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Abstract

We study environments in which agents from a large population are randomly matched to play a one-shot

game, and, before the interaction begins, each agent observes noisy information about the partner’s aggregate

behavior. Agents follow stationary strategies that depend on the observed signal. We show that every strategy

distribution admits a unique behavior if each player observe on average less than action of his partner. On the

other hand, if each player observes on average more than one action, we show that there exists a stationary

strategy that admits multiple consistent outcomes.

Keywords: Markovian process, Random matching. JEL Classification: C72, C73, D83.

1 Introduction

We consider an infinite population of agents who are randomly matched into pairs to play a symmetric one-shot

game. Before playing the game, each agent privately makes a finite number of independent observations sampled

from his partner’s aggregate behavior. Each such observation includes the realized pure action played by the

partner, and may also include the action played by his partner’s opponent (i.e., the observation may be an action

profile). We assume that each agent follows a stationary (Markovian) strategy: a mapping that assigns a mixed

action to each possible observation, and which does not depend on the player’s own private history or on time.

We interpret a (finite support) strategy distribution as describing a population in which different groups in the

population follow different strategies.1

For concreteness consider the following two examples:

1. Each agent uses the signals about the partner’s past behavior, to infer the partner’s likely behavior in the

current interaction, and best-replies to this belief about the partner’s behavior.

2. Agents interact in the Prisoner’s Dilemma game, and some agents follow a strategy of indirect reciprocity:

they cooperate if the partner is observed to cooperate with a sufficiently high frequency. The study of these

strategies was pioneered in Nowak & Sigmund (1998) (where it is called “image scoring”), and recently it

has extensively analyzed by us in a separate paper (Heller & Mohlin, 2015).

∗Email: yuval.heller@economics.ox.ac.uk and erik.mohlin@economics.ox.ac.uk.
1See Rosenthal (1979) for an early model of agents who follow stationary strategies and are randomly matched to play one-shot

games; see Bhaskar et al. (2013) for a foundation for the use of stationary strategies (in a somewhat different setup).
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An outcome is a mapping that describes the mixed action played by each group in the population conditional on

being matched with individuals from each other group. An outcome is consistent with the strategy distribution,

if for any two strategies in the support of the strategy distribution, it is the case that if the observations are

sampled from the outcome, then the induced play coincides with the mixed actions described by the outcome.

The first question when analyzing such interactions is whether the strategy distribution uniquely determines

the outcome, or whether there might exist multiple consistent outcomes, such that history determines which

one is played. In this note we investigate what conditions on the observation structure that implies that every

distribution of stationary strategies induces a unique outcome.2

Theorem 1 shows that every strategy uniquely determines the outcome if and only if the expected number of

actions that each agent observes is less than one. Moreover, when the expected number of observed actions is

less than one, then there is a global convergence at an exponential rate to the unique consistent outcome from

any initial outcome.

The intuition can be grasped by considering an environment in which each agent observes a single action with

probability p, and observes nothing otherwise. In the former case, the agents plays the observed action, and in

the latter case he plays an arbitrary mixed action α. When p = 1 (i.e. each agent observes a single action), then

any mixed action is consistent with the strategy distribution. When p < 1 (i.e., each agents observes on average

less than one action), then α is the unique consistent outcome.

Structure The next section presents a motivating example. The model is described in Section 3, and Section

1 presents the result. Technical parts of the proof appear in the appendix.

2 Motivating Example

Consider a population in which agents are randomly matched to play the Rock-paper-scissors game, in which

each player has three pure actions (rock, paper, scissors), and each action is the unique best reply to the previous

action (modulo 3). In each period everyone in the population is matched to play with someone else. Assume

that each agent plays the mixed action α at the first round (round 1). At each other round, each agent with

a probability of p observes the partner’s action in the last round and best replies to it; with the remaining

probability of 1 − p each agent observes nothing and plays a mixed action β.

What will be the long run behavior of the population? If p = 1 it is immediate that the population’s behavior

will cycle “around” permutations of the initial behavior (as is common in evolutionary models of rock-paper-

scissors, see, e.g., the analysis in Cason et al., 2014). Formally, let n ∈ {01, 2, ...}:

1. At round 3 · n + 1 players play rock with a probability of α (rock), paper with a probability of α (paper),

and scissors with a probability of α (scissors).

