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Abstract

We study environments in which agents are randomly matched to play a game, and before the in-

teraction begins each agent observes a limited amount of information about the partner’s aggregate

behavior. We develop a novel modeling approach for such environments and apply it to study the Pris-

oner’s Dilemma. We first show that defection is evolutionarily stable for any level of observability and

behavioral noise. Next we classify the Prisoner’s Dilemma into four categories of games, and we fully

characterize when cooperation is evolutionarily stable in each of them.

JEL Classification: C72, C73, D83. Keywords: evolutionary stability, random matching, indirect

reciprocity, Prisoner’s Dilemma, image scoring, secret handshake.

1 Introduction

In many economic situations people are involved in short-term interactions that offer opportunities for both

sides to cheat for their own gain at the expense of the others. The lack of future interactions between the

agents limits the possibility to directly punish partners who act opportunistically, while the effectiveness of

external enforcement is limited, e.g., due to incompleteness of contracts, non-verifiability of information, and

court costs. In such situations an agent may obtain information about the partner’s behavior in a sample

of past interactions with other opponents, and condition his own behavior on this information. Examples of

such situations include trade in the medieval world (see, e.g., Milgrom, North, and Weingast, 1990; Greif,

1993), face-to-face trade in the modern world (see, e.g., Bernstein, 1992; Dixit, 2003), and on-line interactions

in Web sites such as eBay and Airbnb (see, e.g., Resnick and Zeckhauser, 2002; Jøsang, Ismail, and Boyd,

2007).

Overview of the Model Agents in a large population are randomly matched into pairs to play a symmetric

one-shot game. Before playing the game, each agent privately draws a random sample consisting of a finite

number of interactions between his partner and other opponents. For each such interaction he observes a

∗Email: yuval.heller@economics.ox.ac.uk and erik.mohlin@economics.ox.ac.uk. A previous version of this paper was titled
“Stable observable behavior”. We would like to express our deep gratitude to Vince Crawford, Christoph Kuzmics, Bill Sandholm,
Balázs Szentes, Rann Smorodinsky, Satoru Takahashi, Jörgen Weibull, and Peyton Young, as well as to seminar/workshop
participants in Bielefeld University, Stockholm School of Economics, Israel Institute of Technology (Technion), the conference in
honor of Abraham Neyman at the Hebrew University of Jerusalem, University of Pittsburgh, University of Oxford, the NBER
Theory Workshop at Wisconsin-Madison, the KAEA session "Dynamic Cooperation: Theory and Evidence" at the ASSA 2015
meeting, and the Biological Basis of Preference and Strategic Behavior conference at Simon Fraser University, for many useful
comments. Last but not least, we thank Renana Heller for suggesting the title.
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signal that depends on the played action profile. We refer to the number of observed interactions, and the

mapping from action profiles to signals as the observation structure.

Each agent follows a stationary strategy: a mapping that assigns a mixed action to each message that may

be observed. The state of the population is described by a strategy distribution, in which different groups in

the population follow different strategies. If one of these strategies is more successful than the others, then

more agents start to follow it, reflecting a payoff monotonic dynamic process of cultural learning.1

Occasionally a small group of new agents are injected into the population, or a small group of old agents

switch strategy. These agents (called, mutants) choose an arbitrary strategy, in a way that does not have to

respect the payoff monotonic dynamics. If their new strategy is outperformed, then they abandon it. If it is

more successful, then other agents start to follow it. Stability under such dynamics is captured by the static

notion of evolutionary stability. A strategy distribution is evolutionarily (neutrally) stable (Maynard Smith

and Price, 1973) if any sufficiently small group of mutants who follow a different strategy is strictly (weakly)

outperformed.

Behavior is slightly perturbed by two kinds of noise. First, agents occasionally tremble when they take an

action (à la Selten’s 1975, 1983 notions of extensive-form perfection and limit ESS). These action trembles

can also represent observation noise. Second, agents occasionally tremble when they revise their strategy

choices, whereby they may end up following arbitrary strategies that are not necessarily payoff-maximizing.

These strategy mistakes are similar to “normal-form” perfection à la Selten (1975) and to “crazy” agents à la

Kreps, Milgrom, Roberts, and Wilson (1982). We refer to the distribution that determines the frequency of

various trembles and mistakes as the noise structure, and we assume that it includes a positive (but possibly

very small) component of strategy mistakes.

Observation Structures and Typology of PDs Our main focus in the paper is the case in which the

underlying game is the Prisoner’s Dilemma (henceforth PD). Each player decides simultaneously whether

to cooperate or defect; if both players cooperate they obtain a payoff of one, if both defect they obtain a

payoff of zero, and if one of the player defects, the defector gets 1 + g, while the cooperator gets −l (see left

side of Table 2 in Section 2). It is common to assume that mutual cooperation is the efficient outcome that

maximizes the sum of payoffs, i.e., g < l + 1 (and games without this feature are called non-standard PDs).

We pay special attention to four kinds of observation structures:

1. Observing actions: Observing the partner’s action in each sampled interaction. This is arguably the

most frequently studied structure in the literature (see, e.g., Nowak and Sigmund, 1998; Milinski,

Semmann, Bakker, and Krambeck, 2001; Engelmann and Fischbacher, 2009; Berger and Grüne, 2014.)

2. Observing conflicts: Observing in each sampled interaction whether there was mutual cooperation (i.e.,

no conflict; both partners are “happy”) or not (i.e., partners complain about each other, but it is too

costly for an outside observer to verify who actually defected). Such a structure captures the essence

of feedback mechanisms used by Web sites such as eBay and Airbnb.

3. Observing unilateral defections: Observing whether or not the partner was the sole defector.

4. Observing action profiles: Observing the the full action profile in each sampled interaction.

We classify the PD games into 2 by 2 categories (see Figure 1 below):

1Our model also describes a biological process, in which the fitness is increasing in the game payoff.
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1. Offensive/defensive PDs:2 In an offensive PD there is a stronger incentive to defect against a cooperator

than against a defector (i.e., g > l); in a defensive PD the opposite holds (i.e., l > g). If cooperation is

interpreted as exerting high effort, then the defensive PD exhibits strategic complementarity; increasing

one’s effort from low to high is less costly if the opponent exerts high effort. As an illustration, consider

a joint project of cowriting an academic paper in which each author can choose either to work hard or

not. Working hard improves the probability that the paper will be of high quality, but the increment

in expected quality is not worth the extra effort for an individual author. The offensive (defensive) PD

describes papers that are likely to be of high quality if one of the authors (both authors) works hard

(work hard) and the marginal contribution of the other (a single) hard-working author is relatively

small.

2. Acute/mild PDs: Recall that the parameter g may take any value in [0, l + 1]. We say that a PD

is acute if g is in the upper half of this interval, i.e., if g > l+1
2 , and mild if it’s in the lower half.

The threshold, g = l+1
2 , is characterized by the fact that the gain from a single unilateral defection is

exactly half the loss incurred by the partner who is the sole cooperator. Hence, unilateral defection

is mildly tempting in mild PDs and acutely tempting in acute PDs. In order for an agent not to be

tempted to defect against a cooperating partner in an acute (one-shot) PD he has to put more than

half as much weight on the partner’s payoff as he puts on his own payoff. Another interpretation of this

threshold comes from a setup (which will be important for our results) in which an agent is deterred

from unilaterally defecting because it induces future partners to unilaterally defect against the agent

with some probability. Deterrence in acute PDs requires this probability of being punished to be more

than 50%, while a probability of below 50% is enough for mild PDs.

Main Results Our first result (Theorem 1) shows that always defecting is evolutionarily stable for any

observation structure and any noise structure. The reason is that defection is the unique best reply to itself:

mutants who cooperate with positive probability against incumbents are strictly outperformed if they are

sufficiently rare, and mutants who always defect against incumbents cannot identify other mutants, and

therefore must also defect among themselves.3

Our remaining results state under which conditions cooperation is also stable (see sketched proofs in

Section 2). All of these results assume that with high probability at least two interactions are sampled . The

results are summarized in Table 1 and Figure 1 below.

Table 1: Stability of Cooperation in the Prisoner’s Dilemma

Category of PD Parameters
Observation Structure (at Least 2 Sampled Interactions)

Actions Conflicts Action profiles Unilateral Defs.

Mild & Defensive g < min
(

l, l+1
2

)

Y Y
Depends on the
noise structure

Y

Acute & Defensive l+1
2 < g < l Y N Y

Mild & Offensive l < g < l+1
2 N Y Y

Acute & Offensive max
(

l, l+1
2

)

< g N N N Y

2This follows Dixit (2003). Takahashi (2010) calls offensive (defensive) PDs submodular (supermodular).
3In general games, we show that any symmetric strict equilibrium is evolutionarily stable for any observation function,

provided that the noise mainly includes action trembles.
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Firstly, we analyze observation of actions, and we show that cooperation is stable if and only if the PD

is defensive. Specifically, Theorem 2 shows that defection is the unique neutrally stable outcome in offensive

PDs for any noise structure and any number of observed actions. The intuition is that in offensive games,

it is better to defect against partners who are likely to cooperate than against partners who are likely to

defect, and this implies that mutants who always defect are more likely to induce incumbent partners to

cooperate. Consequently, defecting mutants outperform incumbents who cooperate. Theorem 3 shows that

cooperation is evolutionarily stable in defensive PDs for any noise distribution when the players observe at

least two actions. The stability of cooperation is sustained by a population in which everyone cooperates

against a partner who always cooperated, and defects against a partner who defected at least twice. In

addition, with some probability (which is determined by the noise structure), agents also defect against a

partner who defected at least once.4

Secondly, we analyze observations of conflict. Theorem 4 shows that cooperation is stable if and only if

the PD is mild. Specifically, we show that cooperation is evolutionarily stable in any mild PD for any noise

structure when agents observe at least two interactions. As in the previous result, cooperation is sustained

by a population in which everyone cooperates (defects) against a partner whose sample contains no (at least

two) conflicts and, in addition, agents defect with some probability against a partner who was involved in a

4The noise structure also determines whether each agent defects at the individual level when he observes a single defection, or
whether the population is heterogeneous and includes two groups, such that agents in the first (second) group defect (cooperate)
when they observe a single defection. Note that this mixed strategy is distinct from the strategy Generous Tit-For-Tat (GTFT)
(Molander, 1985; Nowak and Sigmund, 1992). The latter strategy defects with positive probability even after observing two or
more defections.
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single conflict. In contrast, there is no noise distribution and no number of observed interactions that allow

cooperation to be stable in acute PDs. The intuition is that in acute PDs, cooperation requires that any

agent who is involved in a conflict be punished with a probability of at least 50%, but this implies that any

conflict induce on expectation at least one more conflict, which implies that conflicts are “contagious” and

induce everyone to defect.

Thirdly, we analyze observations of unilateral defections, and we show (Theorem 5) that when agents

observe at least two interactions, cooperation is evolutionarily stable in any PD and any noise structure (and

the supporting heterogeneous population is analogous to the one in the previous results).5 This implies that

if a central planner can design the observation structure, then she can pick no better mechanism than the

one that only allows players to observe whether there were unilateral defections or not.

Finally, we analyze observation of action profiles, and we show that revealing the entire action profile

may be bad for supporting cooperation. Specifically, Theorem 6 shows that cooperation is not stable with

respect to any (some) noise structure in any acute (mild) PD when agents observe action profiles. The

intuition is that the severity of punishments required in acute PDs implies that the conditional probability

of the partner following a strategy mistake is lower when a player observes unilateral defection than when

he observes a bilateral defection, which implies that unilateral defections are punished less severely than

bilateral defections, which does not allow one to sustain stable cooperation. In mild PDs the same argument

works if and only if the strategy mistakes lead agents to play strategies that defect with high probability.

Variants and Extensions We study four variants and extensions. First we discuss how to extend our

results to a setup in which agents may choose non-stationary strategies that condition their play on their

own past behavior (and we discuss the dynamic interpretation of our static model). Second, we discuss how

to extend our results to the case in which both messages are observed by both players (public signals). The

third extension sketches how to apply the model to study the evolution of subjective preferences that may

differ from the material payoffs. Finally, we study how the invasion barriers of cooperation and defection

change as the number of observations increases.

Contribution and Related Literature A substantial literature studies the possibility to sustain stable

cooperation when agents in a large population are randomly matched to play the PDs (see, e.g., Nowak and

Sigmund’s (2005) survey on indirect reciprocity). The literature mainly studies four different setups: (1)

strangers: players receive no information about the partner’s behavior, (2) first-order information: a players

observes past interactions that his partner was involved in (as in our model), (3) second-order information:

a player observes what information the partner had in past interactions, and (4) binary reputation: a player

observes a binary “label” (e.g., good or bad) about the partner, which is automatically updated according to

her behavior by some external reputation mechanism.6

It is well known that if the population is infinite and the matching is uniform, then defection is the unique

stable outcome of the PD when there are no observations: the strangers, information condition. A few papers

(e.g., van Veelen, García, Rand, and Nowak, 2012; Alger and Weibull, 2013) support stable cooperation by

assuming that the matching is sufficiently assortative, i.e., that cooperators are more likely to interact with

5We further show that in “non-standard” PDs in which g > l + 1 and mutual cooperation is no longer the efficient outcome,
no observation structure can sustain stable cooperation.

6See also Rosenthal (1979) who presented an early model for random matching with observation of the partner’s last action;
and Wiseman and Yilankaya (2001) that show that cooperation occurs at a positive fraction of the time in a PD with pre-play
communication, which can be used as “secret handshake” à la Robson (1990).
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other cooperators.7 Our paper shows that letting players observe the partner’s behavior in two interactions

is enough to support stable cooperation without assuming assortativity.

Kandori (1992) and Ellison (1994) (see also Deb, 2012) analyze finite populations, and show that if players

are sufficiently patient, then stable cooperation can be supported by “contagious” equilibria: if one player

defects at stage t, his partner defects at period t+1, infecting another player who defects at period t+2, and

so on. These “contagious” equilibria have two main drawbacks: (1) a single “crazy” agent who always defects

is enough to induce everyone to defect (see Ellison, 1994, p. 578), and (2) experimental evidence suggests

that people typically do not follow contagious strategies (see, e.g., Duffy and Ochs, 2009). Our contribution

with respect to this literature is to show that letting players observe two of the partner’s past actions is

enough to sustain stable cooperation, in a way that is robust to crazy agents, and that is consistent with

experimental evidence on intuitive “tit-for-tat”-like behavior (see, e.g., Wedekind and Milinski, 2000; Seinen

and Schram, 2006; Dal Bó and Fréchette, 2015).

In an influential paper, Nowak and Sigmund (1998) present the mechanism of image scoring to support

cooperation when players observe the partner’s past actions (first-order information). In this mechanism,

each player observes several past actions of the partner, and he defects if and only if the partner’s frequency

of defection is above some threshold (see also the recent extension in Berger and Grüne, 2014). Experimental

evidence suggests that observation of past actions substantially increases the level of cooperation (though the

level of cooperation is somewhat lower than with second-order information or binary reputation mechanisms),

and that many subjects seem to follow image-scoring strategies (see, e.g., Milinski, Semmann, Bakker, and

Krambeck, 2001; Engelmann and Fischbacher, 2009). A few papers have raised concerns about the stability

of cooperation with image-scoring mechanisms. Specifically, Leimar and Hammerstein (2001) demonstrated

in simulations that cooperation is unstable, and Panchanathan and Boyd (2003) analytically studied the

case in which each agent observes a single action. Our paper makes two key contributions with respect the

literature on image scoring. First, Theorem 2 shows that image scoring cannot sustain stable cooperation

in defensive PD games, regardless of the number of observed actions. Second, Theorem 3 presents a novel

variant of image scoring, and proves that it can support cooperation in any defensive PD even when the

players observe only two past actions. Our analysis shows the importance of differing between defensive and

offensive PDs when modeling real-life behavior, as each kind of PD leads to qualitatively different predictions,

and implies novel testable predictions for lab experiments.8

Takahashi (2010) studies the stability of cooperation when a player observes the entire history of the

partner’s past play. Takahashi shows that there is a sequential (strict) equilibrium that induces cooperation

in any PD (if and only if the PD is defensive). Our analysis makes two related key contributions. First, we

show that cooperation is stable in any defensive PD also when players observe two actions only. Second,

we show that defection is the unique stable outcome in offensive PDs also when using the mild, evolution-

arily motivated, solution concept of neutral stability rather than the strong notion of strict equilibrium; in

particular, this implies that none of the sequential equilibria in Takahashi (2010) are neutrally stable.9

7See also Herold (2012) that studies the evolution of cooperation in a related “haystack” model in which individuals inter-
act within separate groups, and Fujiwara-Greve and Okuno-Fujiwara (2009) that study stable cooperation in a “voluntarily
separable” repeated PD, in which each player can unilaterally end and start with a randomly assigned new partner.

