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Abstract

I propose a strategy to identify structural parameters in infinitely repeated games without

relying on equilibrium selection assumptions. Although Folk theorems tell us that almost any

individually rational payoff can be an equilibrium payoff for sufficiently patient players, Folk

theorems also provide tools to explicitly characterize this set of payoffs. I exploit the extreme

points of this set to bound unobserved equilibrium continuation payoffs and then use these to

generate informative bounds on structural parameters. I illustrate the identification strategy

using (1) an infinitely repeated Prisoner’s dilemma to get bounds on a utility parameter, and

(2) an infinitely repeated quantity-setting game to get bounds on marginal cost and provide a

robust test of firm conduct.
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1 Introduction

The application of game theoretical models and insights to empirical settings has been critical

in capturing strategic interaction among economic agents in empirical work.1 By combining as-

sumptions on agents’ rationality and an equilibrium concept, empirical researchers are able to link

observed behavior with underlying model primitives such as agents preferences and constraints.

Rationality allows one to put structure on how primitives translate to individual incentives for

a given action. Because of strategic interaction, an equilibrium concept is used to link different

agents’ individual incentives and beliefs into outcomes in a consistent way.

Multiple equilibria typically precludes a unique mapping from primitives to observed behavior,

making standard inference problematic without additional, often strong, assumptions. An impor-

tant part of the lirerature on the econometrics of games have focused on the multiple equilibria

problem. Substantial progress has been made in the analysis of static games (Tamer (2003), Cilib-

erto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011)).

However, not much progress has been made for dynamic games. One important class of dynamic

games where identification results are virtually unexplored are repeated games.

Repeated games provide a useful framework to model long-run relationships which lead to

incentives and outcomes that are not otherwise captured by one-shot interactions. The framework

provides insights on how agents can manage to cooperate in a non-cooperative environment without

formal or explicit contracts, and how to build a reputation. Despite the richness of repeated games,

there is some apprehension in its use due to the framework’s general inability to make sharp

predictions (Dal Bó and Frèchette, 2011). This has hampered the use of repeated games both in

applied theory and empirical research. The multiplicity problem in repeated games is so perverse

that a significant part of the theoretical literature has been devoted to deriving Folk Theorems

that basically say that almost any individually rational payoff can be sustained as an equilibrium

payoff. Thus, an open question in applying repeated games to empirical work is whether we can

1De Paula (2013) provides a recent survey of the literature.
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even learn anything from the data despite the Folk Theorem.

I develop an empirical strategy to identify structural parameters of infinitely repeated games

without equilibrium selection assumptions. This strategy allows one to determine how much we

can learn from the data just from the game’s basic structure. Moreover, it provides a strategy that

that can be used in empirical research involving repeated games.

The identification problem and the consequent strategy is as follows. Actions taken by players

today depend on what players expect to happen in the future. The one-stage deviation principle

(OSDP) allows us to rationalize a given player’s chosen action (conditional on the rival’s) as an

inequality comparing the sum of stage game payoffs and equilibrium continuation payoffs for the

chosen action versus the best single-stage deviation. While OSDP simplifies the analysis by limiting

to equilibrium continuation payoffs, analysis remains complicated since (almost) any individually

rational payoff can be sustained as an equilibrium continuation payoff as long agents are sufficiently

patient. Hence, there are potentially infinitely many ways to rationalize observed actions and so one

cannot directly invert the mapping from observed actions to primitives unless we know or assume

what equilibrium is being played.

Folk Theorems explictly characterize the set of equilibrium (average) continuation payoffs. I

show how to use extreme points of this set to generate informative bounds on the structural pa-

rameter given data on frequency of stage game action profiles. While inference is limited to sets

instead of singleton estimates of primitives (partial identification), the proposed identification strat-

egy reveals that the basic structure of repeated games is quite informative about agents’ primitives

despite the Folk Theorem. Moreover, I show that set estimates of primitives can be used to provide

a useful test of behavior (firm conduct).

In section 2, I start off with an analysis of a standard infinitely-repeated Prisoner’s Dilemma

to illustrate the identification strategy in a simple and familiar setting. I show how bounds on a

utility parameter can be constructed using the incentive constraints from OSDP, and the upper

and lower bounds of the set of equilibrium average payoffs from the Folk Theorem. Moreover, I

study how the size of the identified set (i.e. how informative it is) depends on parameters of the
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model.

The analysis of the Prisoner’s Dilemma yields general insights on identification. First, there

are two levels of equilibrium selection assumptions–a static equilibrium selection assumption and a

dynamic one. Dynamic equilibrium selection assumptions refer to assumptions on how players will

play the game in the future which maps to what equilibrium continuation payoffs are. However, de-

spite knowing what equilibrium continuation payoffs are, the model still turns out to be incomplete,

in the sense similar to the multiple equilibrium problem in static games (Tamer, 2003). Finally,

even if both static and dynamic equilibrium selection assumptions are made, point identification

may still fail if there is no ample source of variation that the econometrician has some knowledge

of (i.e. either this variation is observed or has some known distribution).

