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Abstract: The comparison and classi�cation of time series is an important issue in
practical time series analysis. For these purposes, various methods have been proposed in
the literature, but all have shortcomings, especially when the observed time series have
di¤erent sample sizes. In this paper, we propose spectral domain methods for handling
time series of unequal length. The methods make the spectral estimates comparable,
by producing statistics at the same frequency. A �rst sensible approach may consist on
zero-padding the shorter time series in order to increase the corresponding number of
periodogram ordinates. We show that this works well provided the sample sizes are not
very di¤erent, but does not give good results in case the time series lengths are very
unbalanced. For this latter case, we study some periodogram-based comparison methods
and construct a test. Both the methods and the test display reasonable properties for
series of any lengths. Additionally and for reference, we develop a parametric comparison
method. The procedures are assessed by a Monte Carlo simulation study. As an illustra-
tive example, a periodogram method is used to compare and cluster industrial production
series of some developed countries.
Keywords: Cluster analysis; Interpolated periodogram; Reduced periodogram; Spec-

tral analysis; Time series; Zero-padding.

1. Introduction

The classi�cation analysis of time series has useful applications in several �elds. In
population studies, for instance, one may be interested in identifying similarities in the
series of birth and death rates for di¤erent populations. In �nance, one may interested in
identifying dependences in �nancial market returns for classifying and grouping stocks.
In economics, one may be interested in a cluster analysis of some countries by looking at
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the main macroeconomic time series indicators.
Methods for comparing time series have been studied for some time now, mainly by

using autocorrelation analysis and by model �tting methods. More recently, building
upon early work of Coates and Diggle (1986), Diggle and Fisher (1991), and Dargahi-
Noubary (1992), spectral analysis methods have been considered. Speci�c frequency-
domain methods for discrimination and clustering analysis of time series were proposed
by Maharaj (2002), by Quinn (2006), and by Caiado, Crato and Peña (2006). As this last
paper shows, spectral methods can work very well for comparing time series.
A problem that often arises in real applications is the di¢culty of �nding time series of

equal length. For instance, in the business cycle study of some industrialized countries,
Camacho, Pérez-Quiróz and Saiz (2004) found time series of unequal length and had to
truncate data in order to compare the series. Only after the truncation, they were able
to use spectral estimates to compute distances across countries.
In this paper, we build upon the work presented in Caiado, Crato and Peña (2006) and

use periodogram based metrics for comparison of time series. We extend the method,
proposing a process of adjusting the number of used periodogram ordinates of the studied
series. The easiest way of accomplishing this is to zero-pad the shorter series by making
it as long as the larger series. This way, both periodograms will have the same number of
ordinates and we will be able to compute a derivative of the Euclidean distance between
the periodogram ordinates of both series. This approach, however, proves to introduce
distortions in the estimated periodogram ordinates and these distortions are serious when
the zero-padded series is signi�cantly shorter than the larger series. We then study other
approaches. Firstly, we construct a reduced frequency periodogram for the larger series, by
computing the periodogram ordinates only at the smaller series corresponding frequencies.
This method has the further advantage of allowing the construction of an appropriate test.
Secondly, we construct an interpolated periodogram for the longer series, obtaining for
this larger series a shorter number of periodogram ordinates. This method seems to work
particularly well for comparison purposes.
The remainder of the paper is organized as follows. In Section 2, we introduce the

periodogram based metrics for handling series of unequal length. In Section 3, we present
nonparametric and parametric tests of hypothesis to determine whether two series have
been generated by stochastic processes with similar properties. In Section 4, we present
the results of a Monte Carlo simulation study on the performance of the various metrics
and tests. In Section 5, we apply a periodogram metric to analyze industrial time series
of developed economies. In Section 6, we summarize the paper.

2. Periodogram-based metrics

Let fxt; t = 1; :::; nxg and fyt; t = 1; :::; nyg be two stationary processes with di¤erent
sample sizes nx 6= ny. The periodogram of xt is given by

Px(!j) =
1

nx

�����

nxX

t=1

xte
�it!j

�����

2

, (1)
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where !j = 2�j=nx, for j = 1; :::;mx, with mx = [nx=2], the largest integer less or equal
to nx=2. Similar expression is de�ned for Py(!p), with !p = 2�p=ny, for p = 1; :::;my,
with my = [ny=2]. The Euclidean distance between the periodograms ordinates Px(!j)
and Py(!p) is not adequate for comparison of series xt and yt, since mx 6= my and !j and
!p do not coincide.
In the signal processing literature (Wang and Blostein, 2004), a common solution to

the problem of unequal length consists of extending the shorter series yt, by adding zeros
and getting y0t,

y0t =

�
yt; t = 1; :::; ny
0; t = ny + 1; :::; nx,

and then computing the periodogram of y0t

Py0(!j) =
1

nx

�����

nxX

t=1

y0te
�it!j

�����

2

. (2)

