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1. Introduction

Water demand forecasting is of great economic
and environmental importance. Many factors
can in�uence directly or indirectly water con-
sumption. These include rainfall, temperature,
demography, pricing and regulation. Weather
conditions have been widely used as inputs of
multivariate statistical models (regression, trans-
fer function, vector autoregression, and arti�-
cial neural networks) for water demand mod-
elling and forecasting. See Maidment and Miaou
(1986), Fildes, Randall and Stubbs (1997), Zhou
et al. (2000), Jain, Varshney and Joshi (2001),
Bougadis, Adamowski and Diduch (2005), and
Gato, Jayasuriya and Roberts (2007). These ap-
proaches have drawbacks in water demand predic-
tion as a result of weather conditions variability
and changes.
Water demand is highly dominated by daily,

weekly and yearly seasonal cycles. The univari-
ate time series models based on the historical data
series can be quite useful for short-term demand
forecasting as we accommodate the various pe-
riodic and seasonal cycles in the model speci�-
cations and forecasts. To improve forecast accu-
racy, we may then combine forecasts derived from
the various univariate methods and from di¤er-

ent forecast horizons. Combining forecasts can
reduce errors by averaging of independent fore-
casts, and is particularly useful when we are un-
certain about which forecasting method is bet-
ter for future prediction. Some relevant empirical
studies using combined forecasts are summarized
in Clemen (1989) and Armstrong (2001).
In this paper, we examine the daily water de-

mand forecasting performance of double seasonal
univariate time series models based on multi-step
ahead forecast mean squared errors. We investi-
gate whether combining forecasts from di¤erent
methods and from di¤erent origins and horizons
could improve forecast accuracy. The most accu-
racy forecasting methods are then used for out-
of-sample daily and weekly average forecasting of
water consumption in Spain. Our interest in this
problem arose from time series competition or-
ganized by Spanish IEEE Computational Intelli-
gence Society at the SICO�2007 Conference.
The remainder of the paper is organized as fol-

lows. Section 2 discusses the methodology used
in time series modelling and forecasting. Section
3 describes the dataset used in the study. Section
4 presents the empirical results. Section 5 o¤ers
some concluding remarks.
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2. Methodology

2.1. Forecast evaluation

Denote the actual observation for time period t
by Yt and the forecasted value for the same period
by Ft. The mean squared error (MSE) statistic
for the post-sample period t = m+1;m+2; :::;m+
h is de�ned as follows:

MSE =
1

h� 1

m+h
X

t=m+1

(Yt � Ft)
2. (1)

This statistic is used to evaluate the out-of-
sample forecast accuracy using a training sam-
ple of observations of size m < n (where n is the
sample size) to estimate the model, and then com-
puting recursively the one-step ahead forecasts for
time periods m + 1, m + 2, ... by increasing the
training sample by one. For k-step ahead fore-
casts, we begin at the start of the training sam-
ple and we compute the forecast errors for time
periods t = m+ k, m+ k + 1, ... using the same
recursive procedure.

2.2. Random walk

The naïve version of the random walk model is
de�ned as

Ft+1 = Yt. (2)

This purely deterministic method uses the most
recent observation as a forecast, and is used as
a basis for evaluating of time series models de-
scribed below.

2.3. Exponential smoothing

Exponential smoothing is a simple but very
useful technique of adaptive time series forecast-
ing. Standard seasonal methods of exponen-
tial smoothing includes the Holt-Winters� addtive
trend, multiplicative trend, damped aditive trend
and damped multiplicative trend (see Gardner,
2006). We implemented the double seasonal ver-
sions of the Holt-Winters� exponential smoothing
(Taylor, 2003) in order to take into account the
two seasonal cycle periods in the water consump-
tion (daily and weekly). The double seasonal ad-
ditive methods outperformed the double seasonal
multiplicative methods. Within the double sea-
sonal additive methods, the additive trend was

found to be the best for one-step ahead forecast-
ing.
The forecasts for Taylor�s exponential smooth-

ing for double seasonal additive method with ad-
ditive trend are determined by the following ex-
pressions:

Lt = �(Yt � St�7 �Dt�365)

