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Abstract

The monetary authority loses the ability to implement the Taylor Rule at the

zero lower bound. However, the promise to implement a Taylor Rule upon exit

remains an e¤ective policy instrument. We present two Taylor-Rule exit policies,

each with di¤erent commitment requirements, as alternatives to a truncated Taylor

Rule. A Taylor Rule with an optimally-chosen exit date and time varying in�ation

target delivers fully optimal policy, but requires a negative in�ation target, possibly

threatening the ability to commit. A Taylor Rule with only an optimally-chosen

exit date delivers almost all the gains of fully optimal policy with no need to commit

to the negative in�ation target.
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1 Introduction

Once the nominal interest rate reaches the zero lower bound (ZLB), monetary policy

looses the ability to stimulate the economy by further reducing the nominal interest rate.

Yet, the monetary authority retains the ability to stimulate by promising a path for

future interest rates which can raise expected in�ation, thereby reducing the current real

interest rate. Conventional monetary policy, de�ned as setting current and future short-

term interest rates, retains a role at the ZLB when the monetary authority is willing to

announce "forward guidance" for short-term rates.

In the standard New Keynesian model, monetary policy is characterized by a Taylor

Rule, whereby the nominal interest rate is set to equal a target, comprised of the sum of

targets for the real interest rate and in�ation, and to respond strongly to deviations of

in�ation and output from their respective targets. Woodford (2003, p. 287) argues that

when all shocks are to demand, a Taylor Rule with a time-varying interest rate target

equal to the natural rate, implements optimal monetary policy. Setting the nominal

interest rate equal to the natural rate assures that both the output gap and in�ation are

zero. The strong response of the interest rate to deviations of in�ation and output from

their targets eliminates sunspot equilibria, thereby assuring that the equilibrium is locally

unique.

The monetary authority cannot set the nominal interest rate equal to the natural rate,

as required by Woodford�s implementation of optimal monetary policy with the Taylor

Rule, when the natural rate is negative. We show that there is Taylor-Rule policy for

exiting the ZLB which can implement optimal monetary policy at the ZLB. The monetary

authority must make two changes to Woodford�s Taylor Rule. First, it must announce the

�rst date on which the Taylor Rule applies, an exit date, setting the nominal interest rate

to zero until that date. Second, the monetary authority modi�es the Taylor Rule with

an in�ation target which declines at a �xed rate after the exit date.1 This Taylor-Rule

exit policy di¤ers from a "truncated" version of Woodford�s Taylor Rule on two counts.

First, exit is postponed beyond the date on which the natural rate �rst becomes positive;

second exit occurs at a non-zero in�ation target.

We show that when the policy parameters are chosen optimally, commitment to the

optimal Taylor-Rule exit policy implements optimal monetary policy at the ZLB. The

1There is empirical evidence supporting the hypothesis that actual monetary policy has operated
with a time-varying in�ation target in the Taylor Rule. Ireland (2007) argues that US in�ation can be
explained by a New Keynesian model with a Taylor Rule only if the in�ation target is allowed to vary
over time. Additionally, Kozicki and Tinsley (2001), Rudebusch and Wu (2004) and Gurkaynak, Sack
and Swanson (2005) provide evidence of a time-varying short-run in�ation target for the US.
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postponed exit date provides stimulus since the interest rate will be kept at zero even

after the natural rate becomes positive. The optimal in�ation target is negative, allowing

the monetary authority to smooth the squared deviations of the output gap and in�ation,

responsible for welfare, reducing the large early deviations at the expense of creating

small negative deviations later. The welfare gains over a truncated Taylor Rule can be

large. Using our benchmark parameter values, over a range of adverse shocks for which

the initial natural interest rate varies between -0.58% to -4.97% at an annual rate, loss

with the truncated Taylor Rule ranges from 2.5 to 7 times the loss under optimal policy.

However, the optimal Taylor-Rule exit policy requires commitment to future de�ation

and recession, a requirement which could prove di¢cult politically.

We also consider an alternative Taylor-Rule exit policy which requires limited com-

mitment. The monetary authority commits only to a particular exit time in the future,

with this exit date chosen optimally, subject to a zero in�ation target. We �nd that

this "T-only" policy achieves almost all of the welfare gains of moving from a truncated

Taylor Rule to the optimal Taylor-Rule exit policy. These results justify the US Federal

Reserve policy of announcing that the nominal interest rate would be �xed near zero for

a "considerable period" of time, without any additional announcement of future recession

or de�ation.

Our paper is related to other papers which address monetary policy at the ZLB. Adam

and Billi (2006, 2007) and Nakov (2008) have analyzed optimal policy under discretion

and under commitment when autoregressive demand shocks yield the possibility of the

ZLB. They do not explicitly consider implementation or the Taylor Rule. Cochrane (2013)

shows that the discretionary commitment to exit the ZLB with zero values for in�ation

and the output gap yields a unique equilibrium at the ZLB. But, he also argues that if the

policy maker could commit to exit the ZLB at di¤erent values for in�ation and the output

gap, this could yield a preferable equilibrium during the ZLB. Krugman (1998), Eggertson

andWoodford (2003), Adam and Billi (2006), and Nakov (2008) demonstrate that optimal

monetary policy with commitment relies on an increase in in�ationary expectations to

leave the ZLB. Levin, Lopez-Salido, Nelson, and Yun (2009) argue that, when the shock

sending the economy to the ZLB is large and persistent, the stimulus which conventional

monetary policy can provide at the ZLB is not su¢cient to prevent a sizeable recession.

These policies work within the con�nes of a simple New Keynesian model, in which

the e¤ects of monetary policy are transmitted through the real interest rate. Much of

the literature on monetary policy in a liquidity trap expands policy to unconventional

methods, which are e¤ective to the extent that �nancial-market arbitrage is imperfect,
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that the monetary authority assumes risk on its balance sheet, and/or the quantity of

money has an e¤ect on the economy independent of its e¤ect on the real interest rate.

These policies are interesting and potentially useful, but the simple New Keynesian model

is not complex enough to provide a role for them.2 In a similar context, Williamson (2010)

argues that there is no ZLB, in the sense that the monetary authority can always �nd

some stimulative instrument. This instrument can be unconventional monetary policy,

but we argue that it can also be a commitment to a Taylor-Rule exit policy.

Additionally, Christiano, Eichenbaum, and Rebelo (2009), Woodford (2011), Werning

(2012), Erceg and Linde (2014), among others have considered the implications of using

�scal policy when monetary policy loses its e¤ectiveness.3 Understanding the e¤ectiveness

of �scal policy at the ZLB, together with its interactions with conventional and unconven-

tional monetary policy is interesting and important, but is not the subject of this paper.

Our focus is more narrow � what can the monetary authority do in the absence of �scal

cooperation in the stimulus e¤ort?

