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state variables, as state truncation induces a non-linear and non-Gaussian model. We propose a 

Rao-Blackwellised particle filter with the optimal importance function for forward filtering and 

the likelihood function evaluation. The particle filter effectively enforces the state constraints 

when the Kalman filter violates them. We find substantial Monte Carlo variance reduction by 
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1. Introduction 

For economic applications of the state space models, the state variables often represent 

latent economic processes, some of which are inherently nonnegative or bounded. A leading 

example is the Gaussian short rate models such as Vasicek (1977) and Hull and White (1990). 

The conventional wisdom is that the nominal interest rate should be nonnegative (Black, 

1995).1 In an era of low interest rates, the standard Kalman filter results are likely to violate the 

constraints.  

Figure 1 demonstrates the binding inequality constraints in the Vasicek model, in which the 

instantaneous interest rate is the state variable and the entire term structure is a linear 

function of the state. Refer to Hull (2003, p. 539) for the model specification. The estimation 

data are monthly U.S. treasury rates of maturities from three months to ten years, 2003 - 2015. 

Since there are no negative observations in our sample, it is desirable to have nonnegative 

short rates as well. However, the upper panel of Figure 1 shows that the Kalman filter produces 

negative state estimation after the year 2009.  The middle panel plots five posterior draws of 

the state series by the standard simulation smoothing algorithm (Durbin and Koopman, 2002). 

All of them contains negative values. We generated millions of posterior series, but could not 

obtain one that satisfies the nonnegative constraints.  

State space applications subject to inequality constraints are common. In the local level 

model using the Nile river data (see Commandeur et al., 2011), the river flow volume is 

necessarily a nonnegative state variable. In Stock and Watson (2007), the latent inflation rate is 

a bounded sequence if the central bank sets inflation targets. In the Diebold et al. (2006) yield 

curve applications, the sign of the level, slope and curvature factors might be known if there is 

prior information on the shape of the yield curve. In the time-varying parameter (TVP) vector 

autoregressions (VAR) (see Cogley and Sargent, 2001), it is advisable to restrict the eigenvalues 

of the VAR process within the unit circle. 

State constraints can be in the form of equalities and inequalities. Equality constraints are 

equivalent to perfect measurement equations. Doran (1992) shows that equality constraints 

                                                      
1 Recent observations on the negative deposit rate set by the European Central Bank were deemed as a new lower 

bound by some market participants. In addition, cash storage costs could set a natural lower bound for the 

negative rate. 
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can be incorporated in the state estimation by augmentation of measurement equations.  

Pizzinga (2012) provides a proof of the equality restricted Kalman filtering based on the Hilbert 

space geometry and demonstrates statistical efficiency of restricted filtering. Koop et al. (2010) 

consider a Bayesian application in which the states are subject to time-varying equality 

constraints. 

Imposing inequality constraints on simulation smoothing has received attention in the 

literature. Cogley and Sargent (2005) simulate the unrestricted posterior draws and rule out 

outcomes that violate the constraints by rejection sampling. This multi-move algorithm is valid, 

but the acceptance rate of the rejection sampling could be low. In our simulation of the Vasicek 

model, it is difficult to obtain a nonnegative path. Koop and Potter (2011) develop a single-

move algorithm, which works well in their application. The single-move algorithm might 

produce highly correlated draws, as demonstrated in Carter and Kohn (1994). The prior state 

distribution in Koop and Potter (2011) differs from Cogley and Sargent (2005) due to a prior 

integrating constant, which yields an analytically intractable posterior distribution and they 

resort to the Metropolis-Hasting sampler. 

Imposing inequality constraints on forward filtering receives little attention. To the best of 

our knowledge, there are no rigorous approaches addressing constrained filtering in the 

economics and statistics literature. However, there are reasonable ways to add constraints to 

the Kalman filter. In engineering applications, Simon and Simon (2005) and Gupta and Hauser 

(2008) adapt the Kalman filter by treating an active set of inequality constraints as equality 

constraints. Simon and Simon (2010) truncates univariate normal densities for an adapted 

Kalman filter. 

This paper provides a rigorous treatment of the inequality constrained state filtering and the 

likelihood function evaluation. Our main contribution is a Rao-Blackwellised particle filter with 

the optimal importance function, which effectively enforces the inequality constraints when the 

Kalman filter violates them. Our algorithm departs from the Kalman filter, but analytic 

integration by the Kalman filter is utilized by Rao-Blackwellisation at both cross-sectional and 

temporal levels. Our algorithm is based on the particle filter, but not as computationally 

intensive, since marginalization reduces the state dimensions for particle filtering, and muffles 
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Monte Carlo noises. Variance reduction is also significant in the likelihood function evaluation, 

which facilitates numerical search for the maximum likelihood estimator. Our algorithm is 

rigorous because the standard convergence results for sequential Monte Carlo methods apply. 

Our sampling method will restore the true constrained filtering distribution asymptotically and 

the estimated likelihood function will converge to the true likelihood value. 

The reminder of the paper is organized as follows. Section 2 specifies the transition and 

observation distributions of the inequality constrained model, based on which a particle filter is 

proposed in Section 3. Section 4 and 5 discuss the cross-sectional and temporal Rao-

Blackwellisation. An application in Section 6 demonstrates the effects of constraint 

enforcement and variance reduction by the optimal importance function and Rao-

Blackwellisation. Sections 7 extends the model by an alternative type of state constraints, which 

is computationally faster and numerically stable. In Section 8, we suggest a practical workflow 

of parsimoniously imposing inequality constraints. 

 

2. The Model 

Let 𝑥𝑡 , 𝑡 = 1, … , 𝑇 be a 𝑚 × 1 state vector, and 𝑦𝑡 be a 𝑛 × 1 observation vector. We define 

a probabilistic model by the joint density 𝑝(𝑥1:𝑇, 𝑦1:𝑇), where 𝑥1:𝑇 = (𝑥1′ , … , 𝑥𝑇′ )′ and 𝑦1:𝑇 =(𝑦1′ , … , 𝑦𝑇′ )′. The joint density, decomposed as ∏ 𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1)𝑝(𝑦𝑡|𝑥1:𝑡, 𝑦1:𝑡−1)𝑇𝑡=1 , is said 

to be an inequality constrained state space model (ICSSM) if  𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1) = 𝜙(𝑥𝑡;𝐴𝑡𝑥𝑡−1,𝑄𝑡)𝐹(𝐴𝑡𝑥𝑡−1,𝑄𝑡,𝒳𝑡) ∙ 1(𝑥𝑡 ∈ 𝒳𝑡),      (1) 𝑝(𝑦𝑡|𝑥1:𝑡, 𝑦1:𝑡−1) = 𝜙(𝑦𝑡; 𝐶𝑡𝑥𝑡, 𝑅𝑡),       (2) 

where the matrices 𝐴𝑡 , 𝐶𝑡, 𝑄𝑡, 𝑅𝑡 are time-varying coefficients, which could be functions of past 

observations 𝑦1:𝑡−1 in economic applications (e.g., autoregressive terms in 𝐶𝑡). The set 𝒳𝑡 ⊂ℝ𝑚 represents the state constraints and the function 1(𝑥𝑡 ∈ 𝒳𝑡) is a binary indicator for the 

event {𝑥𝑡|𝑥𝑡 ∈ 𝒳𝑡}. Also, the density 𝜙(𝑥𝑡; 𝐴𝑡𝑥𝑡−1, 𝑄𝑡) denotes the multivariate normal 𝑁(𝐴𝑡𝑥𝑡−1, 𝑄𝑡) density evaluated at 𝑥𝑡, and the normalisation term 𝐹(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡) denotes 

the probability of 𝑁(𝐴𝑡𝑥𝑡−1, 𝑄𝑡) in the region 𝒳𝑡. Note that the normalisation term is a 

function of the past state 𝑥𝑡−1, hence a non-linear model. We assume that 𝐹(∙) > 0, for we aim 
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at inequality constraints. Equality constraints can be cast as perfect measurement equations 

and put in Eq (2) instead. As an example of inequality constraints, nonnegative states are 

represented by 𝒳𝑡 = {𝑥𝑡|𝑥𝑡 ≥ 0} with 𝐹(∙) as the upper cumulative distribution function 

(c.d.f.). Inequality constraints can be a non-linear function of the states, say 𝒳𝑡 ={(𝑥1𝑡, 𝑥2𝑡 , 𝑥3𝑡, 𝑥4𝑡) |eigenvalues for (𝑥1𝑡 𝑥2𝑡𝑥3𝑡 𝑥4𝑡) in unit circle}. 

ICSSM is conformable to the state space paradigm. First, Markovian transition: 𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡−1), which is a truncated normal distribution denoted by 𝑇𝑁(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡). Second, contemporaneous observations: 𝑝(𝑦𝑡|𝑥1:𝑡, 𝑦1:𝑡−1) = 𝑝(𝑦𝑡|𝑥𝑡, 𝑦1:𝑡−1). If 𝒳𝑡 = ℝ𝑚, then Eq (1) and (2) reduces to a Gaussian linear state space form:  𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝜀𝑡,           (3) 𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑣𝑡,           (4) 

where 𝜀𝑡~𝑁(0, 𝑄𝑡), 𝑣𝑡~𝑁(0, 𝑅𝑡). 

We assume that the initial state vector 𝑥0 is deterministic, without loss of generality because 

the time-varying coefficient matrices can replicate a non-deterministic initial state distribution. 

For example, suppose that we require 𝑥0~𝑇𝑁(𝜇0, Σ0, 𝒳0). Then we may put 𝑥−1 = 𝜇0 with 𝐴0 = 𝐼, 𝑄0 = Σ0, 𝐶0 = 0, 𝑅0 = 0, 𝑦0 = 0. Forward-shifting the time script for all variables in 

the model by one period (i.e., rewrite 𝑥−1 as 𝑥0, 𝐴0 as 𝐴1, etc.), we obtain an equivalent state 

space model with deterministic initial states.  

The posterior state distribution takes the form 𝑝(𝑥1:𝑡|𝑦1:𝑡) ∝ ∏ [𝜙(𝑥𝜏;𝐴𝜏𝑥𝜏−1,𝑄𝜏)𝜙(𝑦𝜏;𝐶𝜏𝑥𝜏,𝑅𝜏)𝐹(𝐴𝜏𝑥𝜏−1,𝑄𝜏,𝒳𝜏) ∙ 1(𝑥𝜏 ∈ 𝒳𝜏)]𝑡𝜏=1 .     