2. At round 3 ·n+ 2 players play rock with a probability of α (scissors), paper with a probability of α (rock),

and scissors with a probability of α (paper).

3. At round 3 ·n+3 players play rock with a probability of α (paper), paper with a probability of α (scissors),

and scissors with a probability of α (rock).

2A key difference between our analysis and the stochastic stability approach to evolutionary analysis (as pioneered by Young,
1993; Kandori et al., 1993) is that in our model a player observes a signal about his partner’s past behavior, while in most of the
existing literature on stochastic stability the agent observes a signal about the past aggregate behavior in the population.
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However, when p < 1, one can show that the population converges to the following unique behavior (regardless

of the initial behavior α):

Pr (rock) =
β (rock) + p · β (scissors) + p2 · β (paper)

1 + p+ p2
,

Pr (scissors) =
β (scissors) + p · β (paper) + p2 · β (rock)

1 + p+ p2
,

Pr (paper) =
β (paper) + p · β (rock) + p2 · β (scissors)

1 + p+ p2
.

Note that when p is close to one, the unique behavior is close to the uniform mixed profile that assigns a

probability of 1
3 for each action.

Our main result formalizes and extends this example. It shows that when each player observes on average

less than one past action of the partner, then the aggregate behavior converges to a unique outcome regardless

of the initial conditions, while if players observe on average more than one action, then the long run behavior

may depend on the initial condition (and may cycle rather then converge).

3 Model

3.1 Actions, Strategies and Outcomes

We present a reduced form static analysis of a dynamic evolutionarily process of cultural learning (or, alterna-

tively, of a biological evolutionary process) in a large population of agents. The agents in the population are

randomly matched into pairs and play a symmetric one-shot game, in which each player has to choose an action

a ∈ A.3 Let ∆ (A) denote the set of mixed actions (distributions over A). We use the letter a (α) to denote a

typical pure (mixed) action. With slight abuse of notation let a ∈ A also denote the element in ∆ (A), which

assigns probability 1 to a. We adopt this convention for all probability distributions throughout the paper.

An observation function p ∈ ∆ (N × N) is a distribution (with a finite support) over pairs of non-negative

integers. Before playing the game, each player privately observes with probability p (k1, k2) k1 independent

realized actions of his partner and k2 realized action profiles played by his partner (the first action in each such

profile) and her opponents. Let C+ (p) = C (p) \ {(0, 0)} denote the support of p except (0, 0).

Given pair (k1, k2) 6= (0, 0) let Mk1,k2
denote the set of signals (or messages) that include k1 observed actions

and k2 observed action profiles: Mk1,k2
= Ak1 × (A×A)

k2 . Let M = Mp denote the set of all possible signals

given observation function p, i.e. M =
{

∪(k1,k2)∈C(p)Mk1,k2

}

. Let m denote a typical message (i.e., an element

of M). Let φ ≡ A∅ × (A×A)
∅

denote the non-informative signal in which no actions are observed (which occurs

with probability p (0, 0)).

A strategy is a mapping s : M → △ (A) that assigns a mixed action to each possible message. Let sm ∈ △ (A)

denote the mixed action played by strategy s after observing signal m. I.e., for each action a ∈ A, sm (a) =

s (m) (a) is the probability that a player who follows strategy s plays action a after observing message m.

Let S denote the set of all strategies, and let Σ ≡ △ (S) denote the set of finite support distributions over

the set of strategies. An element σ ∈ Σ is called a strategy distribution. Let σ (s) denote the probability that

3The assumption that the underlying game G is symmetric is essentially without loss of generality (if the game is played within a
single population). Asymmetric games can be symmetrized by considering an extended game in which agents are randomly assigned
to the different player positions with equal probability, and strategies condition on the assigned role (see, e.g., Selten, 1980).
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strategy distribution σ assigns to strategy s. Given a strategy distribution σ ∈ Σ, let C (σ) denote its support

(i.e., the set of strategies such that σ (s) > 0). We interpret σ ∈ Σ as representing a population in which |C (σ)|

strategies coexist, each agent is endowed with one of these strategies according to the distribution of σ. When

|C (σ)| = 1, we identify the strategy distribution with the unique strategy in its support (i.e., σ ≡ s), in line with

the convention adopted above.