8To the best of our knowledge there is no experimental data about the influence of various values of l and g on the rate
of cooperation in the PD interactions with random matching and observations of past actions. Our model predicts novel and
qualitatively different comparative statics than those observed in experiments of the repeated PD (played by the same two
partners); see, e.g., Blonski, Ockenfels, and Spagnolo (2011); Dal Bó and Fréchette (2011); Breitmoser (2015).

9In Heller (2015a) one of the authors of this paper adapts the analysis to a repeated Prisoner’s Dilemma (against the same
partner) with private monitoring, and shows that all the sequential equilibria in the existing equilibria are unstable in a strong
sense (they are vulnerable to an arbitrarily small group of agents who always defect).
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Some papers study the stability of cooperation when players also have second-order information; i.e.,

they can observe something about the past interactions of the past opponents of the current partner. The

experimental evidence suggests that this second-order information helps to achieve a somewhat higher level

of cooperation, as it helps to differentiate between justified and unjustified defections. However, assessing

second-order information seems to carry a substantial cognitive cost for the subjects, leading many of them

to look only at first-order information (see, e.g., Bolton, Katok, and Ockenfels, 2005; Gong and Yang, 2010).

Our paper shows that a coarse (and hence more easily processed) form of first-order information that indicates

only whether there was a unilateral defection or not, can sustain cooperation also in an offensive PD game

by using simple and intuitive strategies. This novel prediction can be tested in lab experiments (to the best

of our knowledge there exist no experiments that have tested it).

In a seminal book Sugden (1986) studies binary reputation (also called good standing; see related models

in Kandori, 1992; Okuno-Fujiwara and Postlewaite, 1995; Ohtsuki and Iwasa, 2006). In this mechanism, all

agents initially have a “good label”; an agent obtains a “bad label” by defecting against a “good” partner.

The labels in this model are determined automatically by an exogenous process. Such mechanisms of binary

reputations can support stable cooperation, and they seem to fit experimental behavior well when subjects

observe the reputation of each partner; see, e.g., Stahl (2013). A main drawback of this approach is the

requirement of having an exogenous central mechanism that manages the reputations of all players. Without

such a central mechanism, it is very demanding for a player to evaluate his partner’s reputation, as it depends

on long histories of play of many players (because the reputation of one agent depends on the reputations of

his past partners). Our main contribution is to show that the players observing the partner’s behavior in two

interactions is enough to support stable cooperation without requiring an external reputation mechanism.

Finally, our paper has two interesting novel insights to convey about the design of online feedback mech-

anisms (see, e.g., Resnick and Zeckhauser, 2002; Jøsang, Ismail, and Boyd, 2007). We first show that the

plausible feedback mechanism in which players observe conflicts (without observing which side is the cause of

the conflict) can yield stable cooperation iff the PD is mild. Second, we prove that observation of unilateral

defections is an optimal feedback mechanism, and that it can sustain stable cooperation in any PD.

Methodological Contribution So far we have ignored a subtle aspect of the model: a strategy distri-

bution might not uniquely determine the behavior in the population. For example, if each agent observes a

single action (for sure), then any mixed action is consistent with the strategy of playing the observed action.

Here we describe how we deal with this complication in the model.

An outcome is a mapping that describes the mixed action played by each group in the population condi-

tional on being matched with individuals from each other group. An outcome is consistent with the strategy

distribution if, for any two strategies in the support of the strategy distribution, it is the case that if the

observations are sampled from the outcome, then the induced play coincides with the mixed actions described

by the outcome. A configuration is a pair consisting of a strategy distribution and a consistent outcome.

Following Dekel, Ely, and Yilankaya (2007), we say that a configuration is unstable if some small invasion

can move the configuration far away, either because the invading mutants outperform the incumbents, or

because the entrants’ presence necessarily causes a large change in aggregate behavior. Specifically, we say

that a configuration is evolutionarily (neutrally) stable if after a sufficiently small group of mutants have

entered the population: (1) there is a nearby post-entry configuration in which the incumbents play similarly

to their pre-entry behavior, and (2) the mutants are strictly (weakly) outperformed in any (at least one)

nearby post-entry configuration. All of our results hold with this adaptation of evolutionary stability to
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configurations.

Structure Section 2 presents motivating examples and illustrates our main results. The model is presented

in Section 3, and our solution concept is introduced in Section 4. Section 5 contains our main results. We

discuss variants and extensions in Section 6. Section 7 concludes. The formal proofs appear in the appendix.

2 Illustrations of the Main Results

In this section we present some motivating examples, and sketch an overview of our main results.

Table 2: Matrix Payoffs of Prisoner’s Dilemma (PD) Games

c d

c 1
1

−l
1+g

d 1+g
−l

0
0

PD (g, l > 0 , g < l + 1)

c d

c 1
1

−0.1
1.5

d 1.5
−0.1

0
0

PD1 (Offensive Mild PD)

c d

c 1
1

−15
10

d 10
−15

0
0

PD2 (Defensive Acute PD)

Prisoner’s Dilemmas The left side of Table 2 presents the payoff matrix of a PD that depends on two

positive parameters g and l. When both players play action c (cooperate) they both get a high payoff

(normalized to one), and when they both play action d (defect) they get a low payoff (normalized to zero).

When a single player defects he obtains a payoff of 1+g (i.e., an additional payoff of g) while his opponent gets

−l. The central payoff matrix of Table 1 presents an example (PD1) of an offensive mild PD (0.5 · (l + 1) >

g > l) with g = 0.5 and l = 0.1. The right side presents an example (PD2) of a defensive acute PD

(l < g < 0.5 · (l + 1)) with g = 9 and l = 15.

Defection is Evolutionarily Stable Theorem 1 shows that defection is evolutionarily stable for any small

level of noise and any observation structure. The proof can be sketched as follows. The positive level of noise

implies that all possible messages are observed with positive probability. Defecting with probability one

regardless of the observed message is the unique strict best reply to itself. On the one hand, mutants who

always defect against incumbents must also always defect among themselves. This is because such a mutant

has no way of telling whether he is being matched with an incumbent or another mutant, since the partner’s

observed behavior is identical to that of the incumbents. On the other hand, mutants who cooperate against

incumbents with an average probability of α > 0 cooperate against other mutants with at most an additional

probability of k · α. The reason is that such a mutant can cooperate against another mutant only when

he observes that the other mutant cooperates in at least one of the k observed interactions. This implies

that such mutants suffer a loss of α · l from cooperating against incumbents, while their maximal gain from

inducing cooperation from fellow mutants is ǫ · (k + 1) ·α, where 0 < ǫ << 1 is the fraction of mutants in the

population. Thus if ǫ is sufficiently small, then the mutants are strictly outperformed.

Only Defection is Stable in Offensive PDs when Agents Observe Actions Theorem 2 shows that

always defecting is the unique neutrally stable strategy distribution in any offensive PD for any small level
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of noise, when each agent observes the partner’s actions. The sketch of the proof is as follows. Assume

that strategy distribution σ is neutrally stable. The payoff of a strategy in the PD can be divided into two

components: (1) direct component: defecting yields an additional g points if the partner cooperates and

an additional l points if the partner defects, and (2) indirect component: the strategy’s average probability

of defection determines the distribution of actions observed by the partners, and thereby determines the

partner’s probability of defecting. For each fixed average probability of defection q the fact that the PD is

offensive implies that the optimal strategy among all those who defect with an average probability of q is

to defect with the maximal probability against the partners who are most likely to cooperate. This implies

that all agents who follow incumbent strategies are more likely to defect against partners who are more

likely to cooperate. As a result, mutants who always defect outperform incumbents because they both have

a strictly higher direct payoff (because defection is a dominant action) and a weakly higher indirect payoff

(since incumbents are less likely to defect against them).

Specific Structure of Observation and Noise In the following sketched proofs we assume that each

player observes two of his partner’s interactions before playing, and that there is a single source of noise:

a fraction δ of the agents in the population defect with a probability of 20% regardless of the observed

message. The assumptions are made to simplify the exposition. General noise structures (which are dealt

with in the formal results) yield essentially the same stable strategy distributions, except that: (1) some

noise structures induce agents to mix at the individual level (rather than having two groups of agents, each

following a different deterministic strategy), and (2) the probability that a player defects when he observes a

single defection depends on the noise structure (it is increasing in the average probability of defection of the

strategy mistakes).

Stable Cooperation in Defensive PDs when Agents Observe Actions Theorem 3 shows that co-

operation is evolutionarily stable in defensive PDs when agents observe actions.

We now demonstrate how to sustain stable cooperation in PD1 (Table 2). Consider a heterogeneous

distribution with two strategies in its support: 70.6% of the population defect iff they observed two defections

(Tit-For-2-Tats strategy, abbreviated TF2T ), and the remaining agents (29.4%) defect iff they observed at

least one defection (Tit-For-Tat strategy, abbreviated TFT ). In what follows we sketch an explanation of

why this distribution is evolutionarily stable and can yield full cooperation when noise vanishes (δ → 0). We

focus on outcomes in which the average probability that TFT - or TF2T agents defect is O (δ). Throughout

the calculations we neglect terms of O (δ) and O
(

δ2
)

when the leading term is O (1) and O (δ), respectively.

Table 3: Frequency of Defections in the Stable Population in PD1
Probability of Defection by Row str. Calculation of Conditional Probabilities

Frequency 29.4% 70.6% δ
Pr (d|str.) Pr (d,c|str.)

Pr (d,c|str.) ·
Pr (type)

Pr (str.|d,c)
Strategy TFT TF2T Noise

TFT 2 · δ 0.08 · δ 36% δ 2·δ 0.59·δ 61%
TF2T O

(

δ2
)

O
(

δ2
)

4% 0.04·δ 0.08·δ 0.06·δ 6%

Noise 20% 20% 20% 20% 32% 0.32·δ 33%

First, we calculate the defection probability of each strategy against each other strategy, as presented in

the left side of Table 3. The event of a player observing a single defection is denoted by (d, c). The various

probabilities are consistent with the strategies in the sense that: (1) the TFT probability of defection against
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each partner is equal to the probability that a TFT -player observes the partner defecting at least once in

two random interactions (i.e., it is 1 − (1 − Pr (d|str.))
2
, where Pr (d|str.) is the probability that the column

strategy, abbreviated to str., will defect); (2) the TF2T probability of defecting against a partner is equal to

the probability that a TF2T player observes the partner defect twice in two random interactions (i.e., it is

Pr (d|str.)
2
); and (3) noisy agents defect with a probability of 20%.

Next we have to show that both actions are best replies when agents observe a single defection. The

right side of Table 3 calculates the probability that a player observes a single defection conditional on being

matched with each strategy. By using Bayes’ rule, we can then calculate the probability that a player is

matched with each strategy conditional on the player observing a single defection. It turns out that the

conditional probability of being matched with a noisy agent is ~33%. As noisy (non-noisy) agents defect

with a probability of 20% (O (δ)) against a non-noisy partner, it implies that the probability that a partner

will defect conditional on the player observing a single defection by the partner is 33% · 20% ≈ 6.5%. As a

result, a player’s direct expected gain from defecting, conditional on having observed a single defection, is

6.5% · l + 93.5% · g = 6.5% · 15 + 93.5% · 9 = 9.4, and since an observation of a single defection occurs with

probability 0.294 · 0.59 · δ+ 0.706 · 0.006 · δ+O
(

δ2
)

= 0.178 · δ, a player’s expected gain from defecting after

observing single defections is 0.178 · δ · 9.4. This turns out to be equal to the indirect loss of defecting. To

see this, note that the probability that a future partner is a TFT agent who observes a single defection is

increased by 0.178 · δ · 2 · 29.4% when one defects after observing single defections, and the TFT partner’s

defection yields a loss of 11 points, so that the total indirect cost, conditional on the player having observed

a single defection, is 29.4% · 2 · 16 ≈ 9.4.

The next step is to note that defection (cooperation) is the unique best reply after a player observes two

defections (cooperations). This is because after a player has observed two defections (two cooperations),

the conditional probability that the partner defects is higher (lower) than 6.5%, which implies that the

direct gain from defecting is strictly larger (smaller) than the indirect future loss. This implies that any

sufficiently small group of mutants who behave differently after observing two defections (cooperations) is

strictly outperformed.

The fact that both actions are best replies after a player observes a single defection implies that TFT and

TF2T yield the same expected payoff. Moreover, the relative payoffs in this heterogeneous population are

qualitatively similar to the payoffs in a “Hawk-Dove” game, where it is well known that the heterogeneous

population is evolutionarily stable. To see why, consider a small group of invading mutants who defect after

observing a single defection with an average probability of q 6= 29.4%. These mutants are strictly outperformed

due to the following argument. If q > 29.4% (q < 29.4%%), then the aggregate probability that a player

defecting after observing a single defection, would induce a future opponent to defect is higher (lower) than

2 · 29.4% in the post-entry population, so that the indirect cost of defecting increases (decreases), while the

direct benefit of defecting remains approximately the same. This implies that cooperating (defecting) after

one has observed a single defection is the unique best reply, and the mutants who defect (cooperate) more

often in these cases (relative to the incumbents) are outperformed.

Finally, mutants who defect with an average probability of 29.4% after they observe a single defection

but mix at the individual level are outperformed because the supermodularity of defensive PDs implies that

the payoff of a strategy as a function of its own defection probability is strictly convex (because defecting

more often implies that the partners are more likely to defect against the agent, which makes defection more

profitable in a defensive PD).10

10Other noise structures in which agents with noisy strategies defect after observing (c, c) and cooperate after observing (d, c)
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Stable Cooperation in Mild PDs when Agents Observe Conflicts Theorem 4 shows that coopera-

tion is evolutionarily stable when agents observe conflicts (i.e., whether or not there was mutual cooperation)

iff the PD is mild. We now demonstrate how to sustain stable cooperation in the mild PD1. Consider a

distribution with two strategies in its support: 77.2% of the population defect iff they observed two defections

(TF2T ), and the remaining agents (22.8%) defect iff they observed at least one defection (TFT ). In what

follows we sketch why this distribution is evolutionarily stable and can yield full cooperation when noise

vanishes (δ → 0).

Table 4: Frequency of Defections in the Stable Population in PD1
Probability of Defection by Row st. Calculation of Conditional Probabilities

Freq. 22.8% 77.2% δ
Pr (D|st.) Pr (D,C|st.)

Pr (D,C) ·
Pr (type)

Pr (st.|D,C)
Strategy TFT TF2T Noise
TFT 40·δ 1.4·δ 71% 20.3·δ 40.6·δ 9.2·δ 85%

TF2T O
(

δ2
)

O
(

δ2
)

21% 0.65·δ 1.3·δ 1·δ 10%

Noise 20% 20% 20% 46% 49.7% 0.5·δ 5%

First, we calculate the defection probability of every player’s strategy against every other player’s strategy,

as presented in the left side of Table 4 (neglecting terms of O (δ) and O
(

δ2
)

when the leading term is O (1)

and O (δ), respectively). The various probabilities are consistent with the strategies in the sense that: (1) the

probability than a TFT agent defects against a partner is equal to the probability that the player observes at

least one conflict; i.e., it is 1 − (1 − Pr (D|str.))
2
, where D denotes the signal of having a conflict in a random

interaction of the partner; (2) the probability that a TF2T agent defects against a partner is equal to the

probability that he observes conflicts in both of the partner’s observed interactions; i.e., it is Pr (D|str.)
2
;

and (3) the noisy agents defect with a probability of 20%.

