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Abstract 

In this paper, I use the Solow (1956) model to examine the impact of water pollution on per 

worker output. I use data from New Zealand. I use an autoregressive distributed lag model that 

accounts for endogeneity. I also employ the Granger causality tests to examine the direction of 

causality between water pollution and per worker output. The findings indicates that water 

pollution affects the level of output per worker. This implies that a tightened pollution policy 

may have short-run impacts rather than the long-run.  
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1. Introduction  

How should we analyze the impact of pollution on economic activity? Many empirical 

researchers have answered this question by utilizing the well known model, so called 

Environmental Kuznets Curve (EKC). In a classic study, Grossman and Krueger (1995) 

highlighted the existence of an inverted U-shaped relationship between several pollutants and per 

capita income. According to them, the environmental quality initially deteriorates, but once 

countries reach a given income level, environmental degradation tends to decline. Panayotou 

(1993) called this relationship EKC because of its similarity with the relationship between 

income level and inequality in income distribution suggested by Kuznets (1955). However, the 

EKC model has been widely criticised on theoretical and empirical grounds, for instance see 

Harbaugh et al. (2002), Millimet et al. (2003), Perman and Stern (2003) and Stern and Common 

(2001). Some argue that the EKC is basically too optimistic.2 Recently, Stern (2004) and 

Copeland and Taylor (2004) found that the theoretical and empirical works does not support 

EKC hypothesis when structural factors intervene. Consequently, Stern (2005) re-formulated the 

EKC as the best practice technology frontier.3 His results show that with the exception of 

Australia, countries are converging toward the frontier but have settled into low pollution 

abatement and high pollution abatement groups.  

                                                           
2 It is argued that over time with globalisation impacts, the curve will rise to a horizontal line at maximum existing 

pollution levels. This implies that the poor countries will become pollution havens while the advanced countries face 

decline in the environmental standards. For more details, see Dasgupta et al. (2004). 

3 He used the Kalman filter to model the state of sulphur-emissions abatement technology in a panel of 15 developed 

countries. The results are used to determine whether and how fast countries are converging to best practice 

throughout time and what variables affect the level of technology adopted. 
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In this paper, I use the Solow (1956) model to estimate the impact of water pollution on 

per worker output for New Zealand. Solow (1956 & 1957) proposed the neoclassical growth 

model in which the factor accumulation can only explain about half the variations in the growth 

rate. What remains, known as the Solow residual, is attributed to the growth in technical progress 

or total factor productivity (TFP). Solow growth model implies that the long run growth rate of 

an economy depends on the rate of technical progress or TFP. However, it is not known what 

factors determine TFP and for this reason the Solow growth model is known as the exogenous 

growth model (EXGM). Subsequently, various frameworks have been developed to understand 

the determinants of TFP. In an interesting study, Mankiw, Romer and Weil (1992) have 

extended the Solow model by integrating an explicit process of human capital accumulation. It 

has been observed that human capital has only permanent level effects on per worker output and 

no permanent growth effects. Lately, endogenous growth models of Romer (1986), Lucas (1988) 

and Barro (1991, 1999) have also attempted to explain the key determinants of growth.  

Recently more attempts have been made to utilize the growth models to examine the 

impact of pollution on economic growth, for instance see, Bovenberg and Smulders (1995), Pittel 

(2002), Brock and Taylor (2005) and Kalaitzidakis et al. (2007). Kalaitzidakis et al. (2007) 

examined the relationship between TFP growth and pollution using a semi-parametric smooth 

coefficient model for a range of OECD countries for the period 1981-1998. Their findings imply 

that there exist a nonlinear relationship between pollution and economic growth as captured by 

TFP. Tzouvelekas et al. (2006) estimated the contribution of pollution to the growth of real per 

capita output for a panel of 23 OECD countries for the period 1965-1990. They find that the use 

of the environment approximated by CO2 emissions contributes to the growth of output, and its 

contribution should be accounted for in TFP measurements. Chimeli and Braden (2005) 
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examined the link between TFP and the environmental Kuznets curve. They derive a U-shaped 

response of environmental quality to variations in TFP. 

