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Abstract

In the paper amethod for constructing new varieties of time-series models is proposed.

The idea is to start from an unobserved components model in a state-space form and use

it as an inspiration for development of another time-series model, in which time-varying

underlying variables are directly observed. The goal is to replace a state-space model with

an intractable likelihood function by another model, for which the likelihood function can

be written in a closed form. If state transition equation of the parent state-space model is

linear Gaussian, then the resulting model would belong to the class of score driven model

(aka GAS, DCS).

1 Introduction

One can use relatively simple time-series models to bring richer dynamics into some other
model. Direct observations for the former are not available, thus, the corresponding elemen-
tary dynamic processes are called unobserved components. This is a convenient way of formu-
lating new time-series models. The unobserved components are frequently of Markov class.
The most popular variant is a first-order autoregression with Gaussian errors.

One way of obtaining unobserved components models is to take some parameters, which
are initially static, and make them time-varying. For example, a very simple level plus noise
model can be modified by assuming time-varying level and variance. Coefficients of seasonal
dummies can be made time-varying to take into account changing seasonal pattern. A typical
application of time-varying parameters approach to macroeconomic modeling is Cogley and
Sargent (2005). In Harvey (1989) a “construction set” approach to building time series mod-
els is advocated and the resulting models are called “structural time series models” (see also
Harvey; 2006). The elements of the standard construction set are stochastic trends, seasonals,
cycles, etc., which are directly interpretable in substantial terms. The term “unobserved com-
ponents model” in a narrow sense is a synonym of a structural time series model, which can
be decomposed into such elementary processes. However in this paper we use the term in a
broader sense of a model based on underlying latent processes.

An unobserved components model can be cast it into a canonical form called state-space
form. The variables of such a model are divided into two groups: observed yt and unobserved
at . The dynamic behavior of the state variable at is governed by a process with a (conditionally)
Markov structure, while the distribution of yt depends only on at and its own previous history,
but not on the previous history of at .

Although for a time series model in a state-space form there exists a toolkit of standard
methods, in general one needs some kind of numerical integration to deal with such a model
(when the state variable is continuous). Only for very narrow classes of state-space models
integration can be done in a closed form, notably for linear Gaussianmodels equipped with the
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famous Kalman filter algorithm. Even a minor modification can bring a tractable model into
an analytically intractable class. Numerical integration can be computationally demanding.
Similar to any approximation, there is a tradeoff between the accuracy of approximation and
the amount of computation. Monte Carlo techniques reduce the curse of dimensionality only
partially.

In summary, from the point of view of an applied researcher unobserved components are
very attractive means of model formulation. At the same time they burden the researcher with
a load of computational problems.

An alternative approach is to add dynamic features in such a way that the resulting under-
lying variables are observable conditionally on previous observed history, static parameters
and initial conditions. An illuminating example is given by volatility modeling with stochastic
volatility (SV) models. Although the basic SVmodel has a slick and natural formulation, it does
not possess a tractable likelihood, that is why in applications it is dominated by a somewhat
less natural GARCH with modifications. Both models have their volatility variables, but SV
volatility is unobservable, while GARCH volatility is governed rigidly by the explored time
series, which makes GARCH more suitable for applied research.

Following categorization in Cox (1981) the models obtained by this second approach are
labeled observation driven as opposed to parameter driven. An approach to formulation of such
observation driven models is proposed in Creal et al. (2008), Creal et al. (2013) under the name
of GAS (generalized autoregressive score) and, independently, Harvey and Chakravarty (2008),
Harvey (2013) under the name of DCS (dynamic conditional score).

By connecting score driven models to unobserved components models, the current paper
provides some theoretical grounds for the former. The grounds are mostly informal, but they
make construction of score-driven models a less ad hoc process.

One of the drawbacks of the existing approach to score driven modeling is arbitrariness
of scaling of the score in the dynamic process for the underlying factors. Creal et al. (2013)
propose several variants of scaling matrices, however, the choice is largely ad hoc. The current
paper proposes more rigid principles of choosing scaling matrices. The idea is to derive them
from the parent unobserved component model in state-space form.

When constructing an observation driven model inspired by an unobserved component
model one would typically do various simplifications to make the descendant model more
tractable. The main goal is to obtain a model described by closed form recursive formulas
without any computationally demanding aspects such as numerical integration or numerical
optimization, but further simplifications are also permitted. If one believes the parent unob-
served component model to be the true one, then the various approximations and simplifica-
tions can lead to the loss of estimators’ consistency, deterioration of model fit and forecast
ability and should be done only if one is ready to pay this price. However, for real-life data
there is no such thing as “the true model”. It may well be that a computationally simpler
roughened model is better in terms of goodness of fit and/or forecast ability.

The various simplifiedmodels derived fromunobserved componentsmodel in a state-space
form can be called quasifilters due to their resemblance to the corresponding proper filtering
techniques such as the Kalman filter. Naturally, most of the known score-driven models can
be considered as quasifilters. Indeed, Harvey (2013) draws many explicit parallels with state-
space models and Kalman filter.

The quasifilter roots can be found in several seemingly unrelated areas such as volatility
models of GARCH type, the extended Kalman filter and exponential smoothing techniques.
For example, quasifilter logic explains informally the need for using fat-tailed distributions in
the models of GARCH type.

This paper introduces two types of approximations, which can be utilized in state updating
and which thus underlie the construction of quasifilters from the parent state-space models.
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2 Filtering in a general state-space model

2.1 Formulation of a general state-space model

Let y = (y1, . . . , yT ) be an observed (univariate or multivariate) series. A typical observation
yt is a kt × 1 vector. The model for the y series is formulated in terms of the state series
a = (a1, . . . , aT ), where at is amt ×1 vector of unobserved components. The joint distribution
of y and a is known up to some vector of parameters θ : f (y, a) = f (y, a | θ ). Below we
suppress the dependence on θ . We assume a to be continuous. To simplify exposition we
accept the convention that y is also continuous. However, discrete or mixed y can be treated
in a similar manner.

The overall density f (y, a) of a general state-space model is constructed from two series
of densities (all of which are parametric and depend on θ ):

• measurement density f (yt | a1:t , y1:t−1) = f (yt | at , y1:t−1), t = 1, . . . ,T ;

• transition density f (at | a1:t−1, y1:t−1) = f (at | at−1, y1:t−1), t = 2, . . . ,T .

We also need f (a1) to be specified. It can be viewed as a special case of the transition den-
sity for t = 1. Note that the measurement density does not depend on a1:t−1. Similarly, the
transition density does not depend on a1:t−2 and thus the model has a conditionally Markov
transition given the previous history y1:t−1.

2.2 Filtering in a general state-space model

What can be the objectives of filtering in a state-space model?
First, filtering can be used as a device for computing the values of the likelihood function

for given values of parameters θ . This function can be used to obtain maximum likelihood
estimates for θ . The likelihood function is the density f (y) viewed as a function of θ . Filtering
provides a factorization of the likelihood function

f (y) =

T
∏

t=1

f (yt | y1:t−1),

where f (yt | y1:t−1) are contributions of individual observations to the overall likelihood.
Second, of interest can be the conditional densities for the state variables f (at | y1:t ),

f (at | y1:t−1) and various predictions obtained from them. Usually these predictions can be
represented as expectations of functions of the state variable; for example,

E[h(at ) | y1:t−1] =

∫

h(at ) f (at | y1:t−1)dat .

In what follows we are primarily interested in some analogues of f (yt | y1:t−1), while ana-
logues of f (at | y1:t ) and f (at | y1:t−1) play an auxiliary role.

For a general state-space model f (yt | y1:t−1), f (at | y1:t ) and f (at | y1:t−1) can be obtained
in a recursive way. Cf. Kitagawa (1987), Harvey (2006), Creal (2012). Suppose that at time t
the previous filtering density f (at−1 | y1:t−1) is already known. Filtering recursion is usually
represented as iterating prediction step and updating step.

Prediction step:

f (at | y1:t−1) =

∫

f (at | at−1, y1:t−1) f (at−1 | y1:t−1)dat−1.
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Here f (at−1 | y1:t−1) comes from the previous period updating step, while f (at | at−1, y1:t−1) is
specified by the model.

Updating step:

f (at | y1:t ) =
f (yt | at , y1:t−1) f (at | y1:t−1)

f (yt | y1:t−1)
,

where

f (yt | y1:t−1) =

∫

f (yt | at , y1:t−1) f (at | y1:t−1)dat

is the contribution to the likelihood. Here f (at | y1:t−1) comes from the prediction step, while
f (yt | at , y1:t−1) is specified by the model.

2.3 Approximate filtering

In what follows we change notation and denote functions and variables associated with true
densities by letters with circle subscript while the corresponding approximations by letters
without such subscript.

Conditional density of the state series a given the observed series y, that is, f◦(a | y) =
f◦(y, a)/f◦(y), is called the smoothing density. Smoothing uses all observations available at
time T . A (full data) smoothing approximation is some function f (a | y), which approximates
f◦(a | y).

Filtering refers to a situation when observations of yt arrive one by one. At time t only
y1:t is used for inference about a1:t . Similarly to the full data smoothing one can consider a
series of partial smoothing problems based on observations 1, . . . , t . Approximate filtering
can be based on a series of approximations f (a1:t | y1:t ) to f◦(a1:t | y1:t ) = f◦(y1:t , a1:t )/f◦(y1:t )

with last-period approximate filtering densities f (at | y1:t ), predictive densities f (at | y1:t−1)
and contributions to the likelihood f (yt | y1:t−1) produced as a byproduct.