This paper is organized as follows. Section 2 presents the simple New Keynesian model

with a Taylor Rule for monetary policy. Section 3 provides the solution with commitment

to the optimal Taylor-Rule exit policy. Section 4 provides the solution with commitment

to optimal monetary policy, and Section 5 shows that, with parameter values optimally

chosen, the Taylor-Rule exit policy implements optimal monetary policy. Section 6 solves

numerically for optimal values of the exit time and in�ation target upon exit for the

optimal Taylor-Rule exit policy. Section 7 solves the model under the "T-only" policy,

and Section 8 concludes.

2 Simple New Keynesian Model with Taylor Rule

Following Woodford (2003) and Walsh (2010), we represent the simple standard lin-

earized New Keynesian model as an IS curve, derived from the Euler Equation of the

representative agent, and a Phillips Curve, derived from a model of Calvo pricing (Calvo,

1983). The linearization is about an equilibrium with a long-run in�ation rate of zero.4

yt = Et (yt+1)� � [it � rnt � Et�t+1] (1)

2Examples of unconventional monetary policy include Auerbach and Obstfeld (2004), Blinder (2000,
2010), Bernanke (2002), Bernanke and Reinhart (2004), Bernanke, Reinhart and Sack (2004), Clouse
et.al. (2003) and Gurkaynak, Sack and Swanson (2004,2005).

3Some unconventional monetary policies are arguable �scal policies.
4This does not require that the in�ation rate be zero in the long run, only that it not be so far from

zero to make the linearization inappropriate (Woodford 2003, p. 79).
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�t = �Et (�t+1) + �yt: (2)

In these equations yt denotes the output gap; in�ation (�t) is the deviation about a

long-run value of zero; it denotes the nominal interest rate, with a long-run equilibrium

value of r = 1��
�
; where r is de�ned as the long-run real interest rate and rnt as the natural

rate of interest; � represents the intertemporal elasticity of substitution with � � 1; �

represents the degree of price stickiness;5 � 2 (0; 1) denotes the discount factor. The

natural rate of interest embodies the combination of the long-run natural rate together

with shocks associated with preferences, technology, �scal policy, etc. Following Woodford

(2003, Chapter 4), we do not add an independent shock to in�ation in the Phillips Curve.6

This restricts the analysis to the case where monetary policy faces no trade-o¤ between

in�ation and the output gap.

We assume that, if the economy has not recently experienced the zero lower bound,

the monetary authority sets the nominal interest rate according to a Taylor Rule, given

by

it = rnt + ��t+1 + �� (�t � ��t ) + �y (yt � y�t ) ; (3)

where ��t represents a potentially time-varying in�ation target and y
�

t is the output target,
7

given by

y�t =
��t � ���t+1

�
: (4)

This Taylor Rule has two distinguishing characteristics. First, it allows a potentially time-

varying in�ation target. In periods for which the zero lower bound is distant history, the

optimal value for the in�ation target is zero, and we assume that the monetary authority

chooses an in�ation target of zero in these circumstances. Second, Woodford (2003) has

shown that optimal policy requires allowing the nominal rate to vary with the natural

rate, yielding a time-varying intercept. Since we allow a potentially time-varying in�ation

target, our intercept varies not only with the natural rate, but also with the in�ation

target.

5� = (1�s)(1��s)
s

��1+!
1+!" , where s 2 (0; 1) represents the fraction of randomly selected �rms that cannot

adjust their price optimally in a given period. Therefore, s = 0 ) � ! 1 ) complete �exibility and
s = 1) � = 0) complete stickiness. Hence, � 2 (0;1)) incomplete �exibility. ! > 0 is the elasticity
of �rm�s real marginal cost with respect to its own output, " > 0 is the price elasticity of demand of the
goods produced by monopolistic �rms. See, Adam and Billi (2006) and Woodford (2003) for details.

6Adam and Billi (2006) demonstrate that calibrated supply shocks are not large enough to send the
economy to the zero lower bound.

7This speci�cation for target output follows Woodford (2003), p. 246. He sets target output equal to
the solution of equation (2) with in�ation set at target in�ation. Ours di¤ers because the target in�ation
can vary over time.
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The equilibrium solution for the output gap and in�ation is independent of the values

for '� and 'y as long as they are large enough to assure two unstable roots.
8 Therefore,

it is important to understand the role of these policy parameters. The promise to respond

strongly to any sunspot shocks that raise in�ation and/or output, in Cochrane�s (2011)

words, "to blow up the economy" in the event of sunspot shocks, serves to rule out

sunspot equilibria and to assure a locally unique equilibrium. This requires that the

monetary authority be completely transparent, communicating the intention to "blow up

the economy" and that this threat be completely credible. This is because '� and 'y

do not show up in the equilibrium solution and therefore cannot be inferred from any

observable evidence.9

The monetary authority can follow the Taylor Rule, described by equation (3), as

long as it yields a positive nominal interest rate. Once the natural rate of interest falls

below zero, the Taylor Rule becomes infeasible. Nakov (2008) considered a "truncated"

Taylor Rule, in which the monetary authority follows a Taylor Rule10 whenever it implies

a positive nominal interest rate and otherwise sets the nominal rate to zero. The "trun-

cated Taylor Rule" implies a promise to exit the ZLB as soon as the natural rate becomes

positive and to exit at zero values for in�ation and the output gap. Cochrane (2013)

argues that commitment to exit the ZLB at positive values for in�ation and the output

gap would yield a preferable equilibrium during the ZLB. Krugman (1998), Eggertson and

Woodford (2003), Adam and Billi (2006, 2007), and Nakov (2008) demonstrate that opti-

mal monetary policy with commitment relies on an increase in in�ationary expectations

to leave the ZLB.

In this paper we assume that the monetary authority can commit to a Taylor-Rule

exit policy while at the ZLB, allowing conventional monetary policy to retain stimulative

e¤ects. Framing the policy in terms of the familiar Taylor Rule facilitates communication

and implementation. We consider two alternative designs for the exit policy, and �nd

that with full commitment and optimally chosen policy parameters, the Taylor-Rule exit

policy implements optimal monetary policy. However, commitment only to an exit date,

and not to a non-zero in�ation target, achieves most of the gains of fully optimal policy

relative to the truncated Taylor Rule.

8The criteria for two unstable roots is: � ('� � 1) + (1� �)'y > 0:
9Cochrane (2011) emphasizes that at the optimal equilibrium, values for '� and 'y do not a¤ect the

equilibrium. Woodford (2003, p. 288) makes the same point. If there were shocks to the Phillips Curve,
or if the intercept to the Taylor Rule did not vary optimally, then we would have evidence on the values
of '� and 'y. However, we would not have evidence that the monetary authority would actually "blow
up" the economy in the event of a sunspot shock.
10Nakov�s (2008) Taylor Rule does not have a time-varying intercept.
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3 Solution with Full Commitment to a Taylor-Rule

Exit Policy

We follow Jung, Teranishi, and Watanabe (2005) by assuming that the shock which

creates the ZLB is autoregressive and vanishes at a �xed rate. Speci�cally, we assume

that in period t = 1 a large adverse shock to the natural rate sends the nominal interest

rate in the Taylor Rule to zero. The shock (�) deteriorates at rate � such that

rnt = rn + ��1�t�1 (�) :

where, rn = r = 1��
�
. In order to obtain analytical results, we continue to follow Jung et

al (2005) and assume that there are no other shocks, restricting our solution to certainty.11

Additionally, we follow their technique of separating the solution into two periods, one

after exiting the ZLB and one before.

