

Low growth 
scenario 

 

Trend 50% 
faster than 
Reference-
medium 

Trend 50% 
faster than 
Reference-
medium  

 

Same as 
Reference-
medium 

Extractive  

The extractive 

industry driven 
development 
path. 

Same as 
Reference-
high.  

 

Including all 
planned 
projects, 
including 
those that are 
uncertain 

 

Same as 
Reference-
high.  

 

Same as 
Reference-
high.  

 

Same as 
Reference-
high.  

 

Same as 
Reference-
high.  

 

Same as 
Reference-
medium.  

 



3. Results and discussion 

In this section we present the different parts of our scenario model (see also Figure 1) in more detail, and show 

how the expected surge in natural source exploration affects aggregate trends in energy supply and demand, the 

energy infrastructure and economic growth in Mozambique. 

 

3.1 GDP builder  

Together with population growth, per capita GDP is a key driving force in our model. Evidently, on the one hand 

energy is an essential production factor that fuels economic growth, while on the other hand increasing standards 

of living lead to growing demand for energy demand (GEA 2012). In accordance with this, our model structure 

assumes that across sectors growing GDP is associated with higher energy use. Also, we assume that total biomass 

consumption and fuel demand for road transport are determined by GDP per capita, either directly (in the case of 

biomass) or indirectly (in the case of road transport,  assuming that vehicle ownership is determined by per capita 

GDP). Finally, we assume that in various sectors of our model the evolution of energy intensity is a function of 

GDP growth, reflecting the notion of increasing energy efficiency under economic development (Lescaroux 2011).  

To model future development paths of GDP we developed a so-called GDP builder that is embedded in 

LEAP’s overall accounting framework. We construct future GDP paths by combining a top-down and bottom-up 

approach, as follows. We start with historical data from existing sources (Mozambique Central Bank, National 

Statistics Institute, IMF, Worldbank) on Mozambique’s total GDP and its sector structure for the period 2000–

2010. From these data series we derive historical GDP growth rates, excluding the extractive industry – which was 

very small until 2010 (around 1% of total GDP; see Table 2). We call this baseline GDP growth. Subsequently, 

adopting a simple top-down approach, for the period 2011–2030 we assume that baseline GDP growth Y follows a 

declining trend as function of time t, according to the following straightforward  logistic curve, 

 𝑌𝑡 = 𝑌𝑡−1e–𝛿𝑡  ,                            (1) 

 

with δ a parameter that determines the speed of decline in the logistic curve. During the period 2000–2010 

Mozambique experienced rapid economic growth, on average 7.3% per year for total GDP and 5.5% for per capita 

GDP. The value of δ in equation (1) is scenario-specific and chosen such that annual GDP growth gradually 

evolves towards 3.8% – 5.9% by 2030, depending on the scenario (see also Figure 2 and Table 3).  

Next, using a bottom-up approach, we construct GDP separately for each extractive industry, including the 

aluminum industry, as follows. First, based on the information in our dataset (see section 2), we specify per 

existing and planned extractive industry project the expected future production in physical units. We include in our 



model electricity production, gas exploration, coal mining and mineral (heavy) sands mining. In section 3.7 we 

describe the considered extractive industry projects in more detail. Second, we calculate for each project the GDP 

value per physical unit of production. To do so, we start with historical data until 2012, which we subsequently 

extrapolate, assuming a simple but scenario-specific trend based on expected international market prices of the 

primary resources involved (LNG, heavy sands minerals, coal, aluminum). Third, we estimate future GDP of the 

extractive industry by combining these price trends with expected physical production patterns per project, and 

subsequently aggregating over all projects. Together with the baseline GDP this sums up to total GDP, including 

an implied total GDP growth rate. 

As noted before, we calculate for each project the GDP value per physical unit of these production levels 

by extrapolating historic trends, based on data until 2012. Our extrapolation methodology assumes a simple, 

scenario-specific, trend based on expected international market prices of the primary resources involved (LNG, 

heavy sands minerals, coal, aluminum). These prices are partly based on expert judgments for the upcoming years, 

published in a variety of resources (IEA 2013b, KPMG 2013), while for the remaining years price trends are 

assumed to follow a straightforward but scenario-specific pattern, with annual price fluctuations varying between –

2% and 4%. Given the expected large relative size of the extractive industry in the future economy of 

Mozambique, future price trends for primary resources are deliberately designed to be conservative, in order to 

avoid an upward bias in future GDP development paths. We refer to Table 3 for further details.   

Finally, we construct a sectoral breakdown of aggregate GDP by calculating future sector shares of four 

main sectors (agriculture, services, manufacturing and government) as percentage of total GDP. The underlying 

idea is of course that economic development typically involves a change in the sectoral composition of economies, 

with the industrialization process inducing a shift from the agricultural sector towards industry, followed by a 

deindustrialization phase increasing the importance of the service sector (e.g., Baumol 1967; Maddison 1991, 

1999). Again, our starting point is historical data for the period 2000-2011 from existing sources. Next, we assume 

that the respective sector shares S evolve over time as a function of per capita GDP y, according to the following 

logistic curve:  

 𝑆(𝑡) = 𝑆𝑡−1 ∗ �1 +   
ϴ y𝑡�∆y𝑡                  (2) 

 

with parameter  θ signifying the elasticity of the change in the sectoral composition of the economy under 

influence of economic development. The value of θ is sector-specific and is derived from cross-country regressions 

of the relation between per capita GDP and the respective sector share, using Worldbank data for 39 countries with 

per capita GDP values between US$700 and US$3000; estimated coefficients vary from -2.94 for agriculture to 

4.86 for manufacturing. We refer to Table A.1 in the Annex for details. 