In section 3, I discuss the identification strategy in a more general setting. The same key

ideas of using OSDP and the Folk Theorem drives the identification strategy. I then apply the

identification strategy to a quantity-setting game in section 4. This application differs from the

Prisoner’s Dilemma in an important way. In the Prisoner’s Dilemma, the econometrician explicitly

observes stage game actions “Cooperate” or “Deviate” which contains some information on players’

long-run strategies. In the quantity-setting game, I assume that the econometrician only observes

the actual values of the quantities chosen, and not whether these quantities map to “Cooperate”

(e.g. joint monopoly quantity) or “Deviate” (e.g. Cournot quantity). I derive bounds for marginal

cost and show how parameters of the model affect informativeness of these bounds. Finally I show

how one can use the set estimates of marginal cost to test for firm conduct.

The identification strategy can be adapted to other dynamic games, specifically to stochastic

games. Stochastic games with Markovian strategies are widely used in fields such as industrial

organization and labor, although actual estimation of these games has been more limited. Moreover,

feasibility of current methods require an equilibrium selection assumption. The advantage of my

identification strategy is that it does not require equilibrium selection assumptions. Although the

strategy requires knowing something about equilibrium continuation payoffs, there is no need to

compute the whole set. All is needed is to compute the very extreme points of this set, which may
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be easier to compute. I offer more discussion at the end in section 5.

2 Example: Prisoner’s Dilemma

Figure 1 is a Prisoner’s dilemma with unknown utility parameter α ∈ (0, 5). The goal of the

econometrician is to estimate α given data on outcomes. Suppose this game is repeated infinitely

many times with discount factor δ. Assume that the econometrician observes a sample of actions, i.e.

stage game outcomes, and also the discount factor. For now let us assume that the econometrician

observes a time series of stage game outcomes for a single market (or prison).

P1

P2

C D

C α,α α− 5, 10

D 10, α− 5 0, 0

Figure 1: Prisoner’s dilemma stage game payoffs

To estimate α, we want to link observed frequencies of stage outcomes with predicted frequencies

coming from a theoretical model. Consider observing the frequency of (C,C) in the data, i.e.

Pr(C,C). The one-stage deviation principle (OSDP) allows us to characterize a player’s incentive

to choose C when the rival chooses C as an inequality

(1− δ)α+ δvCC|h ≥ (1− δ)10 + δvCD|h

where vkk′|h’s are equilibrium average continuation payoffs proceeding immediately the outcome

(k, k′) and history h. Let ∆C|h ≡ vCC|h − vDC|h and ∆D|h ≡ vDD|h − vDC|h. Using the OSDP, the

subgame perfect Nash equilibrium of the infinitely repeated game are just Nash equilibria of the
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normal form game in figure 2 for a given history h. This gives necessary and sufficient conditions

on when we will observe the stage game outcome (C,C and hence the frequency of this outcome

occuring.

P1

P2

C D

C (1− δ)(α− 10) + δ∆C|h, (1− δ)(α− 10) + δ∆C|h (1− δ)(α− 5) + δ∆D|h, 0

D 0, (1− δ)(α− 5) + δ∆D|h 0, 0

Figure 2: Normal form game using one-stage deviation principle: Prisoner’s Dilemma

A necessary condition for observing (C,C) given history h is that it is a Nash equilibrium of

the normal form game. If we restrict to pure strategies, this necessary condition is given by2

(1− δ)(α− 10) + δ∆C|h > 0.

Thus,

Pr(C,C|h) ≤ Pr((1− δ)(α− 10) + δ∆C|h > 0|h). (1)

Similarly, a sufficient condition for observing (C,C) given history h is that it is the unique Nash

equilibrium of the normal form game:

(1− δ)(α− 10) + δ∆C|h > 0 ∩ (1− δ)(α− 5) + δ∆D|h > 0

and so

Pr((1− δ)(α− 10) + δ∆C|h > 0 ∩ (1− δ)(α− 5) + δ∆D|h > 0|h) ≤ Pr(C,C|h). (2)

2If we allow for (uncorrelated) mixed strategies, then there is a mixed strategy equilibrium involving each player

choosing C with probability ρ =
(1−δ)(α−5)+δ∆D|h

(1−δ)5+δ(∆D|h−∆C|h)
. In order for ρ ∈ (0, 1), we need (1−δ)(α−10)+δ∆C|h < 0 and

(1− δ)(α− 5)+ δ∆D|h > 0. Thus, Pr(C,C|h) ≤ Pr((1− δ)(α− 10)+ δ∆C|h > 0|h)+ ρ ·Pr[(1− δ)(α− 10)+ δ∆C|h <

0 ∩ (1− δ)(α− 5) + δ∆D|h > 0|h].
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The above analysis shows that despite knowing the equilibrium continuation payoffs (∆C|h,∆D|h),

the model is still incomplete in that we cannot write the likelihood for (C,C) (given h) (Tamer,

2003). In this sense, we have a static equilibrium selection problem on top of the dynamic equi-

librium selection problem, i.e. knowing the equilibrium continuation payoffs. The identification

strategy deals with both the static and dynamic equilibrium selection problems.