Due to the normalisation term 𝐹(𝐴𝜏𝑥𝜏−1, 𝑄𝜏, 𝒳𝑡) in the denominator, the posterior state 

distribution does not have a closed form for 𝑡 > 1. However, the single-period filtering 

distribution conditional on the past states, namely 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡), has an analytic form, which 

remains to be a truncated normal distribution since the normalisation term can be treated as a 

constant. Also, the unknown proportionality constant is of interest. Integrating the right hand 

side with respect to 𝑥1:𝑡 yields the likelihood function 𝑝(𝑦1:𝑡), which is crucial for maximum 

likelihood estimation of the unknown parameters in the coefficient matrices 𝐴𝑡, 𝐶𝑡 , 𝑄𝑡, 𝑅𝑡. 
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3. The Particle Filter 

Introduced by Gordon et al. (1993), the particle filter is a powerful tool for characterizing a 

series of target distributions of increasing dimensions: 𝑝(𝑥1:𝑡|𝑦1:𝑡), 𝑡 = 1, … , 𝑇. The target 

density is proportional to 𝑝(𝑥1:𝑡, 𝑦1:𝑡), which can be evaluated pointwise. The proportionality 

constant is the likelihood function 𝑝(𝑦1:𝑡). 

Particle filtering is developed in the importance sampling framework. Particles are generated 

from a well-chosen proposal density 𝑓𝑡(𝑥1:𝑡), and assigned the unnormalised importance 

weights 𝑤𝑡(𝑥1:𝑡) = 𝑝(𝑥1:𝑡,𝑦1:𝑡)𝑓𝑡(𝑥1:𝑡) . The weighted particles represent a categorical distribution that 

approximates the target distribution, as the empirical c.d.f. uniformly converges to the target 

c.d.f..2 In addition, the sample average of the unnormalised weights approximates the 

likelihood function, as the average weight is an unbiased and strongly consistent estimator for 

the likelihood value. Refer to Liu and Chen (1998), Chopin (2004), Doucet and Johansen (2009), 

and others.  

In the sequential importance sampling, the proposal density is formulated recursively such 

that 𝑓𝑡(𝑥1:𝑡) =  𝑓𝑡−1(𝑥1:𝑡−1) ∙ 𝑔(𝑥𝑡|𝑥1:𝑡−1), where 𝑔(𝑥𝑡|𝑥1:𝑡−1) is a well-chosen transition 

kernel. We wish that the proposal density is close to the target density and the particle 

importance weights have a small variance.3 For state space models, if we choose 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡) as the transition kernel, the weights have a minimum variance conditional on 𝑥1:𝑡−1. For that reason, 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡) is termed as the optimal importance function (See 

Doucet et al., 2000, p. 199). Under that optimal choice, the weights can be recursively 

computed as 𝑤𝑡(𝑥1:𝑡) = 𝑤𝑡−1(𝑥1:𝑡−1) ∙ 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1), where 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1) is termed as 

the incremental importance weights.4   

                                                      
2 The realized particles are the outcomes of the categorical distribution, but the particles are random draws. The 

empirical c.d.f. evaluated at an arbitrary point is a random variable, which converges almost surely to the c.d.f. of  𝑝(𝑥1:𝑡|𝑦1:𝑡) evaluated at the same point. Then by the Polya Theorem and Glivenko-Cantelli Theorem, it is also the 

uniform convergence (see Athreya and Lahiri, 2006). 
3 Since we are interested in multiple characteristics (mean, variance, and so on) of the posterior state distributions, 

we interpret particle filtering as a Monte Carlo sampling method instead of a variance reduction technique for 

numerical integration. Therefore, we wish that the proposal density is as close to the target density as possible. 
4 For the target distribution 𝑝(𝑥1:𝑡|𝑦1:𝑡), the general form of the optimal importance function is 𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡) 

with incremental weights 𝑝(𝑦𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1). For our state space model, 𝑝(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡), and 𝑝(𝑦𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1) = 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1). If the coefficient matrices are not functions of past observations, the 
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Proposition 1: The optimal importance function for ICSSM particle filtering is given by: 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡) = 𝜙(𝑥𝑡;𝜇𝑡,Σ𝑡)𝐹(𝜇𝑡,Σ𝑡,𝒳𝑡) ∙ 1(𝑥𝑡 ∈ 𝒳𝑡),       (5) 

where 𝜇𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝑄𝑡𝐶𝑡′(𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡)−1(𝑦𝑡 − 𝐶𝑡𝐴𝑡𝑥𝑡−1),  Σ𝑡 = 𝑄𝑡 − 𝑄𝑡𝐶𝑡′(𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡)−1𝐶𝑡𝑄𝑡.  
The incremental importance weights can be calculated as 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1) = 𝜙(𝑦𝑡; 𝐶𝑡𝐴𝑡𝑥𝑡−1, 𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡) ∙ 𝐹(𝜇𝑡,Σ𝑡,𝒳𝑡)𝐹(𝐴𝑡𝑥𝑡−1,𝑄𝑡,𝒳𝑡).   (6) 

 

A proof of Proposition 1 is in the appendix. Eq (5) indicates that 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡) follows a 

truncated normal distribution 𝑇𝑁(𝜇𝑡, Σ𝑡, 𝒳𝑡). Meanwhile, 𝑦𝑡 is subject to incidental truncation 

(refer to sample selection econometric models; Greene, 2008, p. 883) and 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1) 

follows an extended skewed normal distribution, whose density is given by Eq (6). The optimal 

importance function has a closed form mainly because the normalisation term 𝐹(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡) can be viewed as a constant conditional on the past states, and 𝜇𝑡, Σ𝑡 in Eq 

(5) are the single-period Kalman filter outputs. 

An alternative importance function, known as the bootstrap filter, only relies on the state 

transition. Period-𝑡 particles are generated from 𝑇𝑁(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡), with the incremental 

importance weights 𝜙(𝑦𝑡; 𝐶𝑡𝑥𝑡, 𝑅𝑡). Despite its simplicity, the bootstrap filter could induce 

large Monte Carlo variations, as it ignores the current-period observation 𝑦𝑡 in the proposal 

distribution.  

To implement the particle filter, we generate period-𝑡 particles by Eq (5), and assign them 

weights by multiplying the previous weights by Eq (6). To evaluate the likelihood function, we 

take the sample average of the unnormalised weights. New particles are drawn from a 

univariate or low-dimensional truncated normal distribution, which is feasible by inversion 

                                                      
optimal importance function can be further simplified as 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡). Meanwhile, the incremental weights 

reduce to 𝑝(𝑦𝑡|𝑥𝑡−1). However, for the Rao-Blackwellised particle filter, we only condition on a subset of the state 

variables. In that case, the entire history of the past constrained states matters. The optimal importance function 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) and the increment weights 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) cannot be further simplified. 
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sampling or rejection sampling. In practice, it is necessary to resample the particles when the 

weights are dispersed (or resample in every period).5 Under the optimal importance function, 

the weights are not functions of the period-𝑡 particles. It is legitimate to reverse the order of 

sampling and resampling so as to preserve the diversity of the particles. 

The bottom panel of Figure 1 illustrates the particle filtering results with nonnegative 

constraints imposed on the short rate series. In contrast with the Kalman filter that apparently 

yields negative state estimators, the constraints are honored for all outcomes of the particle-

filtered distributions. Both the posterior means (the solid line) and the 95% intervals (the 

dotted lines) of the short rate series are positive.  

 

4. Cross-sectional Rao-Blackwellisation 

In some ICSSM applications, not all the state variables are subject to inequality constraints; 

some states might be free. It is desirable to decompose the filtering distribution into the 

analytically tractable and intractable components. The former has a conditionally linear sub-

structure and thus can be marginalized by the Kalman filter. We only apply the particle filter to 

the latter so as to reduce Monte Carlo variations. That technique is known as Rao-

Blackwellisation (see Doucet et al., 2001), or termed as mixture Kalman filters (Chen and Liu, 

2000) or marginalized particle filtering (Schon et al., 2005).  

Partition the state variables and let 𝑥𝑡 = (𝜉𝑡′, 𝜂𝑡′)′, where the 𝑚1 × 1 constrained states 𝜉𝑡 

must fall into the set Ξ𝑡 ⊂ ℝ𝑚1, while 𝑚2 × 1 states 𝜂𝑡 are unconstrained. For notational 

convenience, we consider a diagonal model in which the state transition of 𝜉𝑡 and 𝜂𝑡 has no 

interactions (this assumption can be relaxed, see below), so that the transition matrix takes a 

block diagonal form 𝐴𝑡 = 𝑑𝑖𝑎𝑔(𝐴1𝑡, 𝐴2𝑡), 𝑄𝑡 = 𝑑𝑖𝑎𝑔(𝑄1𝑡, 𝑄2𝑡), 𝐶𝑡 = (𝐶1𝑡, 𝐶2𝑡). The transition 

and observation densities for the state space model can be written as 

                                                      
5 If we resample particles in period 𝑡 − 1, the particles are approximate draws from 𝑝(𝑥1:𝑡−1|𝑦1:𝑡−1). Then the 

next-period proposal density becomes 𝑓𝑡(𝑥1:𝑡) =  𝑝(𝑥1:𝑡−1|𝑦1:𝑡−1) ∙ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡). Provided that we reset the 

unnormalised weights to the likelihood function value immediately after resampling (i.e., assign 𝑤𝑡−1(𝑥1:𝑡−1) =𝑝(𝑦1:𝑡−1) for all the resampled particles), the incremental importance weights for period-𝑡 particles still take the 

form 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1). No matter whether we resample or not, Proportion 1 specifies the two major steps, 

namely generating particles and assigning weights, for particle filtering. 
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𝑝(𝜉𝑡|𝜉𝑡−1) = 𝜙(𝜉𝑡;𝐴1𝑡𝜉𝑡−1,𝑄1𝑡)𝐹(𝐴1𝑡𝜉𝑡−1,𝑄1𝑡,Ξ𝑡) ∙ 1(𝜉𝑡 ∈ Ξ𝑡),        𝑝(𝜂𝑡|𝜂𝑡−1) = 𝜙(𝜂𝑡; 𝐴2𝑡𝜂𝑡−1, 𝑄2𝑡),        𝑝(𝑦𝑡|𝜉𝑡, 𝜂𝑡) = 𝜙(𝑦𝑡; 𝐶1𝑡𝜉𝑡 + 𝐶2𝑡𝜂𝑡 , 𝑅𝑡).       

The target distributions for particle filtering are 𝑝(𝜉1:𝑡, 𝜂1:𝑡|𝑦1:𝑡), 𝑡 = 1, … , 𝑇, which can be 

decomposed as 𝑝(𝜉1:𝑡, 𝜂1:𝑡|𝑦1:𝑡) = 𝑝(𝜉1:𝑡|𝑦1:𝑡) ∙ 𝑝(𝜂1:𝑡|𝜉1:𝑡, 𝑦1:𝑡).      

On the one hand, 𝑝(𝜂1:𝑡|𝜉1:𝑡, 𝑦1:𝑡) is analytically tractable. Conditional on 𝜉1:𝑡, the system 

reduces to a Gaussian linear sub-model (GLSM), in which 𝜂𝑡 is the state vector: 𝜂𝑡 = 𝐴2𝑡𝜂𝑡−1 + 𝜀2𝑡,          𝑦̃𝑡 = 𝐶2𝑡𝜂𝑡 + 𝑣𝑡,           

where 𝑦̃𝑡 = 𝑦𝑡 − 𝐶1𝑡𝜉𝑡, and 𝜀2𝑡~𝑁(0, 𝑄2𝑡), 𝑣𝑡~𝑁(0, 𝑅𝑡). 