This approach, called "zero-padding", matches the frequencies of the series and produces a
nicely smoothed periodogram. A zero-padding based metric for handling series of unequal
length using the periodogram ordinates is then de�ned by

dZP (x; y) =

vuut 1

mx

mxX

j=1

[Px(!j)� Py0(!j)]
2. (3)

Alternatively, since periodograms can be calculated at any frequency, we may simply
compute the periodogram of the longer series xt at the frequencies of the shorter series
yt, that is

PRPx (!p) =
1

nx

�����

nxX

t=1

xte
�it!p

�����

2

, (4)

where !p = 2�p=ny, for p = 1; :::;my < mx, which we will call the reduced periodogram.
The reduced periodogram based metric is then de�ned by

dRP (x; y) =

vuut 1

my

myX

p=1

[PRPx (!p)� Py(!p)]
2. (5)

Another way to solve the problem is to interpolate the periodogram ordinates of the se-
ries with longer (shorter) length from the series with the shorter (longer) length. Without
loss of generality, let r = [pmx

my
] be the largest integer less or equal to pmx

my
for p = 1; :::;my,

and my < mx. The periodogram ordinates of xt can be estimated as

P IPx (!p) = Px(!r) + (Px(!r+1)� Px(!r))�
!p;y � !r;x
!r+1;x � !r;x

= Px(!r)

�
1�

!p;y � !r;x
!r+1;x � !r;x

�
+ Px(!r+1)

�
!p;y � !r;x
!r+1;x � !r;x

�
. (6)
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This procedure will yield an interpolated periodogram with the same Fourier frequencies
of the shorter periodogram Py(!p). We then use the following distance measure based on
the interpolated periodogram ordinates,

dIP (x; y) =

vuut 1

my

myX

p=1

[P IPx (!p)� Py(!p)]
2. (7)

If we are only interested in the dependence structure and not in the process scale, then
we can standardize the periodograms, dividing them by the sample variances: NP IPx (!p)
= P IPx (!p)=b�x and NPy(!p) = Py(!p)=b�y. Since the variance of the periodogram is
proportional to the spectrum at the same Fourier frequencies, we may use a distance
measure between the logarithms of the normalized periodograms

dILNP (x; y) =

vuut 1

my

myX

p=1

[logNP IP (!p)� logNPy(!p)]
2. (8)

It is straightforward to show that the distance measures (7) and (8) ful�l the usual prop-
erties of a metric except the triangle inequality: (i) d(x; y) = 0 if P IPx (!p) = Py(!p) or
NP IP (!p) = NPy(!p); (ii) d(x; y) � 0; and (iii) d(x; y) = d(y; x).
Another useful measure of distance discussed, for instance, in Caiado, Crato and Peña

(2006) is the Kullback-Leibler (KL) form

dKL(x; y) =

myX

p=1

�
NP IPx (!p)

NPy(!p)
� log

NP IPx (!p)

NPy(!p)
� 1

�
. (9)

This measure is greater than or equal to zero, with equality if NP IPx (!p) = NPy(!p) for
all p. The potential success of measure (9) should be related with measure (8), and it can
also be applied to zero padding and reduced periodogram approaches.
The performance of the three periodogram-based metrics (padding, reduced and inter-

polated) for both mean Euclidean and Kullback-Leibler forms will be checked by Monte
Carlo simulation.

3. Hypotheses testing procedures

3.1. Nonparametric approaches

Based on the distance measures described above, we now suggest a test of hypotheses
to determine whether two independent time series are realizations of stochastic processes
with identical second-order properties. Given two independent stationary series xt and
yt, with nx = ny, the null hypothesis to be tested is H0 : fx(!j) = fy(!j), that is, there
is no di¤erence between the underlying spectra of the series fxtg and fytg at all Fourier
frequencies !j.
Since, asymptotically, Px(!j) � fx(!j)�

2
(2)=2, where fx(!) is the spectral density func-

tion, it follows that E
�
Px(!j)=b0;x

�
= fx(!j)=�

2
x and V ar

�
Px(!j)=b0;x

�
= f 2x(!j)=�

4
x.
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Similar expressions apply to the periodogram of yt. As the two series xt and yt are
independent, Px(!j) and Py(!j) must be independently distributed as well.
Under some suitable conditions, the logarithmic transformation of the sample spectrum

is closer to the normal distribution than to a chi-square distribution (Jenkins and Priest-
ley, 1957). The following statistic provides a test of signi�cance for comparing the log
normalized periodograms of the two series,

