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In this paper we use the standard factor models to compose common-factor portfolios by a 

novel linear transformation extracted from large data sets of asset returns. Although the 

transformation proposed here retains the basic properties of the usual common factors, 

some interesting new properties are further included in them. The advantages of using 

common-factor portfolios in asset pricing are: (i) they produce a dimension reduction in the 

asset- pricing data-base while preserving the usual restrictions imposed by the asset-pricing 

equation, and (ii) from the empirical perspective, their performance is better than those of 

standard factor models. The practical importance is confirmed in two applications: the 

performance of common-factor portfolios is shown to be superior to those of the asset 

returns and factors commonly used in the finance literature. 
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1. Introduction 

 

In this paper we use the standard factor models to compose common-factor portfolios by a 

novel linear transformation extracted from large data sets of asset returns. Although the 

transformation proposed in proposition (1) keeps the basic properties of the usual common 

factors, some new interesting features are further included in them. In a setup where it is 

desirable to use the asset-pricing equation, one of the advantages of common-factor 

portfolios is preservation of the usual restrictions imposed by the asset-pricing equation. On 

the other hand, it produces a dimension reduction in the set of restrictions involved in the 

asset-pricing equation on a given set of asset returns, as shown in proposition  (2).  We 

present two applications where the usage of common-factor portfolios provides some 

theoretical and practical advantages. 

In the first application, in a generalized method-of-moments (GMM) framework, common- 

factor portfolios are used to test the implications of the consumption-based asset pricing 

model (hereafter CCAPM) of Breeden (1979) and Lucas (1978). In this setup, most 

CCAPM empirical studies have considered only a few asset returns, e.g., a risky and a 

riskless asset (Hansen and Singleton, 1982; and Epstein and Zin, 1991). One of the reasons 

for this choice is to ensure the non-singularity of the variance-covariance matrix of the 

moment restrictions used in GMM estimation, a necessary condition for feasibility of 

GMM estimates. However, this apparent advantage it is not without drawbacks. As is well 

known, efficient GMM estimation of preference parameters requires using all the available 

information on asset returns, pjR tj ....2,1 ,1,  , - not just that contained in a handful of 

returns - to serve as moment restrictions from which to extract preference estimates. In the 

CCAPM, the necessary first-order conditions are: 
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where tC  represents aggregate consumption at time t ,  1,0  is the one-period discount 

factor, and  u  is a strictly concave utility function with the usual properties. Define the 

intertemporal marginal rate of substitution by    ttt cucuM   /11  . Then equation (1) 

results in: ][1 1,1  tjtt RME . This equation is the pricing equation established by Harrison 

and Kreps (1979), Hansen and Richard (1987) and Hansen and Jagannathan (1991), where 

the intertemporal marginal rate of substitution 1tM  is the stochastic discount factor (SDF). 

Ideally, we should consider all assets available in the economy in testing the CCAPM 

model. However, as argued above, this may be infeasible if the number of Euler equations

p  is large vis-à-vis the number of time observations available  T . In practice, if one 

resorts to quarterly post-WWII data on consumption, 240T , but the number of asset 

returns that could be used to test the CCAPM is much bigger. Even if one limits the number 

of returns, but with p  relatively large, it may be hard to invert the long-run variance-

covariance matrix of moment restrictions. For these reasons, several studies have kept 

2p , or perhaps a little larger. Thus, by transforming the set of p  returns tR  in the set of 

m  common factor portfolios, tR
~

 (shown in Proposition 1), a reduction is produce in the 

number of original asset-pricing restrictions ( pm  ). So, our starting point is not (1), but 



rather a new asset pricing equation     1]
~

/[ 1,1   tjttt RCuCuE for mj ....2,1 .  

Moreover, since the intertemporal marginal rate of substitution in consumption should only 

respond to systematic changes in real returns, a plausible strategy to identify these changes 

is using only the pervasive components of asset returns. This point to the use of common-

factor methods where theoretical moment restrictions are preserved. This is exactly what 

common-factor portfolios provide: they keep a low number of moment restrictions while 

extracting the pervasive information contained in a large number of asset returns.  

In a second application, we propose the use of common-factor portfolios as a fundamental 

risk factor in the multifactor asset-pricing model of Ross (1976). In this arbitrage pricing 

theory (APT) setup, it is convenient to express a beta pricing model in terms of its factor-

mimicking payoffs or factor-mimicking portfolios rather than of the factors themselves. For 

example, to generate the factor-mimicking returns,


f , each payoff is divided by its price,

))/((

)/(

Xfprojp

Xfproj
f   where f  is the original factor, X  is the payoff space,  p  and

)/( Xfproj  are respectively a pricing function and the projection of the original factors 

onto the payoff space
3
. By using common-factor portfolios this additional operation can be 

omitted (dividing by the price). We show how it is done in section 3. 

In the two applications, the usefulness of common-factor portfolios in finance studies 

related to asset pricing is shown. This can be seen from a theoretical perspective 

(Propositions 1 and 2), where we show they have some desirable properties, especially the 

dimension reduction in the asset-pricing data-base, while preserving the usual restrictions 

imposed by the asset-pricing equation. Additionally, from empirical perspective their 

empirical performance is better than that of standard factor models in an important 

dimension: while we see little evidence to reject the theory with common-factor portfolios, 

the opposite is true when we use a small number of assets in testing the CCAPM (risky and 

riskless) or when we employ standard factor portfolios in testing the APT. 

The remainder of this paper is organized as follows. Section 2 presents the construction of 

common-factor portfolios. Section 3 shows the results of the two applications using the 

portfolios. The final section concludes. 

 

2. Common-Factor Portfolios 

 

We start with a factor model to construct the underlying common-factor portfolios. 

Consider a weak stationary and ergodic vector of returns ),...,( ,,1
 tptt RRR   of  p   assets in 

period t , with mean )( tRE and covariance matrix )( tRCov , as discussed in Stock 

and Watson (2002). The linear statistical factor model takes the form: 
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As explained by Cochrane (2001), in the APT model a mimic factor portfolio is commonly used, obtained by 

projecting the actual factors and the span of the observed returns. 
 

 



where ),....,( 1
 mttt ffF  is a vector of a reduced number of m unobservable random 

variables ( pm  ), the itf ’s are the common factors, mpij  ][  is the matrix of factor 

loadings with full rank m , the ij ’s are the loadings of the i th variable on the j th factor, 

and ),,...,( 1
 pttt   is formed with p  idiosyncratic error terms with zero mean and for 

which a weak law of large number applies. Here,   and tF  are unobservable. The factor 

model (1) satisfies the following assumptions: 

 

i)  0)( tFE  and mt IFCov )(  ; 

ii) 0)( tE   and DCov t )( where, D is a pp  diagonal matrix (  22

1 ,..., pdiagD  ); 

iii) 0)(),(  
tttt FEFCov  , an pm matrix of zeros. 

 

Thus, the information contained in the p  assets in tR  is used to obtain the factor-loadings 

and the m common factors. Given the linear statistical factor model (2), we propose 

Proposition 1 to construct common-factor portfolios: 

 

Proposition 1 Let the mp  matrix   of rank m  and tF , respectively, be the factor 

loading and the common factors in the factor model. Define the diagonal matrix  

 mmaadiagA ,...,11 , where iia  
ji
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 for all ,,...1 mi   where the jib , ’s are the elements 

of the left-inverse of matrix  , labeled here as  
jib ,
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~

, 

defined as  
1

~
mtR     

1

1




ptpm RA  = tt AAFA  11   , is a vector of portfolios. In 

addition tR
~

 has the property that   11~
)

~
(  ADAIRCov mt , where mI

~
 is an m

diagonal matrix. 

  

Proof Since   has full rank m , there exists a left inverse matrix ][ ,

1

jib  such that  

mmppm I

  1

 . Pre-multiplying the factor model by 
1A  produces 

    
~~ 111

tttt AFARAR                                      (3) 

 

where ],...,[
~

111
 mtmmttt fafaAFF  stacks the original factors scaled by constants. In 

addition, the sum of each row of the matrix 
1A  is one. This is easy to verify, since  

1A

, with elements ][ ijiiba , must have the i th row equal to  11
,11  
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p
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Therefore, equation (3) defines m  portfolios tt RAR
1~   . Finally, given the hypotheses 

0)( tFE  and mt IFCov )(  an important property is shown. The mean and covariance of 

tR
~

 are, respectively,   1)
~

(  ARE t and )
~

( tRCov =  )
~
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tt FFE +   11 )(  AEA tt   =    11~  ADAIm  , where  mI
~

  is an  m diagonal 

matrix. 

 



The next proposition corroborates that the common-factor portfolio satisfied the asset-

pricing equation. 
 

 

Proposition 2 Let 1tM  be a stochastic discount factor pricing all assets by means of the 

asset-pricing equation   11,1  titt RME , valid for pi ,..,1  and .,..,1 Tt   Then,  

  1
~

1,1  tjtt RME  also holds for all common-factor portfolios mj ,..,1 , where pm  .  
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mj ,..,1 . Thus, the asset-pricing equation is valid for common-factor portfolios, since  
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In order to estimate common-factor portfolios tR
~

, we previously estimate the factor loading

 . Principal-component analysis can be used for this purpose, as extensively discussed in 

Stock and Watson (2002) and Forni et al. (2000). 

 

 

3. Empirical Applications 

 

3.1 Data 

 

In the first application, we use monthly stock returns for the U.S. economy beginning in 

February 1987 and ending in July 2010, extracted from the Yahoo Finance web site. We 

consider only companies, for which data are available throughout the period, leading to a 

sample of 263p  individual returns. The U.S. Treasury Bill return is used as a proxy for 

the risk-free asset return. We estimate the preference parameters for the representative 

agent and test the implied restrictions by its Euler equation. Person’s expenditures on non-

durable goods and services are used in measuring per-capita consumption. The latter is 

extracted from the FRED database. All nominal asset returns are converted to real returns 

using the respective price deflator for non-durables and services. 

In a second application, we use 12 value-weighted returns of industry portfolios and also 

the three relative factors measuring firm size, book-to-market ratio, and market return of 

Fama and French (1993). The industry portfolios and the factors of Fama and French were 

obtained from the Kenneth R. French web site.  

 

3.2 Estimation of the consumption-capital asset pricing model (CCAPM) 

 

In testing the CCAPM, we follow Hansen and Singleton in setting   




1

tC

tCu , i.e., a 

constant relative risk aversion (CRRA) utility function, where  is the relative risk aversion 

coefficient. Table 3 shows a descriptive statistics and correlation matrix of the risky asset 



wtR  - the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) - 

and three common-factor portfolios,  named: tR ,1 , tR ,2  and tR ,3 , which jointly explain 80% 

of the variance of the primary asset group of 263p  stocks being studied here. Notice that 

wtR  and the first common factor portfolio tR ,1  are highly correlated. Table 1 reports the 

estimation of the CRRA utility using GMM, which supplies a 2  test (the J-test) of the 

overidentifying restrictions implied by the model. It can be seen that when only a risky and 

a riskless asset are used, as in Hansen and Singleton (1982), the J-test rejects in the majority 

of cases the validity of the instruments at the 10% level of significance. A similar result 

holds when we employ just the T-Bill and the first factor tR ,1 . On the other hand, when 

using more than one common-factor portfolios, the J-test does not rejected the null 

hypothesis of validity of instruments at the 10% level, strongly supporting the CCAPM. In 

all cases, the intertemporal discount factor is significant at 5%, positive and close to one. 

However, the relative risk-aversion coefficient is not significant. 

 

3.3 Testing a Linear Multifactor Model 

 

We can test a multifactor model by running a standard multivariate regression (see 

Campbell, Lo and MacKinlay, 1997) where returns are a function of factors. Consider in 

particular the three factor model given by Fama and French (1992, 1993): 

 

.ittihtiswtimiftit HMLSMBRcRR                            (4) 

 

where im , is  and ih are the unconditional sensitivities of the i -th asset to the fundamental 

factors, obtained as the slopes of the empirical counterpart of the model, itR   is the rate of 

return of asset (or portfolio) i  at time t , ftR is the risk-free rate of interest at time t , wtR  

represent the realized excess return of the market portfolio at time t , tSMB  the realized 

return on the proxy portfolio for size factor and tHML  the realized return on the proxy 

portfolio for the book-to-market factor at time t . 

By taking the expectation of equation (4), the intercept ic  is expected to be zero for all i
4
, 

which can be tested directly by a Wald test of 0H : ic 0   for the Fama-Franch factors. 

This restriction implies that the zero-beta expected return should equal the risk-free rate. 

Rejection of 0H  means that the factors cannot explain the average level of stock returns. In 

general, finding a positive or negative ic is evidence of mispricing. The common-factor 

portfolios can be used in testing by using the excess-returns written in terms of the 

common-factor portfolios: 

 

      .332211 itfttifttifttiiftit RRRRRRcRR              (5) 

                                                           
4
  ic is the average excess return. It is a measure of mispricing with respect to the model. 

 

 



 

where ,1tR ,2tR tR3  are, respectively, the first, second and third common-factor portfolios 

explaining most of the variance of the asset returns being analyzed. Here, three sets of 

factors are used to test the APT: i) the common-factor portfolios proposed in this paper  

};;{ 321 ttt RRR ; ii) the factor-mimicking payoff, )/( XfprojFit  , };;{ 321 ttt FFF  ; and iii) the 

classic Fama and French factors discussed above };;{ ttt HMLSMBRM  . 

The returns of each of the twelve industrial portfolios are regressed against the selected 

three factors to determine whether there are excess returns on the risk free rate. Table 3 

shows that the test of the zero intercept restriction is rejected less with the common-factor 

portfolios than with the factor mimicking payoff. Still, the Fama and French factors only 

reject the model once (category: other), which could be interpreted an improvement over 

the results with the common-factor portfolios under spherical errors. However, although 

residual tests for serial correlation (LM) and heteroskedasticity (ARCH) reveal little 

evidence of problems for the set of common-factor portfolios, this is not true for the other 

set of factors (Fama-French and factor-mimicking payoffs). In almost all cases, the latter 

invalidates hypothesis testing with standard methods using Fama-French factors. The same 

is true for factor-mimicking payoffs, albeit to a lesser degree. 

As shown in Table 2, the common-factor portfolios explain the largest fraction of common 

variation in stock returns for all industry portfolios vis-à-vis the factor-mimicking payoff 

and the Fama and French portfolios. The adjusted 2
R s of the common-factor portfolio 

range from 42% to 89% with an average of 72% for the 12 portfolios. The Fama and 

French factors and the factor-mimicking payoff explain on average 66% and 70% of the 

variation in the dependent variable, respectively. 

 

4. Conclusions 

 

In this paper we propose the use of common-factor portfolios, which is a novel linear 

transformation of standard factor models using a large dimension data set of gross asset 

returns. In two propositions, we show that they produce a dimension reduction in the asset- 

pricing database while preserving the usual restrictions imposed by the asset-pricing 

equation. From an empirical point of view, we show that their performance in asset-pricing 

tests is different (and somewhat superior) to that of standard factor models.  

Two applications are provided here to test the CCAPM, where we show the empirical 

usefulness of common-factor portfolios. First, the result of GMM estimation of the 

representative-agent model with a CRRA utility reveals improvement vis-à-vis the use of 

two-asset setup (risky and riskless asset). Indeed, common-factor portfolios are not rejected 

at all in overidentifying restrictions tests, while the use of the two-asset setup rejects the 

CCAPM in most of the tests performed. This result may be due to the fact that 

intertemporal substitution is a function of the pervasive component of asset returns, which 

requires the use of a large data set of assets in testing the theory. Second, the use of 

common- factor portfolios as fundamental risk factors in testing the arbitrage pricing theory 

shows that the zero-beta expected return was rejected less often than the set of factor-

mimicking portfolios   and   the  classic   three-factor   model   of   Fama   and   French.   

Moreover, the adjusted 2
R  had better performance vis-à-vis that of factor-mimicking 

portfolios. 
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Appendix I: Table 1 - GMM parameter estimates for CRRA function 
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Notes: R1t, R2t, R3t are the first three common-factor portfolios, cgt =Ct/Ct-1 is the consumption growth rate, and Rft is the 

risk-free T-Bill. RWt is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP). The values in 

parentheses correspond to standard deviation. * denotes significance at 5% levels. GMM estimation uses the Newey-West 

procedure with a fixed bandwidth and iterate simultaneously over the weighting matrix and the coefficient vector.

Instrument T-bill  and Risky asset T-bill  and one Factor T-bill  and two Factors T-bill and three Factors

(Rft, Rwt) (Rft, R1t) (Rft, R1t, R2t)  (Rft, R1t, R2t, R3t)

β γ J-test β γ J-test β γ J-test β γ J-test

(p-value) (p-value) (p-value) (p-value)

I [ Const; cgt ] 0.9986* 0.0502 0.0571 0.9987* 0.1199 0.0416 0.9987* 0.0946 0.1498 0.9988* 0.1446 0.3180

(0.0006) (0.3277) (0.0005) (0.3363) (0.0005) (0.3225) (0.0005) (0.308)

II [Const; Rwt; cgt] 0.9987* 0.0208 0.0554 0.9987* 0.1213 0.0247 0.9987* 0.1336 0.1113 0.9988* 0.1647 0.2486

(0.0005) (0.2623) (0.0005) (0.2587) (0.0004) (0.242) (0.0004) (0.2216)

III  [Const; Rwt; Rwt-1] 0.9986* -0.2836 0.0558 0.9983* -0.1815 0.0274 0.9983* -0.1692 0.1181 0.9984* -0.1371 0.2536

(0.0008) (0.4888) (0.0009) (0.4942) (0.0008) (0.4844) (0.0008) (0.4601)

IV [ Const; cgt; cgt-1] 0.9986* 0.1034 0.1730 0.9986* 0.0655 0.1638 0.9987* 0.0672 0.3476 0.9988* 0.1351 0.4946

(0.0003) (0.1428) (0.0003) (0.1415) (0.0003) (0.1405) (0.0003) (0.1303)

V [Const; Rwt; cgt-1] 0.9988* 0.0725 0.0330 0.9987* 0.0621 0.0322 0.9987* 0.105 0.1269 0.9989* 0.2099 0.2492

(0.0005) (0.2708) (0.0005) (0.2845) (0.0005) (0.2742) (0.0005) (0.2605)

VI [ Const; cgt; Rwt-1] 0.9986* 0.0351 0.1519 0.9987* 0.1311 0.0958 0.9987* 0.1173 0.3313 0.9989* 0.2354 0.5558

(0.0006) (0.3074) (0.0005) (0.3094) (0.0005) (0.2907) (0.0004) (0.2635)

VII [Const; cgt-1; Rwt-1] 0.9986* -0.0090 0.4167 0.9984* -0.0682 0.2569 0.9986* -0.0062 0.5264 0.9986* 0.0434 0.5343

(0.0006) (0.3534) (0.0006) (0.3468) (0.0006) (0.3283) (0.0005) (0.2990)

VIII [Const; Rwt; cgt 0.9987* 0.1177 0.0642 0.9987* 0.1170 0.0583 0.9987* 0.0948 0.2248 0.9987* 0.1461 0.3962

cgt-1 ]

(0.00033) (0.1251) (0.0003) (0.1268) (0.0003) (0.1219) (0.0003) (0.1135)

IX [ Const; cgt; cgt-1] 0.9983* -0.1728 0.3322 0.9983* -0.1828 0.3074 0.9984* -0.1297 0.3960 0.9988* 0.0741 0.4905

cgt-2 ]

(0.0005) (0.242) (0.0005) (0.2478) (0.0005) (0.2445) (0.0005) (0.2148)

X [Const; Rwt; Rwt-1] 0.9988* -0.0388 0.0806 0.9985* -0.0789 0.0692 0.9986* -0.0165 0.2299 0.9985* -0.0513 0.4170

cgt-1 ]

(0.0004) (0.2533) (0.0005) (0.2691) (0.0005) (0.2448) (0.0004) (0.2081)



Appendix II: Table 2 - Testing different linear multifactor models 

 
Notes: This table reports the regression coefficients for the selected three factors on twelve industrial portfolios relative to 

US stock market returns in order to determine whether there are excess returns on the risk free rate. The data have 

monthly frequency. The p-values are in parentheses. The boldface numbers indicate non-rejection of the null hypothesis at 

the 5% levels. The ARCH test considers two lags and the LM test is autocorrelated of order 15. The values of the LM test 

and the ARCH test are the p-values. 

Fama and French Factor

Rit - Rft = ci + mi (Rwt - Rft) + si HMLt + hi HMBt + eit

NoDur  Durbl  Manuf  Enrgy  Chems  BusEq  Telcm  Utils   Shops  Hlth   Money  Other

c 0.002 -0.003 0.001 0.003 0.001 0.001 -0.001 0.001 0.001 0.003 -0.001 -0.003

p-value (0.129) (0.163) (0.456) (0.228) (0.429) (0.449) (0.679) (0.594) (0.484) (0.158) (0.504) (0.014)

m 0.757 1.300 1.162 0.763 0.877 1.223 0.952 0.533 0.949 0.738 1.188 1.079

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

s -0.187 0.202 0.059 -0.143 -0.159 0.193 -0.250 -0.177 0.023 -0.276 -0.165 0.123

p-value (0.000) (0.005) (0.131) (0.066) (0.002) (0.001) (0.000) (0.004) (0.667) (0.000) (0.000) (0.001)

h 0.204 0.777 0.315 0.346 0.271 -0.754 -0.060 0.474 0.099 -0.185 0.598 0.197

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.367) (0.000) (0.08) (0.005) (0.000) (0.000)

R2-ajust 0.610 0.708 0.861 0.394 0.668 0.843 0.630 0.380 0.702 0.527 0.815 0.874

F-statistic 146.7 226.0 577.2 61.5 188.0 498.9 159.6 57.9 220.5 104.7 411.8 648.7

LM test 0.511 0.209 0.896 0.010 0.830 0.053 0.930 0.429 0.352 0.005 0.231 0.304

ARCH test 0.017 0.004 0.015 0.053 0.003 0.008 0.061 0.000 0.010 0.000 0.000 0.032

Common Factor Porfolio

Rit - Rft = ci + mi (R1t - Rft) + si (R2t - Rft)+ hi (R3t - Rft) + eit

NoDur  Durbl  Manuf  Enrgy  Chems  BusEq  Telcm  Utils   Shops  Hlth   Money  Other

c 0.002 -0.005 -0.002 0.002 0.000 -0.005 -0.002 0.002 -0.001 0.002 -0.002 -0.005

p-value (0.158) (0.020) (0.147) (0.124) (0.819) (0.005) (0.319) (0.235) (0.422) (0.428) (0.222) (0.000)

m 0.598 1.097 0.984 0.577 0.710 1.080 0.700 0.365 0.825 0.569 0.933 0.908

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

s 0.124 0.034 0.001 0.056 0.092 -0.345 -0.025 0.147 0.005 0.056 0.147 -0.010

p-value (0.000) (0.093) (0.940) (0.000) (0.000) (0.000) (0.222) (0.000) (0.713) (0.0033) (0.000) (0.331)

h -0.011 -0.015 0.014 0.114 0.003 -0.015 -0.011 0.059 -0.036 -0.012 -0.035 -0.005

p-value (0.019) (0.046) (0.000) (0.000) (0.541) (0.009) (0.179) (0.000) (0.000) (0.086) (0.000) (0.224)

R2-ajust 0.686 0.706 0.891 0.776 0.708 0.848 0.478 0.578 0.781 0.424 0.861 0.849

F-statistic 204.1 224.7 758.8 323.5 226.0 519.0 86.2 128.2 332.2 69.4 578.7 524.8

LM test 0.243 0.237 0.225 0.042 0.766 0.036 0.193 0.059 0.086 0.006 0.022 0.031

ARCH test 0.618 0.051 0.599 0.707 0.416 0.000 0.049 0.000 0.001 0.580 0.070 0.873

Factor-mimicking payoff

Rit - Rft = ci + mi F1t + si F2t+ hi F3t + eit

NoDur  Durbl  Manuf  Enrgy  Chems  BusEq  Telcm  Utils   Shops  Hlth   Money  Other

c 0.006 0.004 0.007 0.007 0.006 0.006 0.004 0.004 0.006 0.006 0.005 0.002

p-value (0.000) (0.118) (0.000) (0.000) (0.000) (0.001) (0.124) (0.011) (0.000) (0.005) (0.000) (0.065)

m 0.039 0.073 0.065 0.038 0.047 0.071 0.046 0.024 0.054 0.038 0.062 0.060

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

s -0.036 -0.009 0.000 -0.016 -0.026 0.102 0.008 -0.043 -0.001 -0.016 -0.043 0.004

p-value (0.000) (0.114) (0.885) (0.000) (0.000) (0.000) (0.196) (0.000) (0.882) (0.005) (0.000) (0.262)

h -0.010 -0.014 0.014 0.110 0.003 -0.015 -0.010 0.057 -0.034 -0.012 -0.033 -0.004

p-value (0.027) (0.061) (0.000) (0.000) (0.502) (0.013) (0.198) (0.000) (0.000) (0.097) (0.000) (0.295)

R2-ajust 0.666 0.701 0.879 0.763 0.691 0.840 0.471 0.564 0.764 0.413 0.850 0.838

F-statistic 186.7 219.2 674.7 300.4 209.0 490.4 83.8 121.3 302.7 66.5 529.1 482.0

LM test 0.203 0.198 0.287 0.022 0.758 0.060 0.278 0.039 0.182 0.014 0.025 0.092

ARCH test 0.575 0.084 0.811 0.783 0.515 0.000 0.048 0.000 0.012 0.639 0.018 0.709



Appendix III:  

 

 

        Table 3 – Descriptive Statistics 

 
          

 Rwt R1t R2t R3t 

Mean 1.00595 1.00764 0.99313 1.00062 

Median 1.01233 1.01083 0.99867 0.99950 

Std. Dev. 0.04591 0.05330 0.11336 0.29744 

Skewness -1.07523 -0.79799 -0.75238 -0.26508 

Kurtosis 5.96331 6.67174 7.16965 3.40245 

     

Correlation Rwt R1t R2t R3t 

Rwt 1.0000 0.9338 -0.0853 0.0077 

R1t 0.9338 1.0000 0.0045 -0.0023 

R2t -0.0853 0.0045 1.0000 -0.0008 

R3t 0.0077 -0.0023 -0.0008 1.0000 

Notes: R1t, R2t, R3t are the first three common-factor portfolios. RWt is the value-weighted return on all NYSE, AMEX, 

and NASDAQ stocks (from CRSP). The first factor portfolio accounts for 60% of the variance, the first and second factor 

portfolio for 70% and the three factors for 80%. 

 

 

 