Next we have to show that both actions are best replies when one observes a single conflict. The right

side of Table 4 calculates the probability that a player observes a single conflict (denoted by (D,C) in

the table) conditional on being matched with each strategy. By using Bayes’ rule, we can then calculate

the probability of a player being matched with each strategy, conditional on the player observing a single

conflict. This probability turns out to be 5% for the noisy agent. Thus the probability that a partner will

defect conditional on the player observing a single conflict is 5% · 20% ≈ 1%, and the direct expected gain

from defecting is 1% · l+ 99% · g = 1% · 0.1 + 99% · 0.5 ≈ 0.495. This is equal to the indirect loss of defecting:

99% ·2 ·22.8% ·1.1 ≈ 0.495. To see this, note that defection changes the signal from “no conflict” to “conflict”

iff the partner cooperates (which happens with a probability of 99%), and each such rare signal of conflict

is observed, with an average probability of 2 · 22.8% by a future TFT partner who then induces a loss of

l + 1 = 1.1. Finally, arguments similar to those presented above show that defection (cooperation) is the

unique best reply after a player observes two (zero) conflicts, and that mixing at the individual level after

the player observes a single defection yields a worse payoff.

Unstable Cooperation in Acute PDs when Agents Observe Conflicts We now sketch why one

cannot sustain stable cooperation in any acute PD (i.e., PDs with g > l+1
2 ) when each player observes

whether there was conflict in a sample of k interactions. Cooperation can be a stable outcome only if

cooperating is a best reply to a cooperative partner. First consider a mutant with small mass of ǫ who

can induce the opposite case in which the payoff of an agent is a concave function of the agent’s own defection probability. In
such cases, the stable population is homogeneous, and all agents mix with the same probability after observing a single defection.
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defects with a very small but positive average probability of z. A player’s direct gain from defecting against a

partner who cooperates is z ·g. A player’s indirect loss is approximately z ·k ·q · (l + 1), where q is the average

probability that an incumbent defects after observing a single defection. The mutants are outperformed only

if z · g < z · k · q · (l + 1). The acuteness of the PD implies that 0.5 · (l + 1) < g < k · q · (l + 1) ⇒ k · q > 0.5.

Note that the mutants induce a fraction 2 ·k · q · ǫ · z of incumbents to defect due to observing the fraction

of ǫ ·z conflicts that are directly induced by the mutants (recall that each defection induces a signal of conflict

for both participating agents). Next, the fraction of 2 ·k ·q ·ǫ ·z new conflicts will induce an additional fraction

(2 · k · q)
2

· ǫ · z of defections by incumbents who observe these new conflicts. Iterating the process will show

that the total number of induced conflicts is proportional to the sum of a geometric sequence with parameter

2 · k · q > 1, which converges to infinity. This implies that an entry of a small group of defecting mutants is

“contagious” in the sense that it induces all the incumbents to defect, which implies that cooperation cannot

be a stable outcome.

Stable Cooperation in Any PD when Agents Observe Unilateral Defections The arguments

for how players may support stable cooperation when they observe unilateral defections are similar to the

previously sketched proofs for the case of when they observe conflicts. However, there is one key difference.

In this observation structure every defection by a mutant induces a “bad” signal to at most one of the

interacting agents (rather than to both of them), which implies that the geometric sequence of the total

fraction of induced defections has a parameter of k · q (rather than 2 · k · q), and thus the problem of a small

group of mutants that induces the entire population to defect happens only when g > l + 1 (rather than

when g > l+1
2 ), which exactly characterizes “non-standard” PDs (in which, unlike the standard PDs, mutual

cooperation is not the efficient outcome).

Unstable Cooperation when Agents Observe Action Profiles Finally, we sketch why cooperation

is not stable in acute (mild) PDs when agents observe action profiles for all (some) of the noise structures.

A population may support stable cooperation only if: (1) the incumbents on average defect with a positive

probability of q > 0 when they observe a single unilateral defection (this is necessary for cooperation to be

the best reply to a cooperator), and (2) the incumbents defect with a smaller average probability when they

observe a single bilateral defection (this is necessary for cooperation to be the best reply to a defector).

On the one hand, a direct calculation of the behavior in the interactions between noisy and non-noisy

agents (similar to those presented in the tables above) shows that the total frequency of unilateral defections

of non-noisy agents is larger than those of noisy agents if either: (1) the PD is acute, because then the

total frequency of non-noisy agents’ unilateral defections is the sum of a geometric sequence with parameter

k · q ≥ 0.5 as discussed above, or (2) the noisy agents defect with a probability of at least 2
3 (this defection

probability is so high as to imply that the non-noisy agents always defect against these noisy agents, and

thus the noisy agents are never being observed to be the sole defectors).

On the other hand, mutual defections are very rare among incumbents (O
(

δ2
)

). This implies that most

bilateral defections occur when at least one of the interacting agents follows a strategy mistake. This implies,

that when a player observes a bilateral (unilateral) defection, the conditional probability that the partner

follows a strategy mistake and is more likely to defect is approximately (less than) 50%. As a result it is

more beneficial for agents to defect when they observe a bilateral defection, which contradicts requirement

(2) above.
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3 Model

3.1 Environment and Observation Structure

We present a reduced-form static analysis of a dynamic evolutionary process of cultural learning (or, alter-

natively, of a biological evolutionary process) in a large population of agents. The agents in the population

are randomly matched into pairs and play a symmetric one-shot game G. Formally, let G = (A, π) be a

two-player symmetric normal-form game, where A is a finite set of actions (|A| ≥ 2), and π : A × A → R is

the payoff function. As is standard in the evolutionary game theory literature, we interpret the payoffs as

representing “success” (or “fitness”).

Let ∆ (A) denote the set of mixed actions (distributions over A), and let π be extended to mixed actions in

the usual way. We use the letter a (α) to denote a typical pure (mixed) action. With slight abuse of notation

let a ∈ A also denote the element in ∆ (A), which assigns probability 1 to a. We adopt this convention for

all probability distributions throughout the paper.

Remark 1. The assumption that the game is symmetric is essentially without loss of generality (if G is played

within a single population). Asymmetric games can be symmetrized by considering an extended game in

which agents are randomly assigned to the different player positions with equal probability, and strategies

condition on the assigned role (see, e.g., Selten, 1980).

An observation structure is a tuple Θ = (p,B, o), where p ∈ ∆ (N) is a distribution (with a finite support)

over the number of observed interactions, B is a finite set of signals that can be observed for each interaction,

and the mapping o : A×A → ∆ (B) describes the probability of observing each signal b ∈ B conditional on

the action profile played in this interaction (where the first action is the one played by the current partner,

and the second action by her opponent).

Before playing the game, each player independently samples k independent interactions of his partner

(where k is distributed according to p). Let M denote the set of all possible messages (profiles of signals)

given observation structure Θ, i.e., M =
{

∪k∈C(p)B
k
}

, and let m denote an element of M . We let 0

be included in N and assume that B contains an empty message Ø that is observed when k = 0 . An

environment is a pair E = (G,Θ), where G is the game and Θ is the observation structure.

We pay special attention to four kinds of observation structures:

1. Observation actions: Observing the partner’s actions, i.e., B = A and o (a, a′) = a.

2. Observation of action profiles: B = A2 and o (a, a′) = (a, a′) .

3. Observation of conflicts (in PDs): Observing whether or not there was mutual cooperation. That is,

B = {C,D}, o (c, c) = C, and o (a, a′) = D for any (a, a′) 6= (c, c).

4. Observation of unilateral defections (in PDs): Observing unilateral defections of the partner. That is,

B = {C,D}, o (d, c) = D, and o (a, a′) = C for any (a, a′) 6= (d, c).

In each of these four cases, we identify the observation structure Θ with the distribution p.

3.2 Strategies and Outcomes

A strategy is a mapping s : M → △ (A) that assigns a mixed action to each possible message. Let sm ∈ △ (A)

denote the mixed action played by strategy s after observing message m. That is, for each action a ∈ A,
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sm (a) = s (m) (a) is the probability that a player who follows strategy s plays action a after observing

message m. We also let a denote the strategy s ≡ a that plays action a regardless of the message.

Let S denote the set of all strategies, and let Σ ≡ △ (S) denote the set of finite support distributions

over the set of strategies. An element σ ∈ Σ is called a strategy distribution (or simply distribution). Let

σ (s) denote the probability that strategy distribution σ assigns to strategy s. Given a strategy distribution

σ ∈ Σ, let C (σ) denote its support (i.e., the set of strategies such that σ (s) > 0). We interpret σ ∈ Σ as

representing a population in which |C (σ)| strategies coexist, and each agent is endowed with one of these

strategies according to the distribution of σ. When |C (σ)| = 1, we identify the strategy distribution with

the unique strategy in its support (i.e., σ ≡ s), in line with the convention adopted above.

Remark 2. Our model focuses on stationary strategies in which the agent’s behavior depends only on the

message about the partner, but not on the agent’s own past play or on time. We discuss how to interpret

and relax this assumption in a dynamic setup in Section 6.1.

Given a finite set of strategies S̃ ⊂ S, an outcome η : S̃×S̃ → △ (A) is a mapping that assigns to each pair

of strategies s, s′ ∈ S̃ a mixed action ηs (s′), which is interpreted as the mixed action played by an agent with

strategy s conditional on being matched with a partner with strategy s′. Let OS̃ ≡ (△ (A))(
S̃×S̃) denote the

set of all outcomes defined over the set of strategies S̃. The strategy distribution and the outcome together

determine the payoffs earned by each agent in the population. Outcome η ∈ OS̃ is pure if there exists action

a ∈ A such that ηs (s′) = a for each s, s′ ∈ S̃. We denote such a pure outcome by η ≡ a.

We now present a few definitions that take as given: a strategy distribution σ ∈ Σ, an outcome η ∈ OC(σ),

and a strategy s ∈ C (σ). Let ηs,σ ∈ △ (A) be the mixed action played by an agent with strategy s when

being matched with a random partner sampled from σ. Formally, for each action a ∈ A:

ηs,σ (a) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) .

Let ψs,σ,η ∈ △ (A×A) be the (possibly correlated) mixed action profile that is played when an agent with

strategy s is matched with a random partner sampled from σ. Formally, for each (a, a′) ∈ A×A, where a is

interpreted as the action of the agent with strategy s, and a′ is interpreted as the action of his partner:

ψs,σ,η (a, a′) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) · ηs′ (s) (a′) .

Given a messagemk = (bi)1≤i≤k ∈ Bk, let νs,σ,η (mk) denote the probability that a profile of k independent

observations of interactions between strategy s and a random partner is equal to m:

νs,σ,η

(

(bi)1≤i≤k

)

=
∏

1<i≤k

∑

(ai,a′

i
)∈A2

m (ai, a
′
i) (bi) · ψs,σ,η (ai, a

′
i) .

Let νs,σ,η (k) ∈ ∆
(

Bk
)

be the induced distribution over messages in Bk (with νs,σ,η (0) (Ø) = 1).

3.3 Consistent Outcomes, Configurations, and Payoffs

Fix environment (G,Θ). When individuals are drawn to play the game their actions are determined by their

strategies and the messages they observe. Suppose that the observed messages are sampled from outcome

η and the players play according to the strategy distribution σ. This induces a new outcome. We require
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outcomes to be consistent with the strategy distribution in the sense that they generate observations that

induce the current outcome to persist. Formally, given a distribution σ ∈ Σ, let fσ : OC(σ) → OC(σ) be the

mapping between outcomes that is induced by σ.

(fσ (η)) s (s′) (a) =
∑

k∈C(p)

p (k) ·
∑

mk∈Mk

νs,σ,η (mk) · s (mk) (a) .

Outcome η ∈ OC(σ) is consistent with distribution σ if it is a fixed point of this mapping: fσ (η) ≡ η. The

standard Lemma 1 shows that each distribution admits a consistent outcome.

Lemma 1. For each strategy distribution σ ∈ Σ there exists a consistent outcome η.

Proof. Observe that the space OC(σ) is a convex and compact subset of a Euclidean space, and that the

mapping fσ : OC(σ) → OC(σ) is continuous. Brouwer’s fixed-point theorem implies that the mapping σ has

a fixed point, which is a consistent outcome by definition.

Some distributions induce multiple consistent outcomes. For example, if each player observes a single

action for sure, then any outcome η ∈ Os̃ is consistent with the distribution that assigns mass 1 to the

“tit-for-tat” strategy (s̃ (a) = a for each a ∈ A). Due to this multiplicity, we introduce the notion of a

configuration, namely, a pair consisting of a strategy distribution and a consistent outcome.

Definition 1. A configuration is a pair (σ, η), where σ ∈ Σ, η ∈ OC(σ), and fσ (η) ≡ η.

Given a configuration (σ, η) and a strategy s ∈ C (σ), let πs (σ, η) be the payoff of a player who follows

strategy s in configuration (σ, η):

πs (σ, η) =
∑

(a,a′)∈A×A

π (a, a′) · ψs,σ,η (a, a′) .

Given a distribution of strategies σ′ with a weakly smaller support than σ (C (σ′) ⊆ C (σ)), let πσ′ (σ, η) be

the payoff of a player with a strategy sampled according to σ′ in configuration (σ, η):

πσ′ (σ, η) =
∑

s′∈C(σ′)

σ′ (s′) · πs′ (σ, η) .

Remark 3. In Heller and Mohlin (2015b) we show that all strategy distributions in an environment admit

unique consistent outcomes iff the expected number of observed actions is less than one.

4 Noise and Evolutionary Stability

4.1 Noise Structures and Perturbed Environments

Our main results deal with assessing the stability of pure outcomes, such as the stability of populations of

agents who always cooperate. However, the strategy of each incumbent describes his behavior also after he

observes defections, which are never played on the equilibrium path. The stability analysis can therefore

make sense only if one explicitly models the sources of off-path behaviors. In what follows, we define a broad

notion of behavioral noise that allows for mistakes both in the choice of actions and in the choice of strategies.
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A noise structure describes the relative frequency of each mistake that agents may commit. The first

component, ξ, describes the relative frequency of choosing each pure action (i.e., each mapping from messages

to pure actions) by mistake in each round. These mistakes are similar to the trembles in the definitions of

extensive-form perfect equilibrium and limit ESS; see Selten, 1975, 1983. The second component, S, describes

a finite set of strategies that the agents may follow by mistake. The strategy mistakes are similar to the

mistakes that are dealt with in normal-form perfection, and to the “crazy” strategies that are followed with

small probability in reputation models such as Kreps, Milgrom, Roberts, and Wilson (1982).11 The third

component, λ, describes the relative frequency of each strategy mistake.

Definition 2. Let E = (G,Θ) be an environment. A noise structure is a tuple ζ = (ξ,S, λ):

1. Function ξ : A → R
+ assigns a non-negative number to each action such that

∑

a∈A ξ (a) ≤ 1, which

describes the relative frequency of action trembles.

2. S ⊆ S is a finite set of strategy mistakes.

3. Function λ : S → R
+ assigns a positive number to each strategy mistake s ∈ S s.t.

∑

s∈S λ (s) ≤ 1.

Remark 4. All our results remain the same if we require each ξ (a) to be positive.

In what follows we focus on noise structures that contain a grain of full-support strategy mistakes.

Specifically, we require that for each distribution of observed messages, there exist two different strategies in

S, and that at least one of them have full support (i.e., it plays all actions with positive probability).

Definition 3. Given strategy s and distribution µ ∈ ∆ (M), let sµ =
∑

m µ (m) · sm ∈ ∆ (A) be the

distribution of actions played by an agent who follows strategy s and observes a message sampled from µ.

Definition 4. Noise structure ζ = (ξ,S, λ) has a grain of full-support strategy mistakes if for each distribution

over the set of observed messages µ ∈ ∆ (M), there exist strategy mistakes s, s′ ∈ S such that (1) sµ is totally

mixed (i.e., sµ (a) > 0 for each a ∈ A), and (2) sµ 6= sµ′ .

We interpret µ as the distribution of messages that is induced by the incumbent configuration. The first

requirement (that sµ be totally mixed) implies that any observed message might be the result of a strategy

mistake. This rules out noise structures in which some messages can only be the result of action trembles (or

cannot be induced at all). The second requirement is that there be two strategies in S that induce different

plays, and thus the observed message may change the posterior probability about the partner’s likely play.

This rules out “degenerate” noise structures in which the entire population (including the mistake strategies)

play exactly the same, and thus the observed message is completely irrelevant in assessing the likely action

of the partner.

Given an environment E = (G,Θ), a noise structure ζ = (ξ,S, λ), and a noise level 0 < δ < 1, we define

E (G,Θ, ζ, δ) to be the perturbed environment in which agents make mistakes at an order of magnitude of δ,

and the mistakes are distributed according to ζ. That is, each agent trembles and chooses action a by mistake

with a probability of δ · ξ (a) in each round, and a fraction of δ ·λ (s) of the population follows strategy s ∈ S

by mistake.