The Taylor-Rule exit policy requires that the monetary authority announce an exit

policy whereby it promises to implement equation (3) with in�ation target

��T+1+i = �i��
� i � 0;

on its chosen exit date (T + 1) : The choice of the time-varying in�ation target requires

that the monetary authority choose two parameters, the in�ation target on the exit date

(��) ; and the rate at which it declines (��). Prior to the announced exit date, the nominal

interest rate remains zero. The monetary authority must be able to fully commit.

3.1 Solution on Exit Date from ZLB Forward

Substituting the interest rate from the Taylor Rule (3), and target output, from equa-

tion (4) using �t+1 from equation (2), into the demand equation (1) yields a two-equation

system given by

yt+1 =

�
1 + �

�
�y +

�

�

��
yt + �

�
�� �

1

�

�
�t � ��t+1; (5)

�t+1 = �
�

�
yt +

1

�
�t; (6)

11Explicit extension of the results to uncertainty is the subject of future research.
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where

�t+1 = z��t z = �� � �� +
�y

�
(1� �) :

When �y and �� are chosen large enough to satisfy the Taylor Principle, as we assume

here, both roots, denoted by 
1 and 
2; are larger than one. We solve forward, with both

the output gap and in�ation determined to eliminate the two unstable roots, yielding

values for initial conditions upon exit as

yT+1 =
(1� ���) �z

� (
1 � ��) (
2 � ��)
��; (7)

�T+1 =
��z

� (
1 � ��) (
2 � ��)
��: (8)

Note that yT+1 and �T+1 are related by

yT+1 =
(1� ���)

�
�T+1: (9)

Values for the output gap and in�ation beyond the exit date are governed by the

monetary authority�s choices for �� the rate at which the target vanishes, ��: We can

write the solution either in terms of �� and ��, or, using equation (8), in terms of �T+1

and ��: For t � T + 1; the appendix shows that values are given by

yt =
(1� ���)

� (
1 � ��) (
2 � ��)
�z�t�(T+1)� �� =

(1� ���)

�
�t�(T+1)� �T+1; (10)

�t =
�

� (
1 � ��) (
2 � ��)
�z�t�(T+1)� �� = �t�(T+1)� �T+1: (11)

The nominal interest rate is set to achieve these values for the output gap and in�ation.

From equation (1), the nominal interest rate on the date of exit from the ZLB and beyond

(t � T + 1) is

it = rnt + �t+1 +
1

�
(yt+1 � yt) ; t � T + 1:

3.2 Solution Prior to Exit ZLB

Equations (1) and (2), with the nominal interest rate set to zero, yield solutions for

the output gap and in�ation prior to exit. One root is less than one and one is greater.

We denote the stable root by !1 and the unstable one by !2: The solutions are subject

to the terminal conditions given by equations (7) and (8).

7



Equations (38) and (39) in the appendix contain solutions as

yt =
1

�(!2�!1)

��
1
!1

�T+1�t
(!2 � ��) (1� �!1) +

�
1
!2

�T+1�t
(�� � !1) (1� �!2)

�
�T+1

+ �
�(!2�!1)

TX

k=t

��
1
!1

�k+1�t
(1� �!1)�

�
1
!2

�k+1�t
(1� �!2)

�
rnk ;

(12)

�t =
1

(!2�!1)

��
1
!1

�T+1�t
(!2 � ��) +

�
1
!2

�T+1�t
(�� � !1)

�
�T+1

+ ��
�(!2�!1)

TX

k=t

��
1
!1

�k+1�t
�

�
1
!2

�k+1�t�
rnk :

(13)

These equations illustrate how the Taylor-Rule exit policy a¤ects the behavior of the

output gap and in�ation during the period of the ZLB. If we were truncating the Taylor

Rule, then the only terms determining the output gap and in�ation at the ZLB would be

those with the natural rate of interest, while the natural rate is negative. For standard

parameter values, the terms multiplying the natural rates are positive. Therefore, the

negative natural rate terms yield negative e¤ects.

The Taylor-Rule exit policy adds terms with positive natural rates up until the last

period prior to the chosen exit date, providing a stimulative e¤ect. The stimulus is

greater the more natural rate terms are added, that is, the further into the future exit

is postponed. The Taylor-Rule exit policy also adds a term with the value of in�ation

upon exit (�T+1). The term multiplying �T+1 is positive and increasing in T . Therefore,

the value of in�ation upon exit also provides stimulus. From equation (8), the monetary

authority chooses values for the in�ation target (��) and the rate at which the in�ation

target vanishes (��) ; thereby choosing the value of in�ation upon exit (�T+1) :

To gain insight on how optimal values for the policy parameters are determined under

an optimal Taylor-Rule exit policy, we turn to the solution for fully optimal policy.

4 Solution under Optimal Policy

Under fully optimal policy the standard presentation has the monetary authority di-

rectly choose values for the output gap, in�ation, and the nominal interest rate, subject

to equations (1) and (2) and to the restriction that the nominal interest rate be positive,

to maximize utility of the representative agent. We use Woodford�s (2003) linear approx-

imation to the utility function of the representative agent when equilibrium in�ation is
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zero and the �exible-price value for output is e¢cient. The Lagrangian is given by

L =
1X

t=1

�t�1
�
�
1

2

�
�2t + �y2t

�
� �1;t [� (it � rnt � �t+1)� yt+1 + yt]� �2;t [�t � �yt � ��t+1] + �3;tit

�
;

where the third restriction represents the inequality constraint on the nominal interest

rate. First order conditions with respect to �t; yt; and it respectively are

�2;t � �2;t�1 + �t � ���1�1;t�1 = 0; (14)

�1;t � ��1�1;t�1 + �yt � ��2;t = 0; (15)

���1;t + �3;t = 0 �3;tit � 0 �3;t � 0 it � 0: (16)

Equations (16) reveal that when the nominal interest rate is zero, in the period of the

ZLB, that �3;t is weakly positive, implying that �1;t is weakly positive. In the period

after exit from the ZLB, the nominal interest rate becomes positive, moving �3;t to zero,

implying that �1;t is zero.

