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Abstract

The intergenerational mobility literature has consistently found that the distribution of adult eco-
nomic outcomes differ markedly depending on parental economic status, yet much remains to be un-
derstood about the drivers or determinants of this relationship. Existing literature on potential drivers
focuses primarily on mean effects. To help provide a more complete picture of the potential forces driv-
ing economic persistence, we propose a method to decompose transition matrices and related indices.
Specifically, we decompose differences between an estimated transition matrix and a benchmark transi-
tion matrix into portions attributable to differences in characteristics between individuals from different
households (a composition effect) and portions attributable to differing returns to these characteristics
between individuals from different households (a structure effect). We also incorporate a detailed de-
composition, based on copula theory, that decomposes the composition effect into portions attributable
to specific covariates and their interactions. We illustrate our method using data on white men from the
1979 National Longitudinal Survey of Youth. Estimation is based on an extended Mincer equation that
includes cognitive and non-cognitive measures. To address the potential endogeneity of education, we
implement an IV strategy that allows us to estimate causal effects and investigate the role of unobserved
ability.
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1 Introduction

Since the seminal papers of Becker and Tomes (1979, 1986), much effort has been made in the field of

economics to understand the persistence of incomes across generations.1 And while great strides have been

made in estimating income persistence (see Solon, 1999 for a review and Mazumder, 2005 for a recent

reassessment), much remains to be understood about the drivers or determinants of this persistence (Black

and Devereux, 2011). The literature that has sought to understand the driving mechanisms has mainly been

focused on mean effects, such as empirical estimates of the intergenerational elasticity of income (Björklund

et al., 2006; Björklund et al., 2012; Blanden et al., 2007; Bowles and Gintis, 2002; Cardak et al., 2013;

Lefgren et al., 2012; Liu and Zeng, 2009; Mayer and Lopoo, 2008; Richey and Rosburg, 2015; Sacerdote,

2002; Shea, 2000). Alternative measures, such as transition matrices and related summary indices, provide

a more ‘complete’ picture of intergenerational persistence by looking across the entire income distribution

(Bhattacharya and Mazumder, 2011; Black and Devereux, 2011; Jäntti et al., 2006). However, the literature

on these measures has focused solely on point estimation rather than understanding the driving mechanisms

behind these estimates. The reason for the confinement of the transition matrix and related literature to

point estimates is not, we believe, a lack of interest, but rather a lack of framework to explore further.

In this paper, we seek to fill this gap by proposing a framework to ‘decompose’ transition matrices and

related indices. This framework provides a path to improve our understanding of the causal forces behind

intergenerational income persistence. While our method is not a decomposition in the traditional sense, it

builds directly on the decomposition literature. Specifically, we start with a benchmark transition matrix to

which our actual (empirically estimated) transition matrix is compared. We then explain differences between

the actual and benchmark matrices by identifying the portion attributable to differing characteristics between

children from different households (a composition effect) and the portion attributable to differing returns

to characteristics between children from different households (a structure effect). We also incorporate a

detailed decomposition on the composition effect, based on copula theory (Rothe 2015), which assigns effects

to specific variables (e.g., education, experience) and their interactions.

Our method begins by recognizing that transition matrices are representations of multiple conditional distri-

butions (i.e., distributions of children’s incomes conditional on parental income grouping). Furthermore, we

define our benchmark matrix as a representation of multiple, but identical, ‘baseline’ distributions. There-

1Of course, interest in intergenerational income persistence predates these papers, especially in the field of sociology (see
Blau and Duncan 1967). However, these publications and the formal framework within, initiated a large body of research within
the field of economics.
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fore, understanding the actual-benchmark differences can be characterized by understanding the differences

in these underlying distributions. As a result, our decomposition is based on an array of counterfactual

experiments that ask how outcomes for children from different households would change if we varied certain

characteristics and/or wage structures. The counterfactuals are used to recast transition matrices and to

attribute portions of the actual-benchmark differences to specific effects.

A better understanding of the underlying determinants of mobility will provide a better understanding of the

likely effects of different policy interventions. For example, if the main driving component is a composition

effect (i.e., differences in characteristics), then interventions aimed at promoting skill formation for children

from disadvantaged households may prove effective at increasing mobility. However, if the main driving

component is a structure effect, these types of interventions are unlikely to yield much mobility improvements.

Further, by decomposing transition matrices, our approach provides more information on how these effects

may differ across the distribution. For example, we may find that a particular characteristic, say self-esteem,

has relatively large effects on a particular portion of the distribution but smaller effects on other portions

of the distribution. This would be valuable information when evaluating potential policy programs that aim

to improve non-cognitive ability in children.

We apply our method to the intergenerational income mobility of white men surveyed by the 1979 National

Longitudinal Survey of Youth (NLSY79). We base our wage structure on an extended “Mincer equation”

that includes education, experience, experience squared, and cognitive and non-cognitive ability measures.

To address endogeneity concerns regarding education decisions in our detailed decomposition, we reestimate

our decomposition using an instrumental variables approach. The IV approach allows us to estimate causal

effects as well as investigate the role of unobserved ability. While the general method we propose extends

to any function of transition matrices, we focus our application on four summary indices and two sets of

specific entries in the transition matrix.

To preview our empirical results, we find that the overall composition-structure split varies between 35-65

to 65-35, depending on the index or matrix entry of interest. These results have two key implications.

First, they highlight the ability of transition matrices to present asymmetric patterns, not only in mobility,

but in explaining the driving forces behind mobility. Second, the variation in decomposition results show

the flexibility and importance in choosing a summary index that appropriately reflects how one wishes to

measure mobility. In the baseline detailed decomposition (i.e., no IV), education generally plays the largest

role in the composition effect, although cognitive ability and experience play significant roles as well. Just
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as in the overall decomposition, the detailed decomposition exhibits substantial heterogeneity by index and

matrix entry of interest. Reestimation with an IV approach results in a reduced role for education and, in

general, an increased role of cognitive ability. And while the point estimates of the role of unobserved ability

are at times at a magnitudes similar to or larger than that of the causal effect of education, these effects are

not statistically significant.

2 Methods

2.1 Transition Matrices and Mobility Indices

Transition matrices are a popular way to document intergenerational mobility.2 A transition matrix depicts

the probability a child will have adult earnings (Y c) in a specific income bracket given his/her parents’

income (Y p) was in a certain income bracket. Transition matrices have several advantages over mobility

measures that focus only on the average degree of transition (e.g., intergenerational elasticities or correlation

coefficients). Transition matrices provide more information about mobility across the entire distribution,

allow for asymmetric patterns across the distribution (e.g., more mobility at top than bottom), and allow

subgroup comparisons across the entire distribution (Black and Devereux, 2011; Jäntti et al., 2006).

Let there be m income brackets (defined as equal percentile groups) with boundaries 0 < ζ1 < ζ2 < ... <

ζm−1 < ∞ for the parental distribution and 0 < ξ1 < ξ2 < ... < ξm−1 < ∞ for the children’s distribution. A

transition matrix (P ) is a m×m matrix with elements pij that represent the conditional probability that a

child is in income bracket j given his/her parents were in income bracket i or

pij =
Pr(ζi−1 ≤ Y p < ζi and ξj−1 ≤ Y c < ξj)

Pr(ζi−1 ≤ Y p < ζi)

where
∑m

j=1
pij = 1. Furthermore, it is common to let πi denote the probability that a child’s parents were

in income bracket i [i.e., Pr(ζi−1 ≤ Y p < ζi)].