In the GLSM, 𝑝(𝜂1:𝑡|𝜉1:𝑡, 𝑦1:𝑡) is a multivariate normal density, whose mean and variance can 

be obtained from the standard Kalman filter. The law of iterated expectations is useful for 

characterizing the unconditional mean 𝐸(𝜂1:𝑡|𝑦1:𝑡). Suppose we have obtained the weighted 

particles that represent 𝑝(𝜉1:𝑡|𝑦1:𝑡) (see below), then we can plug each particle into the Kalman 

filter, and the weighted average of the conditional means approximates the unconditional 

mean. Similarly, the unconditional variance equals the sum of the expected conditional 

variance and the variance of the conditional means.  

On the other hand, the intractable component 𝑝(𝜉1:𝑡|𝑦1:𝑡) requires particle filtering. The 

optimal importance function 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) and the incremental importance weights 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) are summarized in the following proposition. 

 

Proposition 2: The optimal importance function for particle filtering 𝑝(𝜉1:𝑡|𝑦1:𝑡), 𝑡 = 1, … , 𝑇, 

takes the form: 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) =  𝜙(𝜉𝑡;𝜇𝜉𝑡,Σ𝜉𝑡)𝐹(𝜇𝜉𝑡,Σ𝜉𝑡,Ξ𝑡) ∙ 1(𝜉𝑡 ∈ Ξ𝑡),       (7)  

where  𝜇𝜉𝑡 = 𝐴1𝑡𝜉𝑡−1 + 𝑄1𝑡𝐶1𝑡′ Σ𝑦𝑡−1(𝑦𝑡 − 𝜇𝑦𝑡),         Σ𝜉𝑡 = 𝑄1𝑡 − 𝑄1𝑡𝐶1𝑡′ Σ𝑦𝑡−1𝐶1𝑡𝑄1𝑡,         
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𝜇𝑦𝑡 = 𝐶1𝑡𝐴1𝑡𝜉𝑡−1 + 𝐶2𝑡𝜇𝜂𝑡,         Σ𝑦𝑡 = 𝐶1𝑡𝑄1𝑡𝐶1𝑡′ + 𝐶2𝑡Σ𝜂𝑡𝐶2𝑡′ + 𝑅𝑡.        

The predictive moments 𝜇𝜂𝑡 and Σ𝜂𝑡 are functions of 𝜉1:𝑡−1, and can be recursively computed 

by the Kalman filter using the GLSM. To be specific, 𝜇𝜂𝑡 = 𝐴2,𝑡𝜇̅𝜂,𝑡−1,          Σ𝜂𝑡 = 𝐴2,𝑡Σ̅𝜂,𝑡−1𝐴2,𝑡′ + 𝑄2,𝑡,          𝜇̅𝜂,𝑡 = 𝜇𝜂𝑡 + Σ𝜂𝑡𝐶2𝑡′ (𝐶2𝑡Σ𝜂𝑡𝐶2𝑡′ + 𝑅𝑡)−1 (𝑦𝑡 − 𝐶1𝑡𝜉𝑡 − 𝐶2𝑡𝜇𝜂𝑡),     Σ̅𝜂,𝑡 = Σ𝜂𝑡 − Σ𝜂𝑡𝐶2𝑡′ (𝐶2𝑡Σ𝜂𝑡𝐶2𝑡′ + 𝑅𝑡)−1𝐶2𝑡Σ𝜂𝑡.       

The incremental importance weights under the optimal importance function are given by 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) = 𝜙(𝑦𝑡; 𝜇𝑦𝑡, Σ𝑦𝑡) ∙ 𝐹(𝜇𝜉𝑡,Σ𝜉𝑡,Ξ𝑡)𝐹(𝐴1𝑡𝜉𝑡−1,𝑄1𝑡,Ξ𝑡).     (8)  

 

A proof is in the appendix. The main reason that Proposition 2 holds is that the normalisation 

term 𝐹(𝐴1𝑡𝜉𝑡−1, 𝑄1𝑡, Ξ𝑡) can be treated as a constant conditioning on 𝜉1:𝑡−1. In the Rao-

Blackwellised filter, each particle has a Kalman filter, which has contemporaneous interactions 

with importance sampling, as the Kalman filter “waits for” the realizations of particles before it 

updates the state distributions. Specifically, upon receiving the particles 𝜉𝑡−1, the Kalman filter 

calculates the filtered state distribution (𝜇̅𝜂,𝑡−1, Σ̅𝜂,𝑡−1) and predicts (𝜇𝜂𝑡, Σ𝜂𝑡) based on the 

GLSM. Then the Kalman filter pauses. The particle filter generates new particles 𝜉𝑡 from 𝑇𝑁(𝜇𝜉𝑡 , Σ𝜉𝑡, Ξ𝑡) and assigns importance weights. Taking the particles for 𝜉𝑡 as given, the 

Kalman filter updates (𝜇̅𝜂,𝑡, Σ̅𝜂,𝑡) and proceeds to period 𝑡 + 1 for (𝜇𝜂,𝑡+1, Σ𝜂,𝑡+1), and so on.  

The assumption on the diagonal model can be relaxed, and 𝐴𝑡, 𝑄𝑡 are not necessarily block 

diagonal matrices. Cross-sectional Rao-Blackwellisation is applicable provided that the 

normalisation term 𝐹(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡) in Eq (1) is not a function of the past unconstrained 

states. For example, when 𝐴𝑡 is a block lower-triangular matrix and 𝑄𝑡 is a full matrix, the 

normalisation term only depends on the past constrained states, and thus can be treated as a 

constant term conditional on 𝜉1:𝑡−1. It follows that 𝑝(𝑥1:𝑡−1|𝜉1:𝑡−1, 𝑦1:𝑡−1) ∝ ∏ 𝜙(𝑥𝜏; 𝐴𝜏𝑥𝜏−1, 𝑄𝜏) ∙ 𝜙(𝑦𝜏; 𝐶𝜏𝑥𝜏, 𝑅𝜏)𝑡−1𝜏=1 ,    
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which is a Gaussian density whose means and variances are outputs of the Kalman filter using 

an expanded linear state space model for 𝜏 = 1, … , 𝑡 − 1: 𝑥𝜏 = 𝐴𝜏𝑥𝜏−1 + 𝜀𝜏,          (9) 𝑦𝜏 = 𝐶𝜏𝑥𝜏 + 𝑣𝜏,          (10) 𝜉𝜏 = (𝐼𝑚1×𝑚1 , 0𝑚1×𝑚2) ∙ 𝑥𝜏,        (11) 

where 𝑥𝜏 = (𝜉𝜏′ , 𝜂𝜏′ )′, and Eq (11) is a perfect measurement as the state itself is observed.6 

Given that 𝑝(𝑥1:𝑡−1|𝜉1:𝑡−1, 𝑦1:𝑡−1) is a Gaussian density, the state constraints take effects 

only in period 𝑡. As a result, the optimal important function 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) remains to be a 

tractable low-dimensional truncated normal distribution, and 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) is still the 

extended skewed normal distribution.   

We may interpret the cross-sectional Rao-Blackwellised particle filter as a two-step Kalman 

filter for each particle. Denote  𝑥𝑡|𝜉1:𝑡−1, 𝑦1:𝑡~𝑇𝑁 (𝜇𝑥,𝑡, Σ𝑥,𝑡, 𝒳𝑡) and 𝑥𝑡|𝜉1:𝑡, 𝑦1:𝑡~𝑁(𝜇̅𝑥,𝑡, Σ̅𝑥,𝑡), 

where 𝜇𝑥,𝑡, Σ𝑥,𝑡, 𝜇̅𝑥,𝑡, Σ̅𝑥,𝑡 can be recursively computed by a two-step process. In the first step, 

given (𝜇̅𝑥,𝑡−1, Σ̅𝑥,𝑡−1), we employ a single-period Kalman filter based on Eq (9) and (10) to 

calculate (𝜇𝑥,𝑡, Σ𝑥,𝑡), which will be used for generating period-𝑡 particles. In the second step, 

given (𝜇̅𝑥,𝑡−1, Σ̅𝑥,𝑡−1) and the new particles, we use a single-period Kalman filter based on Eq 

(9), (10) and (11) to compute (𝜇̅𝑥,𝑡, Σ̅𝑥,𝑡).  

This algorithm is valid provided that the normalisation term does not interfere with the 

conditional distributions, which requires that the past unconstrained states have no impact on 

the normalisation term. If such requirement cannot be satisfied, there is a remedy. Note that an 

unconstrained state can be classified as a constrained one with infinity bounds. Therefore, 

cross-sectional Rao-Blackwellisation is applicable if a subset of the unconstrained states have 

no influence on the normalisation term. 

  

                                                      
6 Alternatively, we can plug the perfect measurement into the state equation, and arrive at an observation 

equation and a transition equation for 𝜂𝑡. For example, suppose 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝜀𝑡 can be decomposed as 𝜉𝑡 =𝐴11𝑡𝜉𝑡−1 + 𝐴12𝑡𝜂𝑡−1 + 𝜀1𝑡 and 𝜂𝑡 = 𝐴21𝑡𝜉𝑡−1 + 𝐴22𝑡𝜂𝑡−1 + 𝜀2𝑡. The former is an observation equation with 𝜉𝑡 −𝐴11𝑡𝜉𝑡−1 being observed, while the latter is a transition equation.  
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5. Temporal Rao-Blackwellisation 

In the era of high interest rates, few practitioners concerned about the negative rates. Not 

until recent years when the interest rates plummeted did such concern loom large. Though an 

inequality constraint always binds the posterior state distribution, the restriction can be tight or 

loose, depending on the probability that the unrestricted state distribution violates the 

constraint. In Section 6 we demonstrate that a loosely constrained state behaviors virtually the 

same as an unconstrained one. It is sensible to impose a constraint only if there is a substantial 

probability that the constraint is violated. We design a particle filter that can switch to the 

Kalman filter for analytic results whenever the constraints are absent. This is in accordance with 

Rao-Blackwellisation, which exploits the Gaussian linear sub-structure for analytic integration. 

In contrast with cross-sectional marginalization that employs the Kalman filter on a subset of 

the states, temporal Rao-Blackwellisation resorts to the Kalman filter in a subsample. 

Consider Eq (1) – (3) with time-varying constraints. Suppose that 𝒳𝑡 = ℝ𝑚 for 𝑡 = 𝑆 +1, … , 𝑉, where 1 < 𝑆 < 𝑉 < 𝑇. That is, ICSSM reduces to a linear system Eq (3) and (4) in the 

subsample from period 𝑆 + 1 to 𝑉. We are interested in the filtering distribution 𝑝(𝑥𝑡|𝑦1:𝑡), 𝑡 =1, … , 𝑇 as well as the likelihood function 𝑝(𝑦1:𝑡). Suppose that we have employed the particle 

filter in the first 𝑆 periods and the filtering distribution 𝑝(𝑥1:𝑆|𝑦1:𝑆) are represented by 𝐾 

particles 𝑥1:𝑆(𝑖)
 with the unnormalised weights 𝑤𝑆(𝑖), 𝑖 = 1, … , 𝐾. In practice, we may only store 𝑥𝑆(𝑖)

 instead of the entire series.  