To give a formal definition of E (G,Θ, ζ, δ), we need some auxiliary notation and concepts. Let Sξ,δ ⊆ S

be the set of strategies that assign a probability of at least δ ·ξ (a) to each action a after any observed message.

11See Abreu and Sethi (2003) for a model in which related behavioral types are evolutionarily stable.
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This is the set of strategies that respect the noise structure ζ and the noise level δ. For each strategy s ∈ S,

let sξ,δ ∈ Sξ,δ be the projection of s onto Sξ,δ; that is, for each a ∈ A

sξ,δ (a) = min







max {s (a) , δ · ξ (a)} , 1 −
∑

a′ 6=a

δ · ξ (a′)







.

Let Sξ,δ be the set of these projections. This is the set of strategy mistakes that are adjusted to respect the

noise structure ζ and the noise level δ.

A strategy distribution σ ∈ Σ is included in the convex set of feasible perturbed strategy distributions

Σζ,δ ⊆ Σ iff: (1) the support consists entirely of strategies that respect the noise structure ζ and the noise

level δ, i.e., C (σ) ⊆ Sξ,δ, and (2) all strategy mistakes that are adjusted to respect ζ and δ receive a weight

that respects ζ and δ, i.e., for each s ∈ Sξ,δ, σ (s) ≥ δ · λ (s) . The perturbed environment E (G,Θ, ζ, δ) is

defined similarly to the unperturbed environment E (G,Θ), except that the set of strategy distributions is

limited to Σζ,δ. Note that E (G,Θ, ζ, 0) is the original unperturbed environment. Further note that if ζ has

a grain of full-support strategy mistakes and δ > 0, then any configuration (σ, η) such that σ ∈ Σζ,δ induces

all messages with positive probability.

4.2 Post-Entry Focal Configuration

Our static concepts are intended to capture stable behavior in a dynamic process of cultural learning. We

imagine a large population of agents. At each point in time every agent has a strategy that he currently

follows. Agents regularly receive the opportunity to change their strategies. Such revisions go in the direction

of the currently more successful strategies (i.e., payoff-monotonic selection dynamics). Occasionally a small

group of agents, called mutants, switch to an arbitrary strategy, in a way that does not have to respect the

payoff monotonic dynamics.

We consider incumbents distributed according to σ∗ and a small group of invading mutants (with a small

mass ǫ > 0), who play a different distribution of strategies σ′. Following the entry, the post-entry distribution

of strategies gives a weight of 1 − ǫ to the incumbent strategy distribution and a weight of ǫ to the mutant

strategy distribution. Following such an entry, the behavior of the population is assumed to converge to

a consistent outcome of this post-entry strategy distribution. The speed at which behavior converges to a

consistent outcome is assumed to be much faster than the speed at which the strategy distribution evolves in

line with a payoff-monotonic learning process. Thus we can assume that the payoffs obtained in consistent

outcomes are the ones that are relevant to the long-run composition of the strategy distribution.

Formally, given 0 < ǫ < 1 and two strategy distributions σ∗, σ′ ∈ Σ with relative masses of 1 − ǫ and ǫ,

let σǫ = σσ∗,ǫ,σ′ denote the ǫ-post-entry strategy distribution:

σǫ (s) = (1 − ǫ) · σ∗ (s) + ǫ · σ′ (s) for each s ∈ C (σ) ∪ C (σ′) ,

and let an ǫ-post-entry configuration be any configuration consisting of the ǫ-post-entry strategy distribution

and a consistent outcome: (σǫ, ηǫ).

We say that a strategy is noisy if the strategy distribution assigns to it the minimal probability required

by the noise structure. Formally, given strategy distribution σ ∈ Σζ,δ in noisy environment E (G, p, ζ, δ), an

incumbent strategy s ∈ C (σ) is noisy if σ (s) = δ ·λ (s), and it is non-noisy otherwise, i.e., if σ (s) > δ ·λ (s).
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We pay special attention to focal post-entry configurations in which the non-noisy incumbents play simi-

larly to their pre-entry behavior.

Definition 5. Given a noisy environment E (G,Θ, ζ, δ), a strategy distribution σ ∈ Σζ,δ, a configuration

(σ, η), and numbers ǫ > 0 and φ ≥ 0, we say that a post-entry configuration (σǫ, ηǫ) is φ-focal if for any two

non-noisy incumbent strategies s, s′ ∈ C (σ), and every action a, it holds that, |ηs (s′) (a) − (ηǫ)s (s′) (a)| ≤ φ.

4.3 Evolutionary Stability

A strategy distribution is evolutionarily (neutrally) stable if following an entry of a small group of mutants:

(1) there exists a post-entry focal configuration, and (2) the mutants are strictly (weakly) outperformed in

any (at least one) post-entry focal configuration. Formally:

Definition 6. Fix a perturbed environment E (G,Θ, ζ, δ). The configuration (σ∗, η∗), where σ∗ ∈ Σζ,δ, is

evolutionarily stable if for each strategy σ′ 6= σ∗ ∈ Σζ,δ, and each φ̄ > 0, there exists ǭ > 0 and 0 ≤ φ < φ̄,

such that for each 0 < ǫ < ǭ: (1) there exists a φ-focal ǫ-post-entry configuration; and (2) in any φ-focal

ǫ-post-entry configuration (σǫ, ηǫ):

πσ′ (σǫ, ηǫ) < πσ∗ (σǫ, ηǫ) .

The configuration (σ∗, η∗) is neutrally stable if for each strategy σ′ 6= σ∗ ∈ Σζ,δ, and each φ̄ > 0, there exists

ǭ > 0 and 0 ≤ φ < φ̄, such that for each 0 < ǫ < ǭ: (1) there exists a φ-focal ǫ-post-entry configuration; and

(2) there exists a φ-focal ǫ-post-entry configuration (σǫ, ηǫ):

πσ′ (σǫ, ηǫ) ≤ πσ∗ (σǫ, ηǫ) .

The first condition requires that there be a post-entry configuration in which the outcome is close to the

pre-entry behavior. If this condition is violated, then a small invasion can move the outcome far away, and

thus the configuration is not stable. For example, consider an environment in which each agent observes a

single action, and plays the observed action. Assume that initially the consistent outcome is that everyone

cooperates. This configuration is unstable, because an arbitrarily small invasion of mutants who always defect

would result in a post-entry strategy that has a unique outcome in which everyone defects.

The second condition requires the mutants to be outperformed in focal post-entry configurations: a strong

requirement for evolutionary stability (strictly outperformed in all focal post-entry configurations), and a mild

requirement for neutral stability (weakly outperformed in at least one focal post-entry configuration). The

focus on focal post-entry configurations is motivated by informally considering the underlying dynamics,

as Dekel, Ely, and Yilankaya (2007). Prior to the entry, the incumbent strategies have played against one

another long enough to settle on the consistent outcome η∗, and it seems plausible that entry by a small

group of new types will not undo this (see the dynamics presented in Section 6.1).

Note that when there are no observations (p (0) = 1), our definitions coincide with the classical definitions

of evolutionary and neutral stability (Maynard Smith and Price, 1973).

Remark 5. A few comments are in order.

1. Our results about the stability of defection hold even if we require that all post-entry configurations

be focal, or require that mutants outperform incumbents even in post-entry configurations that are not

focal. In particular, always defecting is evolutionarily stable (Theorem 1) if the focality requirement is
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modified in any of these ways. Moreover, one can show that no other strategy is perfectly evolutionarily

stable (Theorem 2) with such an alternative definition (however, one cannot show that any other

strategy is perfectly neutrally stable without our chosen definition of focality). However, the results on

the stability of cooperation (Theorems 3–6) rely on only considering focal post-entry configurations to

some extent, as the incumbent’s strategy has two consistent outcomes, one in which almost everyone

cooperates, and the other in which almost everyone defects. However, in these cases one can show that

plausible dynamics like those presented in Section 6.1 would only yield the focal post-entry configuration.

2. Our results remain the same if we only allow homogeneous groups of mutants who follow a unique

(non-noisy) strategy.

3. In Remark 9, we discuss the implication of requiring that all incumbent strategies outperform the

mutants rather than only requiring that the incumbents outperform the mutants on average, and we

explain why the alternative definition is arguably too strong.

4.4 Perfect Evolutionary Stability

A configuration is perfectly evolutionarily stable if it is the limit of evolutionarily stable configurations in a

sequence of perturbed environments where the noise level converges to zero. Formally:

Definition 7. Fix environment E = (G,Θ). A sequence of strategies (sn)n converges to strategy s if for

each message m ∈ M and each action a, the sequence of probabilities (sn)m (a) converges to sm (a) .

Definition 8. Fix environment E = (G,Θ). A sequence of configurations (σn, ηn) converges to a con-

figuration (σ∗, η∗) if: for each pair of strategies s, s′ ∈ C (σ∗) , there exist sequences of strategies (sn)n

and (s′
n)n such that: (1) (sn)n → s and (s′

n)n → s′, (2) σn (sn) → σ∗ (s) and σn (s′
n) → σ∗ (s′), and (3)

(ηn)sn
(s′

n) → (η∗)s (s′).

Definition 9. Configuration (σ∗, η∗) is perfectly evolutionarily (neutrally) stable in environment E = (G,Θ),

if there exist a noise structure ζ with a grain of full-support strategy mistakes, a converging sequence of

configurations (σn, ηn)n → (σ∗, η∗), and a converging sequence of noise levels (δn)n → 0, such that each

configuration (σn, ηn) is evolutionarily (neutrally) stable in the perturbed environment E (G,Θ, ζ, δn). In

this case we say that (σ∗, η∗) is perfectly evolutionarily (neutrally) stable with respect to noise structure ζ.

If η∗ ≡ a∗ ∈ A, then we say that a∗ is a perfectly evolutionarily (neutrally) stable outcome.

The definition of perfect evolutionary stability is analogous to Selten’s (1975, 1983) notions of perfect

equilibrium and limit ESS, with one difference: Selten’s notions considered only action trembles, while our

notion of stability deals with richer noise structures, and requires that they have a grain of full-support

strategy mistakes (however, action trembles are allowed to be the most frequent kind of mistakes). In

particular, when there is no observability (p (0) = 1), our definition of evolutionary stability coincides with

Selten’s definition of limit ESS.

The stability of a perfectly evolutionarily stable configuration depends on a specific noise structure. The

following definition of strictly perfect evolutionary stability is more robust in the sense that it requires stability

with respect to any noise structure (similar to strict perfection of Okada, 1981, and to strict limit ESS of

Heller, 2015b). Formally:
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Definition 10. Configuration (σ∗, η∗) is strictly perfectly evolutionarily stable in the environmentE = (G,Θ),

if for any noise structure ζ with a grain of full-support strategy mistakes, there exist a converging sequence

of configurations (σn, ηn)n → (σ∗, η∗), and a converging sequence of noise levels (δn)n → 0, such that each

configuration (σn, ηn) is evolutionarily (neutrally) stable in the perturbed environment E (G,Θ, ζ, δn).

Our analysis in Section 5.1 characterizes under what circumstances cooperation can be a stable out-

come. We say that a pure outcome is strictly perfectly stable if for any noise structure there is a perfectly

evolutionarily stable configuration (with respect to this noise structure) that induces this outcome.

Definition 11. Action a∗ is a strictly perfectly evolutionarily stable outcome in the environment E = (G,Θ),

if for any noise structure ζ with a grain of full-support strategy mistakes, there exist a converging sequence

of configurations (σn, ηn)n → (σ∗, η∗), and a converging sequence of noise levels (δn)n → 0, such that: (1)

each configuration (σn, ηn) is evolutionarily (neutrally) stable in the perturbed environment E (G,Θ, ζ, δn),

and (2) η∗ ≡ a∗.

5 Main Results

5.1 Stability in the Prisoner’s Dilemma

Stability of Defection in all Environments Our first result shows that always defecting is evolutionarily

stable in any PD game, for any observation function and any noise structure.12 Recall that (d, d) represents

the configuration in which everyone use the strategy of always defecting, which induces defection as its unique

consistent outcome. Formally:

Theorem 1. Let E = (G, p) be an environment where G is a PD game. The configuration (d, d) is strictly

perfectly evolutionarily stable.

Observation of Actions The following two results show that under observation of actions the stability

of cooperation crucially depends on whether the PD is offensive or defensive. In the former case (g > l) only

defection is stable (Theorem 2 ), while in the latter case (g < l), cooperation is also stable (Theorem 3).

Theorem 2 shows that defection is the unique neutrally stable strategy distribution in any offensive PD.

Theorem 2. Let E = (G, p) be an environment with observations of actions, where G is an offensive PD.

If (σ∗, η∗) is a perfectly neutrally stable configuration, then (σ∗, η∗) = (d, d).

Remark 6. Other outcomes may be neutrally stable in offensive PDs in two cases (both ruled out by our

assumption that the noise structure has a grain of full-support strategy mistakes). First, if there is no noise

at all, cooperation may be neutrally stable. The stability relies on the players cooperating iff the partner has

never defected. However, if a player observes a defection then it is not in his interest to defect, because that

will increase the probability of others defecting against him in the future. In order to avoid this problem

one must make the implausible assumption that players never observe defections. Second, there might be a

“degenerate” noise structure in which all players following noisy strategies defect with the same probability

as the incumbents. This implies that the observed message is entirely uninformative about the partner’s

expected behavior. In this case a positive probability of cooperation might be supported by incumbents who

tend to defect more after they observe messages with more frequent defections.

12When there is no noise at all, always defecting is only neutrally stable (and the game admits no evolutionarily stable
strategies) because mutants who differ only in their off-the-equilibrium path behavior obtain the same payoff as the incumbents.
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Remark 7. Relatively simple adaptations to the arguments of the proof of Theorem 2 show that, in the bor-

derline case in which g = l, always defecting is the unique perfectly evolutionarily stable strategy. Moreover,

this uniqueness result holds (for any g ≤ l) also if we allow for noise structures without a grain of full-support

strategy mistakes.

Theorem 3 shows that if players observe at least two actions, then cooperation is stable in any defensive

PD and given any noise structure.13 Formally:

Theorem 3. Let E = (G, p) be an environment with observations of actions, where G is a defensive PD

(g < l), and p ≡ k ≥ 2. Then cooperation is a strictly perfectly evolutionarily stable outcome.

We sketched the proof and the construction in Section 2 for a specific noise structure. In what follows we

sketch how to adapt the construction to any noise structure. Recall that in the supporting stable configuration

the (non-noisy) agents cooperate (defect) when they observe zero (at least two) defections, and they defect

with an average probability of q when they observe a single defection. Each noise structure induces (when

the noise level converges to zero) a posterior probability of 0 < µ < 1 that the partner defects conditional on

the player observing a single defection. Note that µ > 0 due to our assumption that the noise structure also

includes a grain of full-support strategy mistakes.

For each µ, there is a unique frequency 0 < q (µ) < 1
2 · l

l+1 for which both actions are best replies for a

player who observes that his partner has defected once. This frequency exactly balances the direct gain and

the indirect loss from defecting against such a partner. The direct gain is µ · l+ (1 − µ) · g) and the indirect

loss is k · q · (1 + l), since each rare instance of defection is observed by on average a fraction of k · q partners,

and each such observation induces the partner to defect with a probability of q and to yield a loss of l + 1.

Given this q, both actions yield the same payoff when a player observes a single defection. The remaining

arguments presented in Section 2 explain why the configuration is evolutionarily stable.

Remark 8. As discussed in the proof, the noise structure determines whether the stable population is het-

erogeneous and includes a group with mass q of TFT agents and a remaining group of TF2T agents, or

whether it is homogeneous and all (non-noisy) agents defect with a probability of q when they observe a

single defection.

Remark 9. Following the entry of a small group of mutants who defect with a probability of q′ < q after they

observe a single defection, the payoff of the mutants is less than the average incumbents’ payoff, but it is

more than the payoff of the TF2T players. However, this does not influence the stability of the heterogeneous

population of TFT and TF2T agents in plausible smooth dynamics. The mutants have a lower payoff than the

average payoff, and thus gradually disappear from the population, while the TFT (TF2T ) becomes somewhat

more (less) frequent. As soon as the mutants disappear, TF2T outperforms TFT until the frequency of the

TFT group returns to its original value of q.