2.1 Deriving the identified set

Let F∆h
as the joint distribution of (∆C|h,∆D|h). This distribution captures the dynamic equilib-

rium selection mechanism. Dynamic equilibrium selection assumptions are essentially assumptions

on F∆h
. For example, if we assume that players are implementing a Grim-Trigger strategy that sus-

tains (C,C) forever using a punishment of (D,D), then F∆h
puts all its mass on ∆C|h = α− 0 = α

and ∆D|h = 0 − 0 = 0 for histories involving cooperation in the past, and ∆C|h = ∆D|h = 0 for

histories where some deviation in the past occurred.

v1

v2

(0, 0) (v, 0)(0, 0)

(0, v)

(α, α)

F

Figure 3: Set of individually rational payoffs in in our Prisoner’s Dilemma (α ∈ (0, 5))

The Folk Theorem in fact characterizes the set of equilibrium average payoffs for sufficiently

patient players. Specifically, almost any individually rational stage payoff can be sustained as a

subgame perfect Nash equilibrium for a high enough discount factor. Figure 3 gives the set F
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of individually rational payoffs for our Prisoner’s Dilemma. Let v(α) and v(α) be the lower and

upper bounds of this set, which are functions of the unknown parameter α. For any discount factor

less than or equal to one, the support of F∆h
for any history h must be a subset3 of the set of

differences in equilibrium payoffs in F , i.e. supp(F∆h
) ⊆

[

∆(α),∆(α)
]

, where ∆(α) = v(α)− v(α)

and ∆(α) = v(α)− v(α). The following proposition shows how one can use thee bounds to derive

an identified set for the unknown parameter α without any equilibrium selection assumptions.

Proposition 1. Assume players are restricted to pure strategies. Moreover, suppose we only

observe the frequency Pr(C,C) and the discount factor δ. The identified set for α is given by

H(α) = {α : Pr(C,C) ∈ [Pr(LB(α) > 0),Pr(UB(α) > 0)]}

where LB(α) = (1− δ)(α− 10)+ δ∆(α), UB(α) = (1− δ)(α− 10)+ δ∆(α), ∆(α) = 50−(α−5)(α−10)
5

and ∆(α) = −∆(α).

Proof. Since ∆C|h ≤ ∆(α) for all histories h, the necessary condition given by inequality 1 implies

Pr(C,C|h) ≤ Pr((1− δ)(α− 10) + δ∆(α) > 0).

Integrating this inequality across histories yields

Pr(C,C) ≤ UB(α)

where UB(α) = (1− δ)(α− 10) + δ∆(α).

Next, since ∆C|h ≥ ∆(α) and ∆D|h ≥ ∆(α) for all histories h, the sufficient condition given by

inequality 2 implies

Pr((1− δ)(α− 10) + δ∆(α) > 0 ∩ (1− δ)(α− 5) + δ∆(α) > 0) ≤ Pr(C,C|h).

Integrating this across histories gives

Pr((1− δ)(α− 10) + δ∆(α) > 0 ∩ (1− δ)(α− 5) + δ∆(α) > 0) ≤ Pr(C,C).

3Moreover, since we restrict to pure strategies, the actual set of equilibrium average payoffs is actually a proper

subset of F even for arbitrarily large discount factors.
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Since (1 − δ)(α − 10) + δ∆(α) > 0 implies (1 − δ)(α − 5) + δ∆(α) > 0, the lefthand side of the

above inequality is just equal to

Pr((1− δ)(α− 10) + δ∆(α) > 0).

Thus,

LB(α) ≤ Pr(C,C)

where LB(α) = (1− δ)(α− 10) + δ∆(α).

To derive ∆(α) and ∆(α), recall that ∆(α) = v(α) − v(α) and ∆(α) − ∆(α). From figure 3,

we have v(α) = 0 while v(α) is characterized by the point (0, v(α)) that lies on the line segment

connecting (α− 5, 10) and (α, α). (or equivalently, the point (v(α), 0) that lies on the line segment

connecting (α, α) and (10, α−5)). After some algebra, one can show that v(α) = 50−(α−5)(α−10)
5 .

To explicitly derive the identified set for α, we need to derive all values of α such that the

observed frequency Pr(C,C) is inside the interval [Pr(LB(α),Pr(UB(α))]. Since both LB(α) and

UB(α) are deterministic functions of α, Pr(LB(α)) = I{LB(α)} and Pr(UB(α)) = I{UB(α)}

where I{·} is the indicator function. Moreover, since LB(α) and UB(α) are continuous functions of

α, the set of α’s that satisfy Pr(C,C) ∈ [I{LB(α)}, I{UB(α)}] are just a finite union of intervals

over the set of possible α’s.