The question is how to switch to the Kalman filter. It is tempting to initialize the Kalman filter 

by computing 𝐸(𝑥𝑆|𝑦1:𝑆) and 𝑉𝑎𝑟(𝑥𝑆|𝑦1:𝑆) using the weighted particles, and then apply the 

standard Kalman filter for 𝑡 = 𝑆 + 1, … , 𝑉. The Kalman filter can produce the best linear state 

estimator, but cannot characterize the non-Gaussian filtering distribution and cannot represent 

the likelihood function for ICSSM. It is also tempting to apply the Kalman filter under each of 

the deterministic initial state 𝑥𝑆(𝑖)
, and then uses the weight 𝑤𝑆(𝑖)

 to average the Kalman filter 

outputs. As is shown in the following proposition, such method is flawed because the correct 

weight should incorporate the information contents of 𝑦𝑆+1:𝑉. 
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Proposition 3: Assume that  𝑝(𝑥𝑆|𝑦1:𝑆) is a categorical distribution represented by the  𝐾 

particles 𝑥𝑆(𝑖)
 with the unnormalised weights 𝑤𝑆(𝑖), 𝑖 = 1, … , 𝐾. Then for the unconstrained 

periods 𝑡 = 𝑆 + 1, … , 𝑉, we have 𝐸(𝑥𝑡|𝑦1:𝑡) = 𝑋𝑡|𝑡 ∙ [ 1𝐸(𝑥𝑆|𝑦1:𝑡)],        

𝑉𝑎𝑟(𝑥𝑡|𝑦1:𝑡) = 𝑃𝑡|𝑡 + 𝑋𝑡|𝑡 ∙ [ 0 01×𝑚0𝑚×1 𝑉𝑎𝑟(𝑥𝑆|𝑦1:𝑡)] ∙ 𝑋𝑡|𝑡′ ,      

where 𝐸(𝑥𝑆|𝑦1:𝑡) and 𝑉𝑎𝑟(𝑥𝑆|𝑦1:𝑡) are the mean and variance for the smoothed distribution 

defined by the same particles  𝑥𝑆(𝑖)
 with the updated weights 𝑤̅𝑆(𝑖), 𝑖 = 1, … , 𝐾: 

 𝑤̅𝑆(𝑖) ∝ 𝑤𝑆(𝑖) ∙ ∏ 𝜙 [𝑉𝜏 ∙ ( 1 𝑥𝑆(𝑖)) ; 0, 𝑂𝜏|𝜏−1]𝑡𝜏=𝑆+1 ,      (12)  

where the proportionality constant equals the sum of the right hand side of the equation. 

To evaluate the likelihood function,  𝑝̂(𝑦1:𝑡) = 1𝐾 ∑ {𝑤𝑆(𝑖) ∙ ∏ 𝜙 [𝑉𝜏 ∙ ( 1 𝑥𝑆(𝑖)) ; 0, 𝑂𝜏|𝜏−1]𝑡𝜏=𝑆+1 }𝐾𝑖=1     (13)  

is a consistent estimator for the likelihood value 𝑝(𝑦1:𝑡).  

The matrices 𝑋𝑡|𝑡 , 𝑃𝑡|𝑡 , 𝑉𝑡, 𝑂𝑡|𝑡−1 are obtained from the augmented Kalman filter (see Durbin 

and Koopman, 2012, p. 141). The forward recursion starts from the matrices 𝑋𝑆|𝑆 =(0𝑚×1, 𝐼𝑚×𝑚), 𝑃𝑆|𝑆 = 0𝑚×𝑚. For period 𝑡 = 𝑆 + 1, … , 𝑉, we sequentially compute the 

following variables: 𝑋𝑡|𝑡−1 = 𝐴𝑡𝑋𝑡−1|𝑡−1,          𝑃𝑡|𝑡−1 = 𝐴𝑡𝑃𝑡−1|𝑡−1𝐴𝑡′ + 𝑄𝑡,         𝑌𝑡|𝑡−1 = 𝐶𝑡𝑋𝑡|𝑡−1,          𝑂𝑡|𝑡−1 = 𝐶𝑡𝑃𝑡|𝑡−1𝐶𝑡′ + 𝑅𝑡,         𝑉𝑡 = [𝑦𝑡, 0𝑛×𝑚] − 𝑌𝑡|𝑡−1,         𝑋𝑡|𝑡 = 𝑋𝑡|𝑡−1 + 𝑃𝑡|𝑡−1𝐶𝑡′(𝑂𝑡|𝑡−1)−1𝑉𝑡,       𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1𝐶𝑡′(𝑂𝑡|𝑡−1)−1𝐶𝑡𝑃𝑡|𝑡−1.       

 

A proof is in the appendix. Proposition 3 shows that 𝐸(𝑥𝑡|𝑦1:𝑡) can be computed by the law 

of iterated expectations. Given a deterministic initial state 𝑥𝑆, the conditional mean 
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𝐸(𝑥𝑡|𝑥𝑆, 𝑦1:𝑡) is a Kalman filter output. Since each particle represents a different initial state, it 

is legitimate to take the weighted average of the Kalman filter outputs. However, the correct 

weights come from the smoothing distribution 𝑝(𝑥𝑆|𝑦1:𝑡).  

We present Proposition 3 in terms of the extended Kalman filter because of its 

computational efficiency for multi-period unconstrained filtering with varied initial state values. 

A more computationally intensive version is a Kalman filter for each and every particle. 

Random samples from 𝑝(𝑥𝑡|𝑦1:𝑡) can be generated using the following identity: 𝑝(𝑥𝑠, 𝑥𝑡|𝑦1:𝑡) = 𝑝(𝑥𝑠|𝑦1:𝑡) ∙ 𝑝(𝑥𝑡|𝑥𝑠, 𝑦1:𝑡).      (14)  

We can first generate a draw from the smoothing distribution 𝑝(𝑥𝑆|𝑦1:𝑡), which is essentially a 

resample of the particles with weights given by Eq (12). Conditional on that draw, we sample 

from 𝑝(𝑥𝑡|𝑥𝑆, 𝑦𝑆+1:𝑡) using the Kalman filter. Those equally-weighted samples fully characterize 

the filtering distribution 𝑝(𝑥𝑡|𝑦1:𝑡). Alternatively, weighted draws can also represent that 

distribution. Note that 𝑝(𝑥𝑡|𝑦1:𝑡) = ∫ 𝑝(𝑥𝑠, 𝑥𝑡|𝑦1:𝑡)𝑑𝑥𝑠 = ∑ {𝑤̅𝑆(𝑖) ∙ 𝑝 (𝑥𝑡|𝑥𝑆(𝑖), 𝑦1:𝑡)}𝐾𝑖=1 .  

We may use the Kalman filter to generate a draw from 𝑝 (𝑥𝑡|𝑥𝑆(𝑖), 𝑦1:𝑡) based on the original 

particles, then assign it with the smoothing weight 𝑤̅𝑆(𝑖)
. 

In practice, we only need to generate random samples or weighted samples in period 𝑉, as 

the state constraints will be in effect again and we switch to the particle filter for 𝑡 = 𝑉 +1, … , 𝑇. If we treat the random samples generated from 𝑝(𝑥𝑉|𝑦1:𝑉) as the period-𝑉 particles, 

we assign them the unnormalised weights 𝑝(𝑦1:𝑉), an estimator of which is given by Eq (13). If 

we treat the weighted samples as the period-𝑉 particles, we assign them the unnormalised 

weights given by the right hand side of Eq (12), namely the unnormalised version of 𝑤̅𝑆(𝑖)
. Both 

methods ensure that the mean of the unnormalised weights approximates the likelihood 

function. 

Temporal Rao-Blackwellisation can be carefully interpreted as a special case of cross-

sectional Rao-Blackwellisation, if we allow time-varying state dimensions, support linear 

algebra with empty matrices, and handle judiciously the last unconstrained period. In Section 4, 

we partition the state vector 𝑥𝑡 into the constrained 𝜉𝑡 and unconstrained 𝜂𝑡, and then 
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simulate 𝑝(𝜉1:𝑡|𝑦1:𝑡) by the particle filter. To apply that algorithm under time-varying 

constraints, we put  𝜉𝑡 = 𝑥𝑡 for 𝑡 = 1, … , 𝑆, 𝑉, 𝑉 + 1, … , 𝑆. For period 𝑡 = 𝑆 + 1, … , 𝑉 − 1, all 

the state variables are classified as the unconstrained states. There are no new particles to 

generate. However, the incremental importance weights must be computed in order to update 

the unnormalised weights.7 This is exactly the smoothing procedure given by Eq (12). Most 

importantly, we give a special treatment by artificially labelling the period-𝑉 states as 

constrained states with infinity bounds, because cross-sectional Rao-Blackwellisation requires 

that the normalisation term 𝐹(∙) cannot be a function of the past unconstrained states.8 We 

generate period-𝑉 particles from 𝑝(𝑥𝑉|𝑥𝑆, 𝑦1:𝑉) with the importance weights given by Eq (12). If 

we resample particles, and reverse the order of sampling and resample under the optimal 

importance function, this is exactly the sampling procedure given by Eq (14).  

 

6. An Application 

Time-varying parameter regression is a popular economic application of state space 

modelling. Some well-known studies include Cogley and Sargent (2005), Primiceri (2005), and 

Stock and Watson (2007). Parameter uncertainty and instability are addressed by random 

coefficients, which are assumed to follow the random walk or autoregressive processes. For 

example, an AR(2) model with random-walk coefficients can be specified as 𝑦𝑡 = 𝜙0 + 𝜙1𝑡𝑦𝑡−1 + 𝜙2𝑡𝑦𝑡−2 + 𝜀𝑡,        𝜙1𝑡 = 𝜙1,𝑡−1 + 𝑢1𝑡,          𝜙2𝑡 = 𝜙2,𝑡−1 + 𝑢2𝑡,          

where the independent noises satisfy 𝜀𝑡~𝑁(0, 𝜎𝜀2), 𝑢1𝑡~𝑁(0, 𝜎12), 𝑢2𝑡~𝑁(0, 𝜎22). 