Given a finite set of strategies S̃ ⊂ S, an outcome η : S̃ × S̃ → △ (A) is a mapping that assigns to each

pair of strategies s, s′ ∈ S̃ a mixed action ηs (s′), which is interpreted as the mixed action played by an agent

with strategy s conditional on being matched with a partner with strategy s′. Let OS̃ ≡ (△ (A))(
S̃×S̃) denote

the set of all outcomes defined over the set of strategies S̃. The strategy distribution and the outcome together

determine the payoffs earned by each agent in the population.

We now present a few definitions for a given strategy distribution σ ∈ Σ, an outcome η ∈ OC(σ), and a

strategy s ∈ C (σ). Let ηs,σ ∈ △ (A) be the mixed action played by an agent with strategy s when being matched

with a random partner sampled from σ. Formally, for each action a ∈ A:

ηs,σ (a) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) .

Let ψs,σ,η ∈ △ (A×A) be the (possibly correlated) mixed action profile that is played when an agent with

strategy s is matched with a random opponent sampled from σ. Formally, for each action profile (a, a′) ∈ A×A,

where a is interpreted as the action of the agent with strategy s, and a′ is interpreted as the action of his partner:

ψs,σ,η (a, a′) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) · ηs′ (s) (a′) .

Given a profile of k1 actions and k2 action-profiles, mk1,k2
=
(

(ai)1≤i≤k1
, (ai, a

′
i)k1<i≤k2

)

∈ Mk1,k2
, let

νs,σ,η (mk1,k2
) denote the probability that a profile of independent observations that include k1realized actions

of strategy s and k2 realized action profiles of strategy s and a random opponent is equal to mk1,k2
:

νs,σ,η (mk1,k2
) =

∏

1≤i≤k1

ηs′,σ (ai) ·
∏

k1<i≤k2

ψs′,σ,η (ai, a
′
i) ,

and ∀ (k1, k2) ∈ C+ (p), let νs,σ,η (k1, k2) ∈ ∆ (Mk1,k2
) be the distribution over signals in Mk1,k2

.

3.2 Consistent Outcomes

Fix an observation function p. When individuals are drawn to play the game their actions are determined by

their strategy and the signals they observe. Suppose that the observed signals are sampled from the outcome

η and the players play according to the strategy distribution σ, and this induces a new outcome. We require

outcomes to be consistent with the strategy distribution in the sense that they generate observations that induces

the current outcome to persist. Formally, given a strategy distribution σ ∈ Σ, let fσ : OC(σ) → OC(σ) be the

mapping between outcomes that is induced by σ.

(fσ (η)) s (s′) (a) = p (0, 0) · s (φ) (a) +
∑

(k1,k2)∈C+(p) p (k1, k2) ·
∑

mk1,k2
∈Mk1,k2

νs,σ,η (mk1,k2
) · s (mk1,k2

) (a)
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An outcome η ∈ OC(σ) is consistent with strategy distribution σ if it is a fixed point of this mapping: fσ (η) ≡ η.

The following standard lemma shows that each strategy distribution admits consistent outcomes.

Lemma 1. For each strategy distribution σ ∈ Σ there exists a consistent outcome η.

Proof. Observe that the space OC(σ) is a convex and compact subset of a Euclidean space, and that the mapping

fσ : OC(σ) → OC(σ) is continuous. Brouwer’s fixed-point theorem implies that the mapping σ has a fixed point

η∗, which is a consistent outcome by definition.

The following example shows there are strategy distributions that admit multiple consistent outcomes (case

1) and strategy distributions that admit a unique consistent outcome (case 2).

Example 1. Assume that each player observes a single action with probability p1 and no actions with probability

1 − p1 (i.e., p (1, 0) = p1, p (0, 0) = 1 − p1). Let s̃ be the following “tit-for-tat” strategy: s̃ (a) = a for each a ∈ A

(i.e., an individual that follows this strategy plays the observed past action of his opponent), and s (φ) = α for

some arbitrary mixed action α. Note that: (1) if p1 = 1, then any outcome η ∈ Os̃ is consistent with the strategy

distribution that assigns mass 1 to strategy s̃; and (2) if p1 < 1, then one can show that the unique consistent

outcome is α.

4 Result

Theorem 1 characterizes which observation structures induce unique consistent outcomes; that is, structures in

which every strategy distribution admits a unique consistent outcome. It turns out that an observation structure

induces unique consistent outcomes if and only if the expected number of actions that each agent observes about

his partner in each round is at most one.

Definition 1. Given function p, let E (p) denote the expected number of actions observed by each agent before

playing the game:

E (p) =
∑

(k1,k2)∈C(p)

p (k1, k2) · (k1 + 2 · k2) .

Theorem 1. The following conditions are equivalent: (1) Every strategy distribution in environment E = (G, p)

admits a unique consistent outcome; and (2) E (p) ≤ 1 and p (1, 0) < 1.

Proof. We begin by proving that “¬2” implies “¬1”. Assume that E (p) > 1.4 Let a and a′ be different actions

(a 6= a′). Let s∗ be the following strategy: play a if the observed actions include a, and play a′ otherwise.

Consider the strategy distribution in which all agents follow strategy s∗. Consider the outcome ηx that assigns

probability 0 ≤ x ≤ 1 to action a and the remaining probability (1 − x) to action a′. Note that outcome ηx is

consistent with s∗ if and only if

x = Pr (observing a) =
∑

(k1,k2)∈C+(p)

p (k1, k2) ·
∑

mk1,k2
∈Mk1,k2

(

1 − (1 − x)
(k1+2·k2)

)

.

4Note that not-2 implies E (p) > 1 or p (1, 0) = 1, and p (1, 0) = 1 implies E (p) = 1. Recall that the case of p (1, 0) = E (p) = 1
was dealt with in Example 1 with multiple consistent outcomes.
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It is immediate that x = 0 always solves this equation, and thus η0 is a consistent outcome. Next, note that

when x > 0 is close to 0 the RHS can be (Taylor-)approximated by:





∑

(k1,k2)∈C+(p)

p (k1, k2) ·
∑

mk1,k2
∈Mk1,k2

((k1 + 2 · k2)) · x



 = E (p) · x > x.

For x = 1 the RHS is
∑

(k1,k2)∈C+(p) p (k1, k2) ≤ 1, so if
∑

(k1,k2)∈C+(p) p (k1, k2) = 1 then x = 1 is also a solution

and if
∑

(k1,k2)∈C+(p) p (k1, k2) ≤ 1 < 1 then by continuity of the RHS, there is some x ∈ (0, 1) that solves the

equation. Thus there is ηx 6= η0 that is also a consistent outcome of s∗.

In what follows, we sketch the proof of the opposite direction: “2” implies “1”, while leaving some formal details

about the rigorous definition of the various norms to Appendix A. Let σ be an arbitrary strategy distribution,

and let η and η′ be two outcomes. Under an appropriate choice of norm, the distance between the outcomes

fσ (η) and fσ (η′) is bounded by the expected distance between the distributions of signals:

‖fσ (η) − fσ (η′)‖ ≤
∑

k1,k2∈C+(p)

p (k1, k2) · ‖νs,σ,η (k1, k2) − νs,σ,η′ (k1, k2)‖ .

This is because the mapping fσ can induce different outcomes only to the extent that the observed signals were

different. Next it can be shown that the distance between the signal distributions is bounded by the length of

the signal times the distance between the outcomes:

‖νs,σ,η (k1, k2) − νs,σ,η′ (k1, k2)‖ ≤ (k1 + 2 · k2) · ‖η − η′‖ .

This is because two observed actions differ with a probability of at most ‖η − η′‖, and the probability of k1 +2 ·k2

observed actions to differ in at least one action is at most k1 + 2 · k2 times ‖η − η′‖ (with strict inequality if

(k1, k2) 6= (1, 0)). Substituting the second inequality in the first one yields:

‖fσ (η) − fσ (η′)‖ ≤
∑

k1,k2∈C+(p)

p (k1, k2) · ‖η − η′‖ = E (p) · ‖η − η′‖ . (1)

This implies that if E (p) < 1 (or if E (p) = 1 < p (1, 0)) then fσ is a contraction mapping: ‖fσ (η) − fσ (η′)‖ <

‖η − η′‖, which implies uniqueness.

A Technical Aspects of the Proof (“2” Implies “1”)

Assume that E (p) ≤ 1 and p (1, 0) < 1. We show that every strategy distribution in E admits a unique consistent

outcome. Let σ be a strategy distribution, and let η 6= η′ ∈ Oc(σ). In order to shorten the notations, we omit

the subscript σ in the remainder of the proof. For example we write ηs (a) instead of ηs,σ (a). In what follows

we show that f (i.e. fσ) is a contraction mapping (which implies admitting a unique consistent outcome).

A.1 Definitions of Norms

We measure distance between (finite support) probability distributions with the L1-norm as follows: let X be a

finite set and ∆ (X) the set of probability distributions on X. Given distributions ξ, ξ′ ∈ ∆ (X), their distance
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is defined as the sum of the absolute differences in the weights they assign to the different elements of X:

‖ξ − ξ′‖1 =
∑

x∈X

|ξ (x) − ξ′ (x)| .

We measure distance between profiles of distributions with the help of the L∞-norm. For any two profiles of

distributions γ = (ξi)i∈I , γ
′ = (ξ′

i)i∈I , we define

‖γ − γ′‖∞ = max
i∈I

‖ξi − ξ′
i‖1 .

Let νη (k1, k2) = (νs,η (k1, k2))
s∈C(σ) denote the profile of distributions over signals in Mk1,k2

for the various

strategies in the support of σ. Then, in particular:

‖νη (k1, k2) − νη′ (k1, k2)‖
∞

= max
s∈C(σ)

‖νs,η (k1, k2) − νs,η′ (k1, k2)‖1 .

Similarly, since ηs can be interpreted as representing the profile set {ηs (s′)}s′∈c(σ):

‖ηs − η′
s‖∞ = max

s′∈C(σ)
‖ηs (s′) − η′

s (s′)‖1 .

Finally, we use two norms ‖‖∞,∞ and ‖‖∞,1 to measure distances between outcomes η and η′:

‖η − η′‖∞,∞ = max
s∈C(σ)

‖ηs − η′
s‖∞ , ‖η − η′‖∞,1 = max

s∈C(σ)
‖ηs − η′

s‖1 .

Note that ‖ηs − η′
s‖1 ≤ ‖ηs − η′

s‖∞ and ‖η − η′‖∞,1 ≤ ‖η − η′‖∞,∞.

A.2 Bounding the Distance Between Combinations of Actions and Action Profiles

Let k1, k2 ≥ 1. We begin by showing that the distance between the distribution of messages in Mk1,k2
is at most

the sum of the distances between the distributions in Mk1
≡ Mk1,0 and the distributions in Mk2

≡ M0,k2
. For

mki
∈ Mki

, i = 1, 2, we write νs,η (mki
) instead of νs,η (mk1,k2

).

‖νs,η (k1, k2) − νs,η′ (k1, k2)‖1 =
∑

(mk1,k2)∈Mk1,k2

|νs,η (mk1,k2
) − νs,η′ (mk1,k2

)|

=
∑

mk1
∈Mk1

∑

mk2
∈Mk2

|νs,η (mk1
) · νs,η (mk2

) − νs,η′ (mk1
) · νs,η′ (mk2

)| (2)

=
∑

mk1
∈Mk1

∑

mk2
∈Mk2

|νs,η (mk1
) · (νs,η (mk2

) − νs,η′ (mk2
)) + νs,η′ (mk2

) · (νs,η (mk1
) − νs,η′ (mk1

))|

<
∑

mk1
∈Mk1

∑

mk2
∈Mk2

|νs,η (mk1
) · (νs,η (mk2

) − νs,η′ (mk2
))| + |νs,η′ (mk2

) · (νs,η (mk1
) − νs,η′ (mk1

))|

=
∑

mk1
∈Mk1

∑

mk2
∈Mk2

νs,η (mk1
) · |(νs,η (mk2

) − νs,η′ (mk2
))| + νs,η′ (mk2

) · |(νs,η (mk1
) − νs,η′ (mk1

))|

=
∑

mk2
∈Mk2

|(νs,η (mk2
) − νs,η′ (mk2

))| +
∑

mk1
∈Mk1

|(νs,η (mk1
) − νs,η′ (mk1

))| (3)

= ‖νs,η (k1, 0) − νs,η′ (k1, 0)‖1 + ‖νs,η (0, k2) − νs,η′ (0, k2)‖1 .
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Equality (2) is due to the independence of different observations. The next equality is derived by adding and

subtracting νs,η (mk1
) ·νs,η′ (mk2

). The inequality is strict because the elements inside the “||” in the l.h.s. of the

inequality include both positive and negative numbers. Eq. (3) holds because each sum adds the probabilities of

disjoint and exhausting events.

A.3 Bounding the Distance Between Action Profiles

We show that the distance (‖‖1) between two distributions over observed action profiles is at most twice the

distance (‖‖∞,∞) between the corresponding outcomes.

‖ψs,η − ψs,η′‖1 =
∑

(a,a′)∈A2

|ψs,η (a, a′) − ψs,η′ (a, a′)|

=
∑

(a,a′)∈A2

∣

∣

∣

∣

∣

∣

∑

s′∈C(σ)

σ (s′) · (ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))

∣

∣

∣

∣

∣

∣

≤
∑

(a,a′)∈A2

∑

s′∈C(σ)

σ (s′) |(ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))|

=
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)∈A2

|(ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))|

=
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)∈A2

|(ηs (s′) (a) · (ηs′ (s) (a′) − η′
s′ (s) (a′)) + η′

s′ (s) (a′) (ηs (s′) (a) − η′
s′ (s′) (a)))|

<
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)∈A2

(ηs (s′) (a) · |ηs′ (s) (a′) − η′
s′ (s) (a′)| + η′

s′ (s) (a′) · |ηs (s′) (a) − η′
s′ (s′) (a)|)

=
∑

s′∈C(σ)

σ (s′) ·
∑

a′∈A

|ηs′ (s) (a′) − η′
s′ (s) (a′)| +

∑

a∈A

|ηs (s′) (a) − η′
s′ (s′) (a)|

=
∑

s′∈C(σ)

σ (s′) · (‖ηs′ (s) − η′
s′ (s)‖1 + ‖ηs (s′) − η′

s′ (s′)‖1)

≤
∑

s′∈C(σ)

σ (s′) · (‖ηs′ − η′
s′‖∞ + ‖ηs − η′

s‖∞)

≤
∑

s′∈C(σ)

σ (s′) ·
(

2 · ‖η − η′‖∞,∞

)

= 2 · ‖η − η′‖∞,∞ .

The second inequality is strict because the elements inside the “||” in the l.h.s. of the strict inequality include

both positive and negative elements.

A.4 Bounding the Distance Between Sequences of Actions

Let k ≥ 2. Next we show that the distance (‖‖1) between two sequences of k observed actions is at most k times

the distance (‖‖∞,∞) between the corresponding outcomes:

‖νs,η (k, 0) − νs,η′ (k, 0)‖1 =
∑

(ai)
i≤k1

∈Ak

∣

∣

∣νs,η

(

(ai)i≤k

)

− νs,η′

(

(ai)i≤k

)∣

∣

∣ =
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=
∑

(ai)
i≤k1

∈Ak

∣

∣

∣

∣

∣

∣

∏

i≤k

ηs (ai) −
∏

i≤k

η′
s (ai)

∣

∣

∣

∣

∣

∣

=
∑

(ai)
i≤k

∈Ak

∣

∣

∣

∣

∣

∣

∑

i≤k

(ηs (ai) − η′
s (ai)) ·

∏

j>i

ηs (aj) ·
∏

j<i

η′
s (aj)

∣

∣

∣

∣

∣

∣

(4)

<
∑

(ai)
i≤k

∈Ak

∑

i≤k



|ηs (ai) − η′
s (ai)| ·

∏

j>i

ηs (aj) ·
∏

j<i

η′
s (aj)





=
∑

i≤k





∑

a∈A

|ηs (a) − η′
s (a)| ·





∑

(aj)
j>i

∈An−i

∏

j>i

ηs (aj)



 ·





∑

(aj)
j<i

∈Ai−1

∏

j<i

η′
s (aj)









=
∑

i≤k

(

∑

a∈A

|ηs (a) − η′
s (a)| · 1 · 1

)

(5)

= k ·
∑

a∈A

|ηs (a) − η′
s (a)| = k · ‖ηs − η′

s‖1 ≤ k · ‖η − η′‖∞,1 ≤ k · ‖η − η′‖∞,∞ .

The first equality in Eq. (4) is due to the independence of different observations, and the second equality is

implied by adding to the sum elements that cancel out (appearing once with a positive sign and once with a

negative sign). The inequality is strict because the set of numbers inside the “||” in the l.h.s. of the inequality

include both positive and negative elements. Equality (5) holds because each sum adds the probabilities of

disjoint and exhausting events.

An analogous argument yields the same result for observed tuples of action profiles (where the strict inequality

is implied by Section A.3): ‖νs,η (0, k) − νs,η′ (0, k)‖1 ≤ k · ‖ψs,η − ψs,η′‖1 < k · 2 · ‖η − η′‖∞,∞ .

A.5 Showing that f (η) is a Contraction Mapping

We bound the distance between (f (η))s (s′) and (f (η′))s (s′) as follows.

‖(f (η))s (s′) − (f (η′))s (s′)‖
1

=
∑

a∈A

|(f (η)) s (s′) (a) − (f (η′)) s (s′) (a)|

=
∑

a∈A

∑

(k1,k2)∈C+(f)

p (k1, k2) ·

∣

∣

∣

∣

∣

∣

∑

mk1,k2
∈Mk1,k2

(νs,η (mk1,k2
) − νs,η′ (mk1,k2

)) · s (mk1,k2
) (a)

∣

∣

∣

∣

∣

∣

≤
∑

a∈A

∑

(k1,k2)∈C+(f)

p (k1, k2) ·

∣

∣

∣

∣

∣

∣

∑

mk1,k2
∈Mk1,k2

(νs,η (mk1,k2
) − νs,η′ (mk1,k2

))

∣

∣

∣

∣

∣

∣

(6)

=
∑

a∈A

∑

(k1,k2)∈C+(f)

p (k1, k2) · ‖νs,η (k1, k2) − νs,η′ (k1, k2)‖1

≤
∑

a∈A

∑

(k1,k2)∈C+(f)

p (k1, k2) ·
(

‖νs,η (k1, 0) − νs,η′ (k1, 0)‖1 + ‖νs,η (0, k2) − νs,η′ (0, k2)‖1

)

(7)

≤
∑

a∈A

∑

(k1,k2)∈C+(f)

p (k1, k2) ·
(

k1 · ‖η − η′‖∞,∞ + k2 · 2 · ‖η − η′‖∞,∞

)

(8)

=
∑

a∈A

‖η − η′‖∞,∞ ·
∑

(k1,k2)∈C+(f)

p (k1, k2) · (k1 + k2 · 2) =
∑

a∈A

‖η − η′‖∞,∞ · E (p) ≤
∑

a∈A

‖η − η′‖∞,∞ .
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Inequality (6) is implied by omitting the term 0 ≤ s (mk1,k2
) (a) ≤ 1. Inequality (7) is derived by result of

Section A.2. Inequality (8) is implied by Section A.4 (with a strict inequality if p (k1, k2) > 0 for any k1 ≥ 2 or

k2 ≥ 1). The last inequality is strict if E (p) < 1. Thus, at least one of these inequalities is strict if E (p) ≤ 1 and

p (1, 0) < 1. Therefore, we obtain the following strict inequality (which implies that f is a contraction mapping):

‖f (η) − f (η′)‖ ∞,∞ ≤ max
s,s′∈C(σ)

‖(fσ (η))s (s′) − (fσ (η′))s (s′)‖
1

< ‖η − η′‖∞,∞ .
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