DNP =
1
m

Pm

p=1 [logNPx(!p)� logNPy(!p)]q�
s2LNP;x + s

2
LNP;y

�
=m

, (10)

where s2LNP;x =
1
m

Pm

j=1 [logNPx(!j)� xLNP ]
2 and xLNP =

1
m

Pm

j=1 logNPx(!j) (s
2
LNP;y

and yLNP are similarly de�ned). This statistic is approximately normally distributed with
zero mean and unit variance.
For di¤erent lengths, mx 6= my, regular periodograms cannot be used as the Fourier

frequencies are di¤erent. One approach could be the use of the interpolated periodogram
for the longer series. However, interpolation destroys the independence of periodogram
values across frequencies. This does not happen with the reduced periodogram, which
can be used in equation (10). In this case, we simply compute the reduced periodogram
of the longer series xt at the frequencies !p = 2�p=ny, for p = 1; :::;my as de�ned in (4).
Another useful test is based on the likelihood ratio approach. For instance, we may com-

pute the pooled spectra P (!j) =
1
2
[Px(!j) + Py(!j)] (orNP (!j) =

1
2
[NPx(!j) +NPy(!j)])

under the null hypothesis H0 : fx(!j) = fy(!j) and use the likelihood ratio test

�2 log � � �
mX

p=1

logNPx(!j)�
mX

p=1

logNPy(!j) + 2
mX

p=1

logNP (!j), (11)

which is distributed proportionally to a chi-square random variable. We �x the size of
the Type I error equal to the signi�cance level �. Thus the test rejects H0 if -2log � < k,
where k is a nonnegative constant. This test can be easily extended to time series of
unequal lengths using the reduced periodogram approach.

3.2. Parametric approach

The problem of comparison of series of unequal length can also be analyzed by a para-
metric approach. Suppose we have two independent time series xt and yt generated by
the same ARMA(p,q) process, but with di¤erent parameter values. Let the k = p + q

estimated parameters be grouped in the vectors b�x and b�y with estimated covariance
matrices Vx and Vy, respectively. We want to check whether they are di¤erent realiza-

tions of the same stochastic process, so that E[b�x] = E[b�y] = �. Then � = b�x � b�y for
large samples will be an approximately normally distributed vector with zero mean and
covariance matrix

V� = Vx + Vy, (12)

and therefore, we can use the statistic
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DP = �
0V �1� �, (13)

which is asymptotically a chi-square distribution with k degrees of freedom under the null
�x = �y. Hamilton (1994, Section 14.3) suggested a similar statistic to test for structural
stability of autoregressive and moving average (ARMA) models over di¤erent subperiods.
In order to test if two generating ARMA processes are equal, the model for each time

series can be selected by Akaike�s Information Criterion (AIC) or Bayesian�s Information
Criterion (BIC) selection criterions. If the obtained model is the same for the two time
series, then the statistic DP is computed by using the estimated parameters in each time
series. If the selected models selected are di¤erent, the problem is more involved. Two
methods have been proposed:
(i) We can start �tting a large ARMAmodel to both processes which encompass the two

models to be compared, for instance the larger of two AIC or BIC selected models. This
method has two main problems: (1) the estimated parameters will be highly correlated
for the overparametrized estimated model (or models) and the corresponding covariance
matrix (or matrices) may be close to singular; (2) we have to be very careful to avoid
possible near cancellation of the AR and MA roots on both sides.
(ii) Alternatively, in order to avoid the serious problem of near cancellation of roots, we

can use AR approximations and thus �t to both processes the larger selected AR model
and then compare the estimated parameters (see Maharaj, 1996). This method also has
the problem that (1) we may get very correlated estimated parameters, specially when
we have MA generating processes; and (2) we may need very large AR models.
Given these problems, we propose an alternative approach to apply the parametric test

when the selected models are di¤erent.
(iii) We �t both selected models, sayM1 andM2, to both time series and compute the

statistic DP in these two situations, i.e., DP (M1) and DP (M2). If DP (M1) � �
2
(k1)

and

DP (M2) � �
2
(k2)
, where k1 and k2 are the degrees of freedom associated with the models

M1 and M2, the null hypothesis is not rejected and we conclude that the processes are
generated by the same model. If the null hypothesis is rejected in one of the models, or
in both, then we conclude that the generating processes are di¤erent. Since we have two
comparison statements to be made, the Bonferroni inequality suggests each test with a
signi�cance level �=2 to ensure that the overall signi�cance level is at most �. In our
simulation study, we will use this alternative approach (iii).