The results of our GDP calculations are summarized in Figure 2. When we look at the last decade and a 

half, the data clearly illustrate that Mozambique is extremely poor but at the same time experienced rapid 

economic growth. In 2010 per capita GDP was just over $400, in 2015 this is expected to be over $600 (which 

equals to about $1300 in PPP terms). These levels roughly correspond with, respectively, 9% and 2% of the per 

capita GDP level in South Africa and the USA and imply that still about half of the Mozambican population lives 

below the local absolute poverty line (Boom 2011). Yet, the rapid increase in per capita GDP implies that the 

average annual growth rate of GDP is well over 7% during the period 2000-2015. In addition, Figure 2 shows that 

our modelling of Baseline GDP (see equation 1) leads to a gradual increase of Baseline GDP per capita to levels of 

$750–$1000 by 2030, depending on the scenario. Extractive GDP per capita is expected to increase dramatically 

over time, from almost zero in 2000 to $123–$235 by 2030 in the Reference scenarios and $528 in the Extractive 

scenario. Our assumptions as regards the expansion of production levels in the extractive industry, as described 

above, imply that Extractive GDP growth is expected to peak in this decade, and will smooth after 2020. 

Depending on the scenario, together these developments cause total per capita GDP to be in the range of $900–

1400 by 2030, which equals a 115–243% increase from 2010 levels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Per capita GDP across scenarios; Baseline GDP (left) and Total GDP (right). 

 

3.2 Population projections 

Size and growth of the population helps define critical indicators in our model, such as per capita GDP, the 

electrification rate, total residential energy consumption, and fuel consumption by passenger cars. In addition, 

these indicators are influenced by the composition of the population in terms of the urban-rural divide and whether 



or not households have access to electricity. Growth of population has been calculated as the product of birth, 

mortality and net migration statistics, based information from the National Statistics Institute (INE) that is derived 

from national censuses 1997 and 2007, supplemented with data obtained from local surveys on, amongst others, 

infant mortality and HIV prevalence. Future projections of these various demographic statistics have been obtained 

by INE through a combination of extrapolating historical trends, collecting new data from local surveys (after 

2007) and the use of demographic modelling software developed by the UN and the US Census Bureau. Figure 3 

and Table 3 summarize our key demographic indicators across the various scenarios.  
 

 

. 

 

 

 

 

 

 

 

Figure 3. Model results for population size, urbanization, electrification and household size
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As regards population growth, all our scenarios for the period 2011–2030 take as their starting 

point historic data for the year 2010. In 2010 Mozambique's population was some 22.4 million in total, of 

which almost 31% lived in urban areas; average household size was 4.3, average annual population 

growth was 2.5%, with urban population growing 3.2% per year. Subsequently, all scenarios assume 

population growth to gradually decrease over time. In our Reference scenario we expect average annual 

population growth to decrease to 2.0% in 2030. In our Reference Low and High scenarios, we assume this 

numbers to be 0.4 percentage point higher and lower, respectively; the Extractive scenario is identical to 

the Reference High for all demographic indicators (see Table 3). As a result, by 2030 total population size 

is expected to be 32.7–37.1 million people, with 34.8 million people in the Reference Medium scenario 

(see Figure 3). Growth of urban population is expected to increase to 3.5% per year in 2030 in the 

Medium scenario; in the Low and High scenarios we assume this percentage to be 50% lower and higher, 

respectively (see Table 3). As a result, by 2030 the percentage of urban population is expected to be 30.8 – 

49.4, with 39.1% of urban people in the Medium scenario (see Figure 3). This implies that in the Medium 

scenario the number of people living in cities in Mozambique by 2030 is as large as 60% of the entire 

population in 2010, which obviously will reshape the urban landscape in Mozambique over the next 25 

years, and, hence, transform (residential) energy demand. Finally, in all scenarios we assume the average 

household size to gradually decrease under influence of income growth and urbanization, from 4.3 persons 

in 2010 to 4.13 – 4.25 persons in 2030 (see Table 3 and Figure 3).  

The extent to which the Mozambican population has access to electricity is expected to change 

rapidly as a result of intensive (rural) electrification programs and growing income levels. In our model 

the electrification rate is endogenously determined by combining information on electricity network 

expansion (number of new connections realized) with population growth dynamics as described above. In 

2010 the national utility EdM realized 100.000 new connections. In our Reference scenario we expect this 

number to increase to 135.000 in 2015, and subsequently decrease to 100.000 in 2030. In our Reference 

Low and High scenarios, we assume that in 2030 respectively 70.000 and 130.000 new connections will 

be realized (see Table 3). Given population growth, this implies that in our model the (household) 

electrification rate is expected to increase from 15% in 2010 to 34% – 45% in 2030, with 39% in the 

Reference scenario (see Figure 3). We assume transmission and distribution losses to remain at 5% as 

from 2011 (see Table 3).  
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Table 3. Key assumptions MOZLEAP model 

      
 

Reference 
 

Extractive 

      
 

Medium 
 

Low 
 

High 
   

    

  Unit 2010   2015 2020 2025 2030   2015 2020 2025 2030   2015 2020 2025 2030   2015 2020 2025 2030 

GDP 
 

                                          

Parameter δ 1/100 --   0.2 0.2 0.2 0.2   0.3 0.3 0.3 0.3   0.1 0.1 0.1 0.1   0.1 0.1 0.1 0.1 

Unit price change 
 

                                          

Natural Gas % --   0.0 2.0 2.0 2.0   0.0 0.0 0.0 0.0   0.0 4.0 4.0 4.0   0.0 4.0 4.0 4.0 

Heavy Sands  % --   0.0 0.0 0.0 0.0   -1.0 -1.0 -1.0 -1.0   1.0 1.0 1.0 1.0   1.0 1.0 1.0 1.0 

Coal % --   -1.0 0.0 0.0 0.0   -1.0 -2.0 -2.0 -2.0   -1.0 2.0 2.0 2.0   -1.0 2.0 2.0 2.0 