There are three possible identified sets depending on Pr(C,C). Figure 4 illustrates these iden-

tified sets graphically. If Pr(C,C) = 0, then it must be that LB(α) ≤ 0 which gives some bound

on α, i.e. α ∈ [α1, α3] in figure 4. Notice that there is no restriction provided by UB(α) since

I{UB(α)} can be zero or one. Intuitively, Pr(C,C) = 0 requires that (C,C) is not a unique Nash

equilibrium of the induced normal form game in figure 2. However, Pr(C,C) = 0 does not rule out

that (C,C) can be one of multiple Nash equilibria.

Similarly, if Pr(C,C) = 1, then it must be that UB(α) > 0 but there is no restriction provided

by LB(α). Finally, when Pr(C,C) ∈ (0, 1), it must be that UB(α) > 0 and LB(α) ≤ 0 since (C,C)

must be a Nash equilibrium, but is not unique. The identified set when Pr(C,C) ∈ (0, 1) is tighter
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than the other two cases since it provides more restrictions on α. However, different values for

Pr(C,C) ∈ (0, 1) yields the same identified set so what only matters is that the frequency is neither

zero or one, and no additional information is provided. The reason is the following. Variation in

outcomes, say of (C,C), are driven by the distribution F∆h
. The shape of this distribution provides

useful information about how outcomes would vary in the sample. However, at this point, we only

know the support of this distribution, specifically, its endpoints, which is not enough to explain what

determines the “non-degenerate” variation leading to specific values for Pr(C,C) ∈ (0, 1). Thus

the researcher needs additional known sources of variation, either through an observed variable or

an unobserved variable with some known distribution that moves around payoffs and outcomes.

0 Pr = 0

LB,UB
Pr = 1

UB(α)

LB(α)

α1 α2 α3 α4

Figure 4: Identified set

Note: Blue and red curves are graphs of UB(α) and LB(α) as defined in Propostion 1, respectively. The dotted

blue and red curves give Pr(UB(α) > 0) and Pr(LB(α) > 0), respectively. Consider frequency of observing (C,C).

If Pr(C,C) = 0, then H(α) = [α1, α3]. If Pr(C,C) = 1, then H(α) = (α2, α4). Finally, if Pr(C,C) ∈ (0, 1), then

H(α) = (α2, α3].
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2.2 Point identification

As it turns out, knowing how equilibrium is selected (both dynamic and static equilibrium selection)

is not sufficient to get point identification of α. To show this, suppose players are playing Grim-

Trigger strategies and that δ is fixed at some value greater than 0.6, say δ = 0.7 (known to the

researcher). Then the researcher observes Pr(C,C) = 1 and that (1 − δ)(α − 10) + δα > 0 and

(1− δ)(α− 5) < 0. These imply α > 10(1− δ) = 3 and α < 5, which only yields α ∈ (3, 5).

The above example illustrates that knowledge of equilibrium selection is not sufficient to pin

down the value of α. Additional sources of variation that moves payoffs (and outcomes) are needed

to get point identification. For example, suppose we observe different independent prisons indexed

bym, where all players are playing Grim-Trigger strategies. Suppose the discount factor of prisoners

differ across prisons, say δm, and that we have enough variation in δm. Specifically, we observe

that for prisons with δm > 0.6, Pr(C,C) = 1 while for δm < 0.6, Pr(C,C) = 0. Then we have

(1− δ)(α− 10) + δα = 0 for δ = 0.6 which implies α = 4.

3 Identification strategy

The identification strategy consists of two key ideas. First, we can use the one-stage deviation

principle (OSDP) to derive a set of incentive (inequality) constraints that describe conditions

such that a given outcome is part of an equilibrium. The incentive constraints are functions

of stage game and equilibrium continuation payoffs, and if both are known up to the unknown

parameter, then one can use these constraints to identify the parameter (although we might still

only achieve partial identification due to the static equilibrium selection problem). However, the

econometrician does not typically know what equilibrium strategies are being played hence what

equilibrium continuation payoffs go into these incentive constraints. In fact, there are potentially

infinitely many equilibrium payoffs that are consistent with observed outcomes–a result from Folk

Theorems. The second idea is that we can harness the power of Folk Theorems to provide lower

and upper bounds on these equilibrium continuation payoffs. As long as the incentive constraints

11



are monotonic in these payoffs, we can then use the conditions implied by these worse case bounds

to derive an identified set for the unknown parameter.

3.1 Set-up

There are two players choosing actions simultaneously in each period indefinitely with common

discount factor δ. Stage game actions for each player i are elements of the compact set Ai. At this

point, it is not necessary to specify whether actions are discrete or continuous. Moreover, actions

need not have specific meaning as in the Prisoner’s Dilemma, and can just be any real number.