4. Monte Carlo simulations

4.1. Performance of the periodogram-based metrics

To illustrate the performance of the periodogram-based metrics (zero-padding, reduced
and interpolated), we performed a set of simulations. For each of the considered processes,
we simulated pairs of series of di¤erent sample sizes, (n1; n2) = f(50; 100), (200; 100),
(500; 250), (1000; 500)g. So four di¤erent series were simulated for each replication. For
each case, we performed 1000 replications. We performed the following comparisons:
(a) AR(1), � = 0:9 versus AR(1), � = 0:5;
(b) AR(1), � = 0:9 versus ARIMA(0,1,0);
(c) AR(2), �1 = 0:6, �2 = �0:3 versus MA(2), �1 = �0:6, �2 = 0:3;
(d) ARFIMA(0,0.45,0) versus white noise;



7

(e) ARFIMA(0,0.45,0) versus AR(1), � = 0:95;
(f) ARFIMA(0,0.45,0) versus IMA(1,1), � = 0:4.
In case (a), we compare low-order models of similar type and similar autocorrelation

functions. In case (b), we compare a nonstationary process and a near nonstationary
AR process. In case (c), we compare selected second-order ARMA processes in order to
deal with peak spectra. In case (d), we compare stationary processes with very di¤erent
characteristics of persistence. In case (e), we compare near-nonstationary long memory
and short memory processes. In case (f), we compare a long-memory process and a
nonstationary process with a MA component. The rational for these choices was to
generate processes with similar sample characteristics. Case (d) is an apparent exception
to this rule. In this case, we were simply interested in knowing whether our methods
could succeed in distinguishing long memory from no memory models. We performed
additional simulations for other models, which are available upon request.
The fractional noise was simulated using the �nite Fourier method of Davies and Harte

(1987). The four generated series with zero mean and unit variance white noise were
grouped into two clusters by the complete linkage algorithm (see, for instance, Johnson
and Wichern, 2002) and using the padding, reduced and interpolated Euclidean distances
between the log normalized periodogram ordinates.
Table 1 provides the percentages of success on the comparison in cases (a) to (f). The

�rst rows of each cell show the results for the zero-padding periodogram approach. The
second rows of each cell show the results for the reduced periodogram approach. The
third rows of each cell show the results for the interpolated periodogram approach. For
instance, the value 63.4 in the upper-left cell means that 63.4% of the times the two
AR(1), � = 0:9; n1 = 50 and n2 = 100 processes were grouped into one cluster and the
two AR(1), � = 0:5; n1 = 50 and n2 = 100 processes were grouped into another cluster
using the zero-padding periodogram method.
The interpolated-periodogram based metric shows a remarkable good performance on

the comparisons among stationary processes with ARMA and ARFIMA formulations, and
shows a performance that increases signi�cantly with the sample size on the comparison
between ARMA and ARIMA processes and between ARIMA and ARFIMA processes.
The zero padding method works well for classifying longer series of similar length.

However, it is not able to separate well nearnonstationary processes with large samples
from nonstationary processes with short samples, and, more importantly, it does not
perform well on the comparison between longer stationary and shorter near-nonstationary
ARMA processes. In fact, when sample sizes are very unbalanced, the shorter series
periodogram is distorted by the zero-padding method. Zero padding is equivalent to add
new ordinate values that are linear combinations of the periodogram ordinates of the
original series. Naturally, the resulting statistics and tests su¤er from this problem.
The reduced periodogram method is always dominated by the other methods. In par-

ticularly, it displays a very poor performance for distinguishing similar processes with
small samples.
We also investigated the performance of Kullback-Leibler statistic, but the results are

not included as it does not work well. Results are available from the authors upon request.
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Table 1
Percentages of success on the comparison of pairs of simulated time series models: Zero-
padding (ZP); Reduced periodogram (RP) and Interpolated periodogram (IP)

(a) AR(1), 0.9 vs. AR(1), 0.5 (b) AR(1), 0.9 vs. ARIMA(0,1,0)

n1; n2 Metric 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ZP 63.4 74.0 78.1 80.3 20.8 45.6 88.4 97.6

RP 48.1 52.0 54.2 51.9 12.5 31.2 74.2 92.7

IP 61.2 73.4 98.4 100.0 16.4 42.4 88.0 99.7

200,100 ZP 87.6 91.4 92.4 93.5 25.6 52.0 88.4 97.2

RP 71.3 76.9 81.4 82.9 11.0 31.0 67.6 89.2

IP 84.8 87.9 95.4 99.9 22.8 36.0 76.6 96.4

500,250 ZP 97.6 99.2 99.1 99.3 31.6 61.6 88.4 96.4

RP 83.6 93.3 97.2 98.7 11.9 25.4 68.7 88.7

IP 99.1 98.6 99.2 99.9 82.4 58.2 74.8 92.0

1000,500 ZP 98.8 99.6 100.0 100.0 36.4 60.0 84.0 96.8

RP 91.0 97.4 99.8 99.9 11.1 24.8 67.6 86.7

IP 100.0 100.0 99.9 100.0 99.8 96.4 79.4 89.0

(c) AR(2), 0.6, -0.3 vs. MA(2), -0.6, 0.3 (d) ARFIMA(0,0.45,0) vs. White noise

n1; n2 Metric 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ZP 32.5 44.6 62.8 71.0 39.2 41.6 49.6 57.2