Aluminum  % --   0.0 0.0 0.0 0.0   -1.0 -1.0 -1.0 -1.0   1.0 1.0 1.0 1.0   1.0 1.0 1.0 1.0 

Population                                             

Growth population  % 2,45   2,36 2,25 2,13 2,01   2,60 2,64 2,56 2,43   2,14 1,88 1,70 1,57   2,14 1,88 1,70 1,57 

Growth urban population  % 3,23   3,39 3,50 3,50 3,45   1,69 1,75 1,75 1,73   5,08 5,25 5,26 5,18   5,08 5,25 5,26 5,18 

Household size # 4,33   4,29 4,26 4,22 4,19   4,30 4,29 4,27 4,25   4,28 4,23 4,18 4,13   4,28 4,23 4,18 4,13 

Electricity distribution                                             

# New connections / year  1000 110   135 123 112 100   129 109 90 70   141 137 134 130   135 123 112 100 

Losses* % 5.0   5.0 5.0 5.0 5.0   5.0 5.0 5.0 5.0   5.0 5.0 5.0 5.0   5.0 5.0 5.0 5.0 

δ: Speed of decline logistic curve of baseline GDP growth.  

* Transformation and distribution losses 
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3.3 Biomass model  

To model future demand for fuelwood and charcoal we developed a simple biomass model, embedded 

within LEAP’s overall accounting framework. Following micro-based evidence of household energy 

consumption patterns in developing countries (Barnes and Floor 1999, Barnes et al. 2005), we adopt a 

nested model structure. First, we assume that total biomass consumption is merely determined by GDP per 

capita, thus considering substitution with modern energy forms (such as LPG and electricity) as function 

of relative prices a second-order effect (Leach 1992). Second, we assume that the choice for one of the 

two dominant forms of biomass (fuelwood and charcoal) is implicitly driven by their relative prices as 

well as the urbanization rate. More specifically, we first define the evolution of per capita biomass 

consumption B over time t according to a logarithmic S-shaped curve, as follows: 

 𝐵𝑡 = 𝛼 �1 + 𝛽e–𝛾𝑦𝑡�  ,                         (3) 

where α is the initial value of B (in the year 2000), β is a constant (vertical shift of the curve ), and 𝛾 the 

elasticity of B with respect to GDP per capita y. The value for α is estimated on the basis of a combination 

of international data (IEA Energy Balances 2010) and local household survey data (Atanassov, et. al., 

2012; INE, 2009), and equals 10.5 GJ per capita. The values for β and 𝛾 are derived from a cross-country 

logarithmic panel data regression of biomass consumption on per capita GDP for the period 1971-2006, 

using IEA data for 74 countries with per capita values below US$3000; estimated coefficients for β and 𝛾 

equal 0.0274 and 0.239, respectively. We refer to Table A.1 in the Annex for details.3  

Next, we define the evolution of per capita consumption of charcoal C and fuelwood F as follows: 

𝐶𝑡 = 𝐵𝑡𝜆𝑡                  with   𝜆𝑡 = 𝜆𝑡−1[(1 + 𝜌)𝛾]                                 (4) 

               𝐹𝑡 = 𝐵𝑡[1− 𝜆𝑡]                                  (5) 

where λ is the share of charcoal in total biomass consumption, ρ is the inter-fuel substitution elasticity (i.e. 

between charcoal and fuelwood) and γ is the annual growth rate urbanization. Historical values for γ were 

derived from census data (INE, 2010b), whereas values for λ in the initial year (2000) and ρ were derived 

from local household survey data (Atanassov et. al., 2012; INE, 2009), with ρ set at 0.03.  Future values 

                                                           
3 The US$3000 cut-off criterion is chosen to avoid a potential bias in the estimated coefficients: the share of biomass 
in total energy consumption becomes in general very low in countries where GDP per capita exceeds US$3000; in 
our scenarios per capita GDP increases from about US$ 400 in 2010 to around US$1000 by 2030.   
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for γ are taken from expected urbanization trends published by the UN in its World Urbanization 

Prospects (UN 2008).  

Finally, to allocate charcoal and fuelwood consumption across electrified and non-electrified 

households, we implemented the following assumptions. First, we assume that in 2000 all electrified 

households lived in urban areas, and that in 2011 the urban and rural electrification rates were, 

respectively 55% and 5% (IEA 2013). Second, we assume that 5% of total fuelwood consumption and 

85% of total charcoal consumption is consumed by urban households with the remainder being consumed 

by rural households (Atanassov, et. al., 2012; Brouwer and Falcão, 2004; INE, 2009). Third, we assume 

that fuelwood and charcoal is consumed by, respectively, 33% and 80% of households in urban areas, 

while 10% of households in rural areas consume charcoal.4 Finally, building on these assumptions we 

model future evolution of biomass consumption per electrified household 𝑏𝑡𝐸𝐸𝐸𝐸 as a function of changes in 

the total biomass consumption (equations 3–5) as well as the change in urbanization rate U relative to the 

change in the electrification rate E, according to  

 𝑏𝑡𝐸𝐸𝐸𝐸 = ∆𝑏𝑡−1 �1 +
∆𝑈∆𝐸�  ,                          (6) 

with b representing either charcoal C or fuelwood F per electrified household. Biomass intensity per non-

electrified household is subsequently derived from total biomass consumption not consumed by electrified 

households.  
 

 

Figure 4. Biomass consumption across scenarios – as function of GDP per capita (left) and its composition over  

time (right).  