However, dealing directly with batch approximations f (a1:t | y1:t ) can be difficult due to
growing dimensionality. A simpler piecemeal approach to approximate filtering does not keep
track of densities f (a1:t | y1:t ) explicitly. With this approach in the approximate filtering step
of time t only f◦(at | y1:t−1), f◦(at | y1:t ) and f◦(yt | y1:t−1) are approximated by f (at | y1:t−1),
f (at | y1:t ) and f (yt | y1:t−1) given the previous period approximation f (at−1 | y1:t−1). The
price of such a piecemeal approach is that the approximation error can accumulate from period
to period.

Many different methods of approximate piecemeal filteringwere proposed in the literature.
These include approximating densities by step functions (ordinary numerical integration), by
(weighted) averages of Dirac delta-functions corresponding to random samples (particle fil-
ters) and so on.

For the goals of genuine approximate filtering the approximations used should be accurate
and closely reproduce true densities. For quasifiltering which we consider further there is no
such goal. Quasifiltering is some loose imitation of the genuine filtering.

3 Basic quasifilter recursion

In the derivation of our basic quasifilter we assume that the conditional densities of the state
variables are approximately Gaussian, so that f◦(at−1 | y1:t−1) and f◦(at | y1:t−1) are approxi-
mated by φ (at−1 − āt−1, P̄t−1) and φ (at − ãt , P̃t ) respectively, where φ (x, Σ) is the density at x
of the multivariate normal distribution with zero mean and covariance matrix Σ. Transition
distribution is assumed to be Gaussian with the conditional mean which is linear in at−1, that
is,

at | at−1, y1:t−1 ∼ N (Rat +Raatat−1,Ωat )
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In Section 8 we extend the quasifilter approach to the case of mildly nonlinear and/or non-
Gaussian transition.

Prediction step The prediction step of the basic quasifilter is known from the Kalman filter
and is given by

ãt = Rat +Raat āt−1,

P̃t = Raat P̄t−1R
⊺

aat + Ωat .

Updating step The Gaussian approximation f (at | y1:t−1) = φ (at − ãt , P̃t ) for f◦(at | y1:t−1)
produces an approximate contribution to the likelihood for time t given by

f♯ (yt | y1:t−1) =

∫

f◦(yt | at , y1:t−1)φ (at − ãt , P̃t )dat .

We introduce the following notation for the corresponding log-density, which can be
viewed an approximation to the log-likelihood ℓ◦t = ln f◦(yt | y1:t−1) for observation t :

ℓ♯t = ln f♯ (yt | y1:t−1).

Below we are primarily interested in dependence of ℓ♯t on ãt , so ℓ♯t = ℓ♯t (ãt ) with dependence

on yt , static parameters θ , P̃t and y1:t−1 from the measurement density being implicit.
By analogy with

f◦(at | y1:t ) =
f◦(yt | at , y1:t−1) f◦(at | y1:t−1)

f◦(yt | y1:t−1)

we can write
f♯ (at | y1:t ) = exp(−ℓ♯t ) f◦(yt | at , y1:t−1)φ (at − ãt , P̃t ),

where f♯ (at | y1:t ) is the approximation to filtering density implied by φ (at − ãt , P̃t ) as an
approximation of the prediction density f◦(at | y1:t−1). By construction it is a proper density
function with unit integral.

The moments of the approximate filtering distribution are obtained by integration with
respect to f♯ (at | y1:t ). In particular, the filtering estimate of at implied by φ (at − ãt , P̃t ) is
given by

E♯t at =

∫

f♯ (at | y1:t )atdat ,

where E♯t denotes the corresponding expectation operator. The corresponding variance-
covariance matrix is

var♯t at = E♯t [(at − E♯t at ) (at − E♯t at )
⊺

].

The following proposition provides an informal foundation for our basic quasifilter by sug-
gesting a non-obvious relation between the approximate log-likelihood ℓ♯t and the approxi-
mate filtering distribution with density f♯ (at | y1:t ).

1

Proposition 1. The mean and covariance matrix of the approximate filtering distribution can

be expressed as

E♯t at = ãt + P̃t∇ℓ♯t (ãt )

and

var♯t at = P̃t + P̃t∇
2ℓ♯t (ãt )P̃t .

1This resembles a result obtained in Masreliez (1975).
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The derivation is placed in Appendix. In this proposition ∇ℓ♯t (ãt ) = ∂ℓ♯t (ãt )/∂ãt can be
recognized as the score vector and ∇2ℓ♯t (ãt ) as the Hessian matrix corresponding to the time
t approximate log-likelihood ℓ♯t . It is important that application of these formulas does not
require the knowledge of measurement density of the parent model f◦(yt | at , y1:t−1). One
needs only ℓ♯t .

In general we do not know closed-form formulas for ℓ♯t . Instead a suitable approximation
ℓt = ℓt (ãt ) would be used in a quasifilter. The corresponding filtering approximation is given
by N (āt , P̄t ), where

āt = ãt + P̃tst , st = ∇ℓt (ãt ) (1)

and
P̄t = P̃t − P̃tNt P̃t . (2)

Here Nt can be the negated Hessian of ℓt , that is,

Nt = −∇
2ℓt (ãt ),

or some other suitable approximation. Since P̄t represents the covariance matrix of the ap-
proximate filtering distribution,Nt should be chosen in such a way that P̄t is positive definite
whenever P̃t is positive definite.

Matrix P̃t is used to scale score vector st in the state updating formula. Since in quasifil-
tering P̄t and P̃t can be some very loose approximations to the true covariance matrices, we
call them just scaling matrices.

4 Possible approaches and examples

4.1 Log-likelihood approximations

The key ingredient of a quasifilter is the contribution to the log-likelihood. We do not know the
true contribution to to the log-likelihood of the parent state-space model ℓ◦t and use some suit-
able approximation ℓt instead. The piecemeal nature of quasifiltering implies that we do not
have enough information to assess the quality of ℓt as an approximation to ℓ◦t . However, we
have some information to assess the quality of ℓt as an approximation to ℓ♯t = ln f♯ (yt | y1:t−1),
where

f♯ (yt | y1:t−1) =

∫

f◦(yt | at , y1:t−1)φ (at − ãt , P̃t )dat .

This is also an approximation to the true f◦(yt | y1:t−1) with Gaussian density φ (at − ãt , P̃t )

supplanting unknown f◦(at | y1:t−1). As such it can only give a suggestion for choosing ℓt .
However, such a suggestion can be very valuable as it can help to choose the functional form
of ℓt .

In general a closed form expression for f♯ (yt | y1:t−1) would be unavailable. For some mod-
els the moments of f♯ (yt | y1:t−1) could be known in a closed form. In general for exploratory

purposes one can use simulations. For example, for a sample a1t , . . . , a
S
t fromN (ãt , P̃t ) aMonte

Carlo approximation to f♯ (yt | y1:t−1) is given by

f♯ (yt | y1:t−1) ≈
1

S

S
∑

s=1

f◦(yt | a
s
t , y1:t−1).

There are numerous possibilities in deriving ℓt from ℓ♯t .

• Derive ℓt as an approximation to ℓ♯t by matching characteristics of ℓt to these of ℓ♯t in a
pure analytic manner.
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• Use a parametric family for ℓt = ℓt (ψ) and estimate the corresponding parameters ψ
using a Monte Carlo sample. For example, chooseψ to (approximately) solve the maxi-
mization problem

max
ψ

∫

ℓt (ψ; yt ) f♯ (yt | y1:t−1)dyt .

The objective function here is related to the Kulback–Leibler distance between
f♯ (yt | y1:t−1) and exp(ℓt ). The estimation should be done beforehand and parametersψ
should be expressed by closed-form formulas so that quasifilter is not slowed down by
simulations. Note that in general ℓt depends on ãt , P̃t , static parameters θ and previous
observed history y1:t−1, so that optimizedψ can be a function of all these variables.

• Use a parametric family for ℓt with parameters ψ and append these parameters to the
parameters of the initial state-space model θ so that (ψ,θ ) is the resulting parameter
vector for the quasifilter model to be estimated jointly given the observed data.

All of these approaches need some additional efforts. A quick-and-dirty alternative is to
use the measurement log-density at ãt as the contribution to the log-likelihood

ℓt = λt (ãt ),

where
λt (at ) = ln f◦(yt | at , y1:t−1).

This can be a reasonable approximation if P̃t is relatively small. However, as we will see below,
for some models the result can be rather poor.

4.2 Time-varying scale model

As an example we consider a time-varying scale model (known as stochastic volatility model)
given by

yt = e
ht /2ϵt ,

ht | h1:t−1, y1:t−1 ∼ N (ω + δht−1,σ
2

h ).

where ϵt is an independent identically distributed white noise series with unit variance, eht is
the time-varying error variance and δ ∈ (0, 1) (although δ = 1 is also possible).