RP 25.7 31.7 42.4 41.7 28.5 31.7 32.8 34.6

IP 34.9 49.5 94.7 100.0 45.5 54.6 95.3 100.0

200,100 ZP 40.9 47.8 71.2 83.3 54.8 60.1 70.4 79.3

RP 30.8 39.9 48.9 54.3 34.8 41.9 51.3 49.6

IP 55.2 58.8 80.7 98.7 63.8 66.7 82.8 99.4

500,250 ZP 53.0 67.5 77.6 92.3 82.4 89.2 90.1 94.4

RP 33.2 47.4 63.6 73.6 43.7 57.1 77.0 83.7

IP 93.4 81.3 88.4 91.3 95.5 87.0 93.7 95.9

1000,500 ZP 57.9 76.1 91.2 95.7 90.8 96.4 98.8 99.1

RP 32.2 46.3 69.3 84.9 49.1 63.5 88.2 94.1

IP 100.0 98.5 93.3 98.8 100.0 99.1 98.2 99.5
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Table 1
(Continued)

(e) ARFIMA(0,0.45,0) vs. AR(1), 0.95 (f) ARFIMA(0,0.45,0) vs. IMA(1,1), 0.4

n1; n2 Metric 50,100 200,100 500,250 1000,500 50,100 200,100 500,250 1000,500

50,100 ZP 72.4 91.5 99.2 99.5 53.3 77.5 92.9 98.2

RP 53.2 80.7 94.6 97.8 30.2 58.7 83.0 94.7

IP 63.5 86.3 98.2 100.0 35.6 66.1 94.6 99.9

200,100 ZP 74.1 89.8 99.5 99.8 54.4 73.8 93.9 98.2

RP 54.8 82.4 97.0 98.9 25.9 52.9 81.9 92.9

IP 74.9 85.2 95.2 99.7 49.5 63.9 85.9 97.8

500,250 ZP 75.6 90.4 98.8 99.9 54.9 73.7 91.1 96.9

RP 53.4 80.7 97.5 99.6 25.5 52.7 83.1 92.4

IP 98.7 93.4 93.9 97.6 94.6 83.7 83.3 93.6

1000,500 ZP 71.3 90.7 99.1 100.0 55.3 68.6 87.3 96.7

RP 51.6 79.9 97.2 99.8 25.9 52.7 79.9 91.9

IP 100.0 99.9 96.5 97.8 100.0 99.5 92.0 93.7

4.2. Power and size of the tests

We obtained the estimates of the power and size of the proposed tests for simulated
series from the following processes:
(a) AR(1), � = 0:5 versus AR(1), � = 0:1, 0:3, 0:5, 0:7, 0:9;
(b) White noise versus AR(1), � = 0, 0:2, 0:4, 0:6, 0:8;
(c) AR(2), �1 = 0:5, �2 = �0:5 versus AR(2), �1 = 0:5, �2 = �0:1, �0:3, �0:5, �0:7,

�0:9;
(d) ARMA(1,1), � = 0:2, � = �0:5 versus ARMA(1,1), � = 0:2, � = �0:1, �0:3, �0:5,

�0:7, �0:9;
(e) AR(1), � = 0:5 versus ARFIMA(1,d,0), � = 0:5, d = 0, 0:1, 0:2, 0:3, 0:4;
(f) AR(1), � = 0:7 versus AR(1), � = 0:7, 0:8, 0:9, 1:0.
From these comparisons we are able to see how the tests work for distinguishing similar

models with di¤erent parameters. From the considerable set of values for the parameters,
we can verify whether an increasing di¤erence leads to better test power. As before, the
results were based on 1000 replications of each pair of processes. For the parametric
approach, we �tted ARMA(m,n) models to the series, with the orders m = 0; 1; 2; 3 and
n = 0; 1; 2; 3 selected by BIC (the AIC does not work in selecting models for hypothesis
testing, as noted by Peña and Rodriguez, 2005). Table 2 gives the results for cases (a) to
(e) for 10% level of signi�cance and for case (f) for 5% level of signi�cance using the two
nonparametric tests (periodogram-distance based test and periodogram-likelihood ratio
test) and the parametric test.
For distinguishing series generated by di¤erent processes, the parametric test always

performs better than both nonparametric tests. However, for comparing series generated
by the same processes, the parametric test display a size larger than the one derived from
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the asymptotic distribution of the statistic.
Both nonparametric tests perform as well as the parametric approach in the large

sample cases, specially when the two series were simulated from very di¤erent processes.
The periodogram-distance based test performs almost always better than the likelihood
ratio test. We did not record the size distortions obtained with the parametric test.