 

                                                           
4. Note that rural electrification has a minor impact on switching of cooking fuel while the opposite is true for 
urbanization, which is a major driving force for the choice of cooking fuel.  
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Figure 4 illustrates the working of our biomass model within the LEAP framework for 

Mozambique. The left-hand side of Figure 4 shows the evolution of per capita biomass consumption as 

function of per capita GDP, using actual values for Mozambique. Total biomass consumption declines 

with increasing GDP, following an inverted S-shaped patterns as defined by the logistic function of 

equation (3). As regards its composition, with rising GDP per capita consumption of charcoal increases at 

the expense of fuelwood consumption, under influence of rising income and urbanization – up to some 

income threshold level, after which is substituted for modern energy forms such as LPG and electricity. 

The right-hand side of Figure 4 demonstrates the substitution of fuelwood for charcoal across basic 

MOZLEAP model runs (see below for more detail on the scenarios). In our baseline scenario 

(“Reference”) the percentage share of charcoal in total biomass consumption in Mozambique increases 

from about 10% in 2000 (historical data) to almost 30% in 2030, thus decreasing the percentage share of 

fuelwood from about 90% to 70% over the same period. In the optimistic (high economic growth) 

scenario the expected percentage charcoal by 2030 is over 40%, in the pessimistic scenario it still is 

expected to double from 10% in 2000 to 20% by 2030.  

 

3.4 Fuel for road transport  

We model fuel demand for road transport on the basis of the expected evolution of vehicle ownership over 

time, given the evolution of per capita GDP and population as described before. To this aim we developed 

again a simple logistic function that is embedded within LEAP’s overall accounting framework. 

Following evidence from the top-down transport modeling literature in developing countries (Button et al. 

1993, Medlock and Soligo 2002) we assume the number of vehicles per 1000 people to be merely 

determined by GDP per capita, thus considering (relative) fuel prices a second-order effect. More 

specifically, we define the number of vehicles V per 1000 people at time t according to: 

 𝑉𝑡 = 𝑉𝑡−1 ∗ �1 +  
ψ y𝑡�∆y𝑡                                        (7) 

with parameter  ψ denoting the elasticity of the change in vehicle ownership under influence of economic 

development. The value of ψ is derived from a cross-country logarithmic panel data regression of 

passenger car ownership on per capita GDP for the period 1971-2006, using data from the Worldbank 

Indicators database for 74 countries with per capita values below US$3000; the estimated coefficient for ψ 

equals 8.7. We refer to Table A.1 in the Annex for details. In the absence of more detailed data we assume 

this parameter to apply equally to the evolution of passenger cars as well as trucks, motorcycles and 

tractors.  
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Next we calibrate our model by combining this approach with data on the annual evolution of 

registered vehicles in Mozambique and fuel consumption in the recent past, supplied by, respectively, the 

Mozambican National Institute of Road Transport (INATTER, 2012) and the Ministry of Energy (ME, 

2012). Figure 5 summarizes the results of our methodology for estimating future demand for transport 

fuels across the various scenarios. It shows that the number of vehicles per thousand people is expected to 

grow from just over 10 in 2010 to about 28–35 in 2030, depending on the scenario. With increasing per 

capita GDP, the implied GDP elasticity of vehicle ownership in our model is decreasing over time, from 

2,5% in 2010 to about 1% in 2030. In short these numbers mean that the total number of vehicles in 

Mozambique is expected to increase four to five fold over the period 2010–2030, from just over 370.000 

to about 1.6–2.0 million, depending on the scenario; of this total number of vehicles in 2030 in our model 

63% consists of cars and 22% of trucks.  

 

 

 

 

Figure 5. Model results for vehicle ownership (left) and GDP elasticity of vehicle ownership (right).   

 

Mozambique has a large potential for the production of biofuel, given its climate and a vast 

amount of unused arable land. At this moment, biofuel production plays only a marginal role in the energy 

mix. However, the country has adopted a National Program for the Development of Biofuels to promote 

and use agro-energy resources for energy and food security. In doing so, the government also aims to 

encourage socioeconomic development and to reduce the country's dependence on fuel imports (IRENA, 

2012; Ecoenergy, 2008). The program aims to progressively increase the proportion of biofuel in 

Mozambique’s domestic liquid fuel mix in three phases. The pilot phase (2012-2015) is currently being 

implemented with a fuel blending mandate of 10% for bioethanol and 3% for biodiesel. An operational 
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phase (2016 to 2020) will follow, with 15% bioethanol and 7.5% biodiesel blending and conclude with an 

expansion phase (2021-onwards) of 20% bioethanol and 10% biodiesel blending. In our scenarios, we 

include these phases, but taking into account a 5-year delay to reflect the actual situation.  

 

3.5 Demand scenarios from South Africa  

South Africa’s power utility (Eskom) has identified Mozambique as a potentially important supplier of 

electricity in its Integrated Resource Plan 2011 (SA Department of Energy, 2011) to help addressing its 

future supply-side challenges. Eskom is particularly interested in new hydropower from Mozambique, as 

the existing electricity generation mix in South Africa is carbon-intensive. Already, HCB represents 40% 

of Eskom’s carbon-free generation. One of the scenarios in the IRP is to use 2600 MW of power from 

Mozambique, including 2135 MW from the new hydro projects. Electricity purchases from Natural Gas 

plants at the Mozambique-RSA border is not looked at in the IRP. As of date, South Africa gets 92 MW 

from Gigawatt plant in Ressano-Garcia, and could get an additional 150 MW from Sasol’s plant in the 

same area. According to the IRP, South Africa needs an additional 90 GW of generating capacity by 2030, 

mostly from renewables. Therefore in our Extractive Scenario, we have modeled 3320 MW of capacity 

dedicated to Eskom, of which 1900 to 2100 MW would have to be firm.  