Player i’s payoff is denoted by πi(xi, xj ;α) where xi is the chosen action of player i, xj s the

chosen action of i’s rival j, and α is some parameter. I assume that the econometrician knows the

functional form of πi(xi, xj ;α) but does not know α. Additionally, the econometrician observes the

chosen stage game actions {x̂i, x̂j}, and also the frequency that these occur, i.e. Pr(x̂i, x̂j). Finally,

let x∗i (xj) be the stage game best response of i to j’s action xj , i.e. x
∗
i (xj) = argmaxx∈Ai

πi(x, xj ;α).

This best response can be a function of α, as long as it can be explictly written.

3.2 One-stage deviation principle (OSDP)

OSDP allows us to focus on single-stage deviations to fully characterize incentives of players for

choosing specific actions. That is, player i chooses x̂i given j plays x̂j if and only if

(1− δ)πi(x̂i, x̂j ;α) + δv̂i ≥ (1− δ)πi(x
∗
i (x̂j), x̂j ;α) + δṽi

for some v̂i, ṽi ∈ V where V is the set of equilibrium average payoffs. When constructing a deviation

(righthandside of the above inequality), we allow i to deviate only for one period by choosing its

best response x∗i (x̂j) but require i to go back to equilibrium play afterwards. Equilibrium play then

leads to player i receiving equilibrium continuation payoffs (written as an average).

The subgame perfect Nash equilibrium (SPNE) of the infinitely repeated game is a Nash equi-

librium of every possible history. For each (relevant) history, we can define a normal form game

based on the incentive constraints derived using OSDP. The SPNE of the repeated game is the set
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of average discounted payoffs such that observed stage game outcomes are Nash Equilibria of these

normal form games.

The next step is to translate the incentive constraints as bounds on the probability of observing

a given stage outcome. Take for example the stage game outcome (x̂i, x̂j) chosen under history h.

For this stage game outcome to be a Nash equilibrium in pure strategies of the induced normal

form game, it must be that

(1− δ)πi(x̂i, x̂j ;α) + δv̂i|h ≥ (1− δ)πi(x
∗
i (x̂j), x̂j ;α) + δṽi|h

and

(1− δ)πj(x̂j , x̂i;α) + δv̂j|h ≥ (1− δ)πj(x
∗
j (x̂i), x̂i;α) + δṽj|h

With mixed strategies, the set of conditions will be more complicated though are still functions

of equilibrium average payoffs. We can define these necessary conditions as a set Ψ(x̂i, x̂j ,∆h;α)

such that Ψ(x̂i, x̂j ,∆h;α) is increasing4 in ∆h where ∆h is an appropriately defined difference of

equilibrium average payoffs. Thus for each h, Ψ(x̂i, x̂j ,∆h;α) ⊆ Ψ(x̂i, x̂j ,∆);α), where ∆ is an

upperbound that does not depend on h.

Next, we can derive a set of conditions such that (x̂i, x̂j) is the unique Nash equilibrium of

the induced normal form game.5. Denote the set of sufficient conditions as Ξ(x̂i, x̂j ,∆h;α) for

each history h, where again Ξ(x̂i, x̂j ,∆h;α) is increasing in ∆h. Thus for each h, Ξ(x̂i, x̂j ,∆;α) ⊆

Ξ(x̂i, x̂j ,∆h);α), where ∆ is a lowerbound that does not depend on h.

3.3 Main theorem

The following theorem characterizes the identified set for the unknown parameter α.

Theorem 1. Construct Ψ(x̂i, x̂j ,∆h;α) and Ξ(x̂i, x̂j ,∆h;α) such that both are increasing in ∆h.

4That is, Ψ(x̂i, x̂j ,∆h;α) ⊆ Ψ(x̂i, x̂j ,∆
′
h;α) for ∆

′
h > ∆h.

5It is possible for this set to be empty.
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The identified set for α is given by

H(α) =
⋂

(x̂i,x̂j)

{

α : Pr(x̂i, x̂j) ∈
[

Pr(Ξ(x̂i, x̂j ,∆;α),Pr(Ψ(x̂i, x̂j ,∆);α)
]}

Proof. Consider some arbitrary outcome (x̂i, x̂j , ). Since Ψ(x̂i, x̂j ,∆h;α) is necessary for one to

observe (x̂i, x̂j , ) under some history h in an equilibrium, we have

Pr(x̂i, x̂j |h) ≤ Pr(Ψ(x̂i, x̂j ,∆h;α)|h).

Because Ψ(x̂i, x̂j ,∆h;α) ⊆ Ψ(x̂i, x̂j ,∆;α), we have

Pr(x̂i, x̂j |h) ≤ Ψ(x̂i, x̂j ,∆;α)

for all histories. Thus,

Pr(x̂i, x̂j) ≤ Ψ(x̂i, x̂j ,∆;α).

Next, a sufficient condition for observing (x̂i, x̂j , ) under some history h in an equilibrium is

captured by the set Ξ(x̂i, x̂j ,∆h);α). Hence,

Pr(Ξ(x̂i, x̂j ,∆h);α)|h) ≤ Pr(x̂i, x̂j , |h).

Since Ξ(x̂i, x̂j ,∆h);α) is increasing in ∆h, and after integrating across histories, we have

Pr(Ξ(x̂i, x̂j ,∆);α)) ≤ Pr(x̂i, x̂j).