To the best my knowledge, there is no study that has examined the impact of water 

pollution on economic growth for New Zealand. Therefore, this paper may attempt to fill this 

gap in this literature. The layout of this paper is as follows: Section 2 provides a brief overview 

of water pollution in New Zealand. Section 3 and 4, respectively, details the model and empirical 

results. Section 5 provides the conclusion.  

  

2. Water Pollution in New Zealand 

 

The main sources of water pollution in New Zealand are industry, towns, livestock farming and 

human waste disposal. Until the 1970s, the major cause of water pollution was the discharge of 

poorly treated sewage, stock effluent and wastes from primary and other industries. However, 

water quality improved dramatically following the upgrade in wastewater treatment systems and 

introduction of the government regulations such as Water and Soil Conservation Act 1967 and 

the Resource Management Act 1991. The industry based water pollution in New Zealand is 

related to chemical industry (CI), clay and glass industry (CG), food industry (FI), metal industry 

(MI), paper and pulp industry (PPI), textile industry (TI), wood industry (WI) and other 

industries (OI). This disaggregated data refers to emissions from manufacturing and production 

activities. These are measured as a percentage of total water pollution. Figure 1 show the trends 

in the sources of water pollution in New Zealand. 
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 Figure 1. Sources of Water Pollution 

 

 

Basically food and other industries have contributed between 25-30 percent of water 

pollution and these have been identified as the most serious freshwater management challenge in 

New Zealand today. While water pollution caused by clay and glass and metal industries is less 

than 5%, majority of the industries such as paper and pulp, chemical, textile and wood industries 

contribute between 5-15 percent.  In light of the trends in the water pollution, we argue that 

water pollution imposes a real cost on the society and economic growth. Therefore improving the 

water quality for future generations is important for New Zealand. Most importantly, detailed 

empirical study is required to examine how water pollution affects the long run growth and how 

policy makers could adopt appropriate policies to curtail pollution. 
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3. An Empirical Model  

There are a few alternative methods of extending the Solow (1956) model for estimation 

with the country specific time series data. Recently, Brock and Taylor (2010) developed a new 

framework to examine the relationship between economic growth and environmental outcomes 

in which the Solow model is amended to incorporate technological progress in abatement. They 

argued that the EKC is a necessary by product of convergence to sustainable growth path. 

However, their framework is potentially useful in a cross-section or panel data study. In our 

view, country specific time series studies are useful to estimate country specific steady state 

growth rates (SSGRs) and to identify the positive and negative externalities that affect the SSGR.  

I suggest a simple extension to the Solow model and this is limited to analysing only the 

effects of externalities on output. If water pollution is treated as a negative externality, then it can 

have a detrimental impact on TFP and the long run growth.  Therefore it is useful to investigate 

whether this externality produces short-run or long-run effects on output so that policy makers 

can adopt appropriate policies to reduce its impact.  

I may treat water pollution as a growth reducing variable. Let the Cobb Douglas 

production function with constant returns and Hicks-neutral technical progress be 

 

=      0< <1                   (1)
t t t

y Tech k   
   

 

where y = per worker output, Tech = stock of technology and k = per worker capital stock. It is 

well known that SSGR in the Solow model equals the rate of growth of Tech. It is common in the 

Solow model to assume that the evolution of technology is given by: 
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=                                      (2)gT

t
Tech Teche  

 

where 
0Tech  is the initial stock of knowledge and the time trend is expressed as T.  Therefore, the 

steady state growth of output per worker equals g. 

The production function is estimated by taking into account that the variables are 

generally non-stationary in levels and stationary in their first differences. Therefore, some 

researchers use specifications based on the error correction models (ECM). I may employ the 

widely used autoregressive distributed lag (ADL) specification taking account of the constant 

returns Cobb-Douglas production function with the Hicks neutral technical progress: 

 

1 1

1 2

0 1

ln [ln ( ln )]

ln ln                  (3)

t t t

n n

i t i i t i

i i

y y Tech gT k

k y

  

 
 

     

     
 

 

where λ is the speed of adjustment to equilibrium. The coefficient of trend (g) captures the rate of 

technical progress. Note that equation (3) serves as the baseline equation without the negative 

externality viz., water pollution. 