 

3.6 Energy Intensity builder 

As noted before, the LEAP accounting framework calculates (future) energy demand as the product of 

activity levels (such as GDP, population, physical production levels) and energy intensity per unit of 

activity. Therefore, the final building block of our model is an energy intensity builder that defines for 

each level of activity the corresponding energy intensity values over time. For the period 2000-2010 

energy intensity values are calculated based on historical data regarding energy consumption and activity 

levels on a sector by sector basis. Subsequently, future energy intensity values for the period 2011-2030 

are calculated on the basis of a variety of simple assumptions, again on a sector by sector basis. In this 

first integrated energy modeling and future planning study for Mozambique we deliberately apply simple 

and straightforward assumptions that do not vary in itself across scenarios. This choice is primarily 

motivated by our emphasis on exploring the potential impact of the expected unique surge in natural 

resources exploration in Mozambique on the country’s energy supply and demand and economic growth 

prospects. Especially given Mozambique’s current status as an extremely poor country with a rapidly 

expanding energy sector, this made us decide to leave a careful analysis of energy efficiency 

improvements in end-use sectors – although interesting and important – for future research. 
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Table 4. Key parameter values Energy Intensity Builder 

Sector  Fuel type Characterization Value or formula 

Residential Electricity Increase It = I t-1*(1+(0,1*∆Yt) 

  LPG Increase It = I t-1*(1+∆Yt) *(1+∆Ut) 

  Kerosene Decrease -5% per year 

  Charcoal Increase See Biomass model 

  Fuelwood Decrease See Biomass model 

Agriculture Total Increase 0.65 MJ/GDP (End year value 2030) 

MOZAL Total Constant 55.1 GJ/MT 

Other Industry Total Increase 2.4% / year in 2011, gradually towards 0% / year in 2030. 

Commercial Services Electricity Increase 1% per year 

  LPG Increase It = I t-1*(1+∆Yt) *(1+∆Ut) 

  Fuelwood, Charcoal Decrease -3% per year 

Public Lighting Electricity Increase It = I t-1*(1+(0,5*∆Yt) 

Government Electricity Increase 1% per year 

Other sectors Electricity Increase 1% per year 

Coal Mining Electricity Constant 27 kWh/MT  

 Diesel Constant 2 Liter/MT 

Heavy Sands Mining Electricity Constant 600kWh/MT 

 Diesel Constant 2 Liter/MT 

Tractors Total Increase It = I t-1*(1+(0,05*∆Yt) 

Other Vehicles Total Decrease It = I t-1*(1+(-0,05*∆Yt) 

 

A summary of our assumptions as regards future energy intensity trends across the various end-use sectors 

is presented in Table 4. We assume that in a poor country like Mozambique electricity consumption per 

household increases over time under influence of rising GDP, because growing household income leads to 

increasing demand for electric appliances such as refrigerators and air conditioning. We assume that LPG 

consumption per household increases over time under influence of rising GDP as well as the degree of 

urbanization, because growing household income leads to a shift towards modern cooking fuels, while in 

developing countries LPG is a typical urban fuel for logistic reasons. Furthermore, we assume that 

kerosene consumption per household decreases over time, because of a gradual ‘autonomous’ substitution 

towards more efficient and cleaner fuels like electricity and LPG. Finally, future charcoal and fuelwood 

intensities are derived from our biomass model. In short, we assume that total biomass consumption 

decreases under influence of increasing per capita GDP, while the share of charcoal in total biomass 

consumption increases with income and urbanization at the expense of fuelwood. 

For the Agriculture sector we assume that energy intensity increases with about 20% over the 

course of 20 years, under influence of modernization and mechanization. We assume constant energy 

intensity values and fuel shares for MOZAL, based on historical data, because we do not expect changes 
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in its production process. In the Other Industry sector we assume decreasing energy intensity growth, 

driven by the opposing forces of modernization and increasing energy efficiency. Under influence of 

increasing domestic natural gas production, we assume that the natural gas share in this sector increases to 

33% by 2030 at the expense of electricity and diesel shares; fuel oil plays a minor role. In the sector 

Commercial Services we assume that electricity intensity increases with economic growth, while LPG 

consumption (in hotels and restaurants) again also positively depends on the degree of urbanization – 

following the same logic as in the residential sector. Consequently, we assume a gradual substitution away 

from biomass consumption. Finally, we assume that electricity intensity for Public Lighting increases with 

economic growth. Also, in the sectors Government and Other we assume that electricity intensity will rise 

under influence of economic growth.  

Energy intensity in the extractive industry is determined by constant values of electricity and 

diesel consumption per physical unit of production. Actual values originate from a combination of 

indicative figures on open-cut coal mining and mineral sands explorations reported in the literature 

(Bleiwas 2011; SEE 2009) and from personal communications with local experts involved in mining 

activities in Mozambique. Finally, fuel efficiency in road transport is assumed to gradually increase over 

time under influence of economic development, which stimulates increasing import of newer and thus 

more fuel efficient vehicles. In contrast, we assume that fuel intensity for tractors increases because of the 

expected increasing use of heavy equipment as economic development proceeds. As regards the fuel mix, 

we assume a progressive use of biofuel in the domestic liquid fuel mix, adopting biofuel blending 

mandates from the government of Mozambique, taking into account a 5 year delay in accordance with the 

actual situation.  

 

3.7 Aggregate energy supply and demand 

As was described in section 3.1, we constructed extractive industry GDP on the basis of a bottom-up 

approach, based on information for individual projects in electricity production, gas exploration, coal 

mining and mineral (heavy) sands mining. Below, we describe these projects in more detail, since they 

constitute a key element in our scenario paths regarding future energy supply in Mozambique. 