4.1 Solution for Output Gap and In�ation after Exit from ZLB

(t � T + 2)

Exit from the ZLB occurs in period T + 1. After exit, �1;t = 0 and it � 0: We begin

the solution with period T +2 instead of period T +1; since �1;T+1 = 0; but its lag
�
�1;T

�

could be positive. The equations of the model become

yt+1 = yt + � (it � rnt � �t+1) ; (17)

�t+1 = �
�

�
yt +

1

�
�t; (18)

�2;t � �2;t�1 + �t = 0; (19)

�yt � ��2;t = 0: (20)

First di¤erence equation (20) to yield

yt+1 � yt =
�

�

�
�2;t+1 � �2;t

�
:
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Substitute from equation (19) to yield

yt+1 � yt = �
�

�
�t+1 =

�

�

�
�

�
yt �

1

�
�t

�
: (21)

Equations (18) and (21) can be solved to yield values for output and in�ation in periods

T + 2 and beyond with initial values in period T + 1:

One root exceeds unity and the other is less than unity. Letting  2 be the smaller

stable root, initial values for output and in�ation must lie along the saddlepath, thereby

eliminating the unstable root, and requiring

yT+1 =
(1� � 2)

�
�T+1 =

� 2
� (1�  2)

�T+1; (22)

where the second equality uses the characteristic equation for the system.12 Solutions

depend on the initial conditions, determined to assure stability after exit, and the stable

root. Equations (42) and (43) in the appendix yield solutions for t � T + 1 as

yt =

�
1� � 2

�

�
 
t�(T+1)
2 �T+1; (23)

�t =  
t�(T+1)
2 �T+1: (24)

The optimal values for T and �T+1 are unique and are provided by solution for the

multipliers below in Section 6. These solutions provide guidance on how the monetary

authority, operating the Taylor-Rule exit policy, should optimally choose policy parame-

ters.

4.2 Solution Prior to Exit the ZLB

The solution prior to exiting the ZLB for yt and �t is similar to that under the Taylor-

Rule exit policy because with the nominal interest rate set equal to zero, the dynamic

behavior of the output gap and in�ation is governed by identical equations. The only

di¤erence is that the relationship between output and in�ation at T + 1 is governed by

 2 in equations (22) instead of by �� in equation (9). Solutions are given by

12The second expression is identical to that in Jung et al (2005).
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yt =
1

� (!2 � !1)

"�
1

!1

�T+1�t
(!2 �  2) (1� �!1) +

�
1

!2

�T+1�t
( 2 � !1) (1� �!2)

#

�T+1

+
�

� (!2 � !1)

"
TX

k=t

�
1

!1

�k+1�t
(1� �!1)�

�
1

!2

�k+1�t
(1� �!2)

#

rnk ; (25)

�t =
1

(!2 � !1)

"�
1

!1

�T+1�t
(!2 �  2) +

�
1

!2

�T+1�t
( 2 � !1)

#

�T+1

+
��

� (!2 � !1)

"
TX

k=t

�
1

!1

�k+1�t
�

TX

k=t

�
1

!2

�k+1�t#

rnk : (26)

These equations yield the same insights about how policy can a¤ect the time paths of

the output gap and in�ation during the ZLB. Postponing exit time (T + 1) beyond the

date on which the natural rate becomes positive adds terms with positive values of the

natural rate, creating stimulus. The term multiplying in�ation upon exit is positive and

increasing in T . Therefore, the value of in�ation upon exit (�T+1) also provides stimulus.

5 Equivalence between Full Commitment to the Taylor-

Rule Exit Policy and Optimal Policy

Theorem: If the monetary authority chooses its policy parameters, T + 1;

��; and �
�; optimally, then the Taylor Rule exit policy implements optimal

monetary policy.

Proof: Solutions for the output gap and in�ation before exit under the Taylor

Rule, equations (12) and (13), are equivalent to those under optimal policy

after exit, equations (25) and (26), if the monetary authority chooses �� =  2;

chooses T equal to its optimal value, and chooses �� to yield the optimal

in�ation rate upon exit, �T+1: The last choice requires a value of the in�ation

target given by

�� =
� (
1 � ��) (
2 � ��)

��z
�T+1:

Additionally, these choices imply that solutions for values of the output gap

and in�ation after exit under the Taylor Rule, given by equations (10) and (11)
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are identical to solutions after exit under optimal policy, given by equations

(23) and (24).

Therefore, the monetary authority can implement optimal policy by postponing exit

from the ZLB until the optimal exit time, choosing an in�ation target in the Taylor Rule

compatible with the optimal value of in�ation upon exit, and allowing the target to vanish

at a rate given by the value of the stable root with optimal policy after exit (�� =  2) :

Since agents are familiar with the Taylor Rule, and the addition of a time-varying

in�ation target is a small modi�cation, the Taylor-Rule exit policy provides a way to

implement and communicate optimal policy during and following a zero lower bound

event. Full commitment to the Taylor-Rule exit policy is an optimal policy.

Optimal exit time and the optimal in�ation target are determined by continuing to

solve the optimal monetary policy problem for the multipliers.

6 Optimal Exit Time and In�ation Value

6.1 Analytical Solution

For t � T + 2; equation (20), together with equation (23), yields a solution for �2;t

given by

�2;t =
�

�
yt =

 2
(1�  2)

 
t�(T+1)
2 �T+1:

Therefore, the solution for �2;T+2 is given by

�2;T+2 =
 2

(1�  2)
 2�T+1: (27)

We need solutions for �2;T+1; �2;T ; and �1;T : In period T + 1; the period of exit,

equations (14) and (15) with �1;T+1 = 0 yield

�2;T+1 � �2;T + �T+1 � ���1�1;T = 0; (28)

���1�1;T + �yT+1 � ��2;T+1 = 0: (29)

In period T + 2; these equations imply

�2;T+2 � �2;T+1 + �T+2 = 0;

�yT+2 � ��2;T+2 = 0:

12



Solving these equations, together with equation (22), yields

�1;T = 0;

�2;T =
1

(1�  2)
�T+1; (30)

�2;T+1 =
 2

(1�  2)
�T+1 =  2�2;T :

Solution for optimal values of �T+1 and T , requires solutions for the multipliers leading

up to and including the exit period. The equations for the output gap and in�ation for

periods prior to exit (t � T + 1) can be written in matrix notation as

Zt = AZt�1 � arnt ;

where

Zt =

"
yt

�t

#

A =

"
1 + ��

�
��
�

��
�

1
�

#

a =

"
�

0

#

:

A forward solution of the system to time T + 1 yields

Zt =

TX

k=t

A�(k�t+1)arnk + A�(T�t+1)ZT+1:

From equations (22) and (30),

ZT+1 = W�T ;

where

W =

"
0 �

�
 2

0 1�  2

#

�T =

"
�1;T

�2;T

#

:

Substituting, we can write the solution for Zt as

Zt =

TX

k=t

A�(k�t+1)arnk + A�(T�t+1)W�T : (31)

Write the equations for the multipliers as

�t = C�t�1 �DZt; (32)
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where

�t =

"
�1;t

�2;t

#

C =

"
1+��
�

�
�
�

1

#

D =

"
� �

0 1

#

:

Solve �t forward to time T , imposing that initial values (period 0) of both multipliers are

zero, to yield

�T = �

TX

t=1

CT�tDZt:

Substituting from equation (31), we have an equation in �T , given by

�T = �
TX

t=1

CT�tD

"
TX

k=t

A�(k�t+1)arnk + A�(T�t+1)W�T

#

:

The solution for T is given by the value of T which solves

�T =

"
0

�2;T

#

(33)

= �

"

I +

TX

t=1

CT�tDA�(T�t+1)W

#�1 TX

t=1

CT�tD

"
TX

k=t

A�(k�t+1)arnk

#

:

Given T , the solution for �T+1 is given by (1�  2)�2;T :

6.2 Numerical Solution

6.2.1 Benchmark Parameter Values

As a benchmark, we use the RBC parameterization from Adam and Billi (2006),

� = 1; � = 0:99; � = 0:057; '� = 1:5; 'y = 0:5; � = 0:0074:

All �ow values are expressed at quarterly rates. The values for the elasticity of substitution

and the discount factor are standard. The value of � is consistent with 34% of �rms

adjusting their price each period when demand elasticity is 7.66 and the elasticity of �rm

marginal cost is 0.47.