Next, I introduce water pollution (WP henceforth) as a shift variable into the production 

function. According to Brock (1973), environmental damage created by pollution affects 

economic growth and therefore environment should be used as an unpaid factor input. 

Consequently, the use of environment in the production process can be captured by introducing 

pollution as an input in the production function. This can be justified by assuming that  

 

=                                            (4)gT β
t t

Tech Teche WP      



8 

 

The shift variables are introduced into the specification with the implicit assumption that 

they affect the level of output. However, if I assume that water pollution simply shifts the 

production function, then it can be introduced into (3): 

 

1 1 1

1 2 3

0 1 0

ln [ln ( ln ln )]

ln ln ln               (5) 

                                                                         

t t t t

n n n

i t i i t i i t i

i i i

y y Tech gT WP k

k y WP

    

  
  

      

           

Now I suggest a simple empirical specification that tests whether WP affects the growth 

rate of output. If WP affects the growth rate of output, then it should affect the magnitude of g in 

equation (2).  

 

1 1 2 1 1

1 2 3

0 1 0

ln [ln ( ( ln ) ln )]

ln ln  ln                (6) 

                                                                          

t t t t

n n n

i t i i t i i t i

i i i

y y Tech g g WP T k

k y WP

   

  
  

      

           

where g1 captures the growth effects of trended but ignored variables. g2 is an estimate of the 

growth effects of WP.  

 

4. Results 

Unit Root Tests  

I test the time series properties of y, k, and WP with the Augmented Dicky-Fuller (ADF) 

and Elliot-Rothenberg-Stock (ERS) tests.4  The tests indicate that the level variables are I(1) and 

their first differences are I(0). I used the annual data for New Zealand over the period 1979-2008. 

                                                           
4 The unit root test results are not reported to conserve space. 
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Data is obtained from the International Financial Statistics (2010) and World Development 

Indicators (2010). Definitions of the variables are provided in the Appendix. 

 

ADL Estimates 

I use the ADL procedure to estimate the economic growth and pollution relationship. 

This is done within a nonlinear least squares framework. This technique minimises endogeneity 

bias and also performs parameter restrictions. I did not use other time series techniques such as 

Stock and Watson’s (1993) dynamic ordinary least squares, Phillip and Hansen’s (1990) fully 

modified ordinary least squares and Johansen’s (1988) maximum likelihood because these 

techniques are inconvenient when utilizing the parameter restrictions. It is well known that ADL 

estimates I(0) and I(1) variables together and if the I(1) variables are cointegrated then their 

linear combination is I(0).  

The output per worker growth equations were estimated with a lag structure of 3 periods. 

This optimal lag length was selected by Hendry and Krolzig’s (2001) automated general to 

specific modeling program.5 The estimated general dynamic equations were later reduced to 

manageable optimal versions as reported in Table 1. Column (1) provides estimates of the 

baseline equation without water pollution. Columns (2) and (4) present the estimates of equations 

(5) and (6), respectively. The Ericsson and McKinnon (2002) (EM) cointegration test showed 

that the null of no cointegration can be rejected at the 5% level for all equations. The EM test 

statistics are absolute t-statistics of λ. Interestingly, the EM test statistics exceeds the sample size 

adjusted absolute critical values at 5% level.6  This implies that there exists a unique 

cointegrating relationship between the variables in the respective equations. 