Table 1 provides a quartile transition matrix derived for white males from the NLSY79 data (a full discussion

2There is a distinction between ‘size’ transition matrices and ‘quantile’ transition matrices. The former defines boundaries
of the matrix exogenously - for example, every $10,000 - while the latter defines them endogenously - for example, every 25th
percentile. We focus solely on quantile transition matrices. Interested readers can refer to Formby et al. (2004) and references
within for an indepth discussion of size and quantile matrices.
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of the data used is given in Section 3). Entries in Table 1 report the probability a son will be in each quartile

of the income distribution conditional on parents having been in a specific quartile of the income distribution.

The top left entry (0.403) tells us that for parents in the bottom quartile of the income distribution, their

son has a 40% chance of ending up in the bottom quartile of his generation’s income distribution. Similarly,

the top right entry (0.119) tells us that the same son has only about a 12% chance of ending up in the

top quartile of the income distribution. Comparatively, a son whose parents were in the top quartile of the

income distribution has a 14% and 44% chance of ending up in the bottom and top quartile, respectively, of

their generation’s income distribution.

[Table 1 about here]

The intergenerational mobility portrayed in a transition matrix can be summarized through mobility indices,

M(P ), which map the transition matrix P into a scalar value (Formby et al., 2004). These mappings can be

useful in ranking transition matrices according to various welfare criterion (e.g. Kanbur and Stiglitz, 2015).

A preferential, although not required, characteristic of a mobility index is that it be bounded between 0

and 1 and satisfy the condition that 0 ≡ M(Im) < M(P ) < M(PM) ≤ 1 where Im is the identity matrix

(i.e., zero mobility) and PM is the “perfect mobility” matrix (Jäntti et al., 2006). However, there is not a

universally accepted specification for the “perfect mobility” matrix. Instead, a commonly used benchmark

matrix is one where all outcomes are independent of origin and destination – i.e., pij = 1/m for all i, j (Jäntti

et al., 2006); we will refer to this as the ‘independent’ mobility matrix.3

Because there is not a consensus on how mobility should be measured, a number of mobility indices have

been proposed; we consider four of these indices.4 The first index, proposed by Prais (1955) and Shorrocks

(1978), is based on the trace of the mobility matrix:

M1 =
(m−

∑m

i=1
pii)

m− 1
. (1)

M1 is the normalized distance from the identity matrix and is equal to 0 for Im and 1 for the independent

matrix5 (Formby et al, 2004). A criticism of M1 is that it ignores the off-diagonal elements of P (Maasoumi,

3We use the independent mobility matrix as a standard of comparison only; it is not meant to be interpreted as a measure
of “perfect mobility” or a policy goal.

4See Maasoumi (1998) or Checchi et al. (1999) for relatively comprehensive overviews of summary mobility measures and
Formby et al. (2004) for a discussion of their asymptotic properties.

5
M1 can be interpreted as the (scaled) average probability that a child will be in a different bracket than his/her parents.

By dividing by (m − 1) rather than m, the derivation for M1 in equation (1) takes the value of 1 for the independent matrix
and can take values above 1. For M1 to represent the probability that the child is in a different bracket than his/her parents,
the denominator would have to be m.
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1998).

The second index is based on the second largest eigenvalue (λ2) of the mobility matrix (Sommers and Conlisk,

1979):

M2 = 1− |λ2|. (2)

The second largest eigenvalue (λ2) is the correlation coefficient between parental brackets and child brackets

(Formby et al., 2004). Therefore, M2 provides a measure of the speed at which a child escapes their parents’

income bracket (Maasoumi, 1998; Theil, 1972). M2 is bounded in the unit interval and takes a value of 1

for the independent mobility matrix (Jäntti et al., 2006).

The third index, proposed by Bartholomew (1982), is based on the expected number of income brackets

crossed:

M3 =
1

m− 1

m
∑

i=1

m
∑

j=1

πipij |i− j|. (3)

The fourth and final index is defined as the scaled Frobenius distance between a transition matrix and the

independent matrix:

M4 = 1−

√

∑m

j=1

∑m

i=1
(pij −

1

m
)2

m(1− 1

m
)2

. (4)

M4 takes the value of 1 for the independent mobility matrix and is bounded below by 0. Table 2 reports

the four index values for the independent mobility matrix and the NLSY79 mobility matrix for white men

reported in Table 1.

[Table 2 about here]

Most of the existing literature on intergenerational mobility use transition matrixes or mobility indices as

the final output – that is, a simple way to summarize empirical estimates of economic mobility (e.g., Checchi

et al., 1999; Corak and Heisz, 1999; Dearden et al., 1997; Jäntti et. al., 2006; Peters, 1992). What we wish

to do is take this a step further and understand the potential driving forces behind the transition matrix and

summary indices. To evaluate such forces, we define the independent matrix as our baseline matrix from

which we compare our actual (empirically estimated) matrix. For example, consider the trace index (M1) of

the NLSY79 mobility matrix for white men (0.84) and its difference from the M1 value for the independent

matrix (i.e., 1 - 0.86 = 0.14). Alternatively, we can compare specific matrix entries. For example, consider
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the probability that a son ends up in the top quartile given his parents were also in the top quartile (bottom

right entry - p44). The difference between the independent transition matrix and our empirical matrix is

-0.19 (0.25 - 0.44); that is, given parents from the top quartile, men in our sample are 19% more likely to

end up in the top quartile than if mobility were reflected by the independent mobility matrix.

The questions we seek to answer are how much of these differences are due to differences in observed

characteristics between children from different households (referred to as the “composition” effect) and

how much is due to differences in returns to observable and unobservable characteristics for these children

(referred to as the “structure” effect). While understanding the roles of these components is important

for understanding what drives mobility, we note again that our benchmark matrix is not a policy goal but

simply a standard for comparison; even in a perfect meritocracy there will likely persist a ‘mobility gap’

due to differences in ability and other characteristics driven by a genetic component. Rather, in this paper,

our objective is to provide a general framework through which one can decompose differences between any

baseline matrix of interest and an empirically estimated transition matrix.

The indices presented above and the underlying transition matrix are functions of conditional distributions

of incomes (i.e., distributions of children’s incomes conditional on parental income). In order to answer our

questions of interest, we must conduct counterfactual experiments on the conditional distributions and then

inquire what the counterfactual conditions imply for the matrix and indices. In this vein, we connect the

literature on economic mobility with the literature on decomposition methods.

2.2 Aggregate Decomposition

The seminal papers by Oaxaca (1973) and Blinder (1973) first introduced techniques for decompositions, and

since then, the Oaxaca-Blinder decomposition has become a staple in labor economics. The original Oaxaca-

Blinder decomposition was designed to decompose mean differences in a variable of interest between two

groups; for example, what portion of the gender wage gap is due to different levels of education and experience

(composition effect) and what portion is due to different market returns to these traits (structure effect –

interpreted as a measure of market discrimination). However, in many cases, researchers are interested in

differences beyond the mean. Recent developments have led to tools that allow such parallel decompositions

(see Fortin et al. 2011 for a review).
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We begin with several non-overlapping groups g ∈ {1, 2, ..., N}, such as children from households in the

four quartiles of the income distribution. For each child in group g ∈ {1, 2, ..., N}, we observe the outcome

Y g (child’s adult log income) and a d-dimensional vector of observables Xg with distributions F g
Y and F g

X ,

respectively, and conditional CDF F g

Y |X which is implicitly defined by a wage structure Y g = wg(X, ǫ).