Observation of Conflicts Next we show that under the observation of conflicts (i.e., whether or not there

was mutual cooperation in each interaction), the stability of cooperation crucially depends on whether the

PD is mild (g < 0.5 · (l + 1)) or acute (g > 0.5 · (l + 1)). Specifically, Theorem 4 shows that cooperation

is (not) evolutionarily stable in any mild (acute) PD under any noise structure. The reader is referred to

Section 2 for the sketched proofs of the remaining results.

13To simplify the notations and the formal proofs we assume in the results on the stability of cooperation that players observe
a fixed number k ≥ 2 of interactions. The results can be extended to the case of players observing a random number of
interactions, which may include infrequent instances in which agents observe fewer than two actions.
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Theorem 4. Let E = (G, p) be an environment with observation of conflicts, where G is a PD and p ≡ k ≥ 2.

1. If G is a mild PD (g < l+1
2 ), then c is a strictly perfectly evolutionarily stable outcome.

2. If G is an acute PD (g > l+1
2 ), then c is not a perfectly neutrally stable outcome.

Observation of Unilateral Defections Next we show that under the observation of unilateral defections

(i.e., whether or not the partner was the sole defector), cooperation is strictly perfectly evolutionarily stable

in any (standard) PD, while cooperation is unstable in non-standard PDs (in which mutual cooperation is

not the efficient action profile) under any observation structure.

Theorem 5. Let E = (G, p) be an environment with observation of unilateral defections, where G is a PD.

1. If G is a standard PD ( g < l+1), and p ≡ k ≥ 2 , then, cooperation is a strictly perfectly evolutionarily

stable outcome.

2. If G is a non-standard PD (g > l + 1), then, c is not a perfectly neutrally stable outcome.

Observation of Action Profiles Theorem 6 shows that under the observation of action profiles, cooper-

ation is perfectly (but not strictly) stable in mild PDs: the stability is sensitive to the properties of the noise

structure, and it holds only if the agents who follow noisy strategies defect with relatively small probability

when they observe a profile of mutual cooperation. If the PD is acute, then stable cooperation cannot be

supported.

Theorem 6. Let E = (G, p) be an environment with observation of action profiles, where G is a PD game

and p ≡ k ≥ 2.

1. If G is mild ( g < l+1
2 ), then cooperation is a perfectly evolutionarily stable outcome, but it is not a

strictly evolutionarily stable outcome.

2. If G is acute (i.e., g > l+1
2 ), then cooperation is not a perfectly neutrally stable outcome.

5.2 Stability of Equilibria in Other Games

Our final result extends Theorem 1 (the stability of defection) to any strict Nash equilibrium a∗ of any

underlying game. However, the stability result for the general case holds only for some noise structures

(defection in the PD is stable in all noise structures because it is a dominant action). In particular, it holds

for noise structures in which the mistakes are either mostly (1) action trembles, or (2) strategy mistakes

that assign high probability to playing action a∗. In either of these noise structures, players assign a high

posterior probability to the event that the partner is going to play a∗ regardless of the observed message,

and thus playing a∗ is the unique best reply. Formally:

Proposition 1. Let E = (G, p) be any environment. If (a∗, a∗) is a strict pure Nash equilibrium of G, then

the configuration (a∗, a∗) is perfectly evolutionarily stable.

Remark 10. An inefficient strict equilibrium (say, (a∗, a∗)) of a coordination game is stable only for the noise

structures mentioned above. In contrast, if the noise structure mainly includes noisy strategies in which

agents always play the same pure action, then a∗ will not be stable. The intuition is as follows. Assume that
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the incumbents play a∗ (when there are no mistakes). Conditional on a player observing the partner mostly

playing the efficient equilibrium action (say, a′), it is very likely that the partner is following a strategy

mistake of playing a′ with high probability. As a result the unique best reply given this observation is a′.

However, this implies that mutants who always play a′ will outperform the incumbents.

One can wonder whether Proposition 1 can be strengthened to demonstrate the stability of some non-

strict equilibria of the underlying games. Example 1 suggests that this is not the case. It shows that the

unique symmetric equilibrium of the underlying game, which is also an ESS and satisfies all the standard

equilibrium refinements, is destabilized for any small positive level of observability.

Example 1. Consider the following Hawk-Dove game:

d h

d (dove) 1, 1 0.5, 1.5

h (hawk) 1.5, 0.5 0, 0

Each action is the strict best-reply to the other action, and α∗ = (0.5, 0.5) is the unique symmetric Nash

equilibrium, as well as an ESS of the underlying game. We now show why the configuration (α∗, α∗) is not

neutrally stable if p (0, 0) < 1. To simplify the argument we assume that each agent may observe only a

single action, but the argument can be extended to arbitrary observation functions (and to any Hawk-Dove

game). Consider a mutant strategy distribution that assigns equal weights to three strategies: (1) always

play h, (2) always play d, and (3) play the opposite of the observed action, and play each action with equal

probability if Ø was observed. Intuitively, the past behavior of the mutants is informative as to the strategy

they use, and this allows them to coordinate on avoiding the inefficient outcome. The mutants obtain the

same payoff as incumbents when facing incumbents (because all actions yield the same payoff against α∗),

but obtain a strictly higher payoff relative to the incumbents when facing other mutants. The reason is

that when two mutants are matched they play the inefficient action profile (h, h) with a probability of only
(

1
3

)2
+
(

1
3

)2
· 1

4 <
1
4 , while when an incumbent and a mutant are matched they play (h, h) with a probability

of 1
4 . This implies that the mutants outperform the incumbents in any post-entry configuration.

6 Variants and Extensions

6.1 Dynamical Interpretation and Non-stationary Strategies

Our static model raises two related questions: (1) Which plausible dynamics justify our static solution

concept? (2) How restrictive is our focus on stationary strategies, infinite populations, and infinite-lived

agents? In this section we sketch a dynamic model of a finite population of finite-lived patient players, and

use it to interpret and justify our static model (while leaving the development of a comprehensive formal

dynamic model to future research).

Fix a noisy environment E (G, p, ζ, δ), where E = (G, p) is the environment, 0 < δ << 1 is the noise

level, and ζ = (ξ,S, λ) is the noise structure. Let k̄ be the largest number of observations in the support of

the observation function p. Consider a population that includes a large even number N >> 1 of individuals,

where each individual is endowed with a history and a strategy. The history is a tuple of the recent M >> k̄

action profiles played by the agent and his mentor before him (as described below).14 The strategy of an

agent specifies the mixed action he plays as a function of his own history and the observation he has about

the partner’s past behavior. A stationary strategy is a strategy that depends only on the observation about

14The history can also include the observations about the past partners the agent had in these M interactions.
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the partner (and not on the agent’s own history). We allow for non-stationary strategies too. The feasible

strategies are restricted by the minimal trembling probabilities determined by the noise structure. We assume

that δ ·N of the agents (called crazy agents) follow strategies S (distributed according to λ).

In each round, the agents are randomly matched into pairs. Each agent obtains an observation about

the partner (sampled from the partner’s history according to the observation structure O), and then plays

a mixed action according to his strategy. The realized action profile determines the payoff of each agent in

that round. At the end of each round, each agent dies with a probability of 0 < α << 1. Each individual

who dies is replaced with a new agent. A crazy agent is followed by an identical crazy agent who follows the

same strategy. When a non-crazy agent dies, the new agent randomly chooses one of the incumbents as a

mentor and copies the mentor’s strategy and history. The probability of imitating a mentor is monotonically

increasing in the mentor’s average per-round payoff (c.f. Björnerstedt and Weibull (1996)). The interpretation

is that the young agent joins the mentor as a student/apprentice for some time and learns his strategy, and

the population relates the mentor’s past to the likely future behavior of the apprentice.

Each configuration (σ, η) corresponds to a state of the population that consists of |C (σ)| groups, each

group includes σ (s) · N agents who follow stationary strategy s and have the history that is induced by

outcome η. In addition, states of the population might also include non-stationary strategies (and in this

case they will not correspond to configurations).

We are interested in characterizing the dynamically stable population states under the dynamics described

above. As is standard in the evolutionary game theory literature, we explore stability by considering what

happens to the population after an exogenous inflow of a small fraction of mutants who may follow arbitrary

strategies. Consider any configuration that is not neutrally stable. Such a configuration cannot be dynami-

cally stable because a small group of mutant agents can outperform the incumbents, and as a result more and

more agents will start following the mutant strategy in the following generations. In an evolutionarily stable

configuration each incumbent strategy earns the same expected payoff, and thus the relative frequencies of

these strategies would remain constant. Moreover, since evolutionary stability implies that the mutant agents

will be outperformed and thus be less likely to have followers in future generations, the mutant strategy will

gradually disappear from the population.

Note that the fact that the incumbents follow stationary strategies (under the assumption that the

population is described by a configuration) implies that an agent would not benefit from having a non-

stationary strategy, except possibly on those very rare occasions when an agent has accumulated a history

that is very different from the one induced by the outcome η.15

So far we have described the entry of mutants as discrete and exogenous events, in line with the literature

on deterministic evolutionary dynamics. If we consider a stochastic evolutionary dynamic, by allowing for

a steady but small influx of mutants, it is possible that the population will move away from evolutionarily

stable configurations in the “ultra-long run” (see Samuelson, 1998). This will happen when a rare sequence

of random events induces a large group of mutants and/or shifts the histories of many agents far away.

Remark 11 (Robustness to Sophisticated Agents). Consider an adaptation to the dynamics, such that in

each round a small fraction of the population gets to revise their strategies. Each revising agent chooses a

strategy that best-replies to the aggregate behavior of the population, where he assesses his expected stream

of future payoffs according to a discount factor β < 1. If β is sufficiently close to one, then this adaptation

does not affect the stability analysis. The definition of evolutionarily stable configurations implies that all

15Our model is not suitable for analysis of stability of configurations in which many agents follow non-stationary strategies,
such as contagious equilibria (which are discussed in the Introduction).
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agents already choose long-term payoff-maximizing stationary best replies, and that any other best reply is

strictly outperformed when it has a sufficiently small (positive) mass in the population. If β is sufficiently

close to one, then this holds also for non-stationary strategies, so sophisticated revising agents (who explicitly

best-reply) will not take the population away from the evolutionarily stable configuration.

6.2 Public Messages

In the main model we assume that the message about the opponent’s behavior is private. In some applications

it might be more reasonable to assume that the messages are public. In particular, if we consider an online

interaction between traders through an intermediary Web site that publicly presents feedback about the past

behavior of the traders (e.g., eBay), then the messages about the past behavior (e.g., the trader’s feedback

summary) are public. Another environment in which public messages are a good description is one in which

a player observes the last actions that the partner played in the recent past. In such environments, the

messages are essentially public because each player remembers his own recent history. In what follows we

sketch how our results can be extended to the setup of public messages. To simplify the adaptation of the

results, we assume that players also publicly observe a random continuous variable (“sunspot”).

It is relatively straightforward to show that the stability of defection (Theorems 1–2) remains the same

with public messages, and the proofs require only minor adaptations. That is, defection is stable in any

public observation structure, and only defection is stable with public observation of actions. Moreover, all

the results about the stability of cooperation in the various observation structures (Theorem 3–6) can be

adapted to this setup as well. The population supporting stable cooperation in each of these cases consists

of a single strategy according to which: (1) both players cooperate if both messages include only mutual

cooperation, and (2) if at least one observed interaction includes defection (or conflict/unilateral defection in

the other observation structures), then the players use the continuous public signal to coordinate their play,

and both defect with a probability that is weakly increasing in the number of observed defections.

6.3 Invasion Barriers with Many Observations

Our main results show that in many cases both defection and cooperation are evolutionarily stable outcomes.

In this section we discuss the robustness of these stable outcomes when observability becomes perfect, in the

sense that players observe many interactions sampled from their partners’ behavior. Specifically, we focus

on deterministic observation functions in which agents observe k interactions sampled from the partner’s

behavior, and we study the limit as k → ∞.

Define the invasion barrier of a pure outcome ǭ to be the minimal size of a group of mutants that is required

to either (1) outperform the incumbents, or (2) take the population’s behavior closer to the opposite outcome,

i.e., to increase the frequency of the opposite pure action above 50% in all ǭ-post-entry configurations. Let

k denote the number of observations (either actions or action profiles). We say that the invasion barrier is

O (1/k) if there are numbers c, k̄ > 0 such that for each k ≥ k̄ the invasion barrier is smaller than c/k.

Our first observation is that the invasion barrier of defection is O (1/k). The destabilizing mutants cooper-

ate with a small probability of 0 < θ << 1 when they observe a partner who always defected, and cooperate

for sure if they observe the partner to cooperate at least once. The direct loss from cooperating against the

defecting incumbents is θ · l. The indirect gain from inducing cooperation between mutants is equal to θ · k

times the size of the mutant’s group. If this size is larger than l/k, the mutants outperform the incumbent.
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Intuitively, the mutants occasionally cooperate against the incumbents, and use this infrequent cooperation

as a way to identify other mutants (i.e., a somewhat costly secret-handshake mechanism à la Robson, 1990).

Next, we observe that the invasion barrier of cooperation is also O (1/k). For concreteness, we focus on

the case of agents (privately) observing actions in defensive PDs. The stability of cooperation requires agents

to defect with positive probability when they observe a single defection (otherwise mutants who defect with

small probability could invade the population), which implies that they must defect for sure if the partner

is observed to defect at least twice (because in this case the partner is more likely to defect against them

than if only one defection has been observed, and so they cannot be indifferent between cooperation and

defection). This implies that a group of mutants who always defect with a size of, say, 10/k will induce a

post-entry population in which everyone defects with high probability (as each incumbent is likely to observe

the partner to defect at least twice in the set of k observations).

It is possible to support stable cooperation with a uniform invasion barrier (which holds for all k > k̄),

in the case of public messages and public sunspots (as described in Section 6.2). This is because the public

sunspots allow the players to moderate the punishment (probability of defection) after observing several

defections, while with private signals there is no such mechanism to moderate these punishments.

6.4 Evolution of Subjective Preferences

In what follows we sketch how to extend the model to analyze the evolution of subjective preferences.

Each subjective preference ordering is represented by a utility function on A × A. A preference-augmented

configuration is a triple consisting of a finite support distribution over utility functions, a strategy for each

utility function, and a consistent outcome satisfying the requirement that each strategy be a subjective

best reply (i.e, a Bayesian Nash equilibrium given the subjective preferences). The definitions of post-entry

configurations, focality, and evolutionary stability can be adapted to this setup quite straightforwardly. One

can then adapt Prop. 1 to this setup, and show that strict equilibrium of the underlying game is neutrally

stable for any observation structure (and that the supporting distribution of preferences can assign mass one

to the material preferences). This contradicts the main stylized result in the literature of the evolution of

preferences that only efficient outcomes may be stable if the observation probability is sufficiently high.

The reason for this apparent contradiction is that the existing literature on the evolution of preferences

(see, e.g., Güth and Yaari, 1992; Dekel, Ely, and Yilankaya, 2007; Herold and Kuzmics, 2009) assumes that

each agent may directly observe the partner’s preferences. In our model players observe past behavior and

draw inferences about the subjective preferences (a “revealed preferences” approach). We think that our

novel approach can be helpful in future research on the evolution of preferences since (1) it seems more

plausible in some applications, (2) it avoids the issues of ignoring the possibility of “mimicking” mutants

(see the discussion in Robson and Samuelson, 2010, Section 2.5), and (3) it avoids the crucial dependency of

many results in the literature on non-generic preferences (e.g., Dekel, Ely, and Yilankaya, 2007, Prop. 2).

7 Conclusion

We study a setup in which individuals are randomly matched to play a game, and each player may observe

messages about the partner’s behavior. We mainly apply the model to study PDs. We show that defection is

always evolutionarily stable, and we characterize which observation structures and which kinds of PDs allow

cooperation to be sustained. The mechanism that supports cooperation is novel and intuitive.
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Future Research We sketch three interesting directions for future research. The first direction, pursued

in a companion paper by Heller and Mohlin, 2015a, studies a setup in which agents are allowed to exert

effort in deception by influencing the message observed by the opponent. Second, our model assumes that

players directly observe past actions of the partner. In many applications, it seems more plausible that agents

observe only non-verifiable reports about the past interactions of their partner (e.g., the trader’s feedback on

eBay). Finally, some important interactions may be better modeled as asymmetric games between separate

populations (e.g., interactions between consumers and professional sellers), and it will be interesting to extend

our analysis to this setup.

A Proofs

A.1 Proof of Theorem 1 (Defection is Strictly Evolutionarily Stable)

Proof. Let k̄ = argmax {C (p)} be the maximal number of observed interactions. Let ζ = (ξ,S, λ) be any

noise structure with a grain of full-support strategy mistakes. Let δ̄ > 0 be a sufficiently small number with

respect to min(l,g)

(1+max(g,l))·k̄
. Let (δn)n be any sequence of noise levels converging to 0 that satisfies 0 < δn < δ̄

for each n. For each n let dn be the strategy that defects with a probability of 1 − δn · ξ (c) regardless of the

observed message, and let σn ∈ Σζ,δn
be such that σn (dδ,ξ) = 1 −

∑

s∈S λ (s). (That is, dn is the strategy

that defects with maximal probability, and σn is the strategy distribution that is closest to d in Σζ,δn
.) Let

ηn be a consistent outcome of σn. It is immediate that (σn, ηn) → (d, d). Fix n. We have to show that

(σn, ηn) is an evolutionarily stable configuration in the perturbed environment E (G, p, ζ, δn).

Pick 0 < ǫ < ǭ. Let σn ∈ Σζ,δn
, σ′ 6= σn, be a mutant strategy, and let (σǫ, ηǫ) be an ǫ-post-entry

configuration. It is immediate that (σǫ, ηǫ) is 0-focal because the unique non-noisy strategy dn plays the

same way regardless of the observed message.

We now show that the mutants are strictly outperformed. The fact that σ′ 6= σ∗ implies that the mutants

cooperate with a higher probability than the incumbents when facing a dn partner (because all messages

are observed with positive probability, and σn is the unique distribution of strategies that minimizes the

cooperation probability in Σζ,δn
). For each mutant strategy s′ ∈ C (σ′), let βs′ be an additional (average)

cooperation probability of mutant s′ beyond the minimal value due to trembles:

βs′ =
∑

s∈C(σǫ)

σ (s) · (ηǫ)s′ (s) (c) − ξ (c) ≥ 0.

For each two strategies s, s′ ∈ C (σǫ) , let αs,s′ be the difference in the cooperation probability of an agent

who follows strategy s when facing a partner who follows strategy s′ relative to facing an incumbent partner

who follows strategy dn, and let ᾱs′ be the maximum of all absolute values of αs,s′ :

αs,s′ = (ηǫ)s (s′) (c) − (ηǫ)s (dn) (c) , ᾱs′ = maxs∈C(σǫ) |(αs,s′)| .

We now derive an upper bound for ᾱs′ :

ᾱs′ ≤ k̄ · (βs′ + (ǫ+ δn) · ᾱs′) ⇒ ᾱs′ ≤
k̄ · βs′

1 − k̄ · (ǫ+ δn)
.

To see why this is the case, note that the LHS is the maximal probability that an agent plays differently when
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facing a mutant s′-partner, than when facing a dn-partner. This is bounded by the probability that the agent

observes the mutant s′-partner (or any of his past opponents) play differently from what play looks like in

interactions involving a dn-partner, in any of the k̄ observed interactions. In each such observed interaction,

the partner plays differently from a dn-agent with a probability of βs′ , and the partner’s opponent in that

interaction plays differently only if she follows either a noisy strategy or a mutant strategy (which happens

with a probability of ǫ+ δ), and in this case she plays differently with a probability of at most ᾱs′ .

The s′-mutants suffer a direct loss of βs′ · min (l, g) from their higher cooperation probability (relative to

the dn-agents). Their indirect gain (from inducing partners to cooperate more often against them) is at most

(ǫ+ δn) · maxs∈C(σǫ) (αs,s′) · (1 + max (g, l)) ≤ (ǫ+ δn) · ᾱs′ · (1 + max (g, l)). Thus the loss outweighs the

gain if:

(ǫ+ δn) · ᾱs′ · (1 + max (g, l)) ≤
(ǫ+ δn) · (1 + max (g, l)) · k̄ · βs′

1 − k̄ · (ǫ+ δn)
≤ βs′ · min (l, g) ,

which holds for our choice of ǭ, δ̄ as sufficiently small.

A.2 Proof of Theorem 2 (Only Defection is Stable in Offensive PDs)

Proof. Let ζ = (ξ,S, λ) be a noise structure with a grain of full-support strategy mistakes. Let (σn, ηn)n →

(σ∗, η∗) be a converging sequence of configurations, and let (δn)n → 0 be a converging sequence of noise levels,

such that each configuration (σn, ηn) is neutrally stable in the perturbed environment E (G, p, ζ, δn). That

is, we assume that (σ∗, η∗) is a perfectly neutrally stable configuration. In order to obtain a contradiction

assume that σ∗ 6= d.

Recall that any message m ∈ M is observed with positive probability due to the noise structure. Given

configuration (σn, ηn), message m ∈ M , and strategy s ∈ C (σn), let qm (s) denote the expected probability

that a randomly drawn partner of a player defects, conditional on the player following strategy s and observing

message m about the partner.

We say that a strategy is defector-favoring if the strategy defects against partners who are likely to

cooperate, and cooperates against partners who are likely to defect. Specifically, a strategy is defector-

favoring if there is some threshold such that the strategy cooperates (defects) when the partner’s conditional

probability of defecting is above (below) this threshold. Formally:

Definition 12. Strategy s ∈ C (σn) is defector-favoring given configuration (σn, ηn) if there is some 0 ≤ q̄ ≤ 1

such that, for each m,m′ ∈ M , qm (s) > q̄ ⇒ sm (d) = 0, and qm (s) < q̄ ⇒ sm (d) = 1.

The rest of the proof consists of the following four steps.

1. First we show that all non-noisy strategies in σn are defector-favoring. Assume to the contrary that

there is a non-noisy strategy s ∈ C (σn) that is not defector-favoring. Let σ′ be a mutant strategy

distribution that is exactly like the incumbent strategy distribution σn except that a positive fraction

of strategy s is replaced by a strategy s′ that has the same average defection probability as s in a focal

ǫ-post-entry population but is defector-favoring (where 0 < ǫ << 1 is taken to be sufficiently small).

The fact that both strategies defect with the same average probability implies that they induce the same

behavior from the partners (since these partners observe identical distributions of messages when facing

s and when facing s′), hence qm (s) = qm (s′). Strategy s′ defects more often against partners who are

more likely to cooperate relative to strategy s. Since the PD is offensive this implies that strategy s′
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strictly outperforms strategy s, which implies that the mutant distribution σ′ strictly outperforms the

incumbent distribution σ.

2. Second we show that all the non-noisy strategies defect with the same average probability in (σ∗, η∗).

Assume to the contrary that there are non-noisy strategies s, s′ ∈ C (σ∗) such that ηs,σ∗ (d) > ηs′,σ∗ (d).

Note that agents who follow strategy s have strictly higher payoff than agents who follow s′ when being

matched with non-noisy agents. This is because strategy s yields: (1) a strictly higher direct payoff

due to playing more often the dominant action d, and (2) a weakly higher payoff against non-noisy

agents, because the fact that it defects more often and all non-noisy agents follow defector-favoring

strategies implies that non-noisy partners defect with a weakly smaller probability when being matched

with agents who follow strategy s (relative to s′). This implies that for a sufficiently small noise

level, the followers of s would have a strictly higher payoff than the followers of s′, which contradicts

(σ∗, η∗) being perfectly neutrally stable (because a sufficiently small group of mutants similar to the

incumbents, except that the strategy s′ is replaced by s, would outperform the incumbents in any

nearby focal post-entry configuration).

3. Next we show that for any non-noisy player it is the case that the probability that the partner defects

conditional on the player observing a message that only includes defections (denoted by message
−→
d ) is

weakly larger than the probability that the partner defects conditional on the player observing a message

of the same length that also includes cooperation (i.e., qm (s) < q~d
(s) for any non-noisy strategy s and

any message m 6=
−→
d with the same length as

−→
d ). To see why this is the case, note that the fact that

the noise structure has a grain of full-support strategy mistakes implies that not all noisy strategies

have the same defection probabilities, and thus the signal about the partner yields some information

about the partner’s probability of defecting. The previous step shows that all non-noisy agents defect

with the same probability when the noise level converges to zero, which implies that if the noise level

is positive but very small, then they induce almost the same signal distribution, and thus they induce

almost the same behavior from all partners. Combining this fact with the fact that not all strategies

have the same defection probability, implies that if a player observes a message that only includes

defections, then the partner is more likely to have a higher average defection probability when being

matched with any non-noisy agent (i.e., qm (s) < q~d
(s) for any non-noisy strategy s).

4. Thus, any non-noisy agent (who follows a defector-favoring strategy due to the first step) would defect

with a weakly higher probability after observing signal
−→
d . This implies that if the noise level is

sufficiently small, then a mutant distribution that assigns maximal mass to the strategy that defects

with the highest probability outperforms the incumbents. The mutants achieve a direct higher payoff by

defecting more often, as well as a weakly higher indirect gain by inducing the incumbents to cooperate

more often.

A.3 Proof of Theorem 3 (Stable Cooperation in Defensive PDs)

Proof. Let TFT (TF2T ) be the strategy that defects iff the partner is observed to defect at least once

(twice). Let TFTq be the strategy that defects with a probability of q (to be defined later) iff the partner is

observed to defect once, and defects for sure if he is observed to defect twice or more. Let ζ = (ξ,S, λ) be
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a noise structure with a grain of full-support strategy mistakes. Let σ be the strategy that assigns mass q

(defined below) to TFT and mass 1 − q to TF2T . Let σ′ be the strategy that assigns mass one to TFTq.

Let η = η′ ≡ c. Let δ̄ be a number that is sufficiently small relative to 1
k·(l+1) . For each n ≥ 1, let δn = δ̄/n.

Let σn (σ′
n) be the closest strategy to σ (σ′) in Σζ,δn

, i.e.,

σn (TFTξ) = λ̄n · q, σn (TF2Tξ) = λ̄n · (1 − q) , σn (TFTq,ξ) = λ̄n where λ̄n = 1 − δn ·
∑

s∈S

λ (s) ,

where strategy TFTξ (TF2Tξ, TFTq,ξ) is the same as TFT (TF2T, TFTq), except that the probability of

cooperation (defection) after each observed signal is adapted to lie on the closest boundary of the interval

[δn · ξ (c) , 1 − δn · ξ (d)] ([δn · ξ (d) , 1 − δn · ξ (c)] ).

For each s ∈ C (σn) or s ∈ C (σ′
n), let Pr (d,−→c |s) (Pr (d, d, ...|s)) denote the probability of observing

exactly one defection (at least two defections) conditional on the partner following strategy s. Let Pr (d,−→c )

and (Pr (d, d, ...) be the corresponding unconditional probabilities in configurations (σn, ηn) and (σ′
n, η

′
n),

respectively. When we calculate each of these probabilities we will rely on the fact that δn << 1. Thus we

will neglect terms of O (δn) (O
(

δ2
n

)

) when the leading term is O (1) (O (δn)).

We will assume that the sequences of outcomes ηn and η′
n are such that ηn, η

′
n → η ≡ c as n → ∞, and

then show that such ηn and η′
n are indeed consistent with σn and σ′

n, respectively. Note that ηn, η
′
n → c

implies that
(

(ηn)s,σn
(d)
)

= O (δn) and
(

(η′
n)s,σn

(d)
)

= O (δn) for all s ∈ C (σ) and s ∈ C (σ′), respectively.

Thus our calculations will rely on the fact that agents are very likely to observe the message ~c (which consists

of k cooperations) from a random opponent; formally, Pr (−→c ) = (1 −O (δn))
k

= 1 −O (δn).

The conditional probabilities for a noisy strategy s ∈ S are (with an analogous formula in η′)

Pr (d,−→c |s) = k · ηs (−→c ) (d) · (ηs (−→c ) (c))
k−1

+O (δn) ,

P r (d, d, ...|s) = 1 − Pr (d,−→c |s) − (ηs (−→c ) (c))
k

+O (δn) .

To simplify the exposition (with slight abuse of notation) we let TFT q,ξ denote the strategy distribution

that puts probability q on TFTξ and probability 1 − q on TF2Tξ in configuration (σn, ηn). Given message

m, let Pr (m|TFTq,ξ) denote the probability of observing message m, conditional on the partner following

TFTq,ξ in configuration (σ′
n, η

′
n), or following the mix of TFTξ (with a probability of q) and TF2Tξ (with a

probability of 1 − q) in configuration (σn, ηn). Thus in both configurations (σn, ηn) and (σ′
n, η

′
n) we have:

Pr (m|TFTq,ξ) = q · Pr (m|TFTξ) + (1 − q) · Pr (m|TF2Tξ) .

Note that the non-noisy strategies very rarely defect twice or more in k interactions: Pr (d, d, ...|TFTq,ξ) =

O
(

δ2
n

)

. Next we calculate the probability of a non-noisy incumbent generating a message that contains a

single defection. This happens if either (1) one of the k partners is observed to defect twice, or (2) with a

probability of q one of the k partners is observed to defect once, or (3) due to a tremble:

Pr (d,−→c |TFTq,ξ) = k·δn·
∑

s∈S

λ (s)·(Pr (d, d, ...|s) + q · Pr (d,−→c |s))+k·q·Pr (d,−→c |TFTq)+δn·k·ξ (d)+O
(

δ2
n

)

.
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Solving this yields (neglecting O
(

δ2
n

)

)

Pr (d,−→c |TFTq,ξ) =
k · δn ·

∑

s∈S λ (s) · (Pr (d, d, ...|s) + q · Pr (d,−→c |s)) + k · δn · ξ (d)

1 − k · q
,

which is well defined and O (δn) as long as q < 1/k. We can now calculate the unconditional probabilities:

Pr (d,−→c ) = δn ·
∑

s∈S

λ (s) · Pr (d,−→c |s) + Pr (d,−→c |TFTq,ξ) +O
(

δ2
n

)

,

P r (d, d, ...) = δn ·
∑

s∈S

λ (s) · Pr (d, d, ...|s) +O
(

δ2
n

)

.

By using Bayes’ rule we can calculate the conditional probability that the partner uses strategy s ∈ C (σn)

as a function of the observed message:

Pr (s|d,−→c ) =
σn (s) · Pr (d,−→c |s)

Pr (d,−→c )
, P r (s|d, d, ...) =

σn (s) · Pr (d, d, ...|s)

Pr (d, d, ...)
.

For a sufficiently large n the conditional probability that the partner follows a noisy strategy is higher the

more defections there are in the observed message:

O (δn) =
∑

s∈S

Pr (s|−→c ) <
∑

s∈S

Pr (s|d,−→c ) <
∑

s∈S

Pr (s|d, d, ...) .

To see that this is the case, note that Pr (d|TFTq,ξ) = O (δn), while Pr (d|s) = ηs (−→c ) (d) + O (δn), for any

noisy strategy, and because of the grain of full-support strategy mistakes there is at least one noisy strategy

s such that ηs (−→c ) (d) > 0.

Given a message m let Pr (TFTq,ξ|d,−→c ) in the configuration (σn, ηn) denote the conditional probability

that the partner follows either TFTξ or TF2Tξ (and denote the conditional probability that the partner follows

TFTξ,q in the configuration (σ′
n, η

′
n)). The calculations above show that we have Pr (TFTq,ξ|d,−→c ) = O (δn),

which implies that limδn→0

(

∑

s is noisy Pr (s|d,−→c )
)

> 0. Let µ be the probability that a random partner

defects conditional on a player observing message (d,−→c ) about the partner, and conditional on the partner

observing the message −→c :

µ =
∑

s∈S

Pr (s|d,−→c ) · s−→c (d) +O (δn) . (1)

Note that O (δn) < µ because limδn→0

(

∑

s is noisy and s−→
c (d) > 0 Pr (s|d,−→c )

)

> 0. Eq. (1) defines µ as

a strictly decreasing function of q. To see this, note that the term s−→c (d) does not depend on q, and in

Pr (s|d,−→c ) =
σn(s)·P r(d,−→c |s)

P r(d,−→c )
the terms σn (s) and Pr (d,−→c |s) do not depend on q, whereas the term Pr (d,−→c )

is increasing in q.

Next we calculate the value of q (fraction q of TFT agents in (σn, ηn) or mixture probability q in (σ′
n, η

′
n))

that balances the payoff of both actions after a player observes a single defection (neglecting terms of O (δn)).

The LHS of the following equation represents the player’s direct gain from defecting in the rare cases when

he observes a single defection, while the RHS represents the player’s indirect loss induced by partners who
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defect as a result of observing these defections:

µ · l + (1 − µ) · g = k · q · (l + 1) ⇒ q =
µ · l + (1 − µ) · g

k · (l + 1)
. (2)

Note that Eq. 2 defines q as a strictly increasing function of µ. This implies that there are unique values of

q and µ, satisfying g
k·(l+1) < q < l

k·(l+1) <
1
k

and 0 < µ < 1, which jointly solve Eqs. 1 and 2. By standard

continuity arguments, for any n, there exists a frequency qn = q + O (δn) that balances the payoff of both

actions after a player observes a single defection given the noisy distribution of strategies σn.

Observe that defection is the unique best reply when a player observes at least two defections. The direct

gain from defecting is larger than the LHS of Eq. 2, and the indirect loss is still given by the RHS of Eq.

(2). The reason that the direct gain is larger is that non-noisy partners almost never defect twice or more

(the probability is O
(

δ2
n

)

), and thus the partner is most likely to follow a noisy-strategy with a defection

probability that is higher than µ (since µ also gives weight to non-noisy strategies that are more likely to

cooperate). This implies that any sufficiently small group of mutants who cooperate with positive probability

after they observe two or more defections is outperformed.

Next, consider mutants with a small mass ǫ << 1 who defect with a probability of α > 0 after they observe

~c (which is the message observed most often when an agent is being matched with a non-noisy incumbent). In

what follows we calculate their expected payoff as a function of α in any nearby focal post-entry configuration,

neglecting terms of O
(

δ̄
)

throughout the calculation.16 Observe that the mutant’s partner observes a single

defection with a probability of k · α · (1 − α)
k−1

, and observes at least two defections with a probability of

1 − (1 − α)
k

− k · α · (1 − α)
k−1

. This implies that the mean probability that the partner defects against the

mutant is:

h (α) :=
(

k · α · (1 − α)
k−1
)

· q + 1 − (1 − α)
k

− k · α · (1 − α)
k−1

= 1 − (1 − α)
k−1

(1 − α+ k · α · (1 − q)) .

Thus the expected payoff of the mutant is:

π (α) : = (1 − h (α)) · α · (1 + g) + (1 − h (α)) · (1 − α) − h (α) · (1 − α) · l

= 1 + α · g − h (α) · (1 + (1 − α) · l + α · g) .

Direct numeric calculation of π′ (α) yields that π (α) is strictly decreasing in α for each q > g
k·(l+1) . Thus

the “mutant” with α = 0 earns the most, but this is precisely the α of the incumbents.

Next, consider a sufficiently small group of ǫ << 1 mutants who defect (on average) with a probability of

q′ 6= qn after observing a single defection (and play the same as the incumbents otherwise). These mutants

are strictly outperformed due to the following argument. Recall that q is defined such that both actions are

best replies after a player observes a single defection because it balances the direct gain from defecting (which

is independent of qn) and the indirect loss from defecting (which is increasing in qn). If q′ > q (q′ < qn), then

the average probability in a post-entry focal configuration that a partner defects when the player observes a

single defection is ǫ · q′
n + (1 − ǫ) · qn, which is larger (smaller) than qn. This implies that the indirect loss

of defecting is larger (smaller) than the direct gain, and as a result the mutants who defect with a higher

(lower) probability are outperformed.

16Nearby focal configurations exist due to the same argument as in the analysis of the noisy strategies above (which show
that all the non-noisy strategies defect with a probability of O (δn) as long as q < 1/k).
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Let χ be the probability that a random partner defects conditional on both the agent and the partner

observing a single defection (in the limit as δn → 0):

χ = lim
n→∞

(

∑

s∈S

Pr (s|d,−→c ) · s(d,−→c ) (d) + Pr (TFTq,ξ|d,−→c ) · q

)

.

We conclude by showing that if χ > µ (χ < µ), then (σn, ηn) ((σ′
n, η

′
n)) is evolutionarily stable. This is so

because if χ > µ (χ < µ), then conditional on a non-noisy agent observing a single defection, the partner

is more (less) likely to defect the higher the probability with which the agent defects when he observes a

single defection (because then it is more likely that the partner observes a single defection rather than only

cooperation). This implies that when a player observes a single defection, defection is more (less) profitable

the higher the agent’s own defection probability is (recall that the direct gain of defection is higher the larger

the defection probability of the partner, while the indirect loss is independent of the partner’s behavior). That

is, an agent’s payoff is a strictly convex (concave) function of the agent’s defection probability conditional

on him observing a single defection. This implies that mutants who mix on the individual level (defect with

probabilities different from q) are outperformed when χ > µ (χ < µ)). When χ = µ, one can show that

there is either a sequence of δn in which (σn, δn) is evolutionarily stable or a sequence in which (σ′
n, δ

′
n) is

evolutionarily stable.

A.4 Proof of Theorem 4 (Observing Conflicts)

Proof. We first deal with Part 1, namely, the case of a mild PD (g < l+1
2 ). Recall that under the observation

of conflicts, signal D denotes a conflict (at least one player defected), and C denotes mutual cooperation.

Let TFT, TF2T, TFTq (and similarly, TFTξ, TF2Tξ, TFTq,ξ) be defined in an analogous way to the proof

of Theorem 3. Let σ be the strategy that assigns mass q (defined below) to TFT and mass 1 − q to TF2T ,

and let σ′ ≡ TFTq. Let ζ = (ξ,S, λ) be a noise structure with a grain of full-support strategy mistakes. Let

η = η′ ≡ c. Let δ̄ be a number that is sufficiently small relative to 1
k·(l+g+1) . For each n ≥ 1, let δn = δ̄/n.

Let σn (σ′
n) be the closest strategy to σ (σ′) in Σζ,δn

.

We now show that there exists sequences of consistent outcomes ηn and η′
n such that ηn, η

′
n → c as n → ∞.

For each s ∈ C (σn) or s ∈ C (σ′
n), let Pr

(

D,
−→
C |s

)

and Pr (D,D, ...|s) denote, respectively, the probability

of observing exactly one D, and the probability of observing at least two Ds, conditional on the partner

following strategy s. Let Pr
(

D,
−→
C
)

and Pr (D,D, ...) be the corresponding unconditional probabilities in

configuration (σn, ηn). Calculations analogous to those explicitly detailed in the proof of Theorem 3 enable

us to find Pr
(

D,
−→
C |s

)

and Pr (D,D, ...|s) for each strategy s. In particular, as in the previous analysis,

the incumbents will very rarely be observed to have two or more conflicts: Pr (D,D, ...|TFTq,ξ) = O
(

δ2
n

)

.

(As in the proof of Theorem 3 we simplify the exposition by letting TFT q,ξ denote the strategy that puts

probability q on TFTξ and probability 1 − q on TF2Tξ in configuration (σn, ηn).) Next we calculate the

average probability of a player observing a single conflict conditional on the partner following a non-noisy

strategy:

Pr
(

D,
−→
C |TFTq,ξ

)

= O (δn) + q · 2 · k · Pr
(

D,
−→
C |TFTq,ξ

)

⇒ Pr
(

D,
−→
C |TFTq,ξ

)

=
O (δn)

1 − 2 · k · q
. (3)

This expression is derived as follows. The probability that a non-noisy agent has a conflict with a noisy agent

is O (δn) since this is the fraction of noisy agents. A non-noisy agent defects against another non-noisy agent
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with an an average probability of q if he observes D,
−→
C . This observation happens with a probability of

2 · k ·Pr
(

D,
−→
C |TFTq,ξ

)

+O (δn) (because in each of the observed k interactions, the two interacting agents

each induce a conflict by defecting with an average probability of Pr
(

D,
−→
C |TFTq,ξ

)

.

The terms represented by O (δn) in Eq. 3 are positive. Thus since Pr
(

D,
−→
C |TFTq,ξ

)

> 0 it must be the

case that

2 · k · q < 1 ⇔ k · q < 0.5.

By Bayes’ rule we can calculate the conditional probability Pr
(

s|D,
−→
C
)

of being matched with each strategy

s ∈ C (σn) as a function of the observed message (similar to the calculations detailed in the proof of Theorem

3). Let µ be the probability that a partner defects conditional on the player observing a message D,
−→
C about

the partner, and conditional on the partner observing the message
−→
C :

µ =
∑

s∈S

Pr
(

s|D,
−→
C
)

· s−→
C

(D) +O (δn) . (4)

Note that µ is decreasing in q (as a larger q implies a higher probability of Pr
(

D,
−→
C |TFT

)

). Moreover, as

q ր 1
2·k we have µ (q) ց 0 because Pr

(

D,
−→
C |TFT

)

“explodes” as we approach the threshold of k · q = 0.5.

Next, we calculate the value of q that balances the payoffs of both actions when a player observes a single

conflict (neglecting terms of O (δn)). The LHS of the following equation represents a player’s direct gain from

defecting in the rare case in which he observes a single conflict, while the RHS represents the player’s indirect

loss from defecting in this case, which is induced by other partners who defect as a result of observing these

defections. Note that the cost is paid only if the partner cooperated, as otherwise other partners observe D

regardless of the agent’s own action.

µ · l + (1 − µ) · g = (1 − µ) · k · q · (l + 1) ⇔ q =
µ · l + (1 − µ) · g

(1 − µ) · k · (l + 1)
. (5)

In connection with Eq. 5 it was noted that q (µ) is increasing in µ, and since the PD is mild we have

q (0) = g
k·(l+1) <

1
2·k . This implies that there are (unique) values of g

k·(l+1) < q < 1
2·k and 0 < µ < 1 that

jointly solve Eqs. 4 and 5. By standard continuity arguments, for any n, there exists a nearby frequency

qn = q +O (δn) that balances the payoffs of the two actions.

The remaining arguments are analogous to those in the final part of the proof of Theorem 3, and are

omitted for brevity.

Next, we deal with Part 2, namely, the case of an acute PD (g > 0.5 · (l + 1)). Cooperation can be

perfectly neutrally stable only if non-noisy agents: (1) cooperate with probability one after they observe
−→
C

(otherwise the outcome cannot converge to full cooperation as the noise converges to zero), and (2) defect (on

average) with positive probability after they observe
(

D,
−→
C
)

. This is because otherwise a mutant who defects

with a probability of 0 < ǫ << 1, regardless of the observed signal, would earn a direct gain of O (ǫ) from

defecting, but suffer an indirect loss of at most O
(

ǫ2
)

due to these defections (since non-noisy incumbents

defect only when they observe at least two conflicts, which happens with a probability of k ·O
(

ǫ2
)

).

Let q > 0 denote the average probability of a player defecting after he observes
(

D,
−→
C
)

. The fact that q

is positive implies that defection must be a best reply after a player observes a single conflict. This implies

that q should be at least equal to the minimal solution of Eq. (5): q (µ = 0) = g
k·(l+1) (assuming that the

level of noise is sufficiently low). However, if the game is acute, then this minimal solution is larger than
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1
2·k . This implies, due to Eq. (3), that an arbitrarily small group of mutants who always defect would cause

the incumbents to defect with high probability, which implies that no focal post-entry population exists, and

thus cooperation cannot be neutrally stable.

A.5 Proof of Theorem 5 (Observing Unilateral Defections)

Proof. Let G be a standard PD (i.e., g < l + 1). Recall that under the observation of unilateral defections,

D is the signal for a unilateral defection of the partner, and C is the signal for all other action profiles. Let

TFT, TF2T, TFTq (and similarly, TFTξ, TF2Tξ, TFTq,ξ) be defined in an analogous way to the proof of

Theorem 3. Let σ be the strategy that assigns mass q (defined below) to TFT and mass 1 − q to TF2T ,

and let σ′ ≡ TFTq. Let ζ = (ξ,S, λ) be a noise structure with a grain of full-support strategy mistakes. Let

η = η′ ≡ c. Let δ̄ be a number that is sufficiently small relative to 1
k·(l+g+1) . For each n ≥ 1, let δn = δ̄/n.

Let σn (σ′
n) be the closest strategy to σ (σ′) in Σζ,δn

.

We now show the existence of a consistent outcome ηn (η′
n) in which ηn, η

′
n → c as n → ∞. For

each s ∈ C (σn) (s ∈ C (σ′
n)), let Pr

(

D,
−→
C |s

)

and Pr (D,D, ...|s) denote, respectively, the probability

of observing exactly one D, and the probability of observing at least two Ds, conditional on the partner

following strategy s. Let Pr
(

D,
−→
C
)

and Pr (D,D, ...)) be the corresponding unconditional probabilities in

configuration (σn, ηn). Calculations analogous to those explicitly detailed in the proof of Theorem 3 enable

us to find Pr
(

D,
−→
C |s

)

and Pr (D,D, ...|s) for each strategy s. In particular, as in the previous analysis,

the incumbents will very rarely be observed to have two or more Ds: Pr (D,D, ...|TFTq,ξ) = O
(

δ2
n

)

. Next,

we calculate the order of magnitude of Pr
(

D,
−→
C |TFTq,ξ

)

(the average probability that a player observes a

single unilateral defection conditional on the partner following a non-noisy strategy):

Pr
(

D,
−→
C |TFTq,ξ

)

= O (δn) + q · k · Pr
(

D,
−→
C |TFTq,ξ

)

⇒ Pr
(

D,
−→
C |TFTq,ξ

)

=
O (δn)

1 − k · q
. (6)

This expression is derived as follows. The probability that a non-noisy agent unilaterally defects against a

noisy agent is O (δn) since this is the fraction of noisy agents. A non-noisy agent defects against another non-

noisy agent with an average probability of q if he observes
(

D,
−→
C
)

(and this defection is a unilateral defection

with a probability of 1−O (δn)). This observation happens with a probability of k·Pr
(

D,
−→
C |TFTq,ξ

)

+O (δn)

(because in each of the observed k interactions, the partner unilaterally defects with an average probability

of Pr
(

D,
−→
C |TFTq,ξ

)

.

The terms represented by O (δn) in Eq. 6 are positive. Thus since Pr
(

D,
−→
C |TFTq,ξ

)

> 0 we have

Pr
(

D,
−→
C |TFTq,ξ

)

= O (δn) ⇔ k · q < 1 ⇔ k · q < 1.

By using Bayes’ rule we can calculate the conditional probability Pr
(

s|D,
−→
C
)

for being matched with each

strategy s ∈ C (σn) as a function of the observed message (explicit calculations were presented in the proof

of Theorem 3). Let µ be the probability that a partner defects conditional on the player observing message
(

D,
−→
C
)

about the partner, and conditional on the partner observing the message
−→
C :

µ =
∑

s∈S

Pr
(

s|D,
−→
C
)

· s−→
C

(D) +O (δn) . (7)
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Note that µ is decreasing in q (as a larger q implies a larger Pr
(

D,
−→
C |TFTq,ξ

)

). Moreover, as q ր 1
k

,

µ (q) ց 0 because Pr
(

D,
−→
C |TFTq,ξ

)

“explodes” as k · q ր 1.

Next, we calculate the value of q that balances the payoffs of both actions when a player observes a single

unilateral defection (neglecting terms of O (δn)). The LHS of the Eq. (8) presents the direct gain from

defecting in these cases, while the RHS presents the indirect loss from these defections as a result of inducing

other partners who observe these interactions to defect. Observe that the cost is paid only if the partner

cooperates, as otherwise the signal C would be observed regardless of the agent’s action.

µ · l + (1 − µ) · g = (1 − µ) · k · q · (l + 1) ⇔ q =
µ · l + (1 − µ) · g

(1 − µ) · k · (l + 1)
. (8)

Observe, that q (µ) is increasing in µ, and q (0) = g
k·(l+1) <

1
k

(due to the PD being “standard”). This implies

that there are (unique) values of g
k·(l+1) < q < 1

k
and 0 < µ < 1 that jointly solve Eqs. 7 and 8. By standard

continuity arguments, for any n, there exists a nearby frequency q + O (δn) that balances the payoff of the

two strategies. The remaining arguments are analogous to those in the last part of the proof of Theorem 3,

and are omitted for brevity.

Next, we deal with Part 2, namely, the case of an inefficient PD (g > l + 1). Assume to the contrary,

that cooperation is a perfectly neutrally stable outcome. Cooperation can be the outcome of the limit of the

perfectly neutrally stable configurations only if non-noisy agents cooperate with probability one after they

observe
−→
C . Moreover, the stability of cooperation requires that the non-noisy agents defect (on average)

with positive probability after they observe
(

D,
−→
C
)

(otherwise mutants who defect with a probability of

0 < ǫ << 1, regardless of the observed signal, would earn a direct gain of O (ǫ) from defecting, but suffer a

smaller indirect loss of at most k ·O
(

ǫ2
)

due to these defections).

Let q denote the average probability of defection after players observe
(

D,
−→
C
)

. The fact that non-noisy

agents defect with positive probability after observing
(

D,
−→
C
)

implies that cooperation should be a best

reply when a player who almost always cooperates observes
(

D,
−→
C
)

. This implies that q should be at least

equal to the minimal solution of Eq. (5): q (µ = 0) = g
k·(l+1) (assuming that the level of noise is sufficiently

low). However, if the game is inefficient, then the minimal solution of the equation, g
k·(l+1) >

1
k

, which implies

by Eq. (3) that an arbitrarily small group of mutants who defect with small probability would cause the

incumbents to unilaterally defect with high probability, and thus no focal post-entry population would exist,

which contradicts the assumption that cooperation is perfectly neutrally stable.

A.6 Proof of Theorem 6 (Observing Action Profiles)

Proof. We begin with case 1, in which G is a mild PD. Let ζ = (ξ,S, λ) be a noise structure in which ξ ≡ 0,17

where S contains a single strategy sα that defects with a small probability of 0 < α << 1
k

regardless of

the observed signal.18 Let TF2T be the strategy that defects iff the observed message includes at least two

interactions in which the action profile is different from mutual cooperation. Let TFT be the strategy that

defects if the observed message includes either (1) at least two interactions in which the action profile is

different from mutual cooperation, or (2) at least one interaction in which the partner was the sole defector.

17The assumption that ξ ≡ 0 is taken to simplify the arguments, but it does not play an essential role in the proof.
18In order to satisfy the requirement of Definition 4 that S includes two different strategies with different defection probability,

we can slightly adapt the construction and have S to include two noisy strategies, such that the first (second) strategy defects
with a probability of 1.001 · α (0.999 · α).
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Let σ∗ be the strategy that assigns mass q (defined below) to TFT and mass 1 − q to TF2T. Let η∗ ≡ c.

Let δ̄ be a number that is sufficiently small relative to 1/(k · (l + g + 1)). For each n ≥ 1, let δn = δ̄/n. Let

σn ∈ Σζ,δn
be the closest strategy to σ∗ in Σζ,δn

. We now show the existence of a consistent outcome ηn in

which ηn → η∗ ≡ c as n → ∞.

Let Pr
(

sα| (d, c) ,
−−→
(c, c)

)

be the probability that the partner follows strategy sα conditional on the player

observing a signal profile with a single unilateral defection by the partner, and k − 1 mutual cooperations.

Let µ be the probability that the partner of a non-noisy agent defects conditional on the agent observing
(

(d, c) ,
−−→
(c, c)

)

. Note, that µ = α · Pr
(

sα| (d, c) ,
−−→
(c, c)

)

+ O (δn) because the non-noisy strategies cooperate

with maximal probability upon observing
(−−→

(c, c)
)

. The value of q is defined to make an agent, who almost

always cooperates, indifferent between cooperation and defection when he observes message
(

(d, c) ,
−−→
(c, c)

)

,

namely:

µ · l + (1 − µ) · g = (1 − µ) · k · q · (l + 1) ⇔ q =
µ · l + (1 − µ) · g

(1 − µ) · k · (l + 1)
. (9)

For a sufficiently small α, the value of q (µ) that solves Eq. (9) will be slightly above q (µ = 0) = g
l+1 . The

fact that the PD is mild implies that (for a sufficiently small α) k · q < 0.5.

Let p be the average probability with which the non-noisy players defect when being matched with sα.

When α << 1
k

, the TF2T agents rarely (O
(

α2
)

) defect against the noisy agents, because it is rare to

observe them defecting more than once. The TFT agents defect against the sα-agents with a probability

of k · q · α + O
(

α2
)

because each rare defection of the s-agents is observed with a probability of k · q by

TFT-agents. As both α, p << 1, it implies that bilateral defections are very rare ((O
(

α2
)

). This implies

that p = α · k · q +O
(

α2
)

< α
2 .

Let r be the probability that a TFT agent defects against a fellow TFT agent. In each observed interaction,

the TFT partner interacts with a noisy (resp., TFT, TF2T) opponent with a probability of δn (resp., q, 1-q)

and the partner unilaterally defects with a probability of α · k · q + O
(

α2
)

(resp., r + O
(

r2
)

, O
(

δn · α2
)

).

This implies that r solves the following equation:

r = k · (α · q · δn + q · r) +O
(

δ2
n

)

⇒ r =
α · k · q

1 − k · q
· δn +O

(

δ2
n + α2 · δn

)

< 0.5 · α · δn,

where the latter inequality is because k · q < 0.5. The above calculations show that the total frequency with

which noisy agents unilaterally defect (α · δn) is higher than the total frequency with which non-noisy agents

defect (q + p · δn < α · δn). This implies that the probability that an agent is noisy, conditional on his being

the sole defector in an interaction, is higher than 50%, and that it is larger than this probability conditional

on his being the sole cooperator. Next, note that mutual defections between a noisy and a TFT agent have

a frequency of O (δn), while mutual defections between two noisy agents (or two non-noisy agents) are very

rare (O
(

δ2
n

)

), which implies that the probability that the partner follows a noisy strategy conditional on the

player observing mutual defection is 50%+O (δn). This implies that

Pr
(

sα| (d, c) ,
−−→
(c, c)

)

> max
(

Pr
(

sα| (d, d) ,
−−→
(c, c)

)

> Pr
(

sα| (c, d) ,
−−→
(c, c)

))

,

and thus while both actions are best replies after the player observes the message
(

(d, c) ,
−−→
(c, c)

)

, only coop-

eration is a best reply after the player observes
(

(d, d) ,
−−→
(c, c)

)

and
(

(c, d) ,
−−→
(c, c)

)

. Next note that conditional

on a player observing a message with at most k − 2 mutual cooperations, the partner is most likely to be
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a noisy agent (because non-noisy agents have two outcomes different from mutual cooperation with a prob-

ability of O
(

δ2
n

)

. This implies that the non-noisy agents play the unique best-reply after any signal other

than
(

(d, c) ,
−−→
(c, c)

)

, and thus any small group of mutants who behave differently in these cases will be out-

performed. The stability with respect to mutants who differ in their behavior after
(

(d, c) ,
−−→
(c, c)

)

is derived

by analogous arguments as in the end of the proof of Theorem 3.

Next we show that cooperation is not perfectly neutrally stable for all (some) noise structures in acute

(mild) PDs. Note that both the direct payoff and the indirect payoff of an action (the latter payoff being due

to the influence of the action on the behavior of other partners) depend only on the conditional probability

that the partner defects. In order to support stable cooperation, cooperation (defection) should be the unique

best reply against a partner who is going to cooperate (defect) for sure, and both actions should be best

replies to some conditional probability strictly between zero and one. Moreover, non-noisy agents should

defect with positive probability when they observe
(

(d, c) ,
−−→
(c, c)

)

(as otherwise defecting with a probability

of 0 < ǫ << 1 against cooperative partners would be profitable). This can be the case only if conditional

on a player observing
(

(d, c) ,
−−→
(c, c)

)

there is a positive probability that the partner follows a noisy strategy

(and that this probability is higher than the conditional probability when the player observes
(−−→

(c, c)
)

. Note

also that all non-noisy agents must defect with probability one when they observe at least two interactions

with outcomes different from mutual cooperation, (because then it is most likely that the partner is a noisy

agent, and the conditional probability that the partner defects is higher than when the player observes
(

(d, c) ,
−−→
(c, c)

)

).

We first show that there exists a noise structure ζ such that cooperation is not perfectly neutrally stable

with respect to ζ for any mild PD. Let ζ = (ξ,S, λ) be a noise structure in which: (1) ξ ≡ 0 (but the proof can

be adapted to ξ > 0), and (2) all the noisy strategies in S defect with a probability higher than 2
3 regardless of

the observed signal. In what follows, we show that the non-noisy players defect with probability one against

those non-noisy agents. Let sα ∈ S be a noisy strategy that defects with a probability of α regardless of the

signal. The following inequality bounds 1 − p from above:

1 − p ≤ ((1 − α) · (1 − p))
k

+ k · ((1 − α) · (1 − k))
k−1

· (1 − (1 − α) · (1 − p)) ,

because a non-noisy agent cooperates (the LHS) only if observes at least k − 1 mutual cooperations (the

RHS). If p < 1 we can divide by 1 − p and get:

1 ≤ (1 − α)
k

· (1 − p)
k−1

+ k · (1 − α)
k−1

· (1 − k)
k−1

· (1 − (1 − α) · (1 − p)) .

Note that α > 2
3 implies that (1 − α)

k
< 1

9 and k · (1 − α)
k−1

< 2
3 , which implies that the RHS is less than 1,

and we get a contradiction. Thus it must be that p = 1; i.e., the non-noisy players always defect against the

noisy agents. This implies that the probability that the partner is a noisy player conditional on the player

observing
(

(d, c) ,
−−→
(c, c)

)

is zero, and we get a contradiction.

Now we deal with case 2, in which the PD is acute, and the noise structure is arbitrary. Assume to the

contrary, that cooperation is a perfectly neutrally stable outcome. Let ζ = (ξ,S, λ) be the supporting noise

structure (with a grain of full-support strategy mistakes). For each noise level δn, let qn > 0 be the average

probability according to which a non-noisy incumbent defects when he observes
(

(d, c) ,
−−→
(c, c)

)

. Let q be the

limit of qn when δn converges to zero. Eq. (2) and the arguments associated with it show that k · q > g
(l+1)
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is necessary for cooperation to be a best reply for a player who observes
(−−→

(c, c)
)

. Recall that in acute PDs
g

(l+1) >
1
2 ⇒ k · q > 1

2 .

Let sα ∈ S be a noisy strategy that induces an agent who follows it (called sα-agent) to defect with a

probability of α > 0 when he observes
(−−→

(c, c)
)

. In what follows we show that the presence of strategy sα

induces the non-noisy agents to unilaterally defect more often than sα-agents do so. Let p be the average

probability that non-noisy agents defect against sα-agents. This probability p must solve the following

inequality:

1 − p ≥ ((1 − α) · (1 − k))
k

+ k · ((1 − α) · (1 − k))
k−1

· (1 − (1 − α) · (1 − p)) (10)

+ (1 − q) · k · ((1 − α) · (1 − k))
k−1

· α · (1 − p) .

The LHS of (10) is the average probability that non-noisy agents cooperate against sα-agents (recall that

non-noisy agents always defect when they observe less than k − 1 mutual cooperations). The non-noisy

agents cooperate with probability one (resp., at most one, q) if they observe
(−−→

(c, c)
)

(resp.,
(

(d, d) ,
−−→
(c, c)

)

or
(

(c, d) ,
−−→
(c, c)

)

,
(

(d, c) ,
−−→
(c, c)

)

), which happens with a probability of ((1 − α) · (1 − k))
k

(resp.,

k · ((1 − α) · (1 − k))
k−1

· (1 − (1 − α) · (1 − p)), k · ((1 − α) · (1 − k))
k−1

· α · (1 − p)).

Direct numerical analysis of Eq. (10) shows that the minimal p that solves this inequality (given that

q > 1
2·k ) is greater than α

2−α
for any 0 < α < 1. The total frequency of interactions in which the sα-agents

unilaterally defect is α · (1 − p) · δ · λ (s) . The total frequency of interactions in which non-noisy agents

unilaterally defect against the sα-agents is p · (1 − α) · δ ·λ (s). Eq. (7) shows that these unilateral defections

against sα-agents induce the non-noisy agents to unilaterally defect among themselves with a total frequency

of p·(1−α)·δ·λ(s)
1−k·q > p · (1 − α) · δ · λ (s). Finally, note that p > α

2−α
⇔ 2 · p · (1 − α) > α · (1 − p) implies that

non-noisy agents unilaterally defect (as the indirect result of the presence of the s-agents) more often than

those in which the sα-agents do.

Next, observe that bilateral defections are most likely to occur in interactions between noisy and non-noisy

agents. This is because the probability that both non-noisy agents defect against each other is only O
(

δ2
)

.

Thus, when a player observes bilateral defection the partner is more likely to be a noisy agent than when the

player observes a unilateral defection by the partner. This implies that all the non-noisy agents defect with

probability one when they observe
(

(d, d) ,
−−→
(c, c)

)

because in this case defection is the unique best reply.

Let w be the (average) probability that non-noisy agents defect when they observe
(

(c, d) ,
−−→
(c, c)

)

. If

w < 0.5, then cooperation is the unique best reply for a non-noisy agent who faces a partner who is likely to

defect (e.g., when they observe fewer than k− 1 mutual cooperations), and so we get a contradiction. This is

because defecting against a defector yields a direct gain of l and an indirect loss of at least 0.5 · k · (l + 1) ≥

l + 1 > l (because this bilateral defection will be observed on average k times, and in at least half of these

cases it will induce the partner to defect, whereas if the agent were cooperating, then he would have induced

the partner to cooperate).

Thus, w ≥ 0.5⇒ k · w > 1. However, in this case, analogous arguments to those after Eq. (6) imply

that an arbitrarily small group of mutants who defect with small probability would cause the incumbents to

unilaterally defect with high probability, and thus no focal post-entry population exists, which contradicts

the assumption that cooperation is neutrally stable.
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A.7 Proof of Prop. 1 (Strict Equilibrium is Perfectly Stable)

Proof. Let k̄ = argmax (C (p)). Let l be the minimal loss from playing a 6= a∗ against a∗:

l = mina6=a∗ (π (a∗, a∗) − π (a, a∗)) . Let g be the highest possible payoff in the game: g = maxa,a′ π (a, a′).

Let τ be sufficiently small with respect to l
g
. Let ŝ be the strategy that plays a∗ with a probability of 1−τ ,

and plays each other action with a probability of τ
|A| . Let ζ = (ξ = 0,S = {ŝ} , λ = 1) be a noise structure

that includes a single source of noise: the strategy ŝ that plays a∗ with high probability. Let (δn)n → 0 be

any sequence of noise level converging to 0. Let σn be the closest strategy to a∗ in Σζ,δn
: σn (a∗) = 1 − δ · λ.

Let ηn be the unique consistent outcome of σn. It is immediate that (σn, ηn) → (d, d). Fix n. We have to

show that (σn, ηn) is an evolutionarily stable configuration in the perturbed environment (E, p, ζ, δn).

Let ǭ be sufficiently small with respect to l

k̄·g
. Let 0 < ǫ < ǭ. Let σ′ 6= σn ∈ Σζ,δn

be a mutant

strategy. Let (σǫ, ηǫ) be an ǫ-post-entry configuration. It is immediate that (σǫ, ηǫ) is 0-focal because all the

incumbents play the same regardless of the observed message. We have to show that the mutants are strictly

outperformed. The mutants play a∗ with a strictly lower probability than the incumbents (because σ′ 6= σn

and all messages are observed on the equilibrium path). Let β be the difference between the probability of

playing a∗ by the mutants and by the incumbents, when facing an incumbent. An analogous argument to

the one in Theorem 1 above shows that the maximal probability, ᾱ, that one mutant plays an action different

from a∗ against another mutant is at most

ᾱ ≤ k̄ · (β + ǫ · 2 · ᾱ) ⇒ ᾱ ≤
k̄ · β

1 − ǫ · 2
.

The mutants suffer a direct loss of β · l from their lower probability of playing a∗ against the incumbents.

Their indirect gain (from inducing other mutants to play more favorably towards them) is at most ǫ · ᾱ · g.

Thus the loss outweighs the gain if:

ǫ · ᾱ · g =
k̄ · β · ǫ · g

1 − ǫ · 2
< β · l,

which holds for our choice of ǭ as sufficiently small.
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