Note that if ht | y1:t−1 ∼ N (h̃t , p̃t ) and ϵt standard normal or leptokurtic, then f◦(yt | y1:t−1)
corresponds to a distribution which is symmetric around zero and leptokurtic. The value of h̃t
determines only the scale of the distribution, but not the shape. Indeed,

Ẽt−1yt = Ẽt−1e
ht /2

Ẽt−1ϵt = 0,

and
ṽart−1yt = Ẽt−1(e

htϵ2t ) = Ẽt−1e
ht
Ẽt−1ϵ

2
t = e

h̃t+p̃t /2

where expectations are with respect to f◦(yt | ht , y1:t−1)φ (ht − h̃t , p̃t ) and e
h̃t+p̃t /2 is the mean

of a log-normal variable eht . The standardized variant of yt is thus e
(ht−h̃t )/2e−p̃t /4ϵt , where

the conditional distribution of ht − h̃t is N (0, p̃t ) and does not depend on h̃t . The conditional
kurtosis of yt is given by

Ẽt−1[(e
(ht−h̃t )/2e−p̃t /4ϵt )

4] = Ẽt−1[e
2(ht−h̃t )]e−p̃t Ẽt−1(ϵ

4
t ) = e

2p̃te−p̃t Ẽt−1(ϵ
4
t ) = e

p̃t
Ẽt−1(ϵ

4
t ).

This demonstrates that the conditional kurtosis of yt is almost surely greater than the con-
ditional kurtosis of ϵt . As SV-generated quasifilter is in a class of models similar to GARCH,
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this observation suggests an explanation to the widespread use of fat-tailed disturbances in
GARCH-type models (cf. Bollerslev, 1997).

Following the approach popular in GARCHmodeling we approximate the conditional dis-

tribution of yt by the Student’s t distribution with νt degrees of freedom, and scale qte
h̃t /2,

where qt is some coefficient. Denote the scaled residuals by

Tt =
yt

qt
e−h̃t /2.

Here we assume that Tt has the ordinary Student’s distribution. Then the contribution to the
log-likelihood is

ℓt = ln Γ
(

νt + 1

2

)

− ln Γ
(

νt

2

)

−
1

2
ln(πνt ) −

νt + 1

2
ln

(

1 +
T 2
t

νt

)

−
h̃t

2
− lnqt

and the basic quasifilter recursions are

h̃t+1 = ω + δ (h̃t + p̃tst ), st =
∂ℓt

∂h̃t
=

1

2

νt (T
2
t − 1)

νt +T
2
t

,

p̃t+1 = δ
2(p̃t − p̃

2
t Nt ) + σ

2

h , Nt = −
∂2ℓt

∂h̃2t
=

1

2

νt (νt + 1)

(νt +T
2
t )

2
T 2
t .

Possible strategies include:

A Assume ϵt ∼ N (0, 1) and ℓt = ln f◦(yt | ht , y1:t−1)
���ht=h̃t= lnφ (yt , e

h̃t /2) (“quick-and-dirty”

approach), which corresponds to νt = +∞ and qt = 1.

B Express νt and qt as functions of p̃t by estimating the corresponding parametric models on
Monte Carlo data prior to estimating the model itself.

C Express νt and qt as functions of p̃t and estimate parameters of these functions together
with other parameters of the model (ω, δ , σh).

D Fix νt = ν , qt = 1 and treat ν as a parameter of the model.

Tables 1 and 2 show maximum likelihood estimation results for the four models, corre-
sponding to these strategies. For approaches B and C we take

lnνt = ψ1 +ψ2 ln p̃t ,

lnqt = ψ3p̃t +ψ4/νt .

All of the strategies potentially have a problem with positivity of the variance variable p̃t .
However, only for approach A this problem does materialize. The estimates in column A were
actually produced with

p̃t+1 = δ
2min{p̃t − p̃

2
t Nt , 0} + σ

2

h

recursion for the variance, which is obviously quite an ugly workaround.
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Table 1: Generated SV

A B C D E F

ψ1 — 0.975† 2.261 (0.72) — — —

ψ2 — −0.92† −0.003 (0.56) — — —

ψ3 0† 0.227† 0.285 (0.69) 0† 0† 0†

ψ4 0† −1† −3.80 (4.5) 0† 0† 0†

ω 0.0101 (0.0024) 0.0059 (0.0027) 0.0169 (0.0156) 0.0044 (0.0026) 0.0105 (0.0027) 0.0048 (0.0027)
δ 0.980 (0.0028) 0.982 (0.0031) 0.980 (0.0036) 0.982 (0.0033) 0.978 (0.0029) 0.980 (0.0033)
σh . 0.153 (0.0077) 0.192 (0.0113) 0.201 (0.0166) 0.192 (0.0122) 0.175 (0.0104) 0.199 (0.0132)

ν +∞† 9.01 (1.345) 9.63 (0.005) 9.76 (1.0) +∞† 9.59 (1.0)
Max LL −9882.2 −9805.4 −9802.8 −9803.5 −9886.4 −9806.2
AIC 3.295 3.269 3.270 3.269 3.296 3.270
BIC 3.298 3.273 3.278 3.274 3.300 3.275

Note: The SV series was generated with ω = 0, δ = 0.98, σh = 0.2, standard normal ϵt , T = 6000

observations. Standard errors in brackets; † marks fixed parameters. For models B and C the numbers in
the ν row are means and standard deviations of the model νt series (in italics). Infinite ν was approximated
by ν = 1000000. Model E (F) is similar to A (respectively, D), but uses the information matrix instead of the
negated Hessian (which is explained in subsection 4.3).

Table 2: FTSE100

A B C D E F

ψ1 — 0.975† 5.221 (0.96) — — —

ψ2 — −0.92† 1.662 (0.54) — — —

ψ3 0† 0.227† 1.977 (0.68) 0† 0† 0†

ψ4 0† −1† 0.39 (1.4) 0† 0† 0†

ω −0.0021 (0.0015) −0.0030 (0.0017) −0.0228 (0.0102) −0.0037 (0.0018) −0.0021 (0.0015) −0.0036 (0.0018)
δ 0.984 (0.0027) 0.986 (0.0027) 0.981 (0.0042) 0.987 (0.0028) 0.983 (0.0026) 0.986 (0.0028)
σh 0.121 (0.0078) 0.133 (0.0095) 0.164 (0.0186) 0.131 (0.0102) 0.119 (0.0087) 0.131 (0.0105)

ν +∞† 13.13 (1.730) 14.48 (3.777) 13.92 (1.8) +∞† 15.76 (2.3)
Max LL −9338.7 −9297.6 −9286.5 −9294.7 −9324.3 −9282.8
AIC 2.724 2.712 2.710 2.711 2.720 2.708
BIC 2.727 2.715 2.717 2.715 2.723 2.712

Note: FTSE100 daily returns for the period from 1984-05-03 to 2011-06-30, 6859 observations.
See the note to Table 1 for further explanation.
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4.3 I -scaling: using information matrix instead of negated Hessian

For some models it is convenient to use the information matrix corresponding to ℓt asNt . The
matrix is given by the expectation of the negated Hessian −∇2ℓt under the distribution of yt
implied by ℓt , that is,

It = −

∫

∂2ℓt (ãt ; yt )

∂ãt∂ã
⊺

t

exp(ℓt (ãt ; yt ))dyt .

Here the dependence of ℓt on yt has to be shown explicitly. Alternatively, it can be obtained
as the covariance matrix of the score vector st = ∇ℓt under the same distribution of yt , that
is,

It =

∫

∂ℓt (ãt ; yt )

∂ãt

∂ℓt (ãt ; yt )

∂ã
⊺

t

exp(ℓt (ãt ; yt ))dyt .

That these two alternative expressions give the same result is the information matrix identity
known from the maximum likelihood estimation theory. The use of the information matrix
It instead of the negated Hessian in quasifilter scaling recursions can be called I -scaling as
opposed to H -scaling.

There are at least two reasons for using the information matrix instead of the negated
Hessian. First, using the information matrix can ensure positive definiteness of P̄t for some
models and choices of ℓt . Second, frequently, the expression for the information matrix is
much simpler than the expression for the negated Hessian. For example, we can obtain block-
diagonal Nt , which allows to keep the scaling matrices P̃t and P̄t block-diagonal for some
models.

For the time-varying scale example of subsection 4.2 one can set Nt = It , where

It =
νt

2(νt + 3)
,

since

E

[
T 2

(ν +T 2)2

]
=

1

(ν + 1) (ν + 3)
for T ∼ tν .

Setting νt = ν , qt = 1 as in approach D above gives a model, which is simpler than the model
produced by D (column F in Tables 1 and 2). In the same way one can simplify the model
produced by approach A, which corresponds to νt = +∞, qt = 1 (column E).

Note that if we assume that νt ≥ 1 and σ2

h
< 1/2, then p̃t ∈ (0, 2) implies p̄t = p̃t − p̃

2
t It > 0

and p̃t+1 ∈ (0, 2). Thus, the use of information matrix can ensure that the scaling series remain
positive. In particular, unlike model A, model E for our two empirical examples is not affected
by the problem of negative variances.

4.4 I -scaling for Gaussian nonlinear measurement

Another example of I -scaling illustrates simplification of covariance matrix recursions. Sup-
pose that the measurement density is Gaussian, that is,

yt | at , y1:t−1 ∼ N (gyt (at ),Ωyt ),

where gyt (at ) is a smooth nonlinear function. If at | y1:t−1 ∼ N (ãt , P̃t ), then by using lineariza-
tion around ãt we obtain that approximately

yt | y1:t−1 ∼ N (gyt , Σyt ),

where gyt = gyt (ãt ), Σyt = Σyt (ãt ) = ∇g
⊺

yt P̃t∇gyt +Ωyt , ∇gyt = ∇gyt (ãt ) = ∂g
⊺

yt (ãt )/∂ãt . Thus,
the approximate log-likelihood is

ℓt = φ (yt − gyt , Σyt ) = −
1

2
ln |Σyt | −

1

2
(yt − gyt )

⊺

Σ
−1
yt (yt − gyt ) + const .