                                                      
7 Recall that the target distributions are 𝑝(𝜉1:𝑡|𝑦1:𝑡), 𝑡 = 1, … , 𝑇. For period 𝑡 = 𝑆 + 1, … , 𝑉 − 1, the unconstrained 

states 𝜉𝑡 become an empty set, hence no new particles. However, the target distribution still evolves as 𝑦1:𝑡 

expand. The importance weights must be updated accordingly.  
8 Unconstrained states in period 𝑉 − 1, 𝑉 − 2, etc. do not need a special treatment because the normalisation 

terms in those periods equal to one, which is not a function of any variables. 
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It is desirable to impose restrictions on 𝜙1𝑡 and 𝜙2𝑡  so that the AR(2) process is non-

explosive at each point in time. Triangular conditions ensure that under any realizations of the 

random coefficients, the eigenvalues of the AR(2) process never fall outside the unit circle. 𝜙2𝑡 + 𝜙1𝑡 ≤ 1,             𝜙2𝑡 − 𝜙1𝑡 ≤ 1,             𝜙2𝑡 ≥ −1.            

Our data are quarterly U.S. civilian unemployment rates 1969 – 2015. Observations range 

from 3.4 to 10.8, with the mean 6.3 and standard deviation 1.6. This time series exhibits 

geometrically decaying autocorrelations and a clear truncation after two lags for the partial 

autocorrelations. By the Box and Jenkins (1970) approach, this series is ideal for an AR(2) 

model. However, the ten-year subsample rolling window AR(2) regressions reveal that the 

coefficients 𝜙1𝑡, 𝜙2𝑡 have fluctuations, and the persistency of the time series, measured by 𝜙2𝑡 + 𝜙1𝑡, has counter-cyclical movements. The persistency becomes higher when the 

economy is in recession. Based on the rolling window estimation results, we informally calibrate 

the model parameters: 𝜙0 = 0.404, 𝜎𝜀 = 0.286, 𝜎1 = 0.047, 𝜎2 = 0.044.9 Then we run the 

unconstrained Kalman filter, with the initial states obtained from a ten-year presample AR(2) 

regression. As seen in the upper panel of Figure 2, the filtered series for 𝜙2𝑡 + 𝜙1𝑡 exhibit large 

spikes that exceed the unity upper bound. However, the other two inequality constraints are 

unlikely to tightly bind the states because the estimated 𝜙2𝑡 − 𝜙1𝑡 range from -1.47 to -0.57, 

and the estimated 𝜙2𝑡 ranges between −0.28 and 0.24. 

To apply the ICSSM particle filter, we could impose all constraints in all periods. However, as 

we will see shortly, particle filtering results under loose constraints are nearly identical to the 

unconstrained filtering results. It is sensible to impose a constraint only if there is a substantial 

probability that the unrestricted filter violates the constraint. Parsimony keeps Monte Carlo 

variations to the minimum, and enhances reliability of particle filtering. After some trials, we 

decide to impose the inequality 𝜙2𝑡 + 𝜙1𝑡 ≤ 1 in periods when the unconstrained Kalman 

                                                      
9 The calibrated 𝜙0 is obtained from the average intercept estimates of the rolling window AR(2), and 𝜎𝜀  from the 

average disturbance standard deviation, and 𝜎1, 𝜎2 from the standard deviations of the first differenced rolling 

window AR(2) coefficient series. 
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estimate on 𝜙2𝑡 + 𝜙1𝑡 is larger than 0.95. That is, 31 out of 186 periods are subject to the 

constraint and they are marked on the horizontal axis of the middle panel of Figure 2.  

Since the unnormalised weights of the particles can approximate the likelihood function, we 

use the maximum simulated likelihood method to estimate the unknown parameters: 𝜙0 =0.643, 𝜎𝜀 = 0.254, 𝜎1 = 0.021, 𝜎2 = 0.002. Though the estimated parameters are different 

from the informally calibrated ones, the unconstrained state estimators have similar patterns, 

as we compare the dashed lines in the upper and middle panels of Figure 2. The spikes of 𝜙2𝑡 +𝜙1𝑡 still exceed one. 

Figure 2 demonstrates that the particle filter effectively suppresses all the spikes that violate 

the constraint. For instance, the unconstrained estimator in the first quarter of 2009 is 1.030, 

while the constrained estimator is 0.987. When the estimated 𝜙2𝑡 + 𝜙1𝑡 are relatively low, the 

Kalman and particle filters yield nearly identical results. For example, in the years around 1991 

and 2001, the constraint is in effect but the state estimators are away from the upper bound. 

The constrained and unconstrained curves overlap with each other. 

The bottom panel of Figure 2 shows the filtering results by including an additional constraint 𝜙2𝑡 ≥ −1, which we claimed to be a loose constraint. We put (𝜙2𝑡 + 𝜙1𝑡 , −𝜙2𝑡)′, instead of (𝜙1𝑡, 𝜙2𝑡)′, as the state vector, so that the normalisation term 𝐹(∙) in Eq (1) reduces to the 

bivariate normal c.d.f.. The filtered series with and without this constraint almost overlap, and 

the maximum discrepancy between them is 0.0008. However, the bivariate normal c.d.f. is 

more computationally expensive than the univariate one. The computing time is about 10 times 

longer. 

Taking this application as a numerical exercise, we show the efficiency of particle filtering by 

adopting the optimal importance function, cross-sectional and temporal Rao-Blackwellisation. 

Table 1 compares the filtering results using alternative particle filtering algorithms, including 1) 

the bootstrap particle filter (BT) that generates new particles solely based on the state 

transition; 2) the particle filter with the optimal importance function but without Rao-

Blackwellisation (PF); 3) the temporal Rao-Blackwellised particle filter with the optimal 

importance function (TS); and 4) the optimal filter with cross-sectional and temporal Rao-

Blackwellisation under the optimal importance function (OP). For each algorithm, we use 500 
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particles to approximate the filtering distributions. We repeat the exercise by 500 times using 

different sets of random particles. The standard deviations of the results among the 500 

experiments reflect the Monte Carlo variations of the algorithms. We also report the average 

filtering results, the approximated likelihood function values, as well as the computing time. 

The codes are written in MATLAB and run on a personal computer.  

Table 1 reports the average state estimators on selected dates. 1969:Q3 (the third quarter of 

the year 1969) is an unconstrained period (the first constrained date 1970:Q1). Both TS and OP 

automatically resort to the standard Kalman filter, and the results are free from Monte Carlo 

errors with zero standard deviations (up to floating-point numeric errors). However, BT and PF 

treat no constraints as infinity bounds and implement the particle filter. The filtering results are 

similar to the analytic filter but polluted by simulation noises. By using the optimal importance 

function, PF reduces Monte Carlo variations by 50%, as the standard deviation drops from 3.6e-

3 to 1.8e-3. The unconstrained Kalman filter violates the upper bound in 1974:Q4, while all 

versions of the particle filters obey the constraint, not only for the posterior means but also for 

all outcomes of the filtering distribution. Though the four methods offer similar state 

estimators (about 0.975), the standard deviations of BT, PF, TS and OP are 4.3e-3, 2.0e-3, 1.8e-3 

and 1.7e-3, respectively. PF is better than BT because of the optimal importance function; TS is 

better than PF because of temporal Rao-Blackwellisation; OP is better than TS because of cross-

sectional Rao-Blackwellisation. Similar patterns of variance reduction can also be seen from the 

filtering results in other periods.  

Monte Carlo errors plague maximum simulated likelihood estimation. A fundamental way to 

improve simulation-based estimation is to reduce the Monte Carlo variations in evaluating the 

likelihood function. Figure 3 illustrates a rudimentary grid search for the optimal 𝜎𝜀 (with other 

parameters being fixed). We put 100 discrete points evenly spaced between 0.22 and 0.29. For 

each 𝜎𝜀 point, we run the particle filter once with 300 particles. So each 𝜎𝜀 corresponds to a 

noisy likelihood value. As seen in Figure 3, the BT results are so noisy that we can hardly see the 

trend of the curve. The PF and TS results are less volatile, and we can roughly see a hump 

shaped function.  The OP results are of highest quality, with the simulated likelihood values 
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concentrating around an inverted-U function. The maximizer is near 0.25. We found that OP 

can reliably approximate the likelihood value even with a small number of particles.  

 

7. An Alternative View on State Constraints 

Having presented our ICSSM and its particle filtering algorithms, we discuss an alternative 

model for inequality constraints. State space models use observations to update the prior state 

distributions. The constraints can be viewed as additional observations for learning the latent 

states, whose posterior distributions conditional on such observations satisfy the inequality 

constraints. A model is said to be a posterior constrained state space model (PCSSM) if 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝜀𝑡,           (15) 𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑣𝑡,           (16) 𝑧𝑡 = 1(𝑥𝑡 ∈ 𝒳𝑡),          (17) 

where the independent disturbances satisfy 𝜀𝑡~𝑁(0, 𝑄𝑡), 𝑣𝑡~𝑁(0, 𝑅𝑡). We introduce an 

auxiliary measurement variable 𝑧𝑡 to represent the inequality constraints on the states. In 

addition to the regular observations 𝑦𝑡, we also observe 𝑧𝑡 = 1, ∀𝑡.  

To make the concept of the prior and posterior state distributions transparent, we will ignore 

the fact that coefficient matrices could be functions of past observations.  

ICSSM and PCSSM are two different models that describe the inequality constraints on the 

states. ICSSM imposes constraints at the prior stage, while the constraints in PCSSM are 

honored in the posterior distributions. The TVP-VAR model in Cogley and Sargent (2005) can be 

interpreted as a PCSSM, while that in Koop and Potter (2011) can be viewed as an ICSSM.10 A 

key difference is that the ICSSM normalisation term 𝐹(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡) is a function of the past 

states, while that of PCSSM is truly a constant. Consequently, PCSSM has analytic properties 

that ICSSM does not have, which translates to computational advantages in favor of PCSSM. 

To derive the analytical results for PCSSM, we resort to the matrix formulation of the state 

space model. Eq (15) and (16) can be written as:  

                                                      
10 Refer to Eq (6) in Cogley and Sargent(2005, p. 266). The prior state distribution for the constrained model is 

proportional to that for the unconstrained model, hence PCSSM. Also refer to Eq (4) in Koop and Potter (2011, p. 

1129). The prior state distribution includes a prior integrating constant in the denominator, hence ICSSM. 
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𝐴𝑥1:𝑡 = 𝑐0 + 𝜀1:𝑡,           𝑦1:𝑡 = 𝐶𝑥1:𝑡 + 𝑣1:𝑡,           

where  𝐴 = ( 𝐼 0 ⋯ 0 0−𝐴2 𝐼 ⋯ 0 0⋯ ⋯ ⋱ ⋯ ⋯0 0 ⋯ −𝐴𝑡 𝐼 ), 𝑐0 = (𝐴1𝑥00⋯0 ), and 𝐶 = 𝑑𝑖𝑎𝑔(𝐶1, … , 𝐶𝑡).  Note that 𝐴 

is lower-triangular with all nonzero entries on the diagonal, hence an invertible matrix.  