Let ν(F 1

Y , F
2

Y , ..., F
N
Y ) be a function of a transition matrix based on the distributions F 1

Y , F
2

Y , ..., and FN
Y ; for

example, a summary index (Mi) or a specific entry in the transition matrix (pij). In order to implement the

decomposition, we have to specify a distribution which will underlie our independent matrix - a ‘baseline’

group; for ease of exposition, we let the last group (N) be our baseline group and therefore define the

“independent mobility” value as ν(FN
Y , FN

Y , ..., FN
Y ).6 For example, consider our case where groups are

based on the four quartiles of parental income distribution. Then N represents children from households in

the top 25% of the income distribution and the independent mobility value is derived from the case where

all groups have the same income distribution as children from households in the top 25% of the income

distribution. Given the independent mobility value, we define the overall ‘mobility gap’ as follows:

∆ν
O = ν(FN

Y , FN
Y , ..., FN

Y )− ν(F 1

Y , F
2

Y , ..., F
N
Y ).

To identify how much of this mobility gap is due to structural or compositional effects, we rely on the use of

counterfactual distributions. Specifically, for groups g 6= g′, define the following counterfactual distribution:

F
g|g′

Y (y) =

∫

F g

Y |X(y, x)dF g′

X (x). (5)

This is a counterfactual distribution of incomes based on individuals with characteristics as those from group

g′ and a wage structure (ie. returns to those characteristics) as those from group g. The structure effect, or

the portion explained by differences in returns to characteristics between the baseline group and all others,

is defined as

∆ν
S = ν(FN

Y , FN
Y , ..., FN

Y )− ν(F
1|N
Y , F

2|N
Y , ..., F

N |N
Y ). (6)

The composition effect, or the portion explained by differences in observed characteristics between the

6The independent mobility value is derived from the case where all groups have the same distribution as those in baseline
group N . While the general approach is unchanged, interpretation will vary based on the selected baseline group. For example,
an alternative choice of baseline group could be the full population (i.e., comparison to population distribution).
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baseline group and all others, is defined as7:

∆ν
X = ν(F

1|N
Y , F

2|N
Y , ..., F

N |N
Y )− ν(F 1

Y , F
2

Y , ..., F
N
Y ). (7)

Two key assumptions are needed to separately identify the structure and composition effect: (1) common

support and (2) ignorability. With these assumptions, the ‘aggregate’ decomposition, ∆v
O = ∆v

S + ∆v
X , is

well identified. Here, we briefly summarize these assumptions and how they apply to our analysis.8

Identifying Assumption 1 - Common support : Let the support of all wage setting factors [X, ǫ] be

X × ε. Define Dg as a discrete variable denoting membership in group g. For all [x, e] in X × ε, 0 < Pr[D =

g|X = x, ǫ = e] < 1.

The common support assumption requires that there be no set of observables/unobservables that uniquely

define membership (or non-membership) in a parental income quartile. In other words, parental income

cannot be a direct component of the child’s structural wage setting function. However, parental income

can be correlated with characteristics that directly affect earnings, e.g. ability (observable as AFQT) or

motivation (unobserved), as long as no single value of these variables uniquely defines group membership.

Identifying Assumption 2 - Ignorability : For g = 1, 2, ..., N , let (Dg, X, ǫ) have a joint distribution.

For all x in X : ǫ is independent of Dg given X = x.

The ignorability assumption assures that, conditional on observables, the distribution of unobservables are

not dependent on membership in a quartile of parental income distribution. So while the group from wealthier

families may have more ‘motivated’ children (unobserved), the distribution of motivation is identical across

groups when conditioned on observables. This assumption does not require the groups to be compensated

equally for unobservables – compensation differences are captured in the structure effect.

Decomposing the overall differences into separate structure and composition effects will provide interesting

insight into the sources of mobility differences. However, we are also interested in identifying which charac-

teristics (or covariates) drive the composition effect; that is, what portion of the composition effect can be

7The sequence of the decomposition, which defines what counterfactuals are being examined, is parallel to the choice of
reference or base group in the standard decomposition literature. We choose this sequence because it prices characteristics
in the composition effect at prices individuals actually face. And since we will only perform a detailed decomposition on the
composition effect, we feel this is more appropriate.

8Assumptions presented here are from Fortin et al. (2011); see Fortin et al. (2011) for a more comprehensive discussion of
the technical assumptions (e.g. no general equilibrium effects, invariance of the structural form, etc.).
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assigned to specific variables of interest? To investigate this question, we employ a ‘detailed’ decomposition

of the composition effect in equation 7.9 Several decompositions have been proposed (see DiNardo et al.

1996; Machado and Mata 2005; Chernozhukov et al. 2013) but these are in general ‘path dependent’ (i.e.,

they depend on the order of the covariate inclusion in the decomposition). We apply a non-path dependent

decomposition based on copula theory introduced by Rothe (2015). In what follows, we briefly outline our

specific use of his procedure and intuition; however, interested readers should refer to Rothe (2015) for a

complete description of the procedure in a more traditional decomposition setting.

2.3 Detailed Decomposition

Rothe (2015) notes that the detailed decomposition cannot be additively decomposed into marginal compo-

nents solely due to separate variables but must contain ‘interaction’ terms. To see how our decomposition

proceeds, we must refer to the concept of the copula, which was first introduced by Sklar (1959).10 Sklar’s

theorem states that any d-dimensional distribution F g
X can be decomposed into two parts - the d marginal

distributions F g
Xi

for the random variables (X1, X2, ..., Xd) and the copula function Cg which captures the

dependence structure of the distribution:

F g
X(x) ≡ Cg(F g

X1
(x1), ..., F

g
Xd

(xd)) for g ∈ {1, 2, ..., N}.

In other words, the dependence structure of the covariates in F g
X – captured by the copula – can be separated

from the individual marginal distributions - the F g
Xi

’s. Also note that the copula takes as its arguments

F g
Xi

(xi)’s, which are uniform random variables, rather than the x’s themselves.

Now consider a d-dimensional product set {1, 2, ..., N}d where an element of the product set (denoted with

bold font) represents a set of d covariate marginal distributions. For example, if k = (N,N, 1, 1, ..., 1), this

would denote the set of covariate marginal distributions where the distributions for covariates one and two

are equal to that of group N and the remaining covariate distributions are equal to that of group 1. In this

vein, define 1 = (1, 1, ..., 1), 2 = (2, 2, ..., 2), ..., and N = (N,N, ..., N). Using this notation, we extend the

counterfactual setup from equation (5). Let the counterfactual distribution of Y, where the wage structure

is of group g, the copula is of group g′, and the marginal distribution of the lth covariate is equal to the

9Performing a detailed decomposition on the structure effect has conceptual problem regarding the choice of omitted/baseline
group for covariates of interest even for simple linear models (see Fortin et al. 2011 for a discussion) and therefore we do not
pursue such a decomposition.

10See Rothe (2015) for a specific discussion or Nelsen (2006) for a general handling of copula theory.
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group denoted in kl, be:

F
g|g′,k

Y (y) =

∫

F g

Y |X(y, x)dF g′,k
X (x) (8)

with

F g′,k
X (x) ≡ Cg′

(Fk1

X1
(x1), ...., F

kd

Xd
(xd)).

Now the composition effect can be decomposed into a dependence effect (∆ν
D), which is due to differences

between groups in their copulas, and a total marginal effect (∆ν
M ), which is due to differences in the marginal

distributions between groups:

∆ν
X = ∆ν

D +∆ν
M

where

∆ν
D = ν(F

1|N,N

Y , F
2|N,N

Y , ..., F
N |N,N

Y )− ν(F
1|1,N
Y , F

2|2,N
Y , ..., F

N |N,N

Y )

∆ν
M = ν(F

1|1,N
Y , F

2|2,N
Y , ..., F

N |N,N

Y )− ν(F 1

Y , F
2

Y , ..., F
N
Y ).

Next, we further decompose the total marginal effect (∆ν
M ) into portions attributable to specific covariates

(and their interactions). With d covariates and N groups, there are several potential counterfactual distribu-

tions for Y that can be derived from equation (8), not all of which are of direct interest for our decomposition.