As regards electricity generation, we consider in total 37 projects with a total capacity of almost 

11.000 MW. Hydro is and remains to be the main source for electricity generation in Mozambique. The 

existing capacity is around 2200 MW, of which 2075MW is provided by the Cahora Bassa (HCB) dam. In 

total we consider in our model 15 hydro projects over the entire period 2000-2030, with a total capacity of 

about 7579 MW. In addition, in the period 2011-2030 we consider the construction of 12 natural gas fired 

power plants with a total capacity of 1114 MW as well as 6 coal fired power plants with a total capacity of 
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2150 MW. Finally, we include 101 MW from diesel generations and 1.2MW solar power. Next to its 

capacity, for each project we define its transformation efficiency, expected first year of production and 

merit order. As regards the latter, we divide the modeling period into four intervals and attribute merit 

order by expected first year of production in the basis of 5-years intervals, such that the value one 

represents existing power plants. Furthermore, the Reference scenario includes existing and very likely 

future power projects whereas the Extractive scenario includes all 37 power projects, including those 

whose realization is still fairly uncertain. We refer to Table A.2 in the Annex for a detailed overview. 

As regards the exploration of coal, our model includes in total 13 major coal mining projects with, 

in the Extractive scenario, a maximum total estimated annual production of 113 million ton by 2030. In 

the more moderate Reference scenario we consider 8 mining projects, which together account for 62 

million ton per year by 2030. We refer to Table A.3 in the Annex for details. For each mining project we 

define it’s expected first year of production, the expansion of capacity over time, and the destination of its 

production (export versus electricity production).  

As regards Natural Gas production, we of course start by modeling the existing natural gas 

exploration project by the South African company Sasol in the Pande & Temane gasfields. As noted 

before, the vast majority of natural gas produced from these fields is exported to South Africa through a 

865 km pipeline. In addition, following the recent gas discoveries in the Rovuma Basin, we include the 

future construction of 12 so-called LNG trains, of which 4 are included in the Reference scenario. Total 

gas production in the Reference scenario is then anticipated to reach over 1.200 million GJ per year as 

from 2018. In the Extractive scenario gas production could reach over 3.000 million GJ per year from 

2023 onwards. A detailed list is provided in Table A.4 in the Annex. 

Finally, on the demand side we model the evolution of several energy-intensive megaprojects, 

including five heavy sands mining projects and the MOZAL aluminum smelter. In the Reference scenario 

we assume that heavy sands mining only grows marginally from current levels to reach 1.2 million ton per 

year, with production confined to the existing Moma-Kenmare project. In the Extractive Scenario we 

include four new mining projects, with a total production level of 9.5 million ton by 2030. A detailed list 

is provided in Table A.5 in the Annex. As regards the aluminum company MOZAL, we assume a constant 

physical production of 547 thousand tons per year in the Reference scenario, and an expansion to 728 

thousand tons per year as of 2019 (often referred to as MOZAL-III) in the Extractive scenario. In doing 

so, we implicitly assumed that by 2019, the Center-South "Backbone" transmission line (CESUL) will be 

accomplished, such that the major power plants from the Zambezi Basin in the North of Mozambique are 

connected with the dominant economic center of the Maputo area in the South of Mozambique.  
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 Taken together, these assumptions as regards extractive industry evolution in Mozambique, in 

combination with the previously described future development paths of GDP and population, drive energy 

production scenarios in our modeling framework. As illustrated in the right-hand side of Figure 6, we 

expect in the reference scenario that total primary production increases from almost 14 million toe in 2011 

to over 90 million toe in 2030. If Mozambique were to follow the extractive scenario development path, 

primary production could even increase to a level of 180 million toe in 2030. This equals a 6 to 13-fold 

increase in primary energy production in less than 20 years. Clearly, this means that Mozambique will 

undergo no less than a revolution at the supply side of its energy sector.  

The left-hand side of Figure 6 pictures the evolution of aggregate final energy consumption across 

the various scenarios. It shows that in the Reference scenario total energy demand is expected to increase 

to over 11 thousand toe in 2030. This is a 60% increase from the 2011 level of energy demand, and 

equivalent to an average annual increase of 2.6% as from 2011. If Mozambique were to follow the 

Reference Low development path, total final energy consumption is expected to reach about 12 thousand 

toe in 2030, which equals an average annual increase of energy demand of 2.9% as from 2011. In contrast, 

the lowest level of energy consumption is to be expected if Mozambique were to follow the Extractive 

Scenario development path – with an estimated total final energy demand of more than 10 thousand toe in 

2030, implying a 2.1% average annual increase over the period 2011-2030. The evolution of total final 

energy demand in the Reference High scenario is very similar to the Extractive scenario, notwithstanding 

differences in its composition.  

 

 

 

Figure 6. Total energy supply (left) and demand (right) across scenarios.  
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It may appear at first sight somewhat counterintuitive that in the long run the Reference Low 

scenario yields a considerably higher level of aggregate energy demand than the Extractive or Reference 

High scenario – surely the latter scenarios include high economic growth and extractive industry 

expansion. Underlying data, however, clearly reveal that this result is to be explained entirely by the 

evolution of energy demand from the household sector. Given the relatively small size of the 

underdeveloped Mozambican economy, the residential sector is and remains responsible for a large part of 

total energy consumption in Mozambique (over 90% in 2000 and 50-60% in 2030). Hence, the diverging 

energy demand patterns in the right-hand side of Figure 6 are mainly caused by a straightforward scale 

effect: over time the number of households becomes much smaller in the Extractive and Reference High 

scenario than in the Reference Low scenario. This feature of our model of course follows from our 

assumption that population growth is inversely related to GDP growth (see section 3.2). Consequently, it 

is in the high economic growth scenarios that the weight of the dominant households sector in driving total 

energy demand decreases most.  