Thus for each outcome (x̂i, x̂j) we can derive an identified set as the set of α’s that satisfy

Pr(x̂i, x̂j) ∈
[

Pr(Ξ(x̂i, x̂j ,∆;α),Pr(Ψ(x̂i, x̂j ,∆);α)
]

. The identified set that uses all data, H(α) is

just the intersection of these sets.

An important part of the identification strategy is to construct the set of necessary and sufficient

conditions Ψ(x̂i, x̂j ,∆h;α) and Ξ(x̂i, x̂j ,∆h;α) such that both are increasing in ∆h. For each data

point (x̂i, x̂j , ), we can construct bounds on the probability of observing this data point using the

necessary and sufficient conditions evaluated at the extreme points ∆ and ∆. These lower and

upper envelopes can then be used to identify upper and lower bounds for the unknown parameter.

See figure 5 for a graphical intuition.
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α

EF∆
g(s;α)

Pr(x̂i, x̂j)

α∗

UB(α)

LB(α)

α α

Figure 5: Graphical illustration of how to derive the identified set

4 Application: Quantity-setting game

I apply the identification strategy to a simple quantity-setting game. There are two firms, firms

1 and 2, competing by choosing how much to produce in each period. The firms compete for an

indefinite amount of periods with a common discount factor δ. For ease of exposition, I restrict

quantities to two levels: low quantity qL or high quantity qH , where qL < qH .6 I assume firms are

symmetric and have a constant marginal cost of c. Finally, inverse demand is given by P = 1−Q,

where Q = q1 + q2.

I assume that in each period, profits are perturbed by choice-specific shocks. This approach is

similar to previous work that models oligpoly competition as repeated games (Green and Porter,

1984; Rotemberg and Saloner 1986; Fershtman and Pakes, 2000). In period t, total stage game

profit of a given firm when it chooses i and the rival chooses j is the sum of its base profit πij and

a choice-specific shock ηijt: πij + ηij , for i, j ∈ {L,H}. I assume shocks are iid across periods (and

6One can easily allow for more discrete choices. However, since I will include choice-specific shocks in the model,

assuming actions are continuous introduces some technical (measurability) issues.

15



Firm 1

Firm 2

L H

L πLL + ηLLt, πLL + ηLLt πLH + ηLHt, πHL + ηHLt

H πHL + ηHLt, πLH + ηLHt πHH + ηHHt, πHH + ηHHt

Figure 6: Period t stage game payoffs for quantity-setting game

markets) have mean zero, are common to both players and are symmetric, i.e. ηij = ηji. Choice

shocks ηijt are revealed to both players only at the beginning of each period, and are common

knowledge. Firms then decide on their quantities simulatenously. Figure 6 gives the payoff matrix

for the stage game.

Just as in the Prisoner’s Dilemma example in section 2, we can use the one-stage deviation

principle to characterize the equilibrium of the infinitely repeated game as a Nash equilibrium

in the normal form game illustrated in figure 7 for every relevant history h and time t. Here,

ǫLt = ηLLt − ηHLt, ǫHt = ηHLt − ηHHt, ∆L|ht = vLL|ht − vHL|ht and ∆H|ht = vHL|ht − vHH|ht where

vij|ht are equilibrium expected (with respect to the distribution of η’s) average continuation payoffs.

Firm 1

Firm 2

L H

L (1− δ)(πLL − πHL) + δ∆L|ht, (1− δ)(πLL − πHL) + δ∆L|ht (1− δ)(πLH − πHH) + δ∆H|ht, ǫLt

H ǫLt, (1− δ)(πLH − πHH) + δ∆H|ht ǫHt, ǫHt

Figure 7: Normal form game using one-stage deviation principle: Quantity-setting game
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ǫL

ǫH
(1− δ)(πLL − πHL) + δ∆L

(1− δ)(πLH − πHH) + δ∆H

(qH , qH)(qL, qL), (qH , qH)

(qL, qL) (qL, qH), (qH , qL)

Figure 8: Nash equilibria of induced normal form

Since each of these normal form games depend on history h and time t, the Nash equilibria of

each of these games also depend on the realization of (ǫLt, ǫHt).
7 Assume firms are only playing

pure strategies. Figure 8 summarizes the Nash equilibria of the normal form game in the (ǫLt, ǫHt)

space. For example, if ǫLt < (1− δ)(πLL − πHL) + δ∆L|ht and ǫHt < (1− δ)(πLH − πHH) + δ∆H|ht,

then the stage outcome (qL, qL) at time t, after history h and upon observing these types of ǫ’s can

be sustained by some equilibrium strategy.

4.1 Data generation

Let the true marginal cost be equal to c0 = 0.5. I assume the the low and high quantities respectively

correspond to monopoly and Cournot quantities given by

qL = qM =
1− c0

4
=

1

8

qH = qC =
1− c0

3
=

1

6
.