+ (1� �)(Lt�1 + Tt�1) (3)

Tt = �(Lt � Lt�1) + (1� �)Tt�1 (4)

St = 
(Yt � Lt �Dt�365) + (1� 
)St�7 (5)

Dt = �(Yt � Lt � St�7) + (1� �)Dt�365 (6)

Ft+h = Lt + Tt � h+ St+h�7 +Dt+h�365 + �
h

� [Yt � (Lt�1 � Tt�1 � St�7 �Dt�365)] (7)

where Lt is the smoothed level of the series; Tt is
the smoothed additive trend; St is the smoothed
seasonal index for weekly period s1 = 7; Dt
is the smoothed seasonal index for daily period
s1 = 365; � and � are the smoothing parame-
ters for the level and trend; 
 and � are the sea-
sonal smoothing parameters; � is an adjustment
for �rst-order autcorrelation; and Ft+h is the fore-
cast for h periods ahead, with h � 7. We initialize
the values for the level, trend and seasonal peri-
ods as follows:

L365 =
1

365

365
X

t=1

Yt

T365 =
1

3652

 

730
X

t=366

Yt �

365
X

t=1

Yt

!

S1 = Y1 � L7; :::; S7 = Y7 � L7

D1 = Y1 � L365; :::; D365 = Y365 � L365

The smoothing parameters �, �, 
, � and �
are chosen by minimizing the MSE statistic for
one-step-ahead in-sample forecasting using a lin-
ear optimization algorithm.

2.4. ARIMA model

We implemented a double seasonal multiplica-
tive ARIMAmodel (see Box, Jenkins and Reinsel,
1994) of the form:
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�p(B)�P1(B
s1)�P2(B

s2)(1�B)d

�(1�Bs1)D1(1�Bs2)D2(Yt � c)

= �q(B)�Q1
(Bs1)	Q2

(Bs2)"t (8)

where c is a constant term; B is the lag op-
erator such that BkYt = Yt�k; �p(B) and
�q(B) are regular autoregressive and moving av-
erage polynomials of orders p and q; �P1(B

s1),
�P2(B

s2), �Q1
(Bs1) and 	Q2

(Bs2) are seasonal
autoregressive and moving average polynomi-
als of orders P1, P2, Q1 and Q2; s1 and s2
are the seasonal periods; d, D1 and D2 are
the orders of integration; and "t is a white
noise process with zero mean and constant vari-
ance. The roots of the polynomials �p(B) = 0,
�P1(B

s1) = 0, �P2(B
s2) = 0, �q(B) = 0,

�Q1
(Bs1) = 0 and 	Q2

(Bs2) = 0 should lie out-
side the unit circle. This model is often denoted
as ARIMA(p,d,q)�(P1,D1,Q1)s1�(P2,D2,Q2)s2 .
We examine the sample autocorrelations and the
partial autocorrelations of the di¤erenced series
in order to identify the integer�s p, q, P1, Q1,
P2 and Q2. After identifying a tentative ARIMA
model, we estimate the parameters by Marquardt
nonlinear least squares algorithm (for details, see
Davison and MacKinnon, 1993). We check the
adequacy of the model by using suitable �tted
residuals tests. We use the Schwarz Bayesian Cri-
terion (SBC) for model selection.

2.5. GARCH model

In many practical applications to time series
modelling and forecasting, the assumption of non-
constant variance may be not reliable. The mod-
els with nonconstant variance are referred to as
conditional heteroscedasticity or volatility mod-
els. To deal with the problem of heteroscedas-
ticity in the errors, Engle (1982) and Boller-
slev (1986) proposed the autoregressive condi-
tional heteroskedasticity (ARCH) and the gener-
alized ARCH (or GARCH) to model and fore-
cast the conditional variance (or volatility). The
GARCH(p,q) model assumes the form:

�2t = ! +

p
X

j=1

�j�
2
t�j +

q
X

i=1

�i"
2
t�i, (9)

where p is the order of the GARCH terms and
q is the order of the ARCH terms. The nec-
essary conditions for the model (9) to be vari-
ance and covariance stationary are: ! > 0;
�j � 0, j = 1; :::; p; �i � 0, j = 1; :::; q; and
Pp

j=1 �j +
Pq

i=1 �i < 1. Last summation quan-
ti�es the shock persistence to volatility. A higher
persistence indicates that periods of high (slow)
volatility in the process will last longer. In most
economical and �nancial applications, the simple
GARCH(1,1) model has been found to provide a
good representation of a wide variety of volatil-
ity processes as discussed in Bollerslev, Chou and
Kroner (1992).
In order to capture seasonal and cyclical com-

ponents in the volatility dynamics, we imple-
mented a seasonal-periodic GARCH model of the
form:

�2t = ! + �1�
2
t�1 + �1"

2
t�1 + �7"

2
t�7

+�365"
2
t�365 +

M
X

m=1

�

�m cos

�

2�mSt
7

�

+'m sin

�

2�mSt
7

�

+ �m cos

�

2�mDt
365

�

+�m sin

�

2�mDt
365

�

+ �0m"
2
t�7 cos

�

2�mSt
7

�

+'0m"
2
t�7 sin

�

2�mSt
7

�

+ �0m"
2
t�365 cos

�

2�mDt
365

�

+ �0m"
2
t�365 sin

�

2�mDt
365

��

, (10)

where St andDt are repeating step functions with
the days numerated from 1 to 7 within each week,
and from 1 to 365 within each year, respectively.
This approach was used by Campbell and Diebold
(2005) to model conditional variance in daily av-
erage temperature data, and by Taylor (2006) to
forecast electricity consumption. We set M = 3
for the Fourier series. We estimate the model by
the method of maximum likelihood, assuming a
generalized error distribution (GED) for the in-
novations series (see Nelson, 1991).

2.6. Combining forecasts

We examine whether combining forecasts from
the various univariate methods and from di¤erent
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forecast origins and horizons could provide more
accurate forecasts than the individual methods
being combined. We consider all possible com-
binations of the forecast methods Holt-Winters
(HW), ARIMA (A) and GARCH (G), and we
compute the simple (unweighted) average of the
forecasts,

Ft =
F
(HW )
t + F

(A)
t + F

(G)
t

3
, (11)

where F
(�)
t is the forecasted value of method (�)

in time period t. We drop the random walk (the
worst method) of the combination.

3. Data

We analyze the daily water consumption se-
ries in Spain from 1 January 2001 to 30 June
2006 (2006 observations). We have drop Febru-
ary 29 in the leap year 2004 in order to main-
tain 365 days in each year. This series is plotted
in Figure 1. The dataset was obtained from the
Spanish IEEE Computational Intelligence Society
(http://www.congresocedi.es/2007/).
We use the �rst 1976 observations from 1 Jan-

uary 2001 to 31 May 2006 as training sample for
model estimation, and the remaining 30 observa-
tions from 1 June 2006 to 30 June 2006 as post-
sample for forecast evaluation.

4. Empirical study

4.1. Estimation results

The implementation of the double seasonal
Holt-Winters method to the water demand se-
ries Yt gives the values: � = 0:000, � = 0:755,

 = 0:303, � = 0:294 and � = 0:607.
After evaluating di¤erent ARIMA formula-

tions, we apply the following multiplicative dou-
ble seasonal ARIMA model:

(1� �1B � �2B
2
� �4B

4)(1� �1B
7
� �2B

14)

�(1�B7)(1�B365)(Yt � c)

= (1� �9B
9)(1��3B

21)(1�	1B
365)"t

This model can be represented as
ARIMA(4; 0; 9) � (2; 1; 3)7 � (0; 1; 1)365, with

�3 = 0, �1 = � � � = �8 = 0, and �1 = �2 = 0.
The estimated results are shown in Table 1. We
�tted a signi�cant parameter ARIMA-GARCH
model of the form:

(1� �1B � �2B
2
� �4B

4)(1� �1B
7
� �2B

14)

�(1�B7)(1�B365)(Yt � c)

= (1� �9B
9)(1��3B

21)(1�	1B
365)"t

and

�2t = ! + �1�
2
t�1 + �1"

2
t�1 + �365"

2
t�365

+'1 sin

�

2�Dt
365

�

+ '03"
2
t�365 sin

�

6�Dt
365

�

.