                                                           
5 This automated software searches for the optimal dynamic lag structure by minimizing the path dependency bias. 

6 The EM cointegration test results are not reported to conserve space. 
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Table 1. ADL Estimates of the Effects of Water Pollution on Economic Growth 

(Dependent Variable: ∆lnyt) 

Variables  (1) (2) (3) (4) (5) 

Intercept 

 

4.782 

(2.36)* 

7.072 

(3.00)* 

1.277 

(3.27)* 

2.355 

(2.06)* 

2.036 

(2.34)* 

λ -0.387 

(6.27)* 

-0.401 

(5.37)* 

-0.365 

(5.43)* 

-0.317 

(4.76)* 

-0.319 

(4.80)* 

 

g 

0.042 

(6.09)* 

0.016 

(4.06)* 

0.059 

(4.38)* 

  

α 0.307 

(4.37)* 

0.319 

(2.46)* 

0.333 

(c) 

0.305 

(3.12)* 

0.333 

(c) 

β  -0.006 

(3.02)* 

-0.005 

(3.21)* 

  

g1    0.012 

(4.55)* 

0.008 

(3.89)* 

g2    -0.002 

(0.64) 

-0.001 

(0.23) 

∆lnyt-1   1.268 

(2.06)* 

0.475 

(1.88)** 

0.236 

(1.69)** 

∆lnyt-3 3.276 

(3.21)* 

1.203 

(3.24)* 

0.975 

(1.97)* 

  

∆lnkt 0.367 

(2.35)* 

  1.236 

(2.37)* 

1.754 

(2.68)* 

∆lnkt-2   0.846 

(2.64)* 

1.267 

(4.32)* 

 

∆lnkt-2 1.002 

(2.64)* 

0.284 

(2.88)* 

  0.673 

(1.75)** 

∆lnWPt  -0.013 

(1.98)* 

-0.165 

(2.48)* 

  

∆lnWPt-1   -0.007 

(3.45)* 

-0.014 

(1.70)** 

-0.007 

(1.84)** 
__

2
R

 0.713 0.718 0.720 0.717 0.686 

SEE 0.025 0.024 0.024 0.024 0.027 
Notes: Absolute t-ratios are in the brackets below the coefficients. Significance at 5% and 10% level, respectively, denoted by * 

and **. (c) denotes the restricted or constraint estimate. λ  is the speed of adjustment to equilibrium. 

 

The estimated profit share of output (α) is around 0.3 and significant at 5% level. The 

estimate of β in column (2) implies that negative externality due to water pollution is significant 

at the 5% level and implies an impact on the level of per worker output. This finding 

corroborates with the estimates of column (3) where the profit share of output is restricted to the 

stylized value of  one third. However, when I estimated for the growth effects, the estimates of 

the growth effects of water pollution (g2) is insignificant at conventional levels; see columns (4). 

The same finding is achieved when we restricted the profit share of output to the stylized value 
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of one third; see column (5). Further the growth effects of trended and ignored variables (g1) 

seem to be significant.  These empirical findings suggest that negative externality due to water 

pollution affects the level of output per worker and not its growth rate. This indicates water 

pollution may not be a long-run dilemma. 

The speed of adjustment to equilibrium (λ) has the expected negative sign. This implies 

the negative feedback mechanism. The results are free from serial correlation, misspecification, 

non-normality and heteroscedasticity issues.  

 

Granger Causality 

The existence of a long run relationship among per worker output, water pollution and 

per worker capital advocates that there must be Granger causality in at least one direction. To 

identify the direction of temporal causality we apply the Granger causality tests for both short 

and long run situations. Evidence of a cointegrating relationship implies that the Granger 

causality model should be augmented with a one period lagged error correction term; hence the 

following models are to be estimated:7 

 

1 1 1 1 1 1

1 1 1

ln ln ln ln
n n n

t i t i t i t t t

i i i

y y k WP ECT        
  

                                (7) 

1 1 1 2 1 2

1 1 1

ln ln ln ln
n n n

t i t t i t t t

i i i

WP WP k y ECT        
  

                                (8) 

1 1 1 3 1 3

1 1 1

ln ln ln ln
n n n

t i t i t i t t t

i i i

k k y WP ECT        
  

                                (9) 

  

 

                                                           
7  Engle and Granger (1987) provide a comprehensive discussion of Granger causality tests. 
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where the lagged error correction term derived from the long run cointegrating relationship is 

represented by 
1t

ECT  .  The serially independent random errors are 
1t
 2t

 and 
3t
 which have 

zero means and finite covariance matrices. Causality results are obtained by regressing the 

respective dependent variables against past values of both itself and other variables, the Schwarz 

Bayesian Criterion (SBC) is employed to select the optimal lag, n, and 2
  statistics from the 

causality results are used to identify rejection of the null hypotheses. 