10



The elements of st are given by

∂ℓt

∂ãt j
= −

1

2
tr

(

∂Σyt

∂ãt j
Σ
−1
yt

)

+

1

2
(yt − gyt )

⊺

Σ
−1
yt

∂Σyt

∂ãt j
Σ
−1
yt (yt − gyt ) + (yt − gyt )

⊺

Σ
−1
yt

∂gyt

∂ãt j
.

The expression for the Hessian matrix is quite complicated. However, one can simplify things
by using the information matrix instead with elements given by

It =
1

2
tr

(

∂Σyt

∂ãt j
Σ
−1
yt

∂Σyt

∂ãtk
Σ
−1
yt

)

+

∂g
⊺

yt

∂ãt j
Σ
−1
yt

∂gyt

∂ãtk
.

Note that these formulas differ from the well-known extended Kalman filter. To reproduce
the formulas of the EKF one should assume that the derivatives ∂Σyt/∂ãt j are relatively small
so that the last terms would dominate in the expressions for the score and information matrix:

st ≈ ∇g
⊺

ytΣ
−1
yt (yt − gyt ), It ≈ ∇g

⊺

ytΣ
−1
yt ∇gyt .

4.5 C-scaling

Consider the ordinary linear Gaussian state-space model

yt | at , y1:t−1 ∼ N (Ryt +Ryatat ,Ω
y
t ),

at | at−1, y1:t−1 ∼ N (Rat +Raatat−1,Ωat ).

In the Kalman filter corresponding to this model we have the following recursion for the co-
variance matrices:

P̃t+1 = Raa,t+1(P̃t − P̃tR
⊺

yat (Ryat P̃tR
⊺

yat + Ωyt )
−1Ryat P̃t )R

⊺

aa,t+1 + Ωa,t+1.

If time variation of the coefficients matrices Ryat , Ωyt , Raat , Ωat has some suitable pattern,
the recursions in the limit can produce covariance matrices with a stable pattern. That is,
P̃t ≈ St P̃S

⊺

t for some fixed positive definite matrix P̃ and a sequence of known matrices St ,
so that the difference between P̃t and St P̃S

⊺

t vanishes as t → ∞. Then one can replace P̃t by
St P̃S

⊺

t in the Kalman filter recursions. In particular we can have P̃t ≈ P̃ (setting St = I), when
Ryat , Ωyt , Raat , Ωat are time-invariant, so that

P̃ = Raa (P̃ − P̃R
⊺

ya (RyaP̃R
⊺

ya + Ωy )
−1RyaP̃)R

⊺

aa + Ωa

is an equation, for which P̃ is a solution. This is so called discrete-time algebraic Riccati
equation. Replacing P̃t by P̃ is a standard approximation used in Kalman filtering. It produces
a steady-state filter (discussed, for example, in Simon; 2006).

Similar simplifications can be utilized in quasifilters based on some nonlinear and/or non-
Gaussian state-space models. Harvey (2013) propose to use this idea in DSC models.

Consider a simple case when the state variable is univariate. The transition equation is
given by

at = ω + δat−1 + σaηt ,

with independent standard normal innovations ηt . That is,

at | a1:t−1, y1:t−1 ∼ N (ω + δat−1,σ
2
a ).

The quasifilter recursions for such a model can be written as

ãt+1 = ω + δ (ãt + p̃tst ) for st = ∂ℓt/∂at ,

11



p̃t+1 = δ
2(p̃t − p̃

2
t Nt ) + σ

2
a ,

If Nt depends only on p̃t , that is, Nt = N (p̃t ), then the steady-state variance p̃ (if it exists) is a
solution to the following equation:

p̃ = δ2(p̃ − p̃2N (p̃)) + σ2
a .

Replacing p̃t by p̃ we obtain

ãt+1 = ω + δ (ãt + p̃st ).

In such amodel we can use p̃ rather thanσ2
a as a parameter to be estimated. Another possibility

is to estimate γ in
ãt+1 = ω + δãt + γst .

In particular, one can use this trick in the time-varying scale example above. It can be
readily seen that if one uses νt = ν , qt = 1 and I -scaling, then the result is equivalent to beta-
t-EGARCH model of Harvey and Chakravarty (2008) and Harvey (2013). A similar model is
used as an illustration of GAS in Creal et al. (2013). Note that in Tables 1 and 2 the case F is
indistinguishable from beta-t-EGARCH, because the recursions for the state variance quickly
converge to a steady-state value.

Even in the cases when P̃t would not converge to a steady-state value, it can be useful
to set P̃t = P̃ and thereby simplify the model by economizing on the number of recursive
equations.

One can use a known function to represent P̃ and estimate parameters of this function.
Using such function for quasifilter scaling can be calledC-scaling (which stands for “constant
scaling”). More generally, the use of scaling matrix P̃t which is a known function of t can be
also called, by extension, C-scaling. The main difference form I -scaling and H -scaling is that
C-scaling is not based on recursions.

4.6 C-scaling for time-varying level and seasonality model

Consider the following simple model of time-varying level and seasonality (withM seasons)

yt = µt + γt1 + σyϵt ,

µt = µt−1 + σµηµt ,

γt = Rγγγt−1 + σγηγt ,

Here µt represents the time-varying level andγt = (γt1, . . . ,γtM )
⊺

representsM seasonal com-
ponents. Matrix

Rγγ =

(

0
⊺

M−1
1

IM−1 0M−1

)

circularly permutes the seasonal components, so that the current season corresponds to the
first component. The error terms are independent, ϵt and ηµt are standard normal, while ηγt
is a zero-sum vector distributed as ηγt ∼ N (0M , IM −

1

M
1M×M ). If the sum of the seasonal

components is zero at t = 1, then the sum remains zero for all future periods t = 2, 3, . . . by
construction. We can further assume that in the first period γ̃t , which is the estimate ofγt , has
zero sum.

This model is linear Gaussian and can be readily estimated by the ordinary Kalman filter.
Table 3 shows the estimates for the logarithms of the monthly dairy products production in
Spain for the period 1980–2013. In this example the covariance matrix P̃t converges quickly
enough to a steady-state limit P̃. This observation suggests using C-scaling.
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Unfortunately, there seems to be no easy way to find the steady-state scaling matrix P̃

except for solving the corresponding Riccati equation, which is also not straightforward. Po-
tentiallyC-scaling can be implemented by estimating a (M + 1) × (M + 1) matrix P̃. However,
even after taking into account the necessary restrictions on P̃ we are left with too many un-
known parameters. This compares unfavorably with the original formulation, where there are
just two major transition parameters (σµ and σγ ).

According to the Kalman filter formulas, we have yt | y1:t−1 ∼ N (ỹt , F̃t ), where

ỹt = Ryaãt ,

F̃t = RyaP̃tR
⊺

ya + σ
2
y ,

Rya = (1, 1, 0
⊺

M−1).

The score vector for time t is given by

st = R
⊺

ya

1

F̃t
(yt − ỹt )

and thus the updating equation is

āt = ãt + P̃tst = ãt + P̃tR
⊺

ya

1

F̃t
(yt − ỹt ).

As P̃t converges to P̃, the vector of coefficients P̃tR
⊺

ya
1

F̃t
converges to

n = P̃R
⊺

ya

1

F̃
, F̃ = RyaP̃R

⊺

ya + σ
2
y .

Thus, with C-scaling we obtain
āt = ãt + (yt − ỹt )n.

We can estimate the elements of n, but this still gives too many unknown parameters for large
M .

A possible simplification is to set

P̃ = F̃

(

α 0
⊺

M

0M β
(

I − 1

M
1M×M

)

)

, F̃ = σ2
y /

(

1 − α −
(

1 −
1

M

)

β
)

,

which produces

n =

(

α ,
(

1 −
1

M

)

β ,−
1

M
β, . . . ,−

1

M
β

)
⊺

,

and estimate unknown α and β . The structure of this vector somewhat resembles the structure
of the original n. Figure 1 plots the values of n for the Spanish dairy products example. The
value of the first seasonal coefficient is large, while other seasonal coefficients are relatively
small. Moreover, the seasonal coefficients sum to zero. Otherwise the pattern is different,
because in the original n the small seasonal coefficients are described by some nonlinear curve.
Some of the coefficients are negative while other are positive and in general they are far from
being equal.

With this simplification the updating equations are as follows:

µ̄t = µ̃t + α (yt − ỹt ),

γ̄1t = γ̃1t +
(

1 −
1

M

)

β (yt − ỹt ),

γ̄jt = γ̃jt −
1

M
β (yt − ỹt ), j = 2, . . . ,M

13
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Figure 1: The elements of vector n for the Spanish dairy products example; (a) the original
limiting vector based on the Kalman filter; (b) estimated vectorwithC-scaling the equal-weight
simplification.