Recall that the aggregate decomposition, and thus the composition effect, was derived with group N as the

baseline group. Therefore, to decompose the total marginal effect, we need to consider all potential coun-

terfactuals for groups 1, 2, ..., N − 1 relative to group N . That is, for all possible covariate combinations, we

need to evaluate the counterfactual where all N − 1 groups take group N ’s marginal distributions for the co-

variates in that combination but their own marginal distributions for the remaining covariates. This requires

additional notation. Let k̃ (or any other bold face letter with a tilde) be an element of the d-dimensional

product set {0, 1}d and let it represent the set of N − 1 elements ki with i = {1, 2, ...N − 1} where ki
l = N

if k̃l = 1 and ki
l = i if k̃l = 0. In addition, let ẽl be the lth unit vector such that all entries equal 0 except

the lth which equals 1. Then, given a feature ν of interest, we can denote:

βν(k̃) = ν(F
1|1,k1

Y , F
2|2,k2

Y , ..., F
N−1|N−1,kN−1

Y , FN
Y )− ν(F 1

Y , F
2

Y , ..., F
N
Y ).

This last equation should be interpreted as the effect of a counterfactual alteration where, for elements with

k̃l = 1, the marginal distributions of all groups 1, 2, ..., N − 1 are altered to the marginal distributions of

group N while holding all else constant (including the copula). For example, if k̃ = (1, 1, 0, 0.., 0), then βv(k̃)
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represents the effect of changing the marginal distributions of the first two variables to those of group N

while holding all else constant.

Now, letting |k̃| =
∑d

l=1
k̃l, define

∆v
M (k̃) = βv(k̃) +

∑

1≤|m̃|≤|k̃|−1

(−1)|k̃|−|m̃|βv(k̃).

Thus, ∆v
M (ẽl) = βv(ẽl). And note if |k̃| = 2 then ∆v

M (k̃) is equal to the counterfactual βv(k̃) with the

individual ‘parts’ of the effect from βv(m̃) where |m̃| = 1 removed. Thus, the ‘full’ counterfactual of changing,

for instance, the distribution of the first two covariates to that of group N for all groups 1, 2, ..., N − 1 is

split up into two ‘direct effects’ [βv(ẽl) = ∆v
M (ẽl) where |ẽl| = 1 and l = 1, 2] and one ‘interaction effect’

[∆v
M (k̃) where |k̃| = 2, k̃ = (1, 1, 0, ..., 0)].

Therefore, the detailed decomposition (of the composition effect) contains three parts: (1) “direct contribu-

tions” from each covariate due to differences between groups in the marginal distribution of these variables

[∆v
M (ẽl)], (2) several “interaction effects” which are due to interactions between the marginals (∆v

M (k̃) where

|k̃| > 1), and (3) a “dependence” effect due to different dependence structures among the covariates between

the groups (∆v
D). Thus, we have:

∆v
X =

d
∑

l=1

∆v
M (ẽl) +

∑

|k̃|>1

∆v
M (k̃) + ∆v

D (9)

where the interaction effects are summed over all possible interactions. For example, the direct contribution

term may be due to groups having a different distribution of ability levels or non-cognitive traits, the

interaction effects may be the additional effect due to groups having different distributions for both ability

level and non-cognitive traits, and the dependence term is due to the groups having different dependence

structures between ability and non-cognitive traits.

In order to identify this detailed decomposition of the composition effect we must assume independence of

the error terms.

Identifying Assumption 3 - Independence : Given the wage structural model Y g = wg(X, ǫ), for every

g ∈ {1, 2, ..., N}, ǫ is independent of X given Dg.

12



The independence assumption requires that the error term is independent of the covariates of interest. This

is a stronger assumption than ignorability (Identifying Assumption 2), but is needed to identify the detailed

decomposition (the detailed decomposition requires us to be able to attribute causal effects to the parameters

of the conditional CDFY |X). Ignorability simply assumes the error term is independent of group assignment

conditional on the covariates X, independence goes further and assumes that the error term is independent

of the covariates. We will discuss this assumption further within our estimation approach; in particular, for

estimation of the detailed decomposition in the presence of endogenous school choice.

2.4 Estimation

The decomposition is based on estimating the relevant counterfactual outcomes discussed above. Thus,

estimation rests on estimating the marginal distributions of the covariates for each group, the conditional

CDF of Y |X for each group, and the copula function for each group. Once these components are estimated,

any counterfactual outcome can be numerically approximated using estimated components for population

components (equation 8).

Marginal distributions are simply estimated with the empirical CDF. The conditional CDFs are estimated

using the distributional regression approach suggested by Foresi and Peracchi (1995); the foundation for

this approach is a Probit model.11 The conditional CDF is estimated using multiple standard binary choice

models where we vary the cut-off across a grid along the outcome space. In other words, we repeatedly

estimate Pr(yi ≤ ỹ|x) = Φ(xβỹ) for ỹ ∈ Y where X is a vector of covariates (e.g., education, experience,

cognitive, and non-cognitive measures) and Y is log income.

Lastly, the copula is estimated with the Gaussian copula model:

CΣ(u) = Φd
Σ
(Φ−1(u1), ...,Φ

−1(ud)) (10)

This model does not impose the joint distribution of X to be Gaussian; rather, it assumes the dependence

structure of the transformed variables ui = Fi(xi) follows the Gaussian model. For estimation we rely on

the maximum pseudo-likelihood approach (Genest et al. 1995).12

11Koenker and Bassett (1978) propose an alternative approach based on quantile regression. We refer readers interested in
the relationship between the alternative approaches to Koenker et al. (2013).

12Specifically, we use the R package ‘copula’ and the methods within (Hofert and Maechler 2011; Hofert et al. 2015;
Kojadinovic and Yan 2010a; Yan 2007). Through simulation, Kojadinovic and Yan (2010b) show that the pseudo-likelihood
approach performs favorability over several other approaches.
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Therefore, our general approach is as follows: (1) estimate the copulas, conditional CDFs and marginal

distributions, (2) simulate counterfactual outcomes (equation 8), (3) given these counterfactual outcomes,

estimate the counterfactual transition matrix, and (4) use the counterfactual transition matrix to account

for the overall empirical-benchmark difference in the transition matrix and related indices.

2.4.1 Instrumenting Education

Education is one of the variables of interest in our empirical analysis, and the endogenous nature of education

in earnings equations is well known. To estimate causal relationships in the presence of endogenous education

choices, we reestimate the model using an instrumental variables approach. The reestimation applies an

intermediate step consisting of an instrumental variable (IV) probit approach (control function) within the

estimation procedure of the conditional CDF (Rivers and Vuong, 1988). Specifically, we estimate a ‘first

stage’ (predicting education) and then construct the normalized residual term (the ‘control variable’). The

control variable is then included in the estimation of the conditional CDF estimation step. Assuming the

standard instrument assumptions hold, the causal structure will be consistently estimated.

Furthermore, the ‘control’ variable is included in the rest of the estimation procedure as a covariate. The

control variable is a composite term that captures all things correlated with schooling decisions and adult

earnings. However, for ease of discussion, we will follow the terminology of Matinez-Sanchis et al. (2012) and

refer to the control variable as a (constructed) measure of unobserved ability. Therefore, the IV approach

not only allows us to recover causal parameters but also allows us to investigate the role that unobserved

ability plays in the decomposition.

3 Data

The primary source of data for our analysis is the 1979 National Longitudinal Survey of Youth (NLSY79)

including the restricted-use geocode data.13 The NLSY79 is a panel survey of youths aged 14-22 in 1979. It

includes a cross-sectional representative survey (n = 6,111), an over sample of minorities and poor whites (n

= 5,295), and a sample of military respondents (n = 1,280).14 We use only the cross-sectional representative

13The use of the NLSY79 geocode data is subject to a special agreement with the Bureau of Labor Statistics.
14The over sample of military and poor whites were discontinued in 1984 and 1990, respectively
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survey.