 

 

4. Conclusions and policy implications 

In this paper we have presented MOZLEAP, the first comprehensive long-run scenario model of the 

emerging energy sector of Mozambique. The analysis made use of the integrated modeling tool LEAP, to 

track energy consumption, production and resource extraction in all sectors of the Mozambican 

economy. It was our aim to introduce the model, and show its potential as a tool for energy planning and 

forecasting in the context of the emerging energy sector in Mozambique. Because of space constraints, we 

will present a more detailed energy outlook for Mozambique, based on our model, in a separate 

publication. In this paper, we have described how the calibration of our model is based on recently 

developed local energy statistics and international data for the recent past, as well as on information about 

the latest developments and future plans as regards the production and transformation of energy in 

Mozambique. We have shown how future GDP paths were built from a combination of macro trends and 

bottom-up developments in the extractive industry. Moreover, we presented the key mechanisms that 

drive our model results, including demographic and urbanization trends and cross-country based GDP 

elasticities with respect to biomass consumption, sector structure and vehicle ownership. We have 

developed four scenarios to evaluate the impact of the anticipated surge in natural resources exploration 

on energy supply and demand in Mozambique.  

Our analysis suggests that until 2030, primary energy production is likely to increase at least six-

fold, and probably much more. This is roughly 10 times the expected increase in energy demand; most of 
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the increase in energy production is destined for export. As a result, Mozambique is rapidly developing 

into an important player at international energy markets; it may well become one of the leading global 

producers of natural gas and coal.  

This raises the question whether the current expansionary strategy for the energy sector is also the 

best strategy from a welfare point of view. Of course, large-scale extraction and export of natural 

resources contributes to economic growth and generates tax revenues that may help reduce the structural 

dependence of the Mozambican government on international aid to finance basic services and much 

needed investments in, among others, health, education and infrastructure. But, this strategy also makes 

the Mozambican economy vulnerable to volatility of resource prices on international energy markets, and 

energy sector planning highly dependent on foreign demand. For example, international coal prices have 

fallen dramatically over the last years, under influence of decreasing (US) demand, which in turn is 

(partly) driven by the shale gas revolution. Mozambique has good quality coking coal reserves that 

command a higher price than the steam coal prevalent in neighbouring countries (IEA 2014). 

Nevertheless, the major coal company operating in Mozambique (Vale) announced recently that is willing 

to sell  at least a quarter of the Tete coal mine and half of its 70% share of the Moatize mine because of 

the huge losses it faces at today’s low coal prices. In addition, the existing infrastructure to export coal has 

reached its limits; sufficient economies of scale and further export growth hinges crucially on the 

development of a new railway line and deepwater port (IEA 2014). As regards future electricity 

generation projects, these heavily depend on the willingness of the South African power utility ESKOM to 

reach long term agreements with Mozambique to meet its own future demand. Also, one may question the 

planned expansion of thermal electricity generation capacity on the basis of coal and natural gas from an 

environmental perspective, if the country’s hydro capacity is more than enough to meet domestic demand 

for electricity in the long run.  

In short, a major challenge for future energy policy in Mozambique is to strike a balance in 

meeting domestic and international demand for energy, such that energy production benefits the welfare of 

the Mozambican population and economy. By creating appropriate institutional frameworks and economic 

incentives, the Mozambican government can critically contribute to make exploration of its natural 

resource wealth beneficial to the entire economy and population. Of course, this is much more easily said 

than done, because the government in Mozambique is not a strong institutional player that can effectively 

manage and enforce change for the better (Mulder and Tembe, 2008). In contrast, the country is recently 

facing increasing local institutional and political instability, which even recently led to attacks by armed 

insurgents on newly developed mining and transport infrastructures. This underlines the importance to 

make sure that the entire population – across the country and across income levels – will share in the 
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expected (windfall) gains from the large-scale natural resource exploration. Moreover, it emphasizes the 

need to invest in improving the quality of governance in Mozambique, in the energy sector and beyond.  
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ANNEX 

 

Table A.1 Estimation results for coefficients MOZLEAP model* 

 
Sector shares 

Biomass 
elasticity 

Vehicle 
ownership 

 θ SRV θ MAN θ AGR θ GOV γ Ψ 

Constant 46.554 -22.577 37.843 10.009 1.989 -42.752 

Coefficient 0.834 4.861 -2.935 0.822 0.239 8.659 

R2 0.10 0.51 0.40 0.56 0.40 0.27 

# observations 39 39 39 39 74 86 

* Dep. variable  = coefficient * ln(GDP per capita) + constant.  
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Table A.2. Hydro Production Assumptions 

# Plant/Project Name Full 
Capacity1 

(MW)  

1st year 
Planned 

Scenario 2 Location    
(province) 

Merit 
order 

Process 
Efficiency 

(%) 