7Strategies themselves are functions of ǫ’s.
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While firms are aware that qL = qM and qH = qC , the econometrician does not have this informa-

tion. All the econometrician observes are the actual numerical values of qL and qH .

Instead of defining strategies explicitly, I simulate data directly by assuming ∆L = πM−πC and

∆H = πC − πC = 0 along the equilibrium path. Note that in a model with no shocks, i.e. ηij = 0,

these ∆’s are consistent with a Grim-Trigger strategy which would also imply Pr(qL, qL) = 1. This

need not be the case when there are shocks since outcomes such as (qH , qH) can occur along the

equilibrium path for certain values of ǫ’s and given properly defined strategies that are conditional

on ǫ’s.

I assume ǫ’s are independently distributed according to a logistic distribution with common

variance σ2. Since ǫ’s have full support, multiple equilibria in the normal form game given in figure 7

can arise depending on the realization of ǫ’s (see figure 8). This corresponds to the equilibrium

selection problem in static games (Tamer, 2003). I let s1 and s2 be static selection parameters

where s1 is equal to the probability that (qL, qL) is chosen when ǫLt < (1− δ)(πLL−πHL)+ δ∆L|ht

and ǫHt > (1− δ)(πLH −πHH)+ δ∆H|ht, while s2 is equal to the probability that (qL, qH) is chosen

when ǫLt > (1− δ)(πLL − πHL) + δ∆L|ht and ǫHt < (1− δ)(πLH − πHH) + δ∆H|ht

Define individual choice probabilities as

p (∆; c) ≡ Pr (ǫL < (1− δ)(πLL − πHL) + δ∆|∆)

q (∆; c) ≡ Pr (ǫH < (1− δ)(πLH − πHH) + δ∆|∆) .

The logistic distribution assumption implies true indidvidual choice probabilities being equal to

p0 ≡
exp

[

(1−δ)(πLL−πHL)+δ∆L

σ

]

1 + exp
[

(1−δ)(πLL−πHL)+δ∆L

σ

]

q0 ≡
exp

[

(1−δ)(πLH−πHH)+δ∆H

σ

]

1 + exp
[

(1−δ)(πLH−πHH)+δ∆H

σ

]
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Finally observed frequencies of stage game outcomes are computed as:

Pr (qL, qL) = p0q0 + s1 · p0(1− q0)

Pr (qH , qH) = (1− p0)(1− q0) + (1− s1) · p0(1− q0)

Pr (qL, qH) = s2 · (1− p0)q0

Pr (qH , qL) = 1− Pr (qL, qL)− Pr (qH , qH)− Pr (qL, qH) .

I assume the econometrician observes (or knows or can estimate beforehand) the discount factor

δ, the inverse demand function P (Q), the distribution of the shocks including its variance σ2, the

frequencies Pr (qL, qL), Pr (qH , qH), Pr (qL, qH) and Pr (qH , qL) and the actual values of qL and qH .

The econometrician does not know the true marginal cost c0, the static selection parameters (s1, s2),

the equilibrium continuation payoffs that are implemented, and finally that qL and qH correspond

to the joint monopoly and Cournot quantities, respectively.

4.2 Identified set

The goal of the economectric exercise is to compute bounds for marginal cost and test for firm

conduct, i.e. H0 : qL = qM and H0 : qL = qC . If both static and dynamic selection parameters were

known (i.e. s1, s2,∆L,∆H), then one can compute theoretical stage game frequencies as functions

of marginal cost, then find the value of marginal cost that best matches these with the observed

stage frequencies.8 Without this information, one can instead use the method in section 3 to get

an identified set for marginal cost.

The identification strategy requires knowing the extreme points of the set of equilibrium con-

tinuation payoffs. Instead of relying on a Folk Theorem for this modified repeated game, I impose

the restriction9 vkk′ ∈ [πC(c), πM (c)] where πM (c) and πC(c) are individual firm’s (joint) Monopoly

8The “ample source of variation” in this case is the known distribution of shocks.
9Note that it is possible to have worse equilibrium punishments than the Cournot payoff using more complicated

strategies (Abreu, 1986; Abreu, 1988). I will derive the set of individually rational payoffs and use in a future version

of this paper. Nevertheless, restricting to Cournot payoff as being the worse punishment is still a useful benchmark

19



and Cournot profits:

πM (c) =
(1− c)2

8
, πC(c) =

(1− c)2

9
.

These imply ∆(c) = πM (c)− πC(c) = (1− c)2/72 and ∆(c) = −∆(c). Finally, the identified set is

the set of all values of c that simultaneously satisfy the following:

Pr (qL, qL) ∈
[

p (∆(c)) q (∆(c)) , p
(

∆(c)
)]

Pr (qH , qH) ∈
[(

1− p
(

∆(c)
)) (

1− q
(

∆(c)
))

, 1− q (∆(c))
]

Pr (qL, qH) ∈
[

0, (1− p (∆(c))) q
(

∆(c)
)]

Pr (qH , qL) ∈
[

0, (1− p (∆(c))) q
(

∆(c)
)]

4.3 Results

4.3.1 Bounds for marginal cost

I compute the bounds for different values of the standard deviation of the logit profit shocks

σ (=1 and 0.001), discount factor δ (=1 and 0.001), and static selection parameters s1 and s2

(s1 = s2 = 0, 0.5, 1). Table 1 contains the results. Since the inverse demand function is P = 1−Q,

[0, 1] is a natural bound on marginal cost. Thus, the computed bounds are only informative if it is

a proper subset of [0, 1].