5. Application

As an illustration of the possibilities of these techniques, we compared the industrial
time series of a set of developed countries. We used monthly data of seasonally adjusted in-
dustrial production indices for a large set of European and other industrialized economies.
Available data are summarized on Table 3 (source data: Camacho, Pérez-Quiróz and Saiz,
2004). For such large data set, it is unavoidable that sample periods do not coincide. In
order to use all available data, it is necessary to apply techniques such as the ones we
have described.
In our application, we started by computing the log normalized interpolated peri-

odograms for each of the k = 30 production series. The corresponding graphs are shown
on Figure 1. We then computed all the corresponding k(k�1)=2 pairwise mean-Euclidean
distances (Equation 8). In order to be able to interpret resulting data, we used two well-
known clustering techniques (see sections 12.3 and 12.5, respectively, of Johnson and
Wichern, 2002, for example).
Firstly, we used the multidimensional scaling approach, which creates a con�guration

of k points in a lower dimensional map (usually two or three). Figure 2 represents the
resulting map of distances in two dimensions The �rst dimension seems to be almost
directly related to the countries� development. The second dimension is not easy to
interpret. However, looking at the 2-dimensional plot and comparing the relative positions
with the periodograms plots, we can make sense of some of the results. Looking at
the opposite positions of Cyprus and Ireland, for instance, we realize that this distance
comes from very di¤erent spectral peaks at di¤erent frequencies�the interpolated LNP of
Ireland series reaches the minimum value at frequencies !29 = 2�(29)=85 = 2:14367 and
!38 = 2�(38)=85 = 2:80895, whereas the interpolated LNP of Cyprus series is dominated
by large peaks at the same frequencies. It can also be seen that the old European Union
countries (except Ireland) and the USA, Canada, Japan and Norway are close to each other
and far from the new European Union countries and from the then candidate countries
(Estonia, Turkey, Slovak Republic, Romania, Lithuania, Slovenia, Czech Republic and
Latvia). More developed Poland and Hungary are in an intermediate position.
Secondly, we consider the method of clustering the series by a hierarchical clustering

tree (or dendrogram). Figure 3 shows the dendrogram for the industrial production indices
series by complete linkage method from which the clusters of countries can be identi�ed.
It can be seen at the tree that the interpolated-periodogram based method can group the
series into three very reasonable clusters: Cluster 1 = {CN, US, NL, IT, ES, FR, SD, BG,
BD, LX, UK, DK, OE, FN, GR, IR, PT, JP, NW}, Cluster 2 = {CY, CZ, SL, LI} and
Cluster 3 = {ET, SK, RO, TK, HN, PO, LA}. Cluster 1 includes all the old European
Union countries and the USA, Canada, Japan and Norway. Cluster 2 grouped four new
European Union countries (Cyprus, Czech Republic, Slovenia and Lithuania). Cluster 3
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Table 2
Estimates of power and size of tests of signi�cance: Periodogram-distance based test
(DT); Periodogram-likelihood ratio test (LRT) and Parametric test (PT)

(a) AR(1), � = 0:5 vs. AR(1), � = 0:1; 0:3; 0:5; 0:7; 0:9 (� = 10%)
� Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

0.1 DT 0.15 0.29 0.56 0.66 0.99 1.00

LRT 0.15 0.20 0.29 0.34 0.71 0.73

PT 0.67 0.85 0.99 1.00 1.00 1.00

0.3 DT 0.11 0.18 0.31 0.41 0.90 0.88

LRT 0.11 0.12 0.15 0.16 0.24 0.24

PT 0.26 0.34 0.54 0.80 0.99 1.00

0.5 DT 0.08 0.10 0.08 0.09 0.09 0.10

LRT 0.10 0.10 0.10 0.10 0.10 0.10

PT 0.19 0.08 0.10 0.06 0.04 0.06

0.7 DT 0.23 0.29 0.62 0.70 1.00 1.00

LRT 0.15 0.13 0.23 0.22 0.45 0.44

PT 0.27 0.48 0.68 0.88 1.00 1.00

0.9 DT 0.67 0.86 1.00 1.00 1.00 1.00

LRT 0.42 0.58 0.93 0.98 1.00 1.00

PT 0.75 0.98 1.00 1.00 1.00 1.00

(b) White noise vs. AR(1), � = 0; 0:2; 0:4; 0:6; 0:8 (� = 10%)
� Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

0.0 DT 0.03 0.09 0.03 0.09 0.05 0.08

LRT 0.10 0.10 0.10 0.10 0.10 0.10

PT 0.15 0.15 0.17 0.11 0.10 0.04

0.2 DT 0.05 0.10 0.05 0.12 0.10 0.17

LRT 0.11 0.10 0.13 �.12 0.17 0.18

PT 0.32 0.44 0.56 0.80 0.99 1.00

0.4 DT 0.10 0.14 0.26 0.36 0.87 0.85

LRT 0.14 0.16 0.29 0.31 0.60 0.60

PT 0.60 0.84 0.98 1.00 1.00 1.00

0.6 DT 0.33 0.44 0.87 0.92 1.00 1.00

LRT 0.28 0.38 0.65 0.76 1.00 1.00

PT 0.89 1.00 1.00 1.00 1.00 1.00

0.8 DT 0.73 0.86 1.00 1.00 1.00 1.00

LRT 0.61 0.78 0.99 1.00 1.00 1.00

PT 0.97 1.00 1.00 1.00 1.00 1.00

Note: Pairs of numbers within square brackets are sample sizes [nx; ny].
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Table 2
(Continued)