We limit the sample to white males who reported living with a parent for at least two of the first three years

of the survey and with reported parental income for those years.15 A key variable of interest is parental

status based on the parents’ (average) income. The outcome of interest is the individual’s economic status

based on their average reported wage and salary income between 1988 and 1990. All incomes are deflated to

1982-1984 dollars using the CPI. Further, since regional differences in cost-of-living may lead to imperfect

and potentially biased measures of real income (Fuchs 2004), we adjust parental and child incomes according

to the state-level cost of living indices provided by Berry et al. (2000). The sample is further limited to

individuals not enrolled in school over the period of interest and with available Arms Force Qualifying Test

(AFQT) scores. With these restrictions, the final sample includes 1,407 individuals born between 1957 and

1964 with a mean age of 27.5 during our outcome years of interest (1988-1990). Table 3 provides summary

statistics for the entire sample and by parental income quartile.

[Table 3 about here]

The variables we include in our decomposition are based on an extended Mincer equation. The traditional

Mincer equation includes education, experience, and experience squared (Mincer, 1974). We extend this

basic model to include other variables that have been related to income determination. In particular, we

include a measure of cognitive ability (AFQT ) and two measures of non-cognitive ability (Esteem, Rotter).

The NLSY79 does not provide a direct measure of experience. Therefore, we construct a measure of ‘full time

equivalent’ (FTE) years of experience using the weekly array of hours worked for all years the individual

was not enrolled in school.16 One FTE year of experience is assumed to equal 52 weeks times 40 hours

(hours worked are top coded to 40). A few older individuals in our sample completed their education prior

to the beginning of the survey and therefore were already working during the first round of interviews in

1979. Without information on previous work experience for these individuals, we construct the following

‘pre-survey’ estimate of FTE years (FTE<79) based on age, years of schooling, and FTE years of experience

earned in the initial survey year: FTE<79 = (Age79 − Years of Schooling79 − 6) · FTE79. We then add the

pre-survey FTE years to the (observed) survey FTE years.

15Parental income is identified through a comparison of total household income and respondent’s income. We exclude
individuals who lived with a spouse or child during these years.

16Our measure of experience is very similar to, but slightly different from, the measure used by Regan and Oaxaca (2009).
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The measure of ability used in our analysis is Arms Force Qualifying Test scores (AFQT). Since different

individuals took the test at different ages, the measure used is from an equi-percentile mapping used across

age groups to create age-consistent scores (Altonji et al., 2012). The use of AFQT scores as a measure of

ability warrants a brief discussion. Some argue AFQT scores are proxies for IQ scores while others draw

serious doubts to this interpretation (Ashenfelter and Rouse, 2000). While it may be appealing to interpret

AFQT scores as a measure of IQ, it is also not entirely clear what IQ scores measure. For example, there

have been large gains in IQ scores over time in nearly every country on record (Flynn, 2004). Flynn (2004)

argues that these differences are too large to uncautiously equate IQ with ‘intelligence.’ Therefore, we

interpret AFQT scores as some combination of innate ability and accumulated human capital as a youth

that is valued in the labor market. However, for ease of expression, we will refer to AFQT scores as our

measure of ‘cognitive ability.’

We use two measures for non-congitive ability. First, we use information from the Rosenberg Self-Esteem

Scale (1965). The Rosenberg Self-Esteem Scale contains 10 statements on self-approval and disapproval; we

use a summary measure of the individual’s responses to these 10 statements (Esteem). Second, we use a

summary measure from the Rotter-Locus of Control Scale (Rotter) which measures the “extent to which

individuals believe they have control over their lives through self-motivation or self-determination (internal

control) as opposed to the extent that the environment (that is, chance, fate, luck) controls their lives

(external control)” (BLS, 2015).

Finally, educational attainment is measured as years of schooling. The endogenous nature of education in ex-

plaining income outcomes is well documented and this measure of educational attainment likely incorporates

unobserved characteristics. Therefore, we first estimate the model using our direct measure of educational

attainment (years of schooling) and then reestimate the model using an instrumental variables approach.

The instruments used in our analysis are based on Kling (2001) and Carneiro et al. (2011): presence of a

four year college in the county of residence at age 14, minimum tuition in public 4 year college in the state

of residence at age 14, local wage in the county of residence at age 17, and local unemployment in state of

residence at age 17.17

17Carneiro et al. (2011) summarize the main papers that use similar instruments.
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4 Results

The general decomposition method we propose can be applied to any function of transition matrices. For

brevity, we present decomposition results for the following: (1) the four summary indices introduced in

equations (1) - (4) (table 4), (2) transition matrix entries for those coming from households in the top

quartile of the earnings distribution (p4j for j = 1, 2, 3, 4) (table 5), and (3) transition matrix entries for

those coming from households in the bottom quartile of the earnings distribution (p1j for j = 1, 2, 3, 4) (table

6). The total decomposition effects reported in tables 4 - 6 will differ slightly from the differences from tables

1 and 2 because Tables 4 - 6 are based on simulated data rather than the empirical data. However, the

estimated values are very similar, suggesting that our parametric specification of the conditional CDF and

copula fit the data reasonably well.

Our presentation of results is structured around our theoretical discussion of the decomposition method.

First, we report the overall difference and its aggregate decomposition into the structure and composition

effects. Second, we report the initial step in the detailed decomposition of the composition effect - the

dependence and total marginal effects. Then, we report the covariate direct contributions to the marginal

effect followed by two-way interaction contributions to the marginal effect. Higher order interaction terms

are not reported for brevity.

4.1 Baseline Results

We begin with the index decompositions (table 4). For each index, we decompose the difference between

the index value for the independent matrix and the index value for our matrix. The structure-composition

split varies among the indices; decomposition differences reflect the fact that each index measures mobility

differently. The composition effect accounts for 62% for M1, about one half for M2 and M3, and 40% for M4.

So if one were only concerned about mobility as measured by the trace (M1), then a majority of the mobility

gap is explained by differences in characteristics between children from different households. However, if one

is interested in a more comprehensive distance measure (M4), then only about 40% of the gap is explained by

these differences; this latter value implies that even if all children had characteristics similar to those coming

from the upper quartile households, 60% of the mobility gap would still be present. These decomposition

differences highlight the role of the choice of index in mobility analysis.
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[Table 4 about here]

Turning to the detailed decomposition of the composition effect, the dependence effect is minimal for all four

indices and the majority of the composition effect comes from the full marginal effect. Further decomposition

of the marginal effect indicates that AFQT accounts for 16-20% of the marginal effect in indices M2 −M4

but has an (imprecise) zero effect in M1. Non-cognitive ability measures (Esteem, Rotter) have no significant

contribution to the marginal effects of any index. However, education and experience are significant drivers

of the marginal effects in all indices. The contribution from education is near or even larger than the

total marginal effect; this implies that negative contributions from other variables offset some of education’s

contribution. One of those variables is experience. A negative contribution from experience indicates that if

all children had experience as those from the top quartile, the mobility gap would widen. This result is not

surprising since individuals from the top quartile tend to have more education and less experience (see Table

3) and experience is expected to have a positive effect on earnings. The only interaction term of statistical

significance is the schooling-experience term for the M1 index. The interaction effect together with the

direct effects indicate that the mobility gap would be reduced by 6.26 points if all children had education

and experience levels as those from the top quartile of households: 11.08 (direct effect from education) - 2.04

(direct effect from experience) - 2.78 (interaction effect).