6.2.2 Problems with Integer T

The numerical algorithm considers alternative values for the optimal T by computing

values for �1;T for successive values of T; beginning with T large enough for the nominal

14



interest rate to be positive. In this range, �1;T is falling in T; eventually becoming negative

as T continues to increase. Equation (33) requires that �1;T = 0 at the optimum. However,

since T increases discretely, with �1;T falling in T , for a given value for the shock, there

is a value for T for which �1;T > 0 and �1;T+1 < 0: We never actually observe a value of

T for which �1;T = 0 due to the integer constraint on T:

For each value of the shock, consider choosing T as the last date for which �1;T remains

positive (theoretically, it is never negative). The value for the in�ation target is determined

by the value for �2T : Figure (1) plots values for �1;T and �2;T ; over a range of values for

the initial shock, �; where the value for T is calculated as suggested above.

Figure: 1 Multipliers for Di¤erent Shocks

As the size of the shock increases, there is a range of values for the shock, for which exit

time is �xed (not shown in graph) and both multipliers rise. As the size of the shock

continues to increase, there is a critical value for the shock at which exit time rises by

one unit and both multipliers fall discretely. As shock size continues to rise above each

of these critical values, the size of both multipliers rises until the shock reaches another

critical value. Therefore, both multipliers reach local minima at critical values of shock

size for which exit time discretely rises.

Since �1;T > 0; the optimal exit time is actually larger than T: If exit time were

continuous, we would raise exit time just enough to get �1;T = 0: This increase in exit

time would also reduce �2;T : The closer �1;T is to zero, the less we would need to raise

a continuous value for the exit time above our choice of T to get �1;T to reach zero.

Therefore, the optimal exit time, chosen by the above method, approaches the optimum

15



without an integer constraint, as the value for �1;T approaches zero. Since we optimally

want to raise T less at critical shock values, the integer constraint is least binding at

these critical values. And the value for �2;T is also closest to its value without an integer

constraint for these critical values of shocks. Comparing the optimal value of in�ation

upon exit, implied by values of �2;T in Figure (1) for any two discrete values of the shock,

reveals that the in�ation value could rise or fall as the shock size increases depending on

how binding the integer constraint is for the particular set of shock sizes we have chosen.

The integer constraint is a¤ecting the solution, particularly the value for optimal in�ation

upon exit.13

We do not believe that the integer constraint actually constrains monetary policy. A

binding integer constraint would mean that there are only four dates in the year on which

the monetary authority could choose to raise the interest rate for the �rst time. This

restriction does not appear realistic. Therefore, we want a solution for which the integer

constraint is as close to non-binding as possible. The integer constraint is least binding

at the critical values of shocks for which the multipliers reach local minima. We consider

shock values which increase in increments of 1.0e-9, so that minimum values for �1;T get

very close to zero, and restrict attention to the set of critical shock values (those for which

the multipliers reach local minima).

With these restrictions, multipliers are the lower envelopes of the two seesaw lines in

Figure 1. As shock size rises, �1;T remains very close to zero. In contrast, �2;T is negative

for any shock size and is falling in shock size. This later result implies that optimal

in�ation upon exit is always negative and that it is decreasing in shock size. Failure to

restrict attention to shock values for which the multipliers reach local minima yields a

positive value for optimal in�ation upon exit for some shock values. Positive in�ation

is compensating for the inability to raise exit time by something less than one discrete

unit and therefore for having exit time too small relative to the optimal continuous value.

Additional experimentation has revealed that the negative value for in�ation upon exit is

robust to persistence of the shock and to changes in other parameter values.14

13Were we to actually impose the integer constraint in the solution for optimal exit time, we would not
get the solution we propose. The monetary authority could explicity use the in�ation target to compensate
for not raising the exit time su¢ciently or for raising it too much due to the integer constraint.
14We have reduced persistence to 0.80, considered values of � between 0.16 and 6.25, and considered a

lower value for � equal to 0.24.

16



6.2.3 Optimal Exit Strategy

We present the optimal exit strategy in terms of the Taylor-Rule exit policy. All values

for the output gap, in�ation and the nominal interest rate along the adjustment path are

identical to those for optimal policy. Our purpose in using the Taylor-Rule exit policy to

present the results is to illustrate that communication can occur in terms of the Taylor

Rule, augmented with the time-varying in�ation target.

Consider the time paths for the output gap and in�ation with the optimal Taylor-Rule

exit policy after a particularly large adverse shock, � = 0:02253508 in period one, sending

the natural rate to an annual rate of -4.97% . We set persistence high (� = 0:90) such

that the natural rate that does not return to positive territory until period nine. The

monetary authority optimally postpones raising the interest rate until period 14, fully

�ve periods after the nominal rate has become positive. Optimal in�ation in the exit

period is negative and is given by (1�  2)�2T = �0:0396% at a quarterly rate. This

requires an in�ation target for the Taylor Rule given by equation (8), as

�� =
� (
1 �  2) (
2 �  2)

��z
�T+1 = �0:0703%;

where the monetary authority has chosen �� =  2:

Figure 2 plots the time paths for the output gap, in�ation, and the nominal interest

rate, beginning with the initial shock. Values on the vertical axis are quarterly percentages

expressed at annual rates, while values on the horizontal axis are quarters. The shock

occurs in quarter 1. As a benchmark, we also plot the time path that a truncated Taylor

Rule, with a zero in�ation target and an intercept given by the natural rate, would deliver.
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Figure: 2 Alternative Taylor Rules

Before continuing with the presentation of the Taylor-Rule exit policy, consider why

the truncated Taylor Rule is a natural benchmark. The truncated Taylor Rule represents

optimal policy when the monetary authority can commit only to follow a Taylor Rule,

but not to an exit date or an in�ation target. Essentially, the truncated Taylor Rule

implements optimal discretionary policy.15 Under this policy, the nominal interest rate

is zero as long as the natural rate is negative. Once the natural rate becomes positive,

the monetary authority optimally raises the nominal rate to the natural rate, thereby

returning both the output gap and in�ation to their optimal values of zero.

Under full commitment to the Taylor-Rule exit policy, the monetary authority promises

15As Cochrane (2011) argues, the Taylor Rule itself requires commitment to "blow up" the economy
in the event of a sunspot shock, thereby assuring a locally unique equilibrium.
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to postpone the exit date16 and to exit with de�ation which vanishes over time. The exit

date and the in�ation-target parameters are all chosen optimally. This policy provides

considerable stimulus upon impact, all stemming from the postponed exit date. The later

exit date implies that there are more periods for which the monetary authority could

have raised the nominal interest rate, but has chosen not to. This raises in�ationary

expectations, raising output and in�ation, compared to a truncated Taylor Rule.