If
∑M
j=1 γ̃jt = 0, then

∑M
j=1 γ̄jt = 0. Thus the proposed simplification preserves the sum of

seasonal components to be zero. Such equal-weight “normalization” (method of keeping the
seasonality centered) is known from the exponential smoothing literature; see Archibald and
Koehler (2003) and references therein. See also paragraph 3.6.4 in Harvey (2013), where a
similar ad hoc device is suggested for DCS models.

Note that we have one seasonal variable for each season. One can further simplify the
model by reducing the number of seasonal variables. Define recursively a variable which
accumulates the terms required for correcting seasonality:

rt+1 = rt +
1

M
β (yt − ỹt ), r1 = 0,

and define uncorrected variables for the level and seasonality:

µ∗t = µ̃t − rt ,

γ ∗t = γ̃1t + rt .

These uncorrected variables can be described by the following recursions:

µ∗t+1 = µ
∗
t +

(

α −
1

M
β
)

(yt − ỹt ),

γ ∗t+M = γ
∗
t + β (yt − ỹt ).

Here we have only one uncorrected seasonal variable. See Archibald and Koehler (2003) for
a similar correction in an exponential smoothing model with time-varying level, trend and
seasonality (a modification of the additive Holt–Winters model).

Therefore, with the above ad hoc simplification of the vector of coefficients n, we ob-
tain recursions, which in essence represent a kind of additive exponential smoothing in the
Holt–Winters style. The links between exponential smoothing and state-space models have
long been recognized; cf. Harvey (2006). Interestingly, the quasifilter logic goes in a reverse
direction than the logic in Hyndman et al. (2008), a monograph specifically emphasizing the
links between two kinds of models. Hyndman et al. (2008) represent an exponential smoothing
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Table 3: Estimates for the time-varying level and seasonality model

Kalman filter simplified C-scaling
σy 0.032 (0.0018) σy 0.034 (0.0020)
σµ 0.013 (0.0017) α 0.246 (0.031)
σγ 0.0038 (0.00055) β 0.272 (0.043)

Max LL 673.0 Max LL 660.8
AIC −3.285 AIC −3.220
BIC −3.255 BIC −3.180

Note: The data used is themanufacture of dairy products in Spain reported
by Eurostat, 2010 = 100. Based on T = 408 monthly observations for the
period from 1980-01 to 2013-12. Standard errors in brackets.

model as a state-space model with single source of randomness (or “innovations state space
model”). Here we start from a state-space model with multiple sources of randomness and
obtain recursions driven by a single innovations series yt − ỹt , which can be viewed as a kind
of exponential smoothing.

Our conjecture is that many popular exponential smoothing models can be viewed as
quasifilter models. The quasifilter logic can be used to derive exponential smoothing mod-
els from more natural unobserved components models.

The results of estimation of two models on the Spanish dairy products series are shown
in Table 3. The initial state-space model estimated using the Kalman filter is characterized
by a considerably better fit, while the number of parameters of the two models are the same.
However, the internal state updating formulas for the quasifilter model with the simplified
C-scaling are much simpler. Thus, here we have a trade-off between model fit and simplicity.

5 A quasifilter for time-varying regression

Consider a time-varying regression model

yt = x
⊺

t βt + e
ht /2ϵt ,

(

βt
ht

) ����β1:t−1, h1:t−1, y1:t−1 ∼ N
((

βt−1
ht−1

)

,

(

Ωβt 0

0
⊺

ω2

ht

))

,

where ϵt is an independent identically distributed white noise series with unit variance, eht is
the time-varying error variance. Additional variables xt are assumed to be fixed for simplicity
(however, random exogenous variables or lags ofyt are not a problem). More generally one can
assume here a richer dynamics for the coefficients, replacing βt−1 in the role of the conditional
mean of βt by

Rβt +Rββtβt−1.

For example, one can “dampen” the dynamics of the regression coefficients by multiplying
them by coefficients, which are less than 1, and adding constants to the transition equations.

If the conditional distribution of at =

(

βt
ht

)

given previous history is multivariate normal,

(

βt
ht

) ����y1:t−1 ∼ N
((

β̃t
h̃t

)

,

(

P̃βt .

. p̃ht

))

(with dots replacing covariances, which are not important for our derivation), then the first
two conditional moments of yt are

Ẽt−1yt = x
⊺

t Ẽt−1βt + Ẽt−1e
ht /2

Ẽt−1ϵt = x
⊺

t β̃t

15



and

ṽart−1yt = Ẽt−1[(yt − x
⊺

t β̃t )
2] = Ẽt−1[(x

⊺

t (βt − β̃t ) + e
ht /2ϵt )

2]

= x
⊺

t Ẽt−1[(βt − β̃t ) (βt − β̃t )
⊺

]xt + 2x
⊺

t Ẽt−1[(βt − β̃t )e
ht /2]Ẽt−1ϵt + Ẽt−1e

ht
Ẽt−1ϵ

2
t

= eh̃t+p̃ht /2 + x
⊺

t P̃βtxt = c
2
t ,

where expectations are with respect to f◦(yt | at , y1:t−1)φ (at − ãt , P̃t ), e
h̃t+p̃ht /2 is the mean of

a log-normal variable eht and

ct =

√

eh̃t+p̃ht /2 + x
⊺

t P̃βtxt .

In a typical application ϵt would be normal or just symmetric and moderately leptokurtic.
If P̃t is block-diagonal between βt and ht , then the two components of the state vector are
conditionally independent. Then the conditional distribution of yt is symmetric around x

⊺

t β̃t
and conditionally leptokurtic since the conditional kurtosis of yt is given by

Ẽt−1[(x
⊺

t (βt − β̃t ) + e
ht /2ϵt )

4]

(eh̃t+p̃ht /2 + x
⊺

t P̃βtxt )
2

= 3 +
e2h̃t+p̃ht

(eh̃t+p̃ht /2 + x
⊺

t P̃βtxt )
2
(ep̃ht Ẽt−1[ϵt

4] − 3).

.
We approximate the conditional distribution of yt by the Student’s t distribution with ν

degrees of freedom, location x
⊺

t β̃t and scale Act , where A is some coefficient. The distribution

has variance ν
ν−2

A2c2t . To equate the variances, we could set A =
√

ν−2
ν
, but below a more

convenient choice of A is proposed.
Denote

Tt =
yt − x

⊺

t β̃t

Act
.

Here Tt has the ordinary Student’s distribution. The contribution to the log-likelihood is

ℓt = ln tden(Tt ,ν ) − ln ct − lnA,

where tden(·) is the Student’s t density, so that

ln tden(T ,ν ) = ln Γ
(

ν + 1

2

)

− ln Γ
(

ν

2

)

−
1

2
ln(πν ) −

ν + 1

2
ln

(

1 +
T 2

ν

)

.

The components of the corresponding score vector are

∂ℓt

∂β̃t
=

(ν + 1)Tt

ν +T 2
t

1

Act
xt ,

∂ℓt

∂h̃t
=

1

2

ν (T 2
t − 1)

ν +T 2
t

1

c2t
eh̃t+p̃ht /2.

In order to simplify the model we use I -scaling. The blocks of the information matrix are given
by

Iββt =
ν + 1

ν + 3

1

A2c2t
xtx

⊺

t , Iβht = 0, Ihht =
1

2

ν

ν + 3

1

c4t
e2h̃t+p̃ht ,

where we used that for a tν -distributed T

E

[
T 2

(ν +T 2)2

]
=

1

(ν + 1) (ν + 3)
, E

[
(T 2 − 1)2

(ν +T 2)2

]
=

2

ν (ν + 3)
.
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Due to the block-diagonality of the information matrix choosing P1 to be block-diagonal
leads to block-diagonality of Pt . This allows to simplify the quasi-filter recursions:

β̃t+1 = β̃t + P̃βt
(ν + 1)Tt

ν +T 2
t

1

Act
xt ,

P̃β ,t+1 = P̃βt − P̃βt Iββt P̃βt + Ωβ,t+1 = P̃βt −
ν + 1

ν + 3

1

A2
P̃βtxt

1

c2t
x
⊺

t P̃βt + Ωβ,t+1.

h̃t+1 = h̃t +
p̃ht

2

ν (T 2
t − 1)

ν +T 2
t

1

c2t
eh̃t+p̃ht /2,

p̃h,t+1 = p̃ht − p̃
2

ht Ihht + ω
2

h,t+1 = p̃ht −
1

2
p̃2ht

ν

ν + 3

1

c4t
e2h̃t+p̃ht + ω2

h,t+1.

One can take

A =

√

ν + 1

ν + 3

to simplify formulas and to ensure preservation of positive definiteness of P̃βt matrices. Then

P̃β ,t+1 = P̃βt − P̃βtxt
1

c2t
x
⊺

t P̃βt + Ωβ,t+1

or, in a more compact form,

P̃β,t+1 = (P̃−1
βt
+ e−h̃t−p̃ht /2xtx

⊺

t )
−1
+ Ωβ,t+1

and

β̃t+1 = β̃t +

√

(ν + 1) (ν + 3)Tt

ν +T 2
t

1

ct
P̃βtxt , where Tt =

√

ν + 3

ν + 1

yt − x
⊺

t β̃t

ct
.