Next, we focus on children from households in the top quartile of the parental earnings distribution (p4j

for j = 1, 2, 3, 4) (table 5). In this case, the total difference represents the difference between the entries in

the bottom row of the independent matrix (0.25 for all cells) and the bottom row of Table 1. The total,

structure and composition effects are all statistically significant for the first, second and fourth quartiles but

not the third quartile. The composition effect explains around 37% of the mobility gap for the bottom and

second quartile and 46% for the top quartile. These results indicate that differences in the distribution of

characteristics explain less than half of the large presence of children from the top households ending up in

the top quartile of their earnings distribution, and it only explains about a third of their relative omission

from the bottom two quartiles.

[Table 5 about here]

In the detailed decomposition, the dependence structure plays a statistically significant role for the first and

second quartile and accounts for 22% and 33%, respectfully; the total marginal effect is statistically significant
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for the first, second and fourth quartiles. Looking at the direct contributions to the total marginal effect,

AFQT has a statistically significant effect at the first and third quartile, accounting for about 55% and 100%

of the total marginal effect, respectfully. As in the index decompositions, non-cognitive ability measures

do not provide any statistically significant contribution to the marginal effects. Schooling and experience

exhibit effects of similar magnitude but opposing directions on the first quartile at 3.1 and -3.6 points; the

interaction of schooling and experience contributes an additional (positive) 2.4 points. So if everyone had

education levels as those in the top quartile the first quartile gap would shrink, if everyone had the same

level of experience as the top quartile the gap would widen, and if everyone had the same level of both

education and experience as the top quartile the gap would shrink by 1.93 points (3.10 - 3.55 + 2.37).

Education also plays a large role in the second quartile contributing 5 points, while experience exhibits a

statistically insignificant positive direct effect; however, the interaction term of education and experience

exhibits a strong negative effect at -3.78 points, therefore offsetting some of education’s direct contribution.

For the fourth quartile, education exhibits a negative effect at -11.14 points, while experience contributes a

small positive effect at 1.63 points. We also find a negative AFQT-education interaction term in the fourth

quartile at -1.99, which would further narrow the mobility gap beyond just the direct effects of AFQT or

schooling and imply some positive interaction in the top quartile.

Finally, we consider children from households in the bottom quartile of the parental earnings distribution

(p1j for j = 1, 2, 3, 4) (table 6). The composition effect is estimated at 62% for the bottom quartile and 45%

for the top quartile (aggregate decomposition components are statistically insignificant for the second and

third quartile). Therefore, differences in characteristics explain 62% of the overabundance of children from

bottom quartile homes that end up in the bottom quartile of their generation’s earnings distribution, and it

explains 45% of their relative absence in the upper quartile.

[Table 6 about here]

Interestingly, while the composition effect is not statistically significant for the second quartile, it is the only

quartile where the dependence effect is statistically significant; the dependence effect accounts for a positive 1

point of the negative 2 point total difference. So if everyone had the same dependence structure of covariates

as those from the top quartile of households, there would be 1% more children from the lowest quartile in

the second quartile of adult earnings. Also, while the composition effect is not statistically significant for

the third quartile, it is the only quartile where the AFQT direct marginal effect is statistically significant;

AFQT accounts for about 4 points out of the 5.2 point difference. So if everyone had the same distribution of
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AFQT scores as those from the upper quartile households, the gap at the third quartile of adult earnings for

children from the lowest quartile households would reduce to only 1%. In the first and fourth quartiles, which

have significant composition effects, education plays the largest role accounting for -8.3 points and 5 points,

respectfully (approximately 88% of the marginal effect in both cases). Experience provides a statistically

significant (positive) contribution to the marginal effect only in the first quartile; if all children had (the

lower) levels of experience of those from the top most households, the overabundance of children from bottom

quartile households that end up in the bottom quartile would increase by almost 3%. None of the interaction

terms appear to play a significant role in this decomposition.

4.2 IV Results

Since concerns regarding endogeneity of education may invalidate the causal interpretation of our estimated

conditional CDF and therefore the interpretation of our detailed decomposition, we reestimate our decom-

positions using an IV approach. IV results are provided in Tables 7 - 9. Recall, however, that the baseline

(non-IV) total decomposition results (i.e., structure and composition effects) remain valid even in the pres-

ence of endogeneity (see Section 2). Minor discrepancies in the IV and non-IV total decomposition results

are due to finite sample effects in the construction of our control variable.

In the detailed decomposition for the summary indices (Table 7), we see several changes from the baseline

results. The direct effect of AFQT is much larger for all indices (almost twice as large), but only significant

for M4. With the exception of M1, the direct effect of education is also smaller. The most notable decline

in the education effect is in M4 where the direct effect is less than half of the baseline effect and no longer

statistically significant. Experience has similar effects in the baseline and IV results, although the direct

effect of experience on M1 is about 50% larger in the IV model. Unobserved ability, captured in the control

variable, has sizable direct effects for M2 and M3, but the effects are not statistically significant.

[Table 7 about here]

Table 8 provides IV results for children from households in the top quartile of the parental earnings distri-

bution (p4j for j = 1, 2, 3, 4). Again we find, in general, a much larger direct effect for AFQT. For the fourth

quartile, the effect increases nearly eight fold from -0.53 to -3.91 and is now statistically significant. We

also see a large drop in the direct effect of education at the first, second and fourth quartiles; the effect of
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education is slightly increased at the third quartile but remains statistically insignificant. Interestingly, the

direct effects of unobserved ability at the first and second quartiles are substantially larger than the direct

effect of education, but again, these effects are not statistically significant. We do, however, find a significant

interaction effect between unobserved ability and experience on the second quartile with a point effect of

-3.5. In addition, a few interaction terms increase in magnitude and become statistically significant: the

AFQT-experience effect on the second quartile and the education-experience effect on the fourth quartile.

[Table 8 about here]

Finally, Table 9 provides IV results for children from households in the bottom quartile of the parental

earnings distribution (p1j for j = 1, 2, 3, 4). The changes in the direct effect of AFQT are mixed with

reduced effects in the first and third quartiles and increased effects in the second and fourth quartiles. Also,

quite different than the index and top quartile results, the direct effect of education appears much larger in

the IV model for the first and fourth quartile but only statistically significant for the first quartile. Again,

point estimates of the direct effect of unobserved ability are quite large for all quartiles, at times larger than

the direct effects of experience or education, but these effects are not precisely measured and not statistically

different than zero.

[Table 9 about here]

5 Conclusion

Economists have long been interested in intergenerational mobility. Over the past few decades, great gains

have been made in estimating mobility, both in mean effects (e.g., intergenerational elasticity of income)

and through alternative measurements that provide a more complete picture of mobility (e.g., transition

matrices). As a result, interest has started to turn from estimating more accurate point estimates to devel-

oping a better understanding of the forces that drive income persistence. While much work has been done to

understand the driving mechanisms of mean effects, the lack of an appropriate framework has limited similar

work on transition matrices and related indices. In this paper, we use recent advances in the decomposition

literature to fill this gap.
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We introduced a method to ‘decompose’ transition matrices and related indices. Given a benchmark matrix

of interest, the method decomposes the difference between the benchmark matrix and the empirical matrix

into portions attributable to differing characteristics between children from different economically advantaged

households (a composition effect) and differing returns to these characteristics (a structure effect). Our

approach also includes a detailed decomposition of the composition effect based on copula theory. While the

method we presented is not a decomposition in the traditional sense, it draws directly on the decomposition

literature; the procedure entails simulating several simultaneous counterfactuals which are then recast into

counterfactual transition matrices and from which we can identify decomposition effects.

We illustrate our method using data on white men from the 1979 NLSY. We base our decomposition on

an extended Mincer equation that includes education, experience, cognitive and non-cognitive measures.