In contrast, the negative in�ation target upon exit reduces in�ationary expectations

and is contractionary. As the exit date nears, expectations of de�ation actually cause

a small recession coupled with de�ation prior to the arrival of the exit date.17 On the

exit date, the monetary authority raises the nominal interest rate higher than the real

rate to exacerbate the recession and de�ation, which reach troughs at -0.16% and -1.34%

respectively, at annual rates. Both remain small and quickly vanish over the next few

quarters. The de�ation and recession upon exit point to the importance of the ability to

commit, not only to an exit date, but also to exit with de�ation and recession.

The negative value of in�ation upon exit runs counter to the notion that all means

of monetary-policy stimulus should be employed at the ZLB, including postponing exit

time and raising in�ation upon exit. Walsh (2009), Levine et al (2009), and Cochrane

(2013) all discuss the bene�ts of promising to exit the ZLB with positive in�ation. Why

does optimal policy require a negative in�ation target which produces a small future

recession with de�ation? Loss is determined by discounted squared deviations. The

large adverse shock itself creates large negative deviations, which vanish over time under

a truncated Taylor Rule. With loss determined by discounted squared deviations, it

is optimal to smooth these deviations over time, reducing the initial large and lightly-

discounted deviations at the expense of creating new small and more heavily deviations

in the future. The postponed exit date reduces the magnitude of early negative deviations,

while the negative in�ation target restrains both the reduction in the size of the initial

negative deviations as well as their reversal to positive, at the expense of creating small

negative deviations in the future. Greater loss reduction is possible with greater reduction

of the initial deviations (which are large) at the expense of creating later deviations (which

are small).

The loss under the truncated Taylor Rule is 4.85 times as great as the loss under the

optimal Taylor-Rule exit policy. In general, relative loss is increasing in both the size of

16The postponed exit date is the feature of optimal monetary policy emphasized by Jung et al (2005).
17Postponing exit beyond the �rst date on which the natural rate of interest becomes positive achieves

the overshooting of the in�ation rate, necessary to reduce the real rate of interest. And, although in�ation
is negative in the exit period, it is positive on the �rst date for which the natural rate becomes positive.
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the shock and in its persistence. With high persistence, 0.90 in this example, and a range

of initial shocks sending the natural rate of interest to values between -0.06 and -4.97 at

annual rates, loss due to failure to commit ranges from about 2.5 to 7 times that under

commitment. When persistence is lower, for example 0.80, the range of excess loss is

smaller, between 2.5 and 3.2 times that under commitment. These results highlight the

relative importance of pursuing the optimal Taylor-Rule exit policy when the negative

shock is large and highly persistent.

The need to commit to a future recession and de�ation could pose a political problem

to commitment, even though the magnitude of the recession and de�ation are small.18

The forward guidance provided by the Federal Reserve on US monetary policy stresses

that the nominal interest rate will remain zero for a "considerable period," but never

states that once that period ends, that it will rise su¢ciently to exacerbate or create a

recession and de�ation. What does the monetary authority lose in welfare if it can commit

to postpone the exit date from the ZLB beyond that using a truncated Taylor Rule, but

cannot commit to the de�ation target upon exit?

7 Limited Commitment to a Taylor Rule Exit Policy

In this section, we investigate a form of limited commitment by the monetary authority.

We assume that the monetary authority can commit to an exit date from the ZLB,

but it cannot commit to a de�ation target on that exit date. It chooses the exit date

optimally, conditional upon a zero in�ation target upon exit. We refer to this policy as

a "T-only" policy, since the monetary authority chooses only the date on which to begin

implementation of the Taylor Rule with the �xed in�ation target of zero.19 This policy

is very much like the "forward guidance" for interest rates which the US Federal Reserve

enacted in 2008, whereby they have promised to keep nominal interest rates near zero for

"a considerable period."

We solve this problem numerically, choosing the value for the exit date (T + 1) which

yields the highest welfare. We solve the optimization problem over a large grid of mag-

18Jeanne and Svensson (2007) are concerned with the ability to commit to positive in�ation upon
exit. Their solution, relying on the central bank�s desire to maintain the value of their foreign currency
reserves, does not work when the commitment is to de�ation. However, over much of the period for
which the natural rate is positive and the nominal rate is zero, optimal in�ation is positive. The positive
in�ation after the natural rate becomes positive requires commitment, which could be supported by their
mechanism. The subsequent de�ation cannot be supported by their mechanism.
19Carlstrom, Fuerst, and Paustian (2012) analyze a similar policy in the same New Keynesian model

without the initial adverse shock creating the ZLB.
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nitudes for the shocks and observe that as shock size increases, welfare has a downward

trend, but the fall is not monotonic. Speci�cally, when the integer value for T is optimal,

welfare reaches a local maximum, and, as the shock size changes in both directions, T

remains �xed and welfare falls. As the shock size changes from a value for which the

optimal value of T is an integer, agents would like to chose a non-integer value for T ,

but cannot, implying lower welfare since the optimal value of T is not actually an integer.

Since we do not believe that the integer constraint is actually binding in the real world, we

would like to consider results where the integer value for T is actually optimal. Therefore,

we follow a strategy similar to that in the solution of full commitment Taylor-Rule exit

policy. We limit attention to shocks for which welfare reaches local maxima. When we

do this, we identify a set of shocks associated with local maxima for welfare. Using only

this set of shocks, welfare is falling in the size of the shock.

We want welfare comparisons under Taylor Rules with full commitment and limited

commitment to choose T only. This is problematical since the admissible shock values in

the two cases di¤er. However, there are two instances in which admissible shock values

are identical up to four decimal points. We compare these two sets of shocks. When the

admissible shock with full commitment is 0.011557 and that with limited commitment

is .0115960, then limited commitment creates loss 20% larger than loss under full com-

mitment. The second admissible pair of shocks is 0.018340, .0183370 with loss 7% larger

under limited commitment. These results imply that postponing the exit date achieves

most of the gains of moving from the truncated Taylor Rule to full commitment to the

optimal Taylor-Rule exit policy.
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Figure: 3 Compare T-Only with Other

Taylor Rules

We reinforce these insights by comparing time paths for the larger pair of shocks in

Figure 3, shocks which send the natural rate to -3.30%. This is a smaller shock than we

considered in the previous section. With limited commitment to the "T-only" policy, exit

occurs one period earlier than with full commitment, in period 10 instead of in period 11.

In the exit period the nominal interest rate is set to equal the natural rate and both the

output gap and in�ation return to zero. The time path for the output gap, leading up to

the "T-only" exit period is almost identical to that under full commitment, with output

slightly higher early and slightly lower later. In�ation is uniformly higher under "T-only"

than under full commitment. "T-only" avoids the de�ation and recession in the vicinity

of the exit period.