Further simplification can be achieved by setting p̃ht = 2ρ, where ρ is a static parameter.
This gives

ct =

√

eh̃t+ρ + x
⊺

t P̃βtxt , Tt =

√

ν + 3

ν + 1

yt − x
⊺

t β̃t

ct
,

ℓt = ln tden(Tt ,ν ) − ln ct −
1

2
ln

(

ν + 1

ν + 3

)

,

h̃t+1 = h̃t + ρ
ν (T 2

t − 1)

ν +T 2
t

1

c2t
eh̃t+ρ,

P̃β,t+1 = P̃βt − P̃βtxt
1

c2t
x
⊺

t P̃βt + Ωβ,t+1,

and

β̃t+1 = β̃t +

√

(ν + 1) (ν + 3)Tt

ν +T 2
t

1

ct
P̃βtxt .
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6 State-quadratic updating approach

6.1 The general idea of state-quadratic updating

An alternative approach to the updating quasifiler step is based on a quadratic (second order)
expansion of the measurement log-density

λt (at ) = ln f◦(yt | at , y1:t−1)

treated as a function of the state vector at . The expansion is around the point at = ãt (which
already available at the updating step). It produces the following approximation:

λ∗t (at ) = λt (ãt ) + s̃
⊺

t (at − ãt ) −
1

2
(at − ãt )

⊺

Ñt (at − ãt ).

where
s̃t = ∇λt (ãt ), Ñt = −∇

2λt (ãt ).

One can use the expansion as a basis for a Gaussian approximation for f◦(at | y1:t ). The ap-
proximation provides close-form formulas suitable for use in a quasifilter.2

From λ∗t (at ) and f (at | y1:t−1) we can obtain f (at | y1:t ). By construction

ln f (at | y1:t−1) + λ∗t (at ) = ln f (at | y1:t ) + ℓt ,

where ℓt = ln f (yt | y1:t−1) and f (at | y1:t ) corresponds to N (āt , P̄t ). That is,

−
mt

2
ln(2π )−

1

2
ln |P̃t | −

1

2
(at − ãt )

⊺

P̃−1t (at − ãt )+λt (ãt )+ s̃
⊺

t (at − ãt )−
1

2
(at − ãt )

⊺

Ñt (at − ãt )

= −
mt

2
ln(2π ) −

1

2
ln |P̄t | −

1

2
(at − āt )

⊺

P̄−1t (at − āt ) + ℓt .

Equating the coefficients of the various powers of at we obtain

−
1

2
P̃−1t −

1

2
Ñt = −

1

2
P̄−1t ,

P̃−1t ãt + s̃t + Ñt ãt = P̄−1t āt ,

−
1

2
ln |P̃t | −

1

2
ã
⊺

t P̃
−1
t ãt + λt (ãt ) − s̃

⊺

t ãt −
1

2
ã
⊺

t Ñt ãt = −
1

2
ln |P̄t | −

1

2
ā
⊺

t P̄
−1
t āt + ℓt ,

which produces the following recursions

P̄t = (P̃−1t + Ñt )
−1,

āt = ãt + P̄t s̃t .

Here s̃t = ∇λt (ãt ) is the measurement score vector, corresponding to “the log-likelihood func-
tion” ℓ̃t = ln f◦(yt | at , y1:t−1) = λt (at ). This puts the resulting model in the score driven class
of models. However, here the “score” is different from the one used in basic quasifilters.

The approximation to the log-likelihood implied by this approach is given by

ℓt = λt (ãt ) +
1

2
ln |P̄t | −

1

2
ln |P̃t | +

1

2
s̃
⊺

t P̄t s̃t .

2Other state-quadratic approximations are possible, but they do not in general provide close-form formulas
(e.g. require numerical optimization).
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This quantity is in general unusable, since the approximation is usually poor and the implied
conditional density of yt does not integrate to one. The conclusion is that this alternative
approach can not be applied independently. One has to supplement state-quadratic quasi-
filter recursions with a suitable log-likelihood ℓt . Another reasonable possibility is a hybrid
approach, that is, combining scaling matrix updating from the state-quadratic approach with
state updating based on derivatives of the log-likelihood ℓt as in the basic approach. Which
approach is better to use for the state estimate updating is an open question.

For the time-varying scale example of subsection 4.2 with a standard normal ϵt we have

λt = −
1

2
ln(2π ) −

ht

2
−
1

2
e−hty2t ,

s̃t = λ
′
t (h̃t ) =

1

2
(e−h̃ty2t − 1),

Ñt = −λ
′′
t (h̃t ) =

1

2
e−h̃ty2t .

This gives the following updating step:

p̄t =

(

p̃−1t +
1

2
e−h̃ty2t

)−1

,

h̄t = h̃t +
p̄t

2
(e−h̃ty2t − 1).

6.2 I -scaling for state-quadratic updating

In addition to unusable log-likelihood, there is another problem with this approach, the same
one that we have with the basic quasifilter. In general one cannot hope that the Hessian matrix
of λt is negative definite at ãt . Thus Ñt is not in general positive semidefinite, which can result
in scaling matrices P̄t and P̃t which are not positive definite.

A crude amendment is to replace −∇2λt (at ) by its expected value, where expectation is
with respect to yt under the assumption that it is distributed according to f◦(yt | at , y1:t−1) =
exp(λt (at ; yt )) for at = ãt :

Ĩt (at ) = −

∫

∂2λt (at ; yt )

∂at∂a
⊺

t

exp(λt (at ; yt ))dyt ,

where the dependence of λt on yt has to be shown explicitly. Following analogy with the
method of maximum likelihood, this is the “information matrix” corresponding to “the log-
likelihood function” λt (at ), which we can call themeasurement information matrix. According
to the information identity themeasurement informationmatrix coincides with the covariance
matrix of the measurement score vector s̃t and thus is positive semi-definite:

Ĩt (at ) =

∫

∂λt (at ; yt )

∂at

∂λt (at ; yt )

∂a
⊺

t

exp(λt (at ; yt ))dyt .

The updating step for the covariance matrix is given by

P̄t = (P̃−1t + Ĩt )
−1, Ĩt = Ĩt (ãt ).

For the time-varying scale example ifyt ∼ N (0, eh̃t ), then E[12e
−h̃ty2t ] =

1

2
and the updating

step for the state variance simplifies to

p̄ht =
(

p̃−1ht +
1

2

)−1
=

2p̃ht
2 + p̃ht

.
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Table 4: State-quadratic and hybrid updating for time varying scale example

SV FTSE-100

G H I G H I

ω 0.0088 (0.0043) −0.0190 (0.0033) 0.0045 (0.0026) −0.0032 (0.0025) −0.0140 (0.0022) −0.0031 (0.0018)
δ 0.982 (0.0032) 0.979 (0.0032) 0.982 (0.0032) 0.987 (0.0028) 0.984 (0.0027) 0.986 (0.0030)
σh 0.199 (0.0146) 0.142 (0.0104) 0.197 (0.0118) 0.135 (0.0128) 0.100 (0.0089) 0.138 (0.0100)
ν 9.06 (1.0) 8.59 (0.9) 9.75 (1.1) 12.18 (1.4) 13.73 (1.9) 16.99 (3.0)

Max LL −9805.5 −9817.2 −9803.6 −9298.4 −9281.8 −9307.2
AIC 3.270 3.274 3.269 2.712 2.708 2.715
BIC 3.274 3.278 3.274 2.716 2.712 2.719

Note: Models G and H use state-quadratic updating andH -scaling (I -scaling). Model I uses hybrid updating
and H -scaling.
See the notes to Tables 1 and 2 for further explanation.

Table 4 explores the consequences of using different updating approaches for the time
varying scale example. (One can additionally consider a model based on hybrid updating and
I -scaling, but it almost coincides with model F above.) It can be seen that model fit depends
on the the data. It is not clear a priori, which model would be better for a given series.

In general Ĩt is not invertible. We can write it as Ĩt = VtWtV
⊺

t , where Wt is symmetric
positive definite. Then

P̄t = P̃t − P̃tVt (W
−1
t +V

⊺

t P̃tVt )
−1V

⊺

t P̃t . (3)

It can be seen that the formula is the same as that for the basic quasifilter (2) if we set

Nt = Vt (W
−1
t +V

⊺

t P̃tVt )
−1V

⊺

t .

6.3 State-quadratic updating for Gaussian nonlinear measurement

Similar to subsection 4.4 we assume that the measurement distribution is given by

yt | at , y1:t−1 ∼ N (gyt (at ),Ωyt ).

Thus the measurement log-density is

λt = lnφ (yt − gyt (at ),Ωyt ) = −
1

2
(yt − gyt (at ))

⊺

Ω
−1
yt (yt − gyt (at )) + const

and the corresponding measurement score at ãt is

s̃t = ∇λt (ãt ) = ∇gytΩ
−1
yt (yt − gyt ),

where gyt = gyt (ãt ), ∇gyt = ∇gyt (ãt ) = ∂g
⊺

yt (ãt )/∂ãt . The measurement information matrix
can be obtained as the conditional covariance matrix of the score vector:

Ĩt = ∇gytΩ
−1
yt ∇g

⊺

yt ,

Thus, the equations of the updating step are

P̄t = (P̃−1t + Ĩt )
−1
= (P̃−1t + ∇gytΩ

−1
yt ∇g

⊺

yt )
−1,

āt = ãt + P̄t s̃t = ãt + P̄t∇gytΩ
−1
yt (yt − gyt ).