Moreover, to address endogeneity concerns regarding schooling decisions, we reestimate our decomposition

with an IV method that allows us to recover causal effects as well as investigate the role of unobserved ability.

We apply our method to specific transition matrix entries and four summary indices. We find that the relative

importance of the structure versus composition effects varies substantially across the measures of interest;

these findings highlight the importance of being able to understand the driving forces of mobility beyond

mean effects. Similarly, the importance of specific characteristics (e.g., education, experience, cognitive,

non-cognitive measures) exhibits substantial heterogeneity across the various measures. And while education

plays an overwhelming role in our baseline decomposition, this role is substantially diminished in our IV

approach with ability playing a more important role.
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Table 1: Transition Matrix for White Males in NLSY79

Parental Childs’ Quartile
Quartile 1st 2nd 3rd 4th

1st 0.403 (0.026) 0.278 (0.024) 0.199 (0.023) 0.119 (0.017)
2nd 0.287 (0.025) 0.284 (0.023) 0.233 (0.023) 0.196 (0.021)
3rd 0.174 (0.019) 0.285 (0.024) 0.293 (0.022) 0.248 (0.022)
4th 0.136 (0.018) 0.151 (0.018) 0.270 (0.0230 0.443 (0.028)

Notes: Standard errors in parenthesis. Incomes are adjusted by state-level
cost of living indices.

Table 2: Mobility Indices

Index M(Independent matrix) M(Table 1)

M1 1 0.86
M2 1 0.67
M3 0.42 0.32
M4 1 0.85

Notes: These are summary indices values
for an ‘independent’ matrix as discussed in
section 2.1 and the same indeces values for
the empirical matrix in Table 1 based on
white men from the 1979 NLSY.
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Table 3: Summary Statistics - NLSY79 White Men

Variable Parental Income Quartile All

Q1 Q2 Q3 Q4

Parental income 12,435 25,044 35,126 57,416 32,503
(4,804) (3,436) (4,176) (14,713) (18,411)

Youth income 12,511 14,852 16,864 20,260 16,121
(7,943) (8,974) (8,878) (10,700) (9,600)

Youth income rank 0.38 0.46 0.54 0.64 0.5
(0.27) (0.28) (0.26) (0.28) (0.29)

Experience 224 222 212 184 210
(119) (123) (117) (118) (120)

Education 12.3 12.9 13.5 14.6 13.3
(years of schooling) (2.5) (2.2) (2.2) (2.4) (2.5)

AFQT 0.05 0.38 0.52 0.78 0.43
(1.05) (0.89) (0.89) (0.79) (0.95)

Rotter 8.81 8.57 8.42 8.23 8.51
(2.49) (2.14) (2.26) (2.46) (2.35)

Esteem 21.76 22.17 22.64 23.05 22.4
(3.87) (3.90) (3.96) (4.09) (3.98)

Birth year 61.2 61.3 61.4 61.2 61.3
(2.03) (2.03) (2.06) (2.03) (2.04)

County wages 11,191 11,831 12,163 12,604 11,947
(age 17) (2,635) (2,609) (2,684) (2,487) (2,653)

State unemployment rate 6.94 7.12 7.06 7.06 7.04
(age 17) (1.72) (1.89) (1.83) (1.83) (1.82)

Minimum college tuition 494 517 533 510 513
(4 year public; age 14) (220) (237) (234) (252) (236)

College in county 0.42 0.47 0.56 0.68 0.53
(0.49) (0.50) (0.50) (0.47) (0.50)

Notes: Standard deviations in parenthesis. Incomes are constant 1982-84
dollars and adjusted for state-level cost of living indices. AFQT score is a
standardized measurement.
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Table 4: Index Decompositions

M1 M2 M3 M4

Total Difference: ∆v
o 14.319*** (1.829) 32.426*** (2.577) 10.005*** (0.843) 15.35*** (1.222)

Structure Effect: ∆v
s 5.5*** (1.791) 16.963*** (3.397) 4.9*** (0.887) 9.277*** (1.211)

Composition Effect: ∆v
x 8.819*** (1.964) 15.463*** (3.195) 5.105*** (0.881) 6.073*** (1.145)

Dependence Effect: ∆v
d -0.368 (0.459) -0.419 (1.175) -0.167 (0.157) 0.175 (0.365)

Marginal Effect: ∆v
m 9.187*** (2.1) 15.882*** (3.277) 5.272*** (0.904) 5.898*** (1.116)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT -0.057 (1.216) 2.946** (1.412) 0.837* (0.503) 1.152* (0.677)
Esteem 0.353 (0.445) 0.573 (0.587) 0.191 (0.197) 0.223 (0.268)
Rotter 0.003 (0.34) 0.031 (0.425) -0.007 (0.145) -0.038 (0.211)
Education 11.084*** (2.123) 14.207*** (3.415) 5.236*** (0.935) 4.918*** (1.395)
Experience -2.041* (1.104) -3.924*** (1.238) -1.35*** (0.399) -1.979*** (0.588)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem 0.343 (0.47) 0.088 (0.381) 0.095 (0.154) 0.112 (0.232)
AFQT:Rotter -0.063 (0.275) 0.454 (0.334) 0.073 (0.092) 0.105 (0.143)
AFQT:Education 0.687 (1.391) 2.502 (2.048) 0.564 (0.432) 1.459 (1.002)
AFQT:Experience 0.108 (1.231) 0.23 (1.023) 0.036 (0.321) 0.179 (0.554)
Esteem:Rotter -0.203 (0.168) 0.004 (0.119) -0.03 (0.047) 0.008 (0.066)
Esteem:Education -0.256 (0.549) -0.185 (0.637) -0.044 (0.165) -0.11 (0.342)
Esteem:Experience 0.107 (0.497) -0.176 (0.399) 0.002 (0.148) -0.036 (0.19)
Rotter:Education 0.093 (0.397) 0.262 (0.648) 0.088 (0.124) 0.115 (0.245)
Rotter:Experience -0.012 (0.312) 0.002 (0.24) 0.017 (0.082) 0.035 (0.137)
Education:Experience -2.776* (1.576) 0.391 (1.905) -0.557 (0.429) 0.854 (0.88)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 5: Decomposition of Top (Parental) Quartile

1st Q 2nd Q 3rd Q 4th Q

Total Difference: ∆v
o 11.546*** (1.739) 9.47*** (1.814) -2.326 (2.033) -18.69*** (2.23)

Structure Effect: ∆v
s 7.382*** (1.772) 5.964*** (2.079) -3.2 (2.697) -10.146*** (2.64)

Composition Effect: ∆v
x 4.164*** (1.169) 3.506* (1.969) 0.874 (2.341) -8.544*** (2.587)

Dependence Effect: ∆v
d 0.936*** (0.319) -1.18*** (0.346) -0.858 (0.73) 1.102 (0.778)

Marginal Effect: ∆v
m 3.228*** (1.09) 4.686** (1.969) 1.732 (2.488) -9.646*** (2.718)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT 1.784* (0.962) 0.516 (1.254) -1.772* (1.004) -0.528 (0.835)
Esteem 0.508 (0.346) 0.058 (0.475) -0.478 (0.391) -0.088 (0.242)
Rotter -0.176 (0.235) 0.292 (0.303) 0.036 (0.361) -0.152 (0.341)
Education 3.106** (1.254) 5.002** (2.149) 3.03 (2.794) -11.138*** (2.783)
Experience -3.55*** (1.042) 1.492 (1.322) 0.426 (1.116) 1.632* (0.839)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem -0.33 (0.294) 0.466 (0.561) 0.004 (0.508) -0.14 (0.245)
AFQT:Rotter 0.152 (0.183) -0.054 (0.283) 0.26 (0.361) -0.358 (0.299)
AFQT:Education 0.796 (1.192) -0.462 (1.745) 1.658 (1.34) -1.992* (1.136)
AFQT:Experience 0.97 (1.461) -1.742 (1.841) 0.814 (1.091) -0.042 (0.775))
Esteem:Rotter -0.004 (0.1) 0.06 (0.147) -0.06 (0.137) 0.004 (0.113)
Esteem:Education 0.05 (0.347) -0.018 (0.633) 0.65 (0.612) -0.682 (0.424)
Esteem:Experience -0.264 (0.443) 0.344 (0.639) -0.072 (0.413) -0.008 (0.189)
Rotter:Education 0.174 (0.194) -0.214 (0.306) 0.78 (0.582) -0.74 (0.513)
Rotter:Experience 0.174 (0.206) -0.116 (0.294) -0.1 (0.339) 0.042 (0.283)
Education:Experience 2.374* (1.241) -3.778** (1.798) -1.176 (2.007) 2.58 (1.593)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 6: Decomposition of Bottom (Parental) Quartile