These results seem to justify US Federal Reserve policy following the �nancial crisis.

The Fed is likely to face political constraints in committing to future de�ation and reces-

sion, but not in the timing for initially raising interest rates. We have shown that the

optimal choice of exit time can achieve almost all of the gains of full commitment to the
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optimal Taylor-Rule exit policy.

8 Conclusion

We illustrate that full commitment to a Taylor-Rule exit policy, in which the monetary

authority chooses optimal values for the exit date, the in�ation target upon exit, and its

rate of decline, implements optimal monetary policy at the zero lower bound. Since

addition of an in�ation target to the Taylor Rule advocated by Woodford is a small

modi�cation, we argue that framing monetary policy at the ZLB in terms of our optimal

Taylor-Rule exit policy provides a way to communicate and implement optimal monetary

policy at the ZLB.

We �nd that the optimal in�ation upon exit is negative. Once we restrict attention to

shock values for which this integer constraint on T is "almost" non-binding, we cannot �nd

positive in�ation upon exit for any standard parameter values, or values for persistence.

And the in�ation target is falling in the size of the shock. Optimal policy provides

stimulus early, while the negative impact of the adverse shock is greatest, at the expense

of contraction later, as the e¤ect of the adverse shock wanes.

Commitment to the policy parameters required by the optimal Taylor-Rule exit policy

could be politically di¢cult due to the negative in�ation target upon exit. Therefore, we

consider a policy which requires more limited commitment, a policy whereby the monetary

authority commits to an exit date, but not to a non-zero in�ation target. We show that

when the exit date is chosen optimally subject to a zero constraint on the in�ation target,

this policy provides almost all of the welfare gains of moving from a truncated Taylor Rule

to the optimal Taylor-Rule exit policy, without the need to promise future de�ation and

recession. This "T-only" policy appears consistent with the Federal Reserve�s promise

to keep interest rates near zero for a "considerable period," with no mention of creating

future recession or de�ation.
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9 Appendix

9.1 Solution under Taylor Rule Policy

9.1.1 Solution from Exit Date Forward

We can write this system of equations given by (5) and (6) in matrix notation as

"
yt+1

�t+1

#

=

"
1 + �

�
�y +

�
�

�
�
�
�� �

1
�

�

��
�

1
�

#"
yt

�t

#

�

"
��t+1

0

#

:

The eigenvalues are given by


 =

1 + 1
�
+ �

�
�y +

�
�

�
�

��
1 + 1

�
+ �

�
�y +

�
�

��2
� 4

�
1
�

� �
1 + �

�
�y + ���

���
1

2

2
;

where �y and �� are chosen such that both eigenvalues exceed unity. Decomposing the

system into eigenvalues and eigenvectors yields

"
yt+1

�t+1

#

= E�E�1

"
yt

�t

#

�

"
��t+1

0

#

;

where

E =

"
1��
1
�

1��
2
�

1 1

#

� =

"

1 0

0 
2

#

E�1 =
�

� (
2 � 
1)

"
1 �

1��
2
�

�1 1��
1
�

#

;

with


1
2 =
1

�

�
1 + �

�
�y + ���

��
:

Pre-multiplying by E�1 yields

E�1

"
yt+1

�t+1

#

= �E�1

"
yt

�t

#

� E�1

"
��t+1

0

#

;

where

E�1

"
yt+1

�t+1

#

=

"
y
0

t+1

�
0

t+1

#

E�1

"
��t+1

0

#

=
��

� (
2 � 
1)

"
�t+1

��t+1

#

:
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Substituting yields

"
y
0

t+1

�
0

t+1

#

=

"

1 0

0 
2

#"
y
0

t

�
0

t

#

+

"
�

���t+1
�(
2�
1)
���t+1
�(
2�
1)

#

:

Since both roots exceed unity, we solve each equation forward to yield

y
0

t =
��

� (
2 � 
1)

1X

i=1

�
1


1

�i
�t+i;

�
0

t =
���

� (
2 � 
1)

1X

i=1

�
1


2

�i
�t+i:

We are interested in the value of the variables in the period of exit from the ZLB, that is

in period T + 1:

y
0

T+1 =
��

� (
2 � 
1)

1X

i=1

�
1


1

�i
�T+1+i;

�
0

T+1 =
���

� (
2 � 
1)

1X

i=1

�
1


2

�i
�T+1+i:

To do the summations, write the expressions for the �0s as

�T+2 =

��
�� +

�y

�

�
��T+1 �

�
1 +

��y

�

�
��T+2

�
=

�
�� +

�y

�
�

�
1 +

��y

�

�
��

�
�� = z��;
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��
�� +

�y

�

�
��T+1+i �

�
1 +

��y

�

�
��T+2+i

�
=

�
�� +

�y

�
�

�
1 +

��y

�

�
��

�
�i��

�

= z�i��
�:

Substituting, the sums can be expressed as

1X

i=1

�
1


1

�i
�T+1+i =

z


1 � ��
��;

1X

i=1

�
1


2

�i
�T+1+i =

z


2 � ��
��:
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This allows us to write the solution for the transformed variables as

y
0

T+1 =
����

� (
2 � 
1)

�
z


1 � ��

�
;

�
0

T+1 =
�����

� (
2 � 
1)

�
z


2 � ��

�
:

To solve for the original variables, multiply by the matrix E;

"
yT+1

�T+1

#

=

"
1��
1
�

1��
2
�

1 1

#"
y
0

T+1

�
0

T+1

#

;

yielding

yT+1 =
(1� ���)

� (
1 � ��) (
2 � ��)
�z��; (34)

�T+1 =
�

� (
1 � ��) (
2 � ��)
�z��: (35)

Note that at T + 1; the output gap is proportional to in�ation according to

yT+1 =
(1� ���)

�
�T+1:

These values give us terminal conditions for the solution prior to exit.

Since there is only single stable root, provided by the rate at which the in�ation target

vanishes, values beyond T + 1 are given by

yt =
(1� ���)

� (
1 � ��) (
2 � ��)
�z�t�(T+1)� �� =

(1� ���)

�
�t�(T+1)� �T+1; (36)

�t =
�

� (
1 � ��) (
2 � ��)
�z�t�(T+1)� �� = �t�(T+1)� �T+1: (37)

Substituting from the equations for output and in�ation after exit, equations (36) and

(37), yields the behavior of the interest rate after exit

it = rnt +

�
1 +

(1� ���) (�� � 1)

����

�
�T+1�

t�T�1
�

= rnt +

�
1 +

(1� ���) (�� � 1)

����

� �
��z

� (
1 � ��) (
2 � ��)

�
���t�T�1� :
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9.1.2 Solution Prior to Exit ZLB

Equations (1) and (2) with the nominal interest rate set to zero can be written as,

"
yt+1

�t+1

#

=

"
1 + ��

�
��
�

��
�

1
�

#"
yt

�t

#

�

"
�

0

#

rnt :

The roots of the system are given by

! =

1+��
�
+ 1�

��
1 + 1+��

�

�2
� 4( 1

�
)

� 1
2

2
;

implying that one root is larger than unity and one is smaller. Let !1 > 1; be the unstable

root.

