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Abstract

This paper proposes a simple, fast and direct nonparametric test to verify if a
sample is drawn from a distribution with a finite first moment. The method
can also be applied to test for the existence of finite moments of another order
by taking the sample to the corresponding power. The test is based on the
difference in the asymptotic behaviour of the arithmetic mean between cases
when the underlying probability function either has or does not have a finite
first moment. Test consistency is proved; then, test performance is illustrated
with Monte-Carlo simulations and a practical application for the S&P500 index.
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1 Introduction

The use of heavy-tailed distributions is common in many fields of science to
describe data containing unusually large observations. They are often applied
in telecommunications and seismology (Neves and Alves 2008; Felgueiras 2012),
insurance (McNeil 1997), economics, finance (Jansen and de Vries 1991), physics
(Reed and Jorgensen 2004) and many other fields. Sometimes such data does not
have a finite fourth, third, second or even first moment. In this last case even an
arithmetic mean is meaningless. Many statistical methods, such as those based
on the law of large numbers or central limit theorem, cannot be applied to such
data, since they assume a certain number of finite moments. Therefore, there
is a need for methods testing the hypothesis that a certain moment is finite.
Despite the numerous methods developed for this end, a simple, fast and direct
method to ascertain if the moment of interest is finite is obviously needed.

The direct way of checking if a sample is drawn from a distribution with
finite moment of order k, is to plot the k−th empirical moment as a function
of a number of observations used for its calculation. If the k−th finite moment
exists, the empirical moment usually tends to converge to it; otherwise, the
behaviour of the graph is unstable. An early example of this method was offered
by Mandelbrot (1963), who applied it to cotton price analysis. However, the
method is not formal and largely depends on the intuition of the researcher.

The most popular method for checking the hypothesis that a finite moment
of a certain order exists, is the estimation of a tail index with the Hill estima-
tor. This method employs the assumption of a regularity of the distribution’s
tail: Pr(X > x) ∼ x−γ , γ > 0, for large x. The tail index γ is estimated
and the hypothesis about it is tested.2 Tail index gives an inference about the
number of finite moments, since the moments of an order smaller than γ are
finite. The method was introduced by Hill (1975) and developed in subsequent
copious literature. For example, Deheuvels, Haeusler, and Mason (1988) found
strong consistency of the Hill estimator for independent data under rather weak
assumptions. Resnick and Stărică (1998) found estimator consistency for depen-
dent stationary sequences; furthermore, asymptotic normality was also proved
(Haeusler and Teugels 1985). However, it is not often clear how many observa-
tions should be treated as the tail - too few observations yield a large variance,
and too many observations may result in a large bias. Danielsson et al. (2001)
applied bootstrap to determine the optimal number of observations for the esti-
mation of the tail index. However, bootstrap requires the choice of a bootstrap
resample size, which is rather arbitrary. Alternatively, Hill plots are often de-
picted with the number of observations treated as a tail on the horizontal axis,
and the estimates of the tail index made with the Hill estimator on the vertical
axis. The region of stability of the graph corresponds to the tail index of the
distribution and makes an inference about the number of finite moments. A
modification of this method with a logarithmic horizontal axis was proposed by
Resnick and Stărică (1997) and discussed in detail by Drees et al. (2000). How-

2In fact, Hill estimator estimates 1/γ.
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ever, these methods also have weaknesses: the graphs may not have a region
of stability; the need for researcher intervention to analyze the graphs is not
suitable for a large number of tasks including Monte-Carlo simulations. Our
formal and simple test for checking a hypothesis about finite moments solves a
few of the problems.

Apart from the Hill estimator, numerous tail index and moment estimators
have been developed. The most prominent are the Pickands and DEdH estima-
tors (Pickands 1975; Dekkers, Einmahl, and de Haan 1989). There are also a
number of other more recent estimators, for instance, the tail index estimator
proposed by Alves et al. (2009) who present their estimator as a tool to check
for superheavy tails (where the tail index is equal to zero), because the esti-
mator does not impose a restriction that the tail index must be only positive.
Interesting tail index estimators were also proposed by Meerschaert and Schef-
fler (1998) and McElroy and Politis (2007). They use the fact that if the second
moment does not exist, the second empirical moment tends to diverge to infin-
ity. Our proposed method for testing the hypothesis that the finite moments
exist is similar to the estimators of Meerschaert and Scheffler, and McElroy and
Politis in that it employs asymptotic behavior of the first empirical moment
(arithmetic mean). However, it skips the step of the tail index estimation and
checks the hypothesis that a finite moment of a specific order exists directly.