The model estimates are given in Table 2.

4.2. Forecasting results

The performance of the estimated univariate
methods were evaluated by computing MSE sta-
tistics for multi-step forecasts from 1 to 7 days
ahead. Table 3 gives the forecasts results for the
post-sample period from 1 June 2006 to 30 June
2006. Table 4 gives the forecast results for the
weekly 7-days of the same post-sample period.
The ARIMA and GARCH models appear to

have the same forecast performance for all the
forecast horizons. The Holt-Winters outper-
formed the ARIMA and GARCH models in long
horizons. In contrast, for one to four steps ahead
forecasting the ARIMA and GARCH models per-
formed better than the Holt-Winters. The ran-
dom walk model ranked last for any of the fore-
cast horizons considered.
For the 7-days of week, the ARIMA appear

to perform well for Monday and Tuesday fore-
casting, the simple combinations Holt-ARIMA
and Holt-GARCH appear to be most useful for
Wednesday forecasting, the Holt appears to be
the most appropriate method for Thursday, Fri-
day and Sunday forecasting, and the GARCH ap-
pears to be the best method for Sunday forecast-
ing.
In Table 5 we present the out-of-sample fore-

casts for water demand series. Our forecasts are
based on the most accuracy forecasting method
used for multi-step ahead average forecasting for
the 7-days cycle. We consider the periods from
1 July to 31 July 2006 (31 daily forecasts), from
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Figure 1. Daily water demand in Spain for the period 1 January 2001 to 30 June 2006
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1 July to 29 December 2006 (26 weekly average
forecasts) and from 3 July to 31 December 2006
(26 weekly average forecasts).

5. Concluding remarks

In this paper, we compared the forecast ac-
curacy of individual and combined univariate
time series models for multi-step-ahead water de-
mand forecasting. We implemented double sea-
sonal versions of the Holt-Winters, ARIMA and
GARCH models in order to accommodate the
two seasonal cycles periods in water consumption
(daily and weekly).
The empirical results suggest that all the uni-

variate time series models can be quite useful for
short-term forecasting. Moreover, the examina-
tion of the multi-step-ahead forecasting perfor-
mance for each day of week suggest the use of dif-
ferent methods and di¤erent combined forecasts
to improve forecasting accuracy.
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Table 1
Seasonal ARIMA model estimates for water demand series
Model: ARIMA(4,0,9)�(2,1,3)7�(0,1,1)365 Residual ACF Residual PACF

Parameter Lag Estimate Standard error Lag Estimate Lag Estimate

c -0.004 0.007 1 0.004 1 0.004

�1 1 0.592 0.025 2 0.009 2 0.009

�2 2 0.134 0.027 3 -0.020 3 -0.020

�4 4 0.061 0.023 4 0.001 4 0.001

�9 9 -0.053 0.024 5 -0.026 5 -0.025

�1 7 -0.757 0.023 6 0.015 6 0.015

�2 14 -0.561 0.029 7 -0.010 7 -0.010

�3 21 -0.366 0.032

	1 365 -0.644 0.023 R2 adjusted = 0.662

Q(20) = 18:31 (0.11)
Q2(20) = 71:62 (0.00)

Notes: Q(20) (Q2(20)) is the Ljung-Box statistic for serial correlation in the residuals (squared residuals) up to

order 20; p-value in parentheses.

Table 2
Seasonal-periodic GARCH model estimates for water demand series

Model: ARIMA(4,0,9)�(2,1,3)7�(0,1,1)365-GARCH(1,1)�(0,1)365 Residual ACF Residual PACF