The F test of the lagged exogenous variables indicates short run causal effects while the 

long run causal effect is determined by the significance of the lagged error correction term. 

These results are shown in Table 2. 

 

Table 2. Results of Granger Causality Tests 1979-2008 

Dependent Variable ΔlnWPt Δlnyt Δlnkt ECTt-1 

ΔlnWPt - 
-0.025 

(0.25) 

 

0.139 

(0.22) 

-0.277 

(0.63) 

Δlnyt 

 

 

-0.012 

(0.02)* 
- 

0.106 

(0.03)* 

-0.305 

(0.00)* 

Δlnkt 

 

0.064 

(0.43) 

 

0.158 

(0.30) 

- 

 

-0.276 

(0.35) 
Notes: Absolute p-values are reported in the parentheses. * denotes statistical significance at the 5% level.  

 

In the short run, per worker output and capital are insignificant at the 5% level in the 

water pollution equation implying that per worker output and capital does not Granger cause 

water pollution in the short run. Similarly, water pollution and per worker income are 

insignificant in the per worker capital equation. However, both water pollution and per worker 

capital are significant at the 5% level in the per worker output equation, implying that there is a 

uni-directional causality running from water pollution and per worker capital to per worker 

output in the short run. The long run results suggest that the coefficient of ECTt-1 is significant at 

the 5% level with the expected negative sign in the per worker output equation, which implies 
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that in the long run water pollution and per worker capital Granger causes the per worker output. 

Note that the causality relationship from water pollution to per worker output is negative in both 

short and long run. Overall, our results suggest that the endogeneity problem is limited because 

water pollution and per worker capital are weakly exogenous. An implication of our findings is 

that environmental policies which aim to decrease the level of water pollution can improve the 

per worker output.  

 

5. Conclusions 

In this paper, I used the Solow (1956) model to estimate the impact of negative 

externality viz., water pollution for New Zealand. My empirical methodology is based on the 

autoregressive distributed lag (ADL) model. Using the Ericsson and McKinnon (2002) 

cointegration tests, I find that there exist cointegrating relationships between the variables in the 

model. The estimated capital share of output is significant and plausible (around 0.3). I find that 

water pollution affects the level effect of per worker output. It may be unlikely to generate any 

long-run effects on the growth of per worker output. The Granger causality tests reveal that both 

in short and long run, water pollution Granger causes per worker output and the causality is 

negative. With this finding, I argue that environmental policies which aim to decrease the level 

of water pollution can improve the per worker output. 

Lifting the steady state growth rate is, arguably, the pursuit of every economy. My results 

imply that steady state growth rate will not be affected by water pollution. This implies that a 

tightening of pollution policy will lower the level of water pollution and thus will increase the 

level of per worker output. Therefore, an environmental policy may be directly linked to the 

level of per worker output. It is obvious that to improve the steady state growth rate in New 
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Zealand, it is important to allow for greater positive externalities such as trade openness, 

investment in human capital, etc. 

There are some limitations in this paper. I have used a simple model and this ignores 

other factors that may have significant externalities.  There are alternative proxies for pollution 

and it is desirable to use them to examine the sensitivity of our results. However, this is beyond 

the scope of the current paper. Further, I have ignored the effects of the structural breaks in the 

estimation. I hope some other researchers may fill these gaps. 
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Data Appendix 

 

Variables Definition  Source 

Y Real Gross Domestic Product International  Monetary Fund 

(2010) 

K Capital Stock; Derived using perpetual 

inventory method . 

Authors computations 

L Labour force World Bank (2010) 

WP Pollution proxied by water pollution 

(Organic water pollutant (BOD) emissions) 

World Bank (2010) 

 

 

 

 

 

 

 

 

 