Denoting Vt = ∇gyt andWt = Ω
−1
yt we obtain from (3) that

P̄t = P̃t − P̃t∇gyt (∇g
⊺

yt P̃t∇gyt + Ωyt )
−1∇g

⊺

yt P̃t .
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We can compare this result with the basic quasifilter in subsection 4.4. If we denote

Σyt = ∇g
⊺

yt P̃t∇gyt + Ωyt ,

then
P̄t = P̃t − P̃t∇gytΣ

−1
yt ∇g

⊺

yt P̃t .

The formula for āt can be rewritten in the same manner:

āt = ãt + P̃t∇gytΣ
−1
yt (yt − gyt ).

One can see from this that the state-quadratic approach leads to the extended Kalman filter
updating formulas. This is unlike the basic quasifilter approach, which does not lead to the
EKF updating formulas directly.

6.4 State-quadratic updating for time-varying regression

For the time-varying regression example of section 5 one can assume that ϵt = e
−ht /2(yt−x

⊺

t βt )

has the Student’s t distribution with κ degrees of freedom standardized to have unit variance,
that is

√

κ

κ − 2
ϵt ∼ tκ ,

where tκ is the ordinary t distribution. The corresponding measurement log-density is given
by

λt = ln tden

(
√

κ

κ − 2
ϵt ,κ

)

−
1

2
ln

(

κ

κ − 2

)

−
ht

2

or

λt = ln Γ
(

κ + 1

2

)

− ln Γ
(

κ

2

)

−
1

2
ln(2π (κ − 2)) −

κ + 1

2
ln

(

1 +
1

κ − 2
ϵ2t

)

−
ht

2
,

with the measurement score

s̃t = ∇λt =
*.,
(κ + 1) ϵt

κ−2+ϵ2t
e−ht /2xt

1

2
(κ + 1)

ϵ2t
κ−2+ϵ2t

− 1

2

+/- =
*.,
(κ + 1) ϵt

κ−2+ϵ2t
e−ht /2xt

1

2

κϵ2t −κ+2

κ−2+ϵ2t

+/-
and the measurement information matrix

Ĩt = *,
κ (κ+1)

(κ−2) (κ+3)
e−h̃txtx

⊺

t 0

0
⊺ 1

2

κ
κ+3

+- .
This produces

Vt =

(

xt 0

0 1

)

, Wt =
*,

κ (κ+1)
(κ−2) (κ+3)

e−h̃t 0

0 1

2

κ
κ+3

+- ,
suitable for (3). Restricting scaling matrices to be block-diagonal, that is,

P̃t = diag(P̃βt , p̃ht )

we obtain

W−1
t +V

⊺

t P̃tVt =
*,
(κ−2) (κ+3)
κ (κ+1)

eh̃t + x
⊺

t P̃βtxt 0

0 2κ+3
κ
+ p̃ht

+- ,

Nt = Vt (W
−1
t +V

⊺

t P̃tVt )
−1V

⊺

t =
*.,
(

(κ−2) (κ+3)
κ (κ+1)

eh̃t + x
⊺

t P̃βtxt
)−1

xtx
⊺

t 0

0
⊺

(

2κ+3
κ
+ p̃ht

)−1
+/- .
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This gives the following quasifilter updating formulas:

c̃t =

√

(κ − 2) (κ + 3)

κ (κ + 1)
eh̃t + x

⊺

t P̃βtxt ,

P̄βt = P̃βt − P̃βtxt c̃
−2
t x

⊺

t P̃βt ,

p̄ht = p̃ht −

(

2
κ + 3

κ
+ p̃ht

)−1

p̃2ht = p̃ht

(

1 +
κ

κ + 3

p̃ht

2

)−1

,

ϵ̃t = e
−h̃t /2(yt − x

⊺

t β̃t ),

β̄t = β̃t + (κ + 1)
ϵ̃t

κ − 2 + ϵ̃2t
e−h̃t /2P̄βtxt ,

which can be rewritten as

β̄t = β̃t +
(κ − 2) (κ + 3)

κ

ϵ̃t

κ − 2 + ϵ̃2t

eh̃t /2

c̃2t
P̃βtxt ,

and

h̄t = h̃t +
p̄ht

2

κϵ̃2t − κ + 2

κ − 2 + ϵ̃2t
.

Further, we can fix p̄ht = 2ρ̄, which gives

h̄t = h̃t + ρ̄
κϵ̃2t − κ + 2

κ − 2 + ϵ̃2t
.

State-quadratic approach does not provide a valid likelihood function. Thus, these formu-
las should be complemented by a formulation of the likelihood function. Here we can utilize
the likelihood function from the basic quasifilter of section 5. The log-likelihood is

ℓt = ln tden(Tt ,ν ) − ln ct − lnA,

where

ct =

√

eh̃t+p̃ht /2 + x
⊺

t P̃βtxt

and

Tt =
yt − x

⊺

t β̃t

Act
.

In section 5 the coefficientAwas chosen in a way which preserves positive definiteness of the

scaling matrices. Here we can instead set A =
√

ν−2
ν
, to equate variances and provide a closer

correspondence between ℓt and ℓ♯t .
Note that state-quadratic quasifilter introduces an additional parameter, κ, compared to

the basic quasifilter. This makes the models obtained by state-quadratic approach less parsi-
monious in terms of the number of parameters. This drawback can be potentially offset by
a better model fit. There is also a possibility to fix κ. A natural choice is κ = +∞, which
corresponds to the Gaussian underlying regression errors.
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7 Example: A seasonal time-varying autoregression

Consider a first-order autoregressive model with deterministic seasonality:

yt = µ + d
⊺

t γ + φyt−1 + σϵt , var(ϵt ) = 1. (4)

IfM is the number of seasons, then γ is a vector of seasonal coefficients, which is constrained
to have zero mean, and dt is a seasonal dummy vector, which is zero except for a unit corre-
sponding to the current season. A time-varying modification of this model assumes that all
parameters follow Gaussian random walks (with a special covariance matrix for seasonality).

yt = µt + d
⊺

t γt + φtyt−1 + e
ht /2ϵt , var(ϵt ) = 1. (5)

Time-varying parameter µt can be interpreted as the level correction for yt , φt as the persis-
tence ofyt , ht as the short-run volatility, whileγt are the seasonal factors, one for each season.
Note that unlike the models of section 4.6 the seasonal factors are not circularly permuted.
A specific feature of this extended model is that the persistence of the process is subject to
variation, which introduces long-memory effects.

It can be seen that the extended model is a time-varying regression model with

xt =
*.,

1
dt
yt−1

+/- , βt =
*.,
µt
γt
φt

+/- .
We assume that the covariance matrix of the disturbances corresponding to the transition

equation for the regression coefficients is block-diagonal:

Ωβt = Ωβ = diag
(

σ2
µ ,σ

2
γ (IM −

1

M
1M1

⊺

M ),σ
2
φ

)

.

The block for seasonality ensures that seasonality remains centered. The transition distribu-
tion for the volatility variable has constant varianceω2

ht
= σ2

h
. The coefficients of the transition

equation are
Rat = 0, Raat = I.

Other specifications follow section 5 and subsection 6.4. .
The empirical example is based on the U.S. monthly CPI inflation series for the period from

1913-01 to 2014-11. The series is rather long. It covers periods with very different macroeco-
nomic conditions and the initial fixed coefficients model (4) demonstrates poor fit to the data.
The residuals are characterized by large autocorrelation and changing volatility. Experiments
with rolling estimation show that the estimated parameters vary widely. This can be explained
by time variation of the coefficients, which suggests using the time-varying model (5). A simi-
lar time-varying AR model of inflation was suggested in Evans (1991).3 Amore general model
(time-varying VAR) was used in Cogley and Sargent (2005) to describe the joint dynamics of
inflation, unemployment, and interest rates.

Here we replace the initial unobserved components model by the quasifilters considered
in section 5 and subsection 6.4. The quasifilter approach greatly simplifies computation of
the likelihood function compared to the parent nonlinear non-Gaussian state-space model.
Table 5 shows the results. Although the state-quadratic approach produces a model with an
additional parameter, it outperforms the model obtained from the basic quasifilter in terms of
information criteria.

3In Evans (1991) Kalman filter innovations were used inside ARCH.
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Table 5: Seasonal time-varying autoregression for the U.S. inflation.

basic state-quad. hybrid

σµ 0.015 (0.0059) 0.016 (0.0054) 0.018 (0.0067)
σγ 0.0073 (0.0011) 0.0077 (0.0012) 0.0087 (0.0019)
σφ 0.041 (0.0082) 0.043 (0.0088) 0.050 (0.0140)
σh 0.158 (0.0282) 0.131 (0.0265) 0.153 (0.0288)
ν 6.66 (1.0) 4.06 (0.3) 6.60 (1.0)
κ — 18.62 (7.9) 3.29 (1.4)

Max LL −542.1 −537.0 −542.5
AIC 0.895 0.889 0.898
BIC 0.916 0.914 0.923

Note: The data is Consumer Price Index for All Urban Con-
sumers, all items, not seasonally adjusted for the period from
1913-01 to 2014-11 (1222 monthly observations). The inflation
series was obtained as yt = ∆ ln(CPIt ) · 100. Standard errors
in brackets

8 Mildly nonlinear and/or non-Gaussian transition

8.1 The general case

We impose a requirement that f◦(at | at−1, y1:t−1) is nonlinear and/or non-Gaussian so that

f◦(at | at−1, y1:t−1)q(at−1)

is a unimodal (strictly quasiconcave) density of at and at−1 for any multivariate Gaussian
density q(at−1). Moreover, we assume that a closed-form formula is available for the mode.