I. Hydro 7579           

1 H. Cahora Bassa (HCB) 2075 2011 Reference Tete 1 100 

2 Majawa e Berua 100 2014 Extractive Zambezia 1 100 

3 Chicamba 19 2011 Reference Manica 1 100 

4 Mavúzi 37 2011 Reference Manica 1 100 

5 Various EdM3 16 2011 Reference Niassa, Maputo 1 100 

6 Pavue 300 2017 Extractive Manica, Sofala 2 100 

7 Cintura e Miracuene 100 2018 Extractive Sofala 2 100 

8 Massingir 27 2018 Extractive Gaza 2 100 

9 Projecto H. de Chemba 600 2020 Extractive Tete, Sofala 2 100 

10 Alto Malema 80 2020 Extractive Zambezia 2 100 

11 Cahora Bassa Norte (CBN) 1245 2021 Extractive Tete 3 100 

12 Lupata 600 2021 Extractive Tete 3 100 

13 Boroma 200 2022 Extractive Tete 3 100 

14 Mpanda Nkuwa (MNK) 2000 2022 Reference Tete 3 100 

15 Lurio 180 2022 Extractive Cabo Delgado 4 100 

II. Solar PV 1.2           

1 Solar PV 1.2 2011 Reference All 1 100 

III. Thermal_Diesel 101           

1 EdM 91 2011 Reference Maputo, Sofala 1 33 

2 Moatize Vale 10 2011 Reference Tete 1 45 

IV. Import_MOTRACO 900           

1 Imports from ESKOM 900 2000 Reference Maputo 1 n.a. 

V. Thermal_Gas 1114           

1 Temane & Mambone 6 2011 Reference Inhambane 1 35 

2 Aggreko 107 2012 Reference Maputo 1 40 

3 Gigawatt 109 2013 Reference Maputo 1 40 

4 CTRG (EDM/SASOL) 175 2014 Reference Maputo 1 48 

5 Kuvaninga 40 2015 Reference Gaza 1 35 

6 Chockwe (EDP) 32 2016 Extractive Gaza 2 35 

7 Electrotec 100 2017 Extractive Maputo 2 48 

8    C. Termica Maputo (CTM) 100 2018 Reference Maputo 2 47 

9 ENGECO 50 2018 Extractive Gaza 2 35 

10 Temane Sasol 300 2018 Extractive Inhambane 2 40 

11 Projecto ENI 75 2019 Extractive Unknown 2 35 

12 Central Buzi Power 20 2020 Extractive Sofala 2 35 

VI. Thermal_Coal 2150           

1 Projecto Elec. de Moatize 300 2016 Reference Tete 2 37 

2 Benga 300 2017 Reference Tete 2 35 

3 Chirondzi 350 2017 Extractive Tete 2 35 

4 Jindal 300 2018 Extractive Tete 2 37 

5 Kingho Investiment Co 600 2018 Extractive Tete 2 35 

6 Ncondezi 300 2018 Extractive Tete 2 35 

Source:  Compiled based on reports from EdM (2012) and information from the Ministério de Energia (2013) 

1 Full capacity may be realized in phases; this is taken into account in the model. 
2 Extractive scenario includes all plants, while the Reference considers only those labelled as Reference 
3 Various EdM Hydro =  Corumane + Linchinga & Cuamba + Pequenos Libombos  
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Table A.3. Mineral Coal Production Assumptions [Mtpy] 

# Project Name 2010 2015 
 

2020 
 

2025 
 

2030 

      REF EXT   REF EXT   REF EXT   REF EXT 

                            

1 Moatize Vale 0 10 10   10 10   10 10   10 10 

2 Moatize Phase 2 Vale 0 7 7   10 10   10 10   10 10 

3 Benga Rio Tinto Tata Steel 0 3 3   8 8   8 8   8 8 

4 Zambeze Rio Tinto 0 2 2   8 8   8 8   8 8 

5 Moatize Jindal 0 0 0   8 8   8 8   8 8 

6 Reveboe Talbot Nippon Steel 0 5 5   5 5   5 5   5 5 

7 Moatize B Hill Resources 0 3 3   3 3   3 3   3 3 

8 Ncondezi 0 2 2   10 10   10 10   10 10 

9 Mucanha Vuzy Vale 0 0 0   0 11   0 11   0 11 

10 Tete East Rio Tinto 0 0 0   0 0   0 10   0 10 

11 Moatize ETA Star India 0 0 0   0 0   0 10   0 10 

12 Moatize Coal India 0 0 10   0 10   0 10   0 10 

13 Other 90 Licensed Projects 0 0 0   0 3   0 8   0 10 

  Total Production  0 31 41   62 86   62 111   62 113 

Source: Local data; press releases; KPMG, 2013; Callaghan, 2013; GBR, 2013; NWR, 2013; personal communications (see 

section 2). 

 

Table A.4. Natural Gas Production Assumptions (10
6  

GJ) 

Project Name 2010  2015 

 

2020 

 

2025 

 

2030 

     REF EXTR   REF EXTR   REF EXTR   REF EXTR 

              
Sasol Pande/Temane  124  183 183   183 183   193 193   202 202 

              
LNG Projects 0  0 0      1072  1608     1072     3216       1072    3216  

              Anadarko Train 1 0  0 0   268 268   268      268    268 268 

Anadarko Train 2 0  0 0   268 268   268      268    268 268 

Anadarko Train 3 0  0 0   0 268   0      268    0 268 

Anadarko Train 4 0  0 0   0 268   0      268    0 268 

Anadarko Train 5 0  0 0   0 0   0      268    0 268 

Anadarko Train 6 0  0 0   0 0   268      268    268 268 

ENI Train 1 0  0 0   268 268   268      268    268 268 

ENI Train 2 0  0 0   268 268   0      268    0 268 

ENI Train 3 0  0 0   0 0   0      268    0 268 

ENI Train 4 0  0 0   0 0   0      268    0 268 

ENI Train 5 0  0 0   0 0   0      268    0 268 

ENI Train 6 0  0 0   0 0   0      268    0 268 

Total LNG 0  0 0   1072 1608     1072  3216   1072 3216 

TOTAL  124  183 183   1255 1791   1265  3409    1274  3418 

Source: Local data; press releases; ICF, 2012; World Bank, 2014; personal communications (see section 2). 
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Table A.5. Heavy Sands Minerals. Capacity Production Assumptions (Mtpy) 

# Project Name 2010 2015 
 

2020 
 

2025 
 

2030 

     
REF EXTR 

 
REF EXTR 

 
REF EXTR 

 
REF EXTR 

                            
1 Moma Kenmare 0.8 1.2 1.2   1.2 1.2   1.2 1.2   1.2 1.2 

2 Corridor Sands BHP Billiton 0.0 0.0 0.0   0.0 0.0   0.0 5.0   0.0 5.0 

3 Mutamba Rio Tinto 0.0 0.0 0.0   0.0 1.2   0.0 1.2   0.0 1.2 

4 Moebase N. Pathfinder 0.0 0.0 0.0   0.0 1.3   0.0 1.3   0.0 1.3 

5 Sangage Africa Great Wall 0.0 0.0 0.0   0.0 0.0   0.0 0.8   0.0 0.8 

  Total Heavy Sands 0.8 1.2 1.2   1.2 3.7   1.2 9.5   1.2 9.5 

Source: Local data, press releases; Callaghan, 2011; personal communications (see section 2). 
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