 

Proposition 4: Conditional on 𝑧1:𝑡 = 1, the state filtering distribution for PCSSM is given by:11  𝑝(𝑥1:𝑡|𝑧1:𝑡) = 𝜙(𝑥1:𝑡;𝜇1:𝑡,Σ1:𝑡)𝐹(𝜇1:𝑡,Σ1:𝑡,𝒳1:𝑡) ∙ 1(𝑥1:𝑡 ∈ 𝒳1:𝑡),       

𝑝(𝑥1:𝑡|𝑦1:𝑡, 𝑧1:𝑡) = 𝜙(𝑥1:𝑡;𝜇1:𝑡,Σ1:𝑡)𝐹(𝜇1:𝑡,Σ1:𝑡,𝒳1:𝑡) ∙ 1(𝑥1:𝑡 ∈ 𝒳1:𝑡),       

where   𝜇1:𝑡 = 𝐴−1𝑐0,  Σ1:𝑡 = 𝐴−1𝑄𝐴′−1,  𝜇1:𝑡 = 𝜇1:𝑡 + Σ1:𝑡𝐶′(𝐶Σ1:𝑡𝐶′ + 𝑅)−1 (𝑦1:𝑡 − 𝐶𝜇1:𝑡),  Σ1:𝑡 = Σ1:𝑡 − Σ1:𝑡𝐶′(𝐶Σ1:𝑡𝐶′ + 𝑅)−1𝐶Σ1:𝑡, 𝑄 = 𝑑𝑖𝑎𝑔(𝑄1, … , 𝑄𝑡), 𝑅 = 𝑑𝑖𝑎𝑔(𝑅1, … , 𝑅𝑡), 𝒳1:𝑡 = {𝑥1:𝑡|𝑥𝜏 ∈ 𝒳𝜏, ∀𝜏 = 1, … , 𝑡}. 

 

Proposition 4 suggests that the constrained state distribution for PCSSM, prior to the 

observations 𝑦1:𝑡, is a multivariate truncated normal distribution 𝑇𝑁 (𝜇1:𝑡, Σ1:𝑡, 𝒳1:𝑡). 

Conditional on 𝑦1:𝑡, the posterior state distribution is updated to 𝑇𝑁(𝜇1:𝑡, Σ1:𝑡, 𝒳1:𝑡). In 

contrast, the ICSSM prior and posterior distributions are of unknown form. 

The closed-form PCSSM optimal filter exists, as the moment generating function for a 

multivariate truncated normal distribution has an analytic expression.  Suppose that 𝒳1:𝑡 is a 

                                                      
11 We slightly abused the notation, as the right hand side of the equation actually represents 𝑝(𝑥1:𝑡|𝑧1:𝑡 = 1). Since 

the auxiliary observations 𝑧1:𝑡 are always 1, we simply write it as 𝑝(𝑥1:𝑡|𝑧1:𝑡). However, if we interpret Eq (15) – 

(17) as a Probit state space model, in which 𝑧𝑡 is a binary response that could be either 0 or 1, then we must 

replace the indicator function 1(𝑥1:𝑡 ∈ 𝒳1:𝑡) by ∏ [1(𝑥𝜏 ∈ 𝒳𝜏) ∙ 1(𝑧𝜏 = 1) + 1(𝑥𝜏 ∉ 𝒳𝜏) ∙ 1(𝑧𝜏 = 0)]𝑡𝜏=1 . 
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rectangular set such that 𝒳1:𝑡 = {𝑥1:𝑡|𝑎1:𝑡 ≤ 𝑥1:𝑡 ≤ 𝑏1:𝑡}, where 𝑎1:𝑡 and 𝑏1:𝑡 are the lower and 

upper bounds of the states. Using the result of Tallis (1961), the moment generating function 

for  𝑇𝑁(𝜇1:𝑡, Σ1:𝑡, 𝒳1:𝑡) is given by 𝐸(𝑒𝑟′𝑥1:𝑡|𝑦1:𝑡, 𝑧1:𝑡) = 𝑒𝑟′𝜇1:𝑡+12𝑟′Σ1:𝑡𝑟 ∙ 𝐹(Σ1:𝑡𝑟,   Σ1:𝑡,   𝑎1:𝑡−𝜇1:𝑡,   𝑏1:𝑡−𝜇1:𝑡)𝐹(0,   Σ1:𝑡,   𝑎1:𝑡−𝜇1:𝑡,   𝑏1:𝑡−𝜇1:𝑡) .    

The PCSSM particle filter with the optimal importance function is still tractable. The following 

result is the PCSSM version of Proposition 1. 

 

Proposition 5: Given 𝑧𝑡 = 1, ∀𝑡, the optimal importance function for particle filtering 𝑝(𝑥1:𝑡|𝑦1:𝑡, 𝑧1:𝑡), 𝑡 = 1, … , 𝑇 takes the following form: 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡) = 𝜙(𝑥𝑡;𝜇𝑡,Σ𝑡)𝐹(𝜇𝑡,Σ𝑡,𝑎𝑡,𝑏𝑡) ∙ 1(𝑥𝑡 ∈ 𝒳𝑡),       

where 𝜇𝑡, Σ𝑡 are defined below Eq (5). Given 𝑧𝑡 = 1, the incremental importance weights are 𝑝(𝑦𝑡, 𝑧𝑡|𝑥𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) = 𝜙(𝑦𝑡; 𝐶𝑡𝐴𝑡𝑥𝑡−1, 𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡) ∙ 𝐹(𝜇𝑡, Σ𝑡, 𝒳𝑡).    

 

A proof is in the appendix. Note that the optimal importance functional form is nearly 

identical to Eq (5). This is because conditional on 𝑥𝑡−1, the normalisation term is a constant for 

both ICSSM and PCSSM.  PCSSM has computational advantages over ICSSM in two aspects. 

First, to calculate the incremental importance weights for PCSSM, we compute only one 

multivariate normal probability, while ICSSM requires the ratio of two probabilities. When there 

are multiple constrained states, calculating or simulating the truncation probabilities could be 

computationally intensive. PCSSM reduces computation roughly by an half. Second, for an 

unlucky draw of a particle, the two probabilities could be close to zero. Their ratio is 

unpredictable due to numerical errors, which could undermine particle filtering as some 

particles with unreasonably large weights may propagate to the next-period particle filtering. 

However, PCSSM is immune to that problem because of a self-stabilizing mechanism: the 

incremental weights assigned to the unlucky particles are also close to zero when 𝐹(𝜇𝑡, Σ𝑡, 𝒳𝑡) 

is small. The bad particles are likely to be discarded by resampling, and thus numerical 

inaccuracy in calculating the probability and generating truncated draws will not propagate. 
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The temporal Rao-Blackwellised particle filter can be immediately applied to PCSSM. 

Proposition 3 only utilizes the augmented Kalman filter for the unconstrained periods, given the 

initial particles and weights obtained from either ICSSM or PCSSM. For cross-sectional Rao-

Blackwellisation, PCSSM has an advantage to ICSSM. Since the normalisation term is always a 

constant in PCSSM, Rao-Blackwellisation is applicable no matter how 𝜉𝑡 and 𝜂𝑡 interact in the 

state transition. The PCSSM counterpart of Proposition 2 is stated below.  

 

Proposition 6: Given 𝑧𝑡 = 1, ∀𝑡, the optimal importance function for particle filtering 𝑝(𝜉1:𝑡|𝑦1:𝑡, 𝑧1:𝑡), 𝑡 = 1, … , 𝑇 in the diagonal model takes the form: 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡) =  𝜙(𝜉𝑡;𝜇𝜉𝑡,Σ𝜉𝑡)𝐹(𝜇𝜉𝑡,Σ𝜉𝑡,Ξ𝑡) ∙ 1(𝜉𝑡 ∈ Ξ𝑡),       

where 𝜇𝜉𝑡, Σ𝜉𝑡 and their offspring variables 𝜇𝑦𝑡, Σ𝑦𝑡, 𝜇𝜂𝑡, Σ𝜂𝑡, 𝜇̅𝜂,𝑡, Σ̅𝜂,𝑡 are the same as those 

defined in Proposition 2. Given 𝑧𝑡 = 1, the incremental importance weights associated with the 

optimal importance function are given by 𝑝(𝑦𝑡, 𝑧𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) = 𝜙(𝑦𝑡; 𝜇𝑦𝑡, Σ𝑦𝑡) ∙ 𝐹(𝜇𝜉𝑡, Σ𝜉𝑡 , Ξ𝑡).      

 

Last but not the least, PCSSM particle filtering is also helpful for the simulation smoother. 

The multi-move simulation smoother for PCSSM is a rejection sampling algorithm. Using the 

unconstrained model for candidate draws from 𝜙(𝑥1:𝑇; 𝜇̅, Σ̅), we reject a candidate draw if a 

state at any point of time violates the inequality constraints. The acceptance probability equals 

the normalisation term, namely 𝐹(𝜇1:𝑇 , Σ1:𝑇 , 𝒳1:𝑇), which is a non-increasing function of 𝑇. As 𝑇 

grows, it becomes increasingly difficult to accept a candidate draw. A rough idea on the 

magnitude of the acceptance probability is helpful for evaluating the feasibility of the 

algorithm. For the ICSSM multi-move simulation smoothing, Koop and Potter (2011) use a 

Metropolis-Hastings sampler with proposal draws generated from the unconstrained model. An 

estimate on the acceptance probability is still useful. 

With the aid of the PCSSM particle filter, the acceptance probability can be estimated: 𝐹(𝜇1:𝑇 , Σ1:𝑇, 𝒳1:𝑇) = 𝑝(𝑦1:𝑇,𝑧1:𝑇)𝑝(𝑦1:𝑇) .        
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The nominator is the PCSSM likelihood function value, which can be consistently estimated by 

the sample mean of the unnormalised weights of the particles. The denominator is the 

likelihood function value for a Gaussian linear state space model comprising Eq (15) and (16). 

The standard Kalman filter provides an exact evaluation of 𝑝(𝑦1:𝑇) in the prediction error 

decomposition form. 

Despite computational virtues, PCSSM is awkward in its data generating process, as it is 

difficult to draw the triple (𝑥1:𝑇 , 𝑦1:𝑇 , 𝑧1:𝑇) by Eq (15) – (17). We may first generate a candidate 𝑥1:𝑇 by Eq (15), but have to reject it if any state violate the constraints. The observations 𝑦1:𝑇, as 

seen in a real-world data set, are the result of a lucky state sequence that survives all the 

constraints. 

 

8. Conclusion 

When a state space model is subject to inequality constraints, analytic tractability offered by 

the Kalman filter is lost. A crude approximation of a high-dimensional unknown distribution 

could yield poor filtering results. Our method is based on the standard particle filter but not as 

computationally expensive, since we exploit the Gaussian linear sub-structure for analytic 

integration whenever possible. The three major features of our particle filter are the optimal 

importance function, cross-sectional and temporal Rao-Blackwellisation. The optimal 

importance function is a single-period analytic filter. Cross-sectional Rao-Blackwellisation 

marginalizes the unconstrained states by the Kalman filter. Temporal Rao-Blackwellisation skips 

particle filtering in the unconstrained periods and bridges particles of two disjoint periods by 

the augmented Kalman filter. 