A direct bootstrap-based method for testing if the first finite moment exists
was developed by Fedotenkov (2013), using the fact that under some general
conditions, if the first moment does not exist, the arithmetic mean of the sam-
ple diverges to infinity faster than the arithmetic means of the subsamples of a
smaller size. Following the method of Fedotenkov (2013), the test proposed in
this paper is based on the strong law of large numbers, when the first moment
does not exist as developed by Derman and Robbins (1955). The advantage of
our proposal is that it is incomparably faster - the time gained being propor-
tional to the number of bootstrap subsamples.

In the next section, the test is introduced and the main concepts are defined.
In section 3 consistency of the test is shown. Section 4 presents the results of
Monte-Carlo experiments and a practical application for the S&P500 index.
Section 5 concludes.

2 The test

LetX,X > 0 be a random variable with a distribution F . Suppose, (X1, X2, ..., Xn)
is a random i.i.d. sample drawn from a distribution F , where n is a number of
observations. The test is designed to check if the first moment of X is finite. If
a researcher wishes to check if the moment of order p is finite, the test may be
applied for the sample raised to the corresponding power, i.e. (Xp

1
, Xp

2
, ..., Xp

n).
Hypothesis:

- H0: F has a finite first moment;

- H1: The first moment is infinite.
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Denote F̂n(x) =
∑n

i=1
I(Xi < x)/n, where I is a unity indicator function, which

is equal to one when the conditionXi < x is fulfilled, and zero otherwise. Denote
the mean of the distribution F as µ. As we supposed that the observations can
only take positive values, µ > 0, which can also be infinite. Because of the
properties of the distribution function Pr(X > µ) = 1−F(µ) > 0 if µ < ∞ and
Pr(X > µ) = 0 otherwise. The theoretical distribution function and mean can
be substituted with their empirical equivalents: F̂n and X̄. Furthermore, to
ensure correct asymptotic behavior, the argument of the empirical distribution
function needs to be adjusted: 1− F̂(X̄/g(n)), where g(n) is a function defined
below. Comparing this value with a tolerance level α the finite mean hypothesis
can be tested.

Define g(n) as a function exhibiting such properties:

- limn→∞ g(n) = ∞;

- limn→∞ g(n)n−ρ = 0 for each ρ > 0.

Examples of such a function could be a logarithmic function, double and triple
logarithms. In section 4 we perform simulations with g(n) =

√
log log n, and

show that it gives reasonable results. As g(n) is used to reduce the argument of
the empirical distribution function, for practical reasons g(n) ≥ 1 shall be used.
However, this assumption is not important for the asymptotic properties of the
test.

Formally, the testing procedure is:

1. Choose a tolerance level α, 0 < α < 1;

2. Calculate the test

Pn = F̂n

(

X̄n

g(n)

)

;

3. Accept H0 if Pn < 1− α and reject it otherwise.

The term “tolerance level” used here is similar to the notion of a significance
level, however, the usage of the term “significance level” in this case would not
be correct since for each α, 0 < α < 1, sample size n, and function g(n) such
highly-skewed probability functions satisfying H0 can be constructed that the
probability to reject H0 is larger than α. Choosing the tolerance level α a
researcher can control for the set of the distributions (s)he sacrifices, which
likewise works for the choice of significance level. Furthermore, as it is shown in
section 4, tolerance level sometimes can also be interpreted as an upper bound
for first order mistakes, similar to the significance level.

Let us look what happens if F is a distribution function with a finite mean:

Pn
a.s.−−−−→

n→∞

F(0) = 0.

When F has a finite mean X̄n
a.s.−−→ µ as n → ∞, according to Kolmogorov’s

law of large numbers, limn→∞ g(n) = ∞, F̂n
a.s.−−→ F according to the Glivenko-

Cantelli lemma, and F(0) = 0 because X can take positive values only.
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3 Consistency

Theorem 1. Suppose the existence of constants C > 0 and 0 < β < 1, such
that F (X) < 1− C/Xβ for sufficiently large X. Then Pn

a.s.−−→ 1 as n → ∞.

Proof. Similarly to Derman and Robbins (1955):

Pr

( n
∑

i=1

Xi ≤ ng2(n)

)

≤ Pr

(

max(X1, ..., Xn) ≤ ng2(n)

)

=

F
(

ng2(n)
)n ≤

(

1− C

(ng2(n))β

)n

≤ exp

(

− n1−βC

g2β(n)

)

.