We solve the system subject to the terminal conditions given by equations (34) and

(35). Using eigenvalues and eigenvectors, we can express the system as

"
yt+1

�t+1

#

= F
F�1

"
yt

�t

#

�

"
�rnt

0

#

;

where

F =

"
1��!1
�

1��!2
�

1 1

#


 =

"
!1 0

0 !2

#

F�1 =
�

� (!2 � !1)

"
1 �

1��!2
�

�1 1��!1
�

#

;

with

!1!2 =
1

�
:

Pre-multiplying by F�1 yields

F�1

"
yt+1

�t+1

#

= 
F�1

"
yt

�t

#

� F�1

"
�rnt

0

#

;

where

F�1

"
yt+1

�t+1

#

=

"
y
0

t+1

�
0

t+1

#

F�1

"
�rnt

0

#

=
��

� (!2 � !1)

"
rnt

�rnt

#

:
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Substituting yields

"
y
0

t+1

�
0

t+1

#

=

"
!1 0

0 !2

#"
y
0

t

�
0

t

#

+

"
�

��rn
t

�(!2�!1)
��rn

t

�(!2�!1)

#

:

Solve each equation forward to period T + 1, yielding

y
0

t =

�
1

!1

�T+1�t
y
0

T+1 +

TX

k=t

�
1

!1

�k+1�t
��

� (!2 � !1)
rnk ;

�
0

t =

�
1

!2

�T+1�t
�
0

T+1 �

TX

k=t

�
1

!2

�k+1�t
��

� (!2 � !1)
rnk :

To solve for the original variables, we pre-multiply by the matrix F;

"
yt

�t

#

=

"
1��!1
�

1��!2
�

1 1

#"
y
0

t

�
0

t

#

;

yielding

yt =
1� �!1

�

"�
1

!1

�T+1�t
y
0

T+1 +

TX

k=t

�
1

!1

�k+1�t
��

� (!2 � !1)
rnk

#

+
1� �!2

�

"�
1

!2

�T+1�t
�
0

T+1 �

TX

k=t

�
1

!2

�k+1�t
��

� (!2 � !1)
rnk

#

;

�t =

"�
1

!1

�T+1�t
y
0

T+1 +

TX

k=t

�
1

!1

�k+1�t
��

� (!2 � !1)
rnk

#

+

"�
1

!2

�T+1�t
�
0

T+1 �

TX

k=t

�
1

!2

�k+1�t
��

� (!2 � !1)
rnk

#

:

We transform the y
0

T+1 and �
0

T+1 into original variables using the terminal condition

yT+1 =
(1� ���)

�
�T+1;

and "
y
0

T+1

�
0

T+1

#

= F�1

"
yT+1

�T+1

#

=
�

� (!2 � !1)

"
1 �

1��!2
�

�1 1��!1
�

#"
yT+1

�T+1

#

;
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to yield

y
0

T+1 =

�
!2 � ��
!2 � !1

�
�T+1;

�
0

T+1 =

�
�� � !1

!2 � !1

�
�T+1:

Substituting into the solutions for yt and �t yields

yt =
1� �!1

�

"�
1

!1

�T+1�t �
!2 � ��
!2 � !1

�
�T+1 +

TX

k=t

�
1

!1

�k+1�t
��

� (!2 � !1)
rnk

#

(38)

+
1� �!2

�

"�
1

!2

�T+1�t �
�� � !1

!2 � !1

�
�T+1 �

TX

k=t

�
1

!2

�k+1�t
��

� (!2 � !1)
rnk

#

;

�t =

"�
1

!1

�T+1�t �
!2 � ��
!2 � !1

�
�T+1 +

TX

k=t

�
1

!1

�k+1�t
��

� (!2 � !1)
rnk

#

(39)

+

"�
1

!2

�T+1�t �
�� � !1

!2 � !1

�
�T+1 �

TX

k=t

�
1

!2

�k+1�t
��

� (!2 � !1)
rnk

#

:

9.2 Optimal Policy

9.2.1 After Exit ZLB

In matrix form, equations (18) and (21) can be written as

"
yt+1

�t+1

#

=

"
1 + �2

��
� �
��

��
�

1
�

#"
yt

�t

#

;

with eigenvalues

 =
1 + �2+�

��
�

r�
1 + �2+�

��

�2
� 4

�

2
;

implying that one stable and one unstable root. Decomposing the system using eigenvalues

and eigenvectors yields "
yt+1

�t+1

#

= G	G�1

"
yt

�t

#

;

29



with

G =

"
1�� 1
�

1�� 2
�

1 1

#

	 =

"
 1 0

0  2

#

G�1 =
�

� ( 2 �  1)

"
1 �

1�� 2
�

�1 1�� 1
�

#

;

and

 1 2 =
1

�
:

Pre-multiply by G�1 to yield

G�1

"
yt+1

�t+1

#

= 	G�1

"
yt

�t

#

"
y
0

t+1

�
0

t+1

#

= 	

"
y
0

t

�
0

t

#

:

These two di¤erential equations in y
0

t and �
0

t can be solved forward to yield

y
0

t =  
t�(T+1)
1 y

0

T+1;

�
0

t =  
t�(T+1)
2 �

0

T+1:

Letting the unstable root be given by  1; the system is explosive unless y
0

T+1 = 0: There-

fore we set y
0

T+1 = 0: Transforming back into original variables yields

"
yt

�t

#

= G

"
 
t�(T+1)
1 y

0

T+1

 
t�(T+1)
2 �

0

T+1

#

=

"
1�� 1
�

1�� 2
�

1 1

#"
0

 
t�(T+1)
2 �

0

T+1

#

:

The two equations become

yt =
1� � 2

�
 
t�(T+1)
2 �

0

T+1; (40)

�t =  
t�(T+1)
2 �

0

T+1: (41)

We transform the �
0

T+1 back into original variables using

"
y
0

T+1

�
0

T+1

#

= G�1

"
yT+1

�T+1

#

=
�

� ( 2 �  1)

"
1 �

1�� 2
�

�1 1�� 1
�

#"
yT+1

�T+1

#

:

30



Therefore,

y
0

T+1 =
�

� ( 2 �  1)

�
yT+1 �

1� � 2
�

�T+1

�
;

�
0

T+1 =
�

� ( 2 �  1)

�
�yT+1 +

1� � 1
�

�T+1

�
:

Setting y
0

T+1 = 0; as previously assumes, assures that the system does not explode. This

yields a relation between exit-period values of output and in�ation given by

yT+1 =
1� � 2

�
�T+1:

Substituting yields

�
0

T+1 =
�

� ( 2 �  1)

�
�

�
1� � 2

�
�T+1

�
+
1� � 1

�
�T+1

�
= �T+1:

Substituting into equations (40) and (41), the solutions for output and in�ation for t �

T + 1 become

yt =

�
1� � 2

�

�
 
t�(T+1)
2 �T+1 (42)

�t =  
t�(T+1)
2 �T+1 (43)
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