Parameter Lag Estimate Standard error Lag Estimate Lag Estimate

c -0.011 0.008 1 -0.007 1 0.007

�1 1 0.502 0.029 2 0.023 2 0.023

�2 2 0.137 0.030 3 -0.028 3 -0.028

�4 4 0.075 0.024 4 -0.026 4 -0.026

�9 9 -0.064 0.023 5 -0.042 5 -0.040

�1 7 -0.747 0.023 6 0.026 6 0.027

�2 14 -0.534 0.028 7 -0.006 7 -0.006

�3 21 -0.346 0.031

	1 365 -0.640 0.025 Squared residual ACF Squared residual PACF

Lag Estimate Lag Estimate

! 0.107 0.028 1 0.012 1 0.012

�1 1 0.103 0.037 2 -0.030 2 -0.031

�1 1 0.483 0.108 3 0.028 3 0.029

�365 365 0.109 0.032 4 0.018 4 0.016

'1 0.026 0.011 5 0.008 5 0.009

'03 365 0.062 0.035 6 -0.023 6 -0.023

GED 1.361 0.055 7 0.015 7 0.015

R2 adjusted = 0.657

Q(20)=19.20 (0.08)

Q2(20)=13.61 (0.33)
Notes: As Table 1.
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Table 3
MSE for multi-step-ahead forecasts for post-sample period

Forecast Combined forecasts

horizon RW HW ARIMA GARCH HW-A HW-G A-G HW-A-G

1-step 0.96 0.38 0.35 0.35 0.35 0.35 0.35 0.35

2-step 1.55 0.51 0.45 0.45 0.46 0.45 0.45 0.45

3-step 1.82 0.49 0.47 0.45 0.45 0.45 0.45 0.45

4-step 2.09 0.48 0.45 0.46 0.46 0.46 0.46 0.46

5-step 2.23 0.43 0.44 0.46 0.43 0.43 0.45 0.44

6-step 1.91 0.42 0.45 0.47 0.43 0.43 0.46 0.44

7-step 1.33 0.40 0.44 0.46 0.41 0.42 0.45 0.43

Average 1.70 0.44 0.44 0.44 0.43 0.43 0.44 0.43

Table 4
MSE for multi-step ahead forecasts for weekly 7-days in post-sample period

Forecast Days of Combined forecasts

horizon week RW HW ARIMA GARCH HW-A HW-G A-G HW-A-G

1-step Monday 16.18 2.33 1.18 1.25 1.71 1.75 1.21 1.55

Tuesday 0.28 0.53 0.20 0.19 0.34 0.34 0.19 0.29

Wednesday 0.18 0.14 0.25 0.26 0.19 0.20 0.26 0.21

Thursday 3.15 4.19 5.26 5.40 4.71 4.78 5.33 4.93

Friday 0.47 0.37 0.54 0.54 0.45 0.45 0.54 0.48

Saturday 3.00 0.23 0.64 0.58 0.39 0.37 0.61 0.45

Sunday 1.20 1.26 0.40 0.33 0.70 0.61 0.36 0.53

4-step Monday 3.86 0.42 0.43 0.54 0.42 0.48 0.48 0.46

Tuesday 2.66 0.15 0.16 0.17 0.15 0.15 0.16 0.16

Wednesday 8.39 0.48 0.69 0.77 0.58 0.62 0.73 0.64

Thursday 11.27 3.63 3.79 4.14 3.71 3.88 3.96 3.85

Friday 1.83 1.78 1.88 1.94 1.83 1.86 1.91 1.87

Saturday 4.14 1.29 1.21 1.26 1.25 1.28 1.24 1.25

Sunday 10.23 3.23 1.10 0.81 2.03 1.82 0.95 1.56

7-step Monday 0.30 0.19 0.24 0.38 0.21 0.28 0.30 0.26

Tuesday 0.15 0.07 0.06 0.08 0.06 0.06 0.06 0.06

Wednesday 1.09 0.27 0.39 0.29 0.33 0.28 0.34 0.31

Thursday 13.60 2.54 3.33 3.42 2.92 2.96 3.38 3.08

Friday 7.91 2.14 2.25 2.38 2.19 2.26 2.32 2.26

Saturday 4.19 1.43 1.48 1.59 1.46 1.51 1.54 1.50

Sunday 0.70 1.14 0.29 0.22 0.63 0.51 0.26 0.42

Average Monday 4.79 0.61 0.55 0.65 0.57 0.62 0.59 0.59

Tuesday 4.13 0.44 0.16 0.17 0.25 0.26 0.16 0.21

Wednesday 4.89 0.43 0.46 0.48 0.41 0.41 0.47 0.42

Thursday 7.52 3.01 3.71 3.91 3.33 3.43 3.80 3.51

Friday 5.21 1.99 2.25 2.32 2.12 2.15 2.28 2.18

Saturday 4.02 1.06 1.24 1.26 1.13 1.14 1.25 1.17

Sunday 6.10 2.35 0.68 0.50 1.38 1.22 0.59 1.02
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Table 5
Out-of-sample daily and weekly average forecasts for water demand series