A practical workflow of imposing state constraints begins with examining the filtering 

distributions obtained from the unconstrained Kalman filter. We advocate parsimony and 

suggest imposing the constraints that tightly bind the states. A constraint is tight when its 

violation probability is large. For example, if the mean of the unconstrained filtering distribution 

has exceeded the bound (that is, the Kalman filter has violated the constraint), the violation 

probability can be deemed large heuristically. Tight constraints can be effectively enforced by 
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the particle filter, which ensures that all outcomes of the filtering distributions honor the 

constraints. Meanwhile, parsimony is a virtue because the Kalman and particle filters yield 

similar results under loose constraints. Parsimony translates to smaller Monte Carlo errors and 

faster filtering. Given the constraints judiciously chosen by the users, our MATLAB program can 

identify the most suitable cross-sectional and temporal Rao-Blackwellisation scheme, and 

implement the particle filter with the optimal importance function. 
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Appendix 

Proof of Proposition 1 

Conditional on 𝑥𝑡−1, the normalisation term 𝐹(𝐴𝑡𝑥𝑡−1, 𝑄𝑡, 𝒳𝑡) can be treated as a constant. 

Thus 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡) ∝ 𝜙(𝑥𝑡; 𝐴𝑡𝑥𝑡−1, 𝑄𝑡) ∙ 𝜙(𝑦𝑡; 𝐶𝑡𝑥𝑡 , 𝑅𝑡) ∙ 1(𝑥𝑡 ∈ 𝒳𝑡),  

Since 𝜙(𝑥𝑡; 𝐴𝑡𝑥𝑡−1, 𝑄𝑡) ∙ 𝜙(𝑦𝑡; 𝐶𝑡𝑥𝑡 , 𝑅𝑡) = 𝜙 [(𝑥𝑡𝑦𝑡) ; ( 𝐴𝑡𝑥𝑡−1𝐶𝑡𝐴𝑡𝑥𝑡−1) , ( 𝑄𝑡 𝑄𝑡𝐶𝑡′𝐶𝑡𝑄𝑡 𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡)], we 

recognize that 𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡 ~𝑇𝑁(𝜇𝑡, Σ𝑡, 𝒳𝑡). 

To compute the incremental weights 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1), we use the Bayes formula: 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1) = 𝑝(𝑥𝑡,𝑦𝑡|𝑥𝑡−1,𝑦1:𝑡−1)𝑝(𝑥𝑡|𝑥𝑡−1,𝑦1:𝑡)   

                    = 𝜙(𝑥𝑡;𝐴𝑡𝑥𝑡−1,𝑄𝑡)∙𝜙(𝑦𝑡;𝐶𝑡𝑥𝑡,𝑅𝑡)∙[𝐹(𝐴𝑡𝑥𝑡−1,𝐵𝑡𝐵𝑡′,𝒳𝑡)]−1𝜙(𝑥𝑡;𝜇𝑡,Σ𝑡)∙[𝐹(𝜇𝑡,Σ𝑡,𝒳𝑡)]−1   

                        = 𝜙(𝑦𝑡; 𝐶𝑡𝐴𝑡𝑥𝑡−1, 𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡) ∙ 𝐹(𝜇𝑡,Σ𝑡,𝒳𝑡)𝐹(𝐴𝑡𝑥𝑡−1,𝐵𝑡𝐵𝑡′,𝒳𝑡).  
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Proof of Proposition 2 

In order to prove Proposition 2, we will use a statistical property of the multivariate 

truncated normal distribution. Though the marginal distributions do not have analytic forms in 

general, an exception is the case in which a variable block is unrestricted. The results are 

summarized in the following lemma: 

Lemma: suppose that (𝑧1𝑧2) ~𝑇𝑁 [(𝜇1𝜇2) , (Ω11 Ω12Ω21 Ω22) , (𝒵1ℝ𝑛)]. Then the marginal distribution 

for 𝑧1 remains truncated normal: 𝑧1~𝑇𝑁(𝜇1, Ω11, 𝒵1), while the marginal distribution for 𝑧2 is 

the extended skewed normal with the density 𝑝(𝑧2) = 𝜙(𝑧2; 𝜇2, Ω22) ∙ 𝐹(𝜇̅1,Ω̅11,𝒵1)𝐹(𝜇1,Ω11,𝒵1), where 𝜇̅1 =𝜇1 + Ω12Ω22−1(𝑧2 − 𝜇2), Ω̅11 = Ω11 − Ω12Ω22−1Ω21.  

Proof: 

The normalisation term for the joint distribution of 𝑧1 and 𝑧2 satisfies: 𝐹 [(𝜇1𝜇2) , (Ω11 Ω12Ω21 Ω22) , (𝒵1ℝ𝑛)] = ∫ ∫ 𝜙(𝑧1; 𝜇1, Ω11)𝜙(𝑧2; 𝜇̅2, Ω̅22)𝑑𝑧2𝑑𝑧1∞−∞𝑧1∈𝒵1 =𝐹(𝜇1, Ω11, 𝒵1)  

where 𝜇̅2 = 𝜇2 + Ω21Ω11−1(𝑧1 − 𝜇1), Ω̅22 = Ω22 − Ω21Ω11−1Ω12. 

Thus the marginal densities for 𝑧1 and 𝑧2 are given by 𝑝(𝑧1) = ∫ 𝜙(𝑧1;𝜇1,Ω11)𝜙(𝑧2;𝜇̅2,Ω̅22)∙1(𝑧1∈𝒵1)𝐹(𝜇1,Ω11,𝒵1) 𝑑𝑧2∞−∞ = 𝜙(𝑧1;𝜇1,Ω11)∙1(𝑧1∈𝒵1)𝐹(𝜇1,Ω11,𝒵1) , 𝑝(𝑧2) = ∫ 𝜙(𝑧2;𝜇2,Ω22)𝜙(𝑧1;𝜇̅1,Ω̅11)𝐹(𝜇1,Ω11,𝒵1) 𝑑𝑧1𝑧1∈𝒵1 = 𝜙(𝑧2; 𝜇2, Ω22) ∙ 𝐹(𝜇̅1,Ω̅11,𝒵1)𝐹(𝜇1,Ω11,𝒵1).   ∎ 

 

Now we start to prove Proposition 2. We will show that the optimal importance function 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) follows a truncated normal distribution, while the incremental weight 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) is an extended skewed normal density. By the preceding lemma, we only 

need to show 𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) and 𝑝(𝑦𝑡, 𝜉𝑡 , 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) are multivariate truncated 

normal distributions. 

 𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) ∝ ∏ 𝑝(𝜉𝜏|𝜉𝜏−1)𝑝(𝜂𝜏|𝜂𝜏−1)𝑝(𝑦𝜏|𝜉𝜏, 𝜂𝜏)𝑡𝜏=1   
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∝ 1(𝜉𝑡 ∈ Ξ𝑡) ∙ ∏ 𝜙(𝜉𝜏; 𝐴1𝜏𝜉𝜏−1, 𝑄1𝜏)𝜙(𝜂𝜏; 𝐴2𝜏𝜂𝜏−1, 𝑄2𝜏)𝜙(𝑦𝜏; 𝐶1𝜏𝜉𝜏 + 𝐶2𝜏𝜂𝜏, 𝑅𝜏)𝑡𝜏=1   ∝ 1(𝜉𝑡 ∈ Ξ𝑡) ∙ 𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡)  

We have dropped the normalisation term 𝐹(𝐴1𝜏𝜉𝜏−1, 𝑄1𝜏, Ξ𝜏), 𝜏 = 1, … , 𝑡, as we are using 

the symbol ∝. The term 𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) denotes the conditional distribution in the 

context of a Gaussian linear state space model: 𝜉𝑡 = 𝐴1𝑡𝜉𝑡−1 + 𝜀1𝑡,  𝜂𝑡 = 𝐴2𝑡𝜂𝑡−1 + 𝜀2𝑡,          𝑦𝑡 = 𝐶1𝑡𝜉𝑡 + 𝐶2𝑡𝜂𝑡 + 𝑣𝑡 ,  
where 𝜀1𝑡~𝑁(0, 𝑄1𝑡), 𝜀2𝑡~𝑁(0, 𝑄2𝑡), 𝑣𝑡~𝑁(0, 𝑅𝑡). 

In a Gaussian linear model, all the marginal and conditional distributions are normal. So  𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) is a multivariate normal density. It follows that 𝑝(𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡) is a 

multivariate truncated normal distribution, in which 𝜂1:𝑡 is free while 𝜉𝑡 is truncated to the 

region Ξ𝑡. 

Similarly, we have 𝑝(𝑦𝑡, 𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) ∝ 1(𝜉𝑡 ∈ Ξ𝑡) ∙ 𝑝(𝑦𝑡, 𝜉𝑡, , 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1), 

where 𝑝(𝑦𝑡, 𝜉𝑡, , 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) is the counterpart of 𝑝(𝑦𝑡, 𝜉𝑡, , 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) in the 

Gaussian linear state space model. Therefore, 𝑝(𝑦𝑡, 𝜉𝑡, 𝜂1:𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) is a multivariate 

truncated normal density. By the lemma, 𝑝(𝑦𝑡, 𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) remains multivariate truncated 

normal. Apply the lemma again, 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1) is an extended skewed normal density. 

Now we show how to use the Kalman filter to partial out 𝜂1:𝑡 so as to obtain the filtering 

distributions. 

First, conditioning on 𝜉1:𝑡−1, the predictive distribution for 𝜂𝑡 are computed by the Kalman 

filter based on the GLSM. The predictive moments 𝜇𝜂𝑡 and Σ𝜂𝑡 represent the mean and 

variance for the Gaussian density 𝑝(𝜂𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1).  

Second, consider the joint distribution 𝑝(𝜉𝑡, 𝜂𝑡 , 𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1), which is a multivariate 

truncated normal distribution: 

𝑇𝑁 [(𝐴1𝑡𝜉𝑡−1𝜇𝜂𝑡𝜇𝑦𝑡 ) , ( 𝑄1𝑡 0 𝑄1𝑡𝐶1𝑡′0 Σ𝜂𝑡 Σ𝜂𝑡𝐶2𝑡′𝐶1𝑡𝑄1𝑡 𝐶2𝑡Σ𝜂𝑡 Σ𝑦𝑡 ) , ( Ξ𝑡ℝ𝑚2ℝ𝑛 )], 

Third, we partial out 𝜂𝑡 and obtain 𝑝(𝜉𝑡, 𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1), which is 
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𝑇𝑁 [(𝐴1𝑡𝜉𝑡−1𝜇𝑦𝑡 ) , ( 𝑄1𝑡 𝑄1𝑡𝐶1𝑡′𝐶1𝑡𝑄1𝑡 Σ𝑦𝑡 ) , ( Ξ𝑡ℝ𝑛)]. 

Conditioning on 𝑦𝑡, we obtain 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡), which follows 𝑇𝑁(𝜇𝜉𝑡, Σ𝜉𝑡, Ξ𝑡). As for the 

incremental importance weight 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1), we apply the lemma and obtain Eq (8).  

 

Proof of Proposition 3 

For a linear state space model with deterministic initial states, the filtered states are linear 

with respect to the initial states. See De Jong (1991). The augmented Kalman filter has the 

property: 𝐸(𝑥𝑡|𝑥𝑆, 𝑦𝑆+1:𝑡) = 𝑋𝑡|𝑡 ∙ ( 1𝑥𝑆),        𝑉𝑎𝑟(𝑥𝑡|𝑥𝑆, 𝑦𝑆+1:𝑡) = 𝑃𝑡|𝑡.  

By the law of iterated expectations, we have 𝐸(𝑥𝑡|𝑦1:𝑡) = 𝐸[𝐸(𝑥𝑡|𝑥𝑆, 𝑦𝑆+1:𝑡)|𝑦1:𝑡] = 𝑋𝑡|𝑡 ∙ [ 1𝐸(𝑥𝑆|𝑦1:𝑡)]. 

For the initial state smoothing, we use the fact that the prediction errors of the observations 

are also linear with respect to the initial states.  𝑝(𝑥𝑆|𝑦1:𝑡) ∝ 𝑝(𝑥𝑆|𝑦1:𝑆) ∙ ∏ 𝜙 [𝑉𝜏 ∙ ( 1𝑥𝑆) ; 0, 𝑂𝜏|𝜏−1]𝑡𝜏=𝑆+1 . 

Recall that 𝑝(𝑥𝑆|𝑦1:𝑆) is represented by particles 𝑥𝑆(𝑖)
 with weights 𝑤𝑆(𝑖), 𝑖 = 1, … , 𝐾. By the 

Bayes formula, the smoothing distribution 𝑝(𝑥𝑆|𝑦1:𝑡) can be represented by the same particles 

with the updated weights 𝑤̅𝑆(𝑖)
 such that 

 𝑤̅𝑆(𝑖) ∝ 𝑤𝑆(𝑖) ∙ ∏ 𝜙 [𝑉𝜏 ∙ ( 1𝑥𝑆) ; 0, 𝑂𝜏|𝜏−1]𝑡𝜏=𝑆+1 . 

The likelihood function has the following decomposition form: 𝑝(𝑦1:𝑡) = 𝑝(𝑦1:𝑆) ∙ ∫ 𝑝(𝑥𝑆|𝑦1:𝑆) ∙ 𝑝(𝑦𝑆+1:𝑡|𝑥𝑆)𝑑𝑥𝑆. 

Note that 
1𝐾 ∑ 𝑤𝑆(𝑖)𝐾𝑖=1  is a consistent estimator for 𝑝(𝑦1:𝑆), which is a basic result of particle 

filtering. ∫ 𝑝(𝑥𝑆|𝑦1:𝑆) ∙ 𝑝(𝑦𝑆+1:𝑡|𝑥𝑆)𝑑𝑥𝑆 = ∑ { 𝑤𝑆(𝑖)∑ 𝑤𝑆(𝑖)𝐾𝑗=1 ∙ ∏ 𝜙 [𝑉𝜏 ∙ ( 1𝑤𝑆(𝑖)) ; 0, 𝑂𝜏|𝜏−1]𝑡𝜏=𝑆+1 }𝐾𝑖=1  . 
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Hence Eq (13) is a consistent estimator for 𝑝(𝑦1:𝑡).  

 

Proof of Proposition 4 

Invert the state equation, we have 𝑥1:𝑡 = 𝐴−1𝑐0 + 𝐴−1𝜀1:𝑡, hence 𝑝(𝑥1:𝑡) =𝜙 (𝑥1:𝑡; 𝜇1:𝑡, Σ1:𝑡). 

Since 𝑧1:𝑡 = 1(𝑥1:𝑡 ∈ 𝒳1:𝑡), we have 𝑝(𝑥1:𝑡|𝑧1:𝑡 = 1) ∝ 𝜙 (𝑥1:𝑡; 𝜇1:𝑡, Σ1:𝑡) ∙ 1(𝑥1:𝑡 ∈ 𝒳1:𝑡).  

Also, (𝑥1:𝑡𝑦1:𝑡) ~𝑁 [( 𝜇1:𝑡𝐶𝜇1:𝑡) , ( Σ1:𝑡 Σ1:𝑡𝐶′𝐶Σ1:𝑡 𝐶Σ1:𝑡𝐶′ + 𝑅)], hence the conditional distribution 𝑝(𝑥1:𝑡|𝑦1:𝑡, 𝑧1:𝑡) ∝ 𝜙(𝑥1:𝑡; 𝜇1:𝑡, Σ1:𝑡) ∙ 1(𝑥1:𝑡 ∈ 𝒳1:𝑡).  

 

Proof of Proposition 5 

Note that 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡) is the state filtering distribution corresponding to a single-

period PCSSM with the deterministic initial state 𝑥𝑡−1. Applying Proposition 4, we obtain 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡) ∝ 𝜙(𝑥𝑡; 𝜇𝑡, Σ𝑡) ∙ 1(𝑥𝑡 ∈ 𝒳𝑡). 

The incremental weights can be decomposed as 𝑝(𝑦𝑡, 𝑧𝑡|𝑥𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) = 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) ∙ 𝑝(𝑧𝑡|𝑥𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡−1).  

Since 𝑦𝑡 = 𝐶𝑡(𝐴𝑡𝑥𝑡−1 + 𝜀𝑡) + 𝑣𝑡, we have 𝑝(𝑦𝑡|𝑥𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) =𝜙(𝑦𝑡; 𝐶𝑡𝐴𝑡𝑥𝑡−1, 𝐶𝑡𝑄𝑡𝐶𝑡′ + 𝑅𝑡). 

Recall that 𝑧𝑡 = 1, ∀𝑡, hence 𝑝(𝑧𝑡|𝑥𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡−1) = 𝑃(𝑥𝑡 ∈ 𝒳𝑡|𝑥𝑡−1, 𝑦1:𝑡) = 𝐹(𝜇𝑡, Σ𝑡, 𝒳𝑡).   

 

Proof of Proposition 6 

Conditioning on 𝜉1:𝑡−1, the normalisation term is a constant for both ICSSM and PCSSM. 

Therefore, the proof for Proposition 2 applies, and the optimal importance function is 

truncated normal: 𝑝(𝜉𝑡|𝜉1:𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡) ∝ 𝜙(𝜉𝑡; 𝜇𝜉𝑡, Σ𝜉𝑡) ∙ 1(𝜉𝑡 ∈ Ξ𝑡). As for the incremental 

importance weights, it has the decomposition form: 
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𝑝(𝑦𝑡, 𝑧𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) = 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) ∙ 𝑝(𝑧𝑡|𝜉1:𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡−1),  
where 𝑝(𝑦𝑡|𝜉1:𝑡−1, 𝑦1:𝑡−1, 𝑧1:𝑡−1) = 𝜙(𝑦𝑡; 𝜇𝑦𝑡, Σ𝑦𝑡) and 𝑝(𝑧𝑡|𝜉1:𝑡−1, 𝑦1:𝑡, 𝑧1:𝑡−1) equals the 

truncation probability 𝐹(𝜇𝜉𝑡 , Σ𝜉𝑡, Ξ𝑡), as 𝑧𝑡 = 1.   
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Table 1 

 

 BT PF TS OP 

1969:Q3 0.9338 0.9338 0.9337 0.9337 

 (3.6e-03) (1.8e-03) (9.9e-15) (8.6e-15) 

1974:Q4 0.9746 0.9749 0.9751 0.9751 

 (4.3e-03) (2.0e-03) (1.8e-03) (1.7e-03) 

1980:Q2 0.9748 0.9752 0.9751 0.9753 

 (3.7e-03) (1.5e-03) (1.8e-03) (1.7e-03) 

2001:Q1 0.8617 0.8617 0.8617 0.8617 

 (2.8e-03) (2.5e-03) (5.1e-05) (2.5e-06) 

2009:Q1 0.9872 0.9873 0.9872 0.9872 

 (1.0e-03) (6.9e-04) (7.7e-04) (7.2e-04) 

logL -54.1367 -53.9149 -53.9329 -53.8892 

 (7.7e-01) (4.8e-01) (4.0e-01) (3.7e-01) 

CPU Time 0.1005 0.1500 0.1155 0.1168 

 (5.9e-03) (6.2e-03) (5.7e-03) (2.8e-03) 

 

Table 1 Particle filter for the time-varying parameter AR(2) model 

BT refers to the bootstrap particle filter. PF adopts the optimal importance function without Rao-

Blackwellisation. TS utilizes temporal Rao-Blackwellisation and the optimal importance function. OP is 

the optimal filter that employs all the variance reduction techniques. Each algorithm is experimented 

500 times and the average state estimators for 𝜙2𝑡 + 𝜙1𝑡, the log likelihood and the computing time are 

reported. The standard deviations are in parentheses, which reflect the Monto Carlo variations. 
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Figure 1 

 

 

 

Figure 1 Short rate estimation of the Vasicek Model 

The upper panel plots the unconstrained Kalman filter estimation of the instantaneous interest rates. 

The solid line represents the means of the filtered state series and the two dotted lines are the 95% 

intervals of the filtering distributions. The middle panel illustrates five paths of the simulated posterior 

state series using the unconstrained simulation smoother. The bottom panel shows the particle filtering 

results with nonnegative constraints on the short rate series. The estimation sample is 2003 – 2015. To 

highlight the low interest rate era, the curves are plotted from 2009 to 2015. 
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Figure 2 

 

 

Figure 2 Time-varying parameter AR(2) regression 

The estimated series 𝜙2𝑡 + 𝜙1𝑡 using various methods are plotted. The upper panel shows the ten-year 

rolling window AR(2) regression results (solid line) and the unconstrained Kalman filter (dashed line) 

calibrated by the rolling window estimators. The middle panel plots the particle filtering results (solid 

line) under the constraint 𝜙2𝑡 + 𝜙1𝑡 ≤ 1 imposed on 31 out of 186 periods (marked on the horizontal 

axis). The model parameters are estimated by maximum simulated likelihood. The unconstrained 

Kalman filter (dashed line) using those parameters is also plotted. The bottom panel illustrates the case 

when a loose constraint 𝜙2𝑡 ≥ −1 is added. The filtered series under one and two constraints overlap 

with each other, with the maximum discrepancy 0.0008. 
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Figure 3 

 

 

Figure 3 Grid search for the parameter 𝜎𝜀 that maximizes the noisy likelihood function 

We discretize 𝜎𝜀 by 100 grid points and evaluate the log likelihood using the four particle filtering 

algorithms. BT refers to the bootstrap particle filter. PF adopts the optimal importance function without 

Rao-Blackwellisation. TS utilizes temporal Rao-Blackwellisation and the optimal importance function. OP 

is the optimal filter that employs of all the variance reduction techniques.  

 