(c) AR(2), �1= 0:5, �2= �0:5 vs. AR(2), �1= 0:5, �2 (� = 10%)
�2 Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

-0.1 DT 0.10 0.18 0.22 0.28 0.71 0.72

LRT 0.18 0.19 0.33 0.35 0.73 0.73

PT 0.59 0.94 1.00 1.00 1.00 1.00

-0.3 DT 0.09 0.12 0.21 0.24 0.62 0.63

LRT 0.12 0.12 0.16 0.16 0.25 0.24

PT 0.38 0.38 0.72 0.85 1.00 1.00

-0.5 DT 0.08 0.08 0.07 0.09 0.10 0.10

LRT 0.10 0.10 0.10 0.10 0.10 0.10

PT 0.28 0.19 0.13 0.12 0.11 0.10

-0.7 DT 0.20 0.26 0.57 0.64 0.99 1.00

LRT 0.15 0.14 0.24 0.23 0.44 0.48

PT 0.46 0.50 0.65 0.92 1.00 1.00

-0.9 DT 0.67 0.85 1.00 1.00 1.00 1.00

LRT 0.46 0.64 0.95 0.97 1.00 1.00

PT 0.82 0.99 1.00 1.00 1.00 1.00

(d) ARMA(1,1), � = 0:2, � = �0:5 versus ARMA(1,1), � = 0:2, � (� = 10%)
� Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

-0.1 DT 0.18 0.32 0.63 0.73 1.00 1.00

LRT 0.16 0.22 0.33 0.36 0.73 0.74

PT 0.64 0.84 0.98 1.00 1.00 1.00

-0.3 DT 0.09 0.14 0.24 0.32 0.79 0.78

LRT 0.11 0.12 0.16 0.16 0.23 0.23

PT 0.40 0.30 0.47 0.70 1.00 1.00

-0.5 DT 0.05 0.07 0.06 0.07 0.06 0.07

LRT 0.10 0.10 0.10 0.10 0.10 0.10

PT 0.18 0.13 0.11 0.10 0.05 0.06

-0.7 DT 0.09 0.09 0.21 0.28 0.80 0.77

LRT 0.12 0.14 0.17 0.16 0.29 0.27

PT 0.28 0.55 0.62 1.00 1.00 1.00

-0.9 DT 0.16 0.21 0.60 0.68 1.00 1.00

LRT 0.22 0.25 0.48 0.55 0.96 0.96

PT 0.80 0.98 1.00 1.00 1.00 1.00

Note: Pairs of numbers within square brackets are sample sizes [nx; ny].
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Table 2
(Continued)

(e) AR(1), � = 0:5 vs. ARFIMA(1; d; 0), � = 0:5; d (� = 10%)
d Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

0.0 DT 0.08 0.11 0.10 0.11 0.10 0.10

LRT 0.10 0.10 0.10 0.10 0.10 0.10

PT 0.20 0.16 0.11 0.08 0.10 0.04

0.1 DT 0.13 0.13 0.24 0.29 0.76 0.71

LRT 0.11 0.11 0.14 0.12 0.15 0.14

PT 0.22 0.20 0.29 0.39 0.72 0.87

0.2 DT 0.22 0.25 0.59 0.70 1.00 1.00

LRT 0.13 0.15 0.22 0.24 0.49 0.48

PT 0.33 0.32 0.69 0.81 1.00 1.00

0.3 DT 0.38 0.46 0.90 0.95 1.00 1.00

LRT 0.20 0.24 0.46 0.50 0.95 0.94

PT 0.38 0.60 0.91 0.99 1.00 1.00

0.4 DT 0.53 0.71 1.00 1.00 1.00 1.00

LRT 0.29 0.40 0.78 0.86 1.00 1.00

PT 0.60 0.89 1.00 1.00 1.00 1.00

(f) AR(1), � = 0:7 vs. AR(1), � = 0:7; 0:8; 0:9; 1:0 (� = 5%)
� Test [50,50] [150,75] [200,200] [500,250] [1000,1000] [2000,1000]