Forecast Daily Forecast Average Forecast Average

period forecasts period forecasts period forecasts

1 July 2006 9.3393 1 Jul -7 Jul 2006 9.5410 3 Jul -9 Jul 2006 9.2173

2 July 2006 9.4614 8 Jul-14 Jul 2006 8.7871 10 Jul-16 Jul 2006 8.7170

3 July 2006 8.6222 15 Jul -21 Jul 2006 8.5721 17 Jul -23 Jul 2006 8.5171

4 July 2006 10.3095 22 Jul -28 Jul 2006 8.4674 24 Jul -30 Jul 2006 8.4175

5 July 2006 9.9691 29 Jul - 4 Aug 2006 8.1969 31 Jul - 6 Aug 2006 8.0443

6 July 2006 9.6744 5 Aug - 11 Aug 2006 7.8059 7 Aug - 13 Aug 2006 7.7455

7 July 2006 9.4109 12 Aug - 18 Aug 2006 7.3662 14 Aug - 20 Aug 2006 7.3417

8 July 2006 8.0849 19 Aug - 25 Aug 2006 7.6512 21 Aug - 27 Aug 2006 7.7199

9 July 2006 8.4503 26 Aug - 1 Sep 2006 8.0755 28 Aug - 3 Sep 2006 8.2972

10 July 2006 7.6937 2 Sep - 8 Sep 2006 8.3625 4 Sep - 10 Sep 2006 8.2373

11 July 2006 9.5814 9 Sep - 15 Sep 2006 8.4238 11 Sep - 17 Sep 2006 8.4191

12 July 2006 9.3338 16 Sep - 22 Sep 2006 8.4734 18 Sep - 24 Sep 2006 8.5735

13 July 2006 9.2385 23 Sep - 29 Sep 2006 8.3959 25 Sep - 1 Oct 2006 8.3159

14 July 2006 9.1268 30 Sep - 6 Oct 2006 8.3155 2 Oct - 8 Oct 2006 8.3421

15 July 2006 7.7251 7 Oct - 13 Oct 2006 7.8275 11 Oct - 15 Oct 2006 7.5624

16 July 2006 8.3192 14 Oct - 20 Oct 2006 7.5310 16 Oct - 22 Oct 2006 7.5278

17 July 2006 7.7194 21 Oct - 27 Oct 2006 7.6197 21 Oct - 29 Oct 2006 7.6764

18 July 2006 9.2434 28 Oct - 3 Nov 2006 7.5537 30 Oct - 5 Nov 2006 7.6166

19 July 2006 9.1702 4 Nov - 10 Nov 2006 7.9359 6 Nov - 12 Nov 2006 7.9908

20 July 2006 9.1609 11 Nov - 17 Nov 2006 7.9195 13 Nov - 19 Nov 2006 7.8022

21 July 2006 8.6665 18 Nov - 24 Nov 2006 7.7142 20 Nov - 26 Nov 2006 7.8061

22 July 2006 7.4185 25 Nov - 1 Dec 2006 7.6954 27 Nov - 3 Dec 2006 7.5147

23 July 2006 8.2409 2 Dec - 8 Dec 2006 7.2456 4 Dec - 10 Dec 2006 7.3100

24 July 2006 7.7286 9 Dec- 15 Dec 2006 7.6863 11 Dec- 17 Dec 2006 7.7958

25 July 2006 9.2441 16 Dec - 22 Dec 2006 7.5248 18 Dec - 24 Dec 2006 7.3708

26 July 2006 9.0913 23 Dec - 29 Dec 2006 7.0362 25 Dec - 31 Dec 2006 6.9743

27 July 2006 8.9348

28 July 2006 8.6137

29 July 2006 7.2653

30 July 2006 8.0448

31 July 2006 7.5470