1st Q 2nd Q 3rd Q 4th Q

Total Difference: ∆v
o -16.132*** (2.332) -1.97 (2.12) 5.204*** (1.989) 12.898*** (1.612)

Structure Effect: ∆v
s -6.126*** (2.334) -2.632 (2.962) 1.63 (2.951) 7.128** (2.814)

Composition Effect: ∆v
x -10.006*** (2.284) 0.662 (2.859) 3.574 (2.757) 5.77** (2.239)

Dependence Effect: ∆v
d -0.66 (0.474) 0.932* (0.534) -0.346 (0.638) 0.074 (0.692)

Marginal Effect: ∆v
m -9.346*** (2.168) -0.27 (2.708) 3.92 (2.734) 5.696** (2.214)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT -2.288 (1.96) -2.19 (2.076) 4.106** (1.729) 0.372 (1.038)
Esteem -0.09 (0.703) 0.098 (0.801) -0.14 (0.733) 0.132 (0.475)
Rotter 0.366 (0.53) -0.496 (0.57) -0.168 (0.507) 0.298 (0.385)
Education -8.286*** (2.494) 3.876 (3.175) -0.582 (3.692) 4.992* (2.689)
Experience 2.96** (1.441) -1.838 (1.558) -1.252 (1.371) 0.13 (0.952)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem -0.084 (0.545) -0.314 (0.712) 0.406 (0.598) -0.008 (0.155)
AFQT:Rotter 0.002 (0.291) -0.35 (0.43) 0.262 (0.349) 0.086 (0.188)
AFQT:Education -0.498 (1.588) -0.424 (2.175) 0.186 (1.89) 0.736 (0.981)
AFQT:Experience -0.59 (1.273) 1.572 (1.669) -0.842 (1.266) -0.14 (0.81)
Esteem:Rotter -0.018 (0.12) -0.14 (0.199) 0.14 (0.175) 0.018 (0.078)
Esteem:Education 0.904 (0.609) -0.666 (0.97) -0.704 (0.881) 0.466 (0.429)
Esteem:Experience 0.148 (0.567) -0.212 (0.754) 0.146 (0.51) -0.082 (0.233)
Rotter:Education -0.194 (0.365) 0.316 (0.548) -0.424 (0.642) 0.302 (0.51)
Rotter:Experience -0.148 (0.256) 0.184 (0.393) 0.32 (0.361) -0.356 (0.256)
Education:Experience 0.08 (1.621) -1.354 (2.813) 0.984 (2.732) 0.29 (1.464)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 7: Index Decompositions - IV results

M1 M2 M3 M4

Total Difference: ∆v
o 14.24*** (1.708) 32.608*** (2.509) 10.021*** (0.793) 15.401*** (1.161)

Structure Effect: ∆v
s 5.287** (2.1) 16.073*** (3.637) 4.657*** (1.042) 9.106*** (1.275)

Composition Effect: ∆v
x 8.953*** (1.948) 16.535*** (3.352) 5.365*** (0.935) 6.295*** (1.259)

Dependence Effect: ∆v
d -0.232 (0.53) 0.439 (1.227) -0.017 (0.214) 0.281 (0.415)

Marginal Effect: ∆v
m 9.185*** (1.967) 16.097*** (3.197) 5.382*** (0.898) 6.014*** (1.227)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT 1.252 (2.436) 6.837 (4.301) 1.957 (1.311) 2.589* (1.527)
Esteem -0.014 (0.537) 0.841 (0.786) 0.177 (0.24) 0.275 (0.336)
Rotter 0.001 (0.373) 0.123 (0.567) 0.009 (0.164) -0.014 (0.233)
Education 12.153*** (4.506) 11.331* (6.351) 4.634** (2.207) 2.264 (2.674)
Experience -3.056** (1.219) -3.296* (1.774) -1.35*** (0.487) -1.943*** (0.719)
Control -0.32 (2.414) 2.722 (4.61) 0.945 (1.239) 0.523 (1.519)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem 0.753 (0.675) -0.142 (1.279) 0.236 (0.209) 0.108 (0.37)
AFQT:Rotter 0.093 (0.394) 0.382 (0.856) 0.102 (0.126) 0.159 (0.242)
AFQT:Grade 0.143 (2.472) -6.049 (4.83) -0.884 (0.919) -1.187 (1.92)
AFQT:Experience -1.559 (1.243) -0.945 (1.854) -0.461 (0.346) -1.09 (0.751)
AFQT:Control -0.287 (2.396) -5.586 (4.616) -0.048 (0.8) -2.684 (1.699)
Esteem:Rotter -0.307 (0.198) -0.018 (0.198) -0.054 (0.057) -0.013 (0.084)
Esteem:Grade 0.048 (0.699) -0.149 (1.084) 0.000 (0.225) 0.422 (0.438)
Esteem:Experience 0.755 (0.595) 0.095 (0.53) 0.186 (0.161) 0.145 (0.246)
Esteem:Control 0.417 (0.682) -1.372 (1.104) 0.022 (0.206) -0.447 (0.427)
Rotter:Education 0.063 (0.348) 0.344 (0.804) 0.039 (0.118) 0.082 (0.298)
Rotter:Experience -0.122 (0.297) 0.031 (0.313) 0.005 (0.077) -0.024 (0.132)
Rotter:Control 0.07 (0.319) 0.037 (0.671) 0.092 (0.101) 0.103 (0.217)
Education:Experience -1.812 (1.572) -1.882 (3.074) -0.784 (0.497) 0.398 (1.392)
Education:Control -0.714 (2.17) -3.303 (5.094) -1.131 (0.79) 0.952 (2.17)
Experience:Control -1.254 (0.959) -0.59 (2.139) -0.352 (0.321) -0.58 (0.726)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 8: Decomposition of Top (Parental) Quartile - IV results

1st Q 2nd Q 3rd Q 4th Q

Total Difference: ∆v
o 11.844*** (1.753) 9.294*** (1.724) -2.492 (2.093) -18.646*** (2.079)

Structure Effect: ∆v
s 7.224*** (1.708) 5.174*** (1.916) -2.944 (2.536) -9.454*** (2.664)

Composition Effect: ∆v
x 4.62*** (1.544) 4.12** (1.965) 0.452 (2.392) -9.192*** (2.369)

Dependence Effect: ∆v
d 0.57* (0.308) -0.682* (0.392) -0.85 (0.869) 0.962 (0.96)

Marginal Effect: ∆v
m 4.05*** (1.53) 4.802** (1.945) 1.302 (2.487) -10.154*** (2.411)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT 2.372* (1.371) 3.226 (2.041) -1.688 (2.099) -3.91* (2.341)
Esteem 0.68 (0.462) 0.116 (0.6) -0.572 (0.602) -0.224 (0.5)
Rotter -0.144 (0