Suppose that we have f (at−1 | y1:t−1) which is an approximation of f◦(at−1 | y1:t−1) from
the previous period in the form of a Gaussian density corresponding to N (āt−1, P̄t−1). We
want to find an approximation to f◦(at | y1:t−1) as a density corresponding to N (ãt , P̃t ).

Assume that (ãt , ăt−1) is the mode of f◦(at | at−1, y1:t−1)φ (at−1 − āt−1, P̄t−1). For a typ-
ical transition density (for example, at | at−1, y1:t−1 ∼ N (gat (at−1),Ωat )) we have that
maxat f◦(at | at−1, y1:t−1) does not depend on at−1 and thus ăt−1 maximizes f (at−1 | y1:t−1),
which gives just ăt−1 = āt−1.

Denote

γat (at , at−1) = ln f◦(at | at−1, y1:t−1) + lnφ (at−1 − āt−1, P̄t−1)

= ln f◦(at | at−1, y1:t−1) −
mt−1

2
ln(2π ) −

1

2
ln |P̄t−1 | −

1

2
(at−1 − āt−1)

⊺

P̄−1t−1(at−1 − āt−1)

Then (ãt , ăt−1) maximizes γat (at , at−1). In the spirit of the Laplace’s method of integration γat
can be approximated up to a constant term by a log-density of the Gaussian distribution with
the mean (ãt , ăt−1) and the covariance matrix equal to the negated inverted Hessian matrix
∇2γat (ãt , ăt−1). Denote

Mijt = −
d2 ln f◦(at | at−1, y1:t−1)

dat−ida
⊺

t−j

������at=ãt ,at−1=ăt−1 .
Then

−∇2γat (ãt , ăt−1) =

(

M00t M01t

M
⊺

01t
M11t + P̄

−1
t−1

)

.

The upper left block of its inverse is given by

P̃t = (M00t −M01t (M11t + P̄
−1
t−1)

−1M
⊺

01t )
−1,

which provides the covariance matrix for f (at | y1:t−1) = φ (at − ãt , P̃t ).
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8.2 Prediction step for the case of a Gaussian transition equation

Suppose that

at | at−1, y1:t−1 ∼ N (gat (at−1),Ωat ).

Then

ln f◦(at | at−1, y1:t−1) = −
1

2
(at − gat (at−1))

⊺

Ω
−1
at (at − gat (at−1)) + const.

For this transition density we have ãt = gat (āt−1).
For ∇g̃at = ∇gat (ãt−1), ăt−1 = āt−1

M00t = −
d2 ln f◦(at | at−1, y1:t−1)

datda
⊺

t

�����at=ãt ,at−1=ăt−1 = Ω
−1
at ,

M01t = −
d2 ln f◦(at | at−1, y1:t−1)

datda
⊺

t−1

�����at=ãt ,at−1=ăt−1 = −Ω
−1
at ∇g̃at ,

M11t = −
d2 ln f◦(at | at−1, y1:t−1)

dat−1da
⊺

t−1

�����at=ãt ,at−1=ăt−1 = ∇g̃
⊺

atΩ
−1
at ∇g̃at .

This produces

P̃t = (Ω−1at − Ω
−1
at ∇g̃at (∇g̃

⊺

atΩ
−1
at ∇g̃at + P̄

−1
t−1)

−1∇g̃
⊺

atΩ
−1
at )
−1

or
P̃t = ∇g̃at P̄t−1∇g̃

⊺

at + Ωat ,

which together with ãt = gat (āt−1) comprise the well-known prediction step of the extended
Kalman filter.

9 Conclusions and discussion

Quasifilter can be parsimonious in terms of the number of parameters, but the recursions
for the underlying components are usually not so simple. Various devices can be employed
to make the dynamics of the underlying components simpler. If this leads to a noticeable
deterioration of model fit, then one has to make a choice between simplicity and empirical
performance.

In general the estimates of the parameters of the derived model would be inconsistent for
the parameters of processes described by the parent model. However, there is no problem in
this observation. After derivation of a quasifilter one can forget about the parent model and go
on with the result. However, even though there is no necessity in this, potentially it could be
interesting and illuminating to demonstrate that a quasifilter model is a close approximation
to the parent unobserved component model.

There is also a related aspect, that a quasifilter model it is not meant to produce estimates
of latent processes. Exact or approximate filters and smoothers corresponding to unobserved
component models do produce such estimates. For example, in technical applications filtering
can be used to predict a position of some moving object given some noisy and/or indirect
information on this position. In economic applications smoothing can be used to extract some
imaginary component of a time series such as seasonality or trend. By definition quasifilter is
not an approximate filter, but a stand-alone model. Thus, its observable underlying variables
are part of model description rather than estimates of something latent.
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The quasifilter techniques are of heuristic nature and are not based on a comprehensive
theory. Nevertheless, they are useful for formulation of new kinds of dynamic models. The
historical development of somewell-known time series models demonstrate this. In particular,
the history of ARCH model and its numerous extensions suggests that adoption of a new
model can be stimulated by good empirical properties, while firm theoretical foundations can
be provided by further research. This second stage of model exploration can include proving
consistency and efficiency of the MLE estimates, etc., but the most important substantiation
of a model is provided by its good empirical performance.
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Appendix

Proof of Proposition 1. Under regularity conditions allowing interchanging the order of inte-
gration and differentiation the gradient of ℓ♯t = ln f♯ (yt | y1:t−1) (the score vector) at ãt is given
by

s♯t = ∇ℓ♯t (ãt ) =
∂ℓ♯t (ãt )

∂ãt
=

1

f♯ (yt | y1:t−1)

d f♯ (yt | y1:t−1)

d ãt

=

1

f♯ (yt | y1:t−1)

∫

f◦(yt | at , y1:t−1)
dφ (at − ãt , P̃t )

d ãt
dat .

The derivative of the Gaussian density can be written as

dφ (at − ãt , P̃t )

d ãt
= φ (at − ãt , P̃t )P̃

−1
t (at − ãt ).

Consequently,

s♯t =
1

f♯ (yt | y1:t−1)
P̃−1t

∫

f◦(yt | at , y1:t−1)φ (at − ãt , P̃t ) (at − ãt )dat

= P̃−1t

∫

f♯ (at | y1:t ) (at − ãt )dat = P̃−1t

(

∫

f♯ (at | y1:t )atdat − ãt

)

or
s♯t = ∇ℓ♯t (ãt ) = P̃−1t (E♯t at − ãt ),

which gives

E♯t at − ãt = P̃ts♯t .

Similarly consider the negated Hessian matrix of ℓ♯t at ãt

N♯t = −∇
2ℓ♯t (ãt ) = −

∂2ℓ♯t (ãt )

∂ãt∂ã
⊺

t

= −
d

d ã
⊺

t

(

1

f♯ (yt | y1:t−1)

d f♯ (yt | y1:t−1)

d ãt

)

=

1

f♯ (yt | y1:t−1)
2

d f♯ (yt | y1:t−1)

d ãt

d f♯ (yt | y1:t−1)

d ã
⊺

t

−
1

f♯ (yt | y1:t−1)

d2 f♯ (yt | y1:t−1)

d ãtd ã
⊺

t

= s♯ts
⊺

♯t
−

1

f♯ (yt | y1:t−1)

∫

f◦(yt | at , y1:t−1)
d2φ (at − ãt , P̃t )

d ãtd ã
⊺

t

dat .

Here

d2φ (at − ãt , P̃t )

d ãtd ã
⊺

t

= −φ (at − ãt , P̃t )P̃
−1
t + φ (at − ãt , P̃t )P̃

−1
t (at − ãt ) (at − ãt )

⊺

P̃−1t .

Thus,

N♯t = s♯ts
⊺

♯t
−

1

f♯ (yt | y1:t−1)

∫

f◦(yt | at , y1:t−1)
d2φ (at − ãt , P̃t )

d ãtd ã
⊺

t

dat

= s♯ts
⊺

♯t
−

∫

[−P̃−1t + P̃
−1
t (at − ãt ) (at − ãt )

⊺

P̃−1t ]f♯ (at | y1:t )dat

= s♯ts
⊺

♯t
+ P̃−1t − P̃

−1
t E♯t [(at − ãt ) (at − ãt )

⊺

]P̃−1t .
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Note that

var♯t at = E♯t [(at − E♯t at ) (at − E♯t at )
⊺

]

= E♯t [(at − ãt ) (at − ãt )
⊺

] − 2E♯t [(at − ãt ) (E♯t at − ãt )
⊺

] + E♯t [(E♯t at − ãt ) (E♯t at − ãt )
⊺

]

= E♯t [(at − ãt ) (at − ãt )
⊺

] − (E♯t at − ãt ) (E♯t at − ãt )
⊺

= E♯t [(at − ãt ) (at − ãt )
⊺

] − P̃ts♯ts
⊺

♯t
P̃t ,

and thus
N♯t = s♯ts

⊺

♯t
+ P̃−1t − P̃

−1
t

(

var♯t at + P̃ts♯ts
⊺

♯t
P̃t

)

P̃−1t

or
N♯t = P̃−1t − P̃

−1
t var♯t at P̃

−1
t .
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