0.7 DT 0.05 0.08 0.08 0.07 0.08 0.07

LRT 0.05 0.05 0.05 0.05 0.05 0.05

PT 0.06 0.07 0.05 0.04 0.05 0.05

0.8 DT 0.13 0.14 0.36 0.43 1.00 0.92

LRT 0.06 0.06 0.10 0.10 0.19 0.18

PT 0.15 0.13 0.29 0.38 0.84 0.98

0.9 DT 0.30 0.47 0.93 0.97 1.00 1.00

LRT 0.17 0.22 0.49 0.58 0.98 0.98

PT 0.32 0.54 0.88 0.99 1.00 1.00

1.0 DT 0.50 0.76 1.00 1.00 1.00 1.00

LRT 0.22 0.47 0.97 0.99 1.00 1.00

PT 0.59 0.95 1.00 1.00 1.00 1.00

Note: Pairs of numbers within square brackets are sample sizes [nx; ny].
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Figure 1. Log normalized interpolated periodograms of 30 European and some developed
countries
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Table 3
Industrial production indices series (countries and data avaibility)

Country Code Sample n Country Code Sample n
Austria OE 62:01-02:12 492 Canada CN 62:01-03:01 493

Belgium BG 62:01-03:01 493 Norway NW 62:01-03:01 493

Germany BD 62:01-03:01 493 Japan JP 62:01-03:01 493

Greece GR 62:01-03:01 493 USA US 62:01-03:01 493

Finland FN 62:01-03:01 493 Cyprus CY 90:01-03:01 142

France FR 62:01-03:01 493 Czech Republic CZ 90:01-03:01 142

Italy IT 62:01-03:01 493 Estonia ET 95:01-03:01 97

Ireland IR 75:07-03:01 331 Hungary HN 90:01-03:01 142

Luxembourg LX 62:01-03:01 493 Latvia LA 90:01-03:01 142

Netherlands NL 62:01-03:01 493 Lithuania LI 96:01-03:01 85

Portugal PT 62:01-03:01 493 Poland PO 90:01-03:01 142

Spain ES 65:01-03:01 457 Slovak Republic SK 93:01-03:01 121

Denmark DK 74:01-03:01 349 Slovenia SL 90:01-03:01 142

Sweden SD 62:01-03:01 493 Romania RO 90:01-03:01 142

United Kingdom UK 62:01-03:01 493 Turkey TK 90:01-03:01 142

-15 -10 -5 0 5 10 15 20 25
-4

-3

-2

-1

0

1

2

3

OE

BG

BD

GR

FN

FR

IT

IR

LX

NL

PT

ES

DKSD

UK

CN

NW

JP

US

CY

CZ

ET

HN

LA

LI

PO
SK

SL

RO

TK

First coordinate

S
e
c
o
n
d
 c

o
o
rd

in
a
te

Figure 2. Map of 30 European and some developed countries using the interpolated-
periodogram based metric (Multidimensional scaling)
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Figure 3. Dendrogram of industrial production series of 30 European and some developed
countries using the interpolated-periodogram based metric (Complete linkage algorithm)

includes the other new European Union countries (Estonia, Slovak Republic, Hungary,
Poland, Latvia) and the then candidate countries (Romania and Turkey).
These results seem to be very reasonable. Interestingly, they group together the more

developed countries. They di¤er slightly from the ones of Camacho, Pérez-Quiróz and Saiz
(2004). They found three clusters. The �rst includes most of the old European countries
and the new European countries Cyprus, Lithuania, Slovenia and Hungary together; the
second includes the industrialized countries USA, Canada, United Kingdom, Japan; and
the third includes the other new European countries (Latvia, Estonia, Czech Republic and
Poland), the candidates countries (Romania and Turkey), and the industrialized country
Norway.

6. Concluding remarks

This paper focused on development of spectral-based methods for classi�cation and
clustering analysis for time series with unequal length. It proposed zero-padding, reduced
periodogram, and interpolated periodogram metrics to deal with the problem of di¤erent
lengths and, consequently, di¤erent periodogram Fourier frequencies.
From a simulation study, it can be concluded that the interpolated periodogram ap-
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proach performs very well for a wide type of comparisons: (i) stationary processes with
similar sample properties, (ii) nonstationary and near nonstationary processes, and (iii)
short-memory and long-memory processes. Moreover, in the comparison of time series
of very di¤erent length, the interpolated periodogram method is preferred to the zero-
padding and the reduced periodogram methods. One application to industrial production
series also demonstrates the merits of the method.
To formally test whether two time series are generated by stochastic processes with

similar properties, we proposed periodogram-distance and spectral likelihood ratio statis-
tics. We found that the power of the periodogram-distance based test is in general greater
than the likelihood ratio test. We also considered a parametric approach based on the
distance between parameter estimates of the same model. For small samples, we found
that the parametric test is more powerful than the periodogram-distance based test, but
the former tends to overestimate the size of the test when the two series were simulated
from the same process. For large samples, both methods had very high power to dis-
tinguish between distinct processes and the estimated sizes were close to the signi�cance
levels of the tests. However, contrarily to the periodogram-distance based test, which is
easy to implement and computationally fast, the parametric approach needs ad-hoc and
computationally heavy ARMA modelling of several time series.
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