Because of the properties of function g(n), it is easy to verify that

∞
∑

n=N

exp

(

− n1−βC

g2β(n)

)

< ∞.

Thus, the Borel-Cantelli lemma implies that

Pr

( n
∑

i=1

Xi ≤ ng2(n)

)

= 0

for sufficiently large n. In other words, for sufficiently large n

Pr

(

X̄n

g(n)
> g(n)

)

= 1.

As n → ∞, g(n) → ∞, thus X̄i/g(n)
a.s.−−→ ∞. Therefore, according to the

Glivenko-Cantelli lemma and the definition of a distribution function

F̂n

(

X̄n

g(n)

)

a.s.−−−−→
n→∞

F(∞) = 1.

This proves the theorem.

The condition of the theorem does not cover all possible distributions without
a finite first moment; for example, distributions with a tail index equal to unity
do not satisfy the conditions of the theorem. In fact, the test can be inconsistent
in this case, but the rate of H0 rejection may still be greater than the tolerance
level.

The weakest point of this testing procedure is that a selection of the tolerance
level is rather arbitrary, and it does not have such an intuitive interpretation as a
significance level. I hope to address this question in more detail in the following
works. One possible solution for this weakness can be a randomization of the
test statistics, first introduced by Corradi and Swanson (2002), and widely used
nowadays. Despite such a modification would make the choice of the significance
level more plausible I expect that it shall reduce the power of the test, since apart
of the randomness existing in the sample itself, another source of randomness
is introduced. In the next section, it is shown that the choice of the tolerance
level employed in this paper provides reasonable results.
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4 Monte-Carlo simulations and an example for the stock exchange

Monte-Carlo experiments were performed to examine the power of the test.
As previously mentioned, the function g(n) used in simulations was chosen as√
log log n. Figure 1 presents the results of Monte-Carlo simulations for samples

i.i.d. drawn from a log-logistic probability function. The scale parameter was
set to unity. The horizontal axis corresponds to the shape parameter of the
log-logistic distribution, which is responsible for the heaviness of the tails, and
conforms to the tail index. Shape parameters were taken in the interval [0.02,
2] with the grid equal to 0.02. For each shape parameter 105 Monte-Carlo
simulations were performed. The vertical axis shows the share of H0 rejected,
i.e. the power of the test when the tail index is smaller or equal to unity, and
the rate of the first order mistakes if the tail index is greater than unity. Three
curves are depicted for the sample sizes n = 100, n = 1000 and n = 10.000. As
seen in the figure, the power of the test increases as n grows.

Figure 1: Power of the test and the rate of the first order mistakes

It can also be noted from Figure 1 that the rate of first order mistakes is
close to the tolerance level (equal 0.05) only when the shape parameter of the
log-logistic distribution is close to 1. Undoubtedly, this property depends on
the choice of the scaling function g(n), and may not be valid with other scaling
functions. For the larger values of the tail index the rate of the first order
mistakes is much lower than the tolerance level, and converges to zero as n
grows.
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4.1 Example for the S&P500 index

As a practical example the S&P500 index was considered for the period from 3
January 2007 till 11 December 2012. The absolute values of daily returns were
calculated as |100(Zt−Zt−1)/Zt−1|, where Zt is the S&P500 index value on day t
at the closure of the stock exchange. Next, the test was applied. The hypotheses
that 1-3 moments are finite were accepted at all the reasonable tolerance levels.
The hypothesis that the fourth finite moment exists is accepted at 5% but
rejected at 10% tolerance level, and the hypothesis that the fifth moment is
finite is rejected at 5% tolerance level. This is in line with the findings of Cont
(2001) who analyzed stylized empirical facts of price variations in various types
of financial markets and argued that often the behaviour of the fourth moment
is rather erratic. A similar result was also reported by Pagan (1996) who found
evidence for the existence of the second finite moment in the US stock exchange
daily data, but argues that the fourth moment may not exist.

5 Conclusion

This paper proposed a simple nonparametric test for checking if a sample is
drawn from a distribution with the finite mean, and showed its consistency. The
test makes use of the fact that when the first moment is finite, an arithmetic
mean converges to it, and if there is no finite first moment the behaviour of
the arithmetic mean becomes unstable, and under some weak assumptions it
diverges to infinity.
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