The simulation parameter σ measures the standard deviation of the profit shocks. We can

interpret the magnitude of σ by comparing it to monopoly profits under the true c0 = 0.5, i.e. πM =

0.03125. Clearly, a standard deviation equal to one is large relative to profits, hence representing

an extreme case where decision-making will mostly be driven by these shocks. On the other hand,

a standard deviation of 0.001 represents about a 3% movement in monopoly profits. The estimated

bounds for marginal cost are much tighter when σ is small. This reflects the fact that the incentive

compatibility constraints provide more information regarding outcomes when noise from exogenous

profits shocks are smaller.

and does not trivialize the problem of multiple equilibria.
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Estimated bounds are also tighter when the discount factor δ is low. In this case, the incentive

compatibility constraints have more bite since collusion is harder to sustain with more impatient

firms. The value δ = 0.5 is the lowest discount factor that will make Grim-Trigger an SPNE in the

game without profit shocks.

The static selection parameter s gives the probability that (qL, qL) and (qL, qH) are selected in

the induced normal form game (see figure 8). The bounds are tighter when s = 0.5 and σ smaller.

Interestingly however, the bounds become uninformative with s = 0.5 when σ is large.

Table 1: Bounds for marginal cost (c0 = 0.5)

σ = 1 σ = 0.001

δ = 0.5

s = 0 [0, 0.56] [0.36, 0.56]

s = 0.5 [0, 1] [0.44, 0.59]

s = 1 [0.49, 1] [0.43, 0.61]

δ = 0.6

s = 0 [0, 0.58] [0.12, 0.58]

s = 0.5 [0, 1] [0.37, 0.62]

s = 1 [0.35, 1] [0.36, 0.67]

4.3.2 Test of firm conduct

While the bounds on marginal cost are of interest themselves, they can also be used to provide

a test for firm conduct. Note that if we had a point estimate for marginal cost, we can compute

estimates of the monopoly and Cournot quantities q̂M and q̂C , respectively, predicted by theory.

However, since we only have bounds for c and not point estimates, we can only get bounds for these

predicted quantities. Nevertheless, these quantity bounds are still useful in determining whether

observed quantities are consistent with collusion or Cournot competition.
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Table 2: Bounds for theoretical quantities

σ = 0.001, δ = 0.5

c qM = 1/8 qC = 1/6

s = 0 [0.36, 0.56] [0.11, 0.16] [0.147, 0.213]

s = 0.5 [0.44, 0.59] [0.103, 0.140] [0.137, 0.187]

s = 1 [0.43, 0.61] [0.098, 0.143] [0.13, 0.19]

Table 2 provides the bounds for marginal cost, and predicted monopoly and Cournot quantities

(based on theory).Consider s = 0. Suppose we are interested in “testing”10 if the observed low qL

is consistent with qM or qC . In the data we observe qL = 0.125. This value for the low quantity is

inside the identified set for qM and so we cannot reject that firms are colluding at the monopoly

quantity. On the other hand, qL = 0.125 is outside the identified set for qC and thus we can reject

that firms are competing in Cournot fashion. A similar test can be implemented for qH = qM and

qH = qC (observed qH = 0.167). Finally, the test has no power if identified set for c is too wide

(not very informative).

5 Extensions

The examples I discuss in the paper are simple enough such that it is easy to characterize the

set of equilibrium payoffs (or an non-trivial upper bound of it). In more complicated games, the

set of equilibrium payoffs are harder to compute. Nevertheless, methods have been developed to

compute equilibria in more complicated infinitely repeated games. For example, Judd, Yeltekin

and Conklin (2003) develop a computationally feasible algorithm to approximate the set of equi-

libria in infinitely repeated games with perfect monitoring and public randomization, following the

approach proposed by Abreu (1988), Abreu, Pearce and Stacchetti (1986, 1990), and Cronshaw

and Luenberger (1994). In on-going work, I explore how their method can be extended to games

10This is an informal test since I assume we have infinite data and zero sampling error.
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without public randomization (nor mixed-strategies) using Milman’s converse to the Klein-Milman

theorem (see for example, Ok (2007)).

Finally, the method proposed in the paper can be adapted to dynamic games with states (i.e.

stochastic games), as long as the set of equilibrium continuation payoffs can be computed, or at

least its boundary. Dutta (1995) is an earlier attempt to compute equilibria in these games while

Yeltekin, Cai and Judd (2015) a more recent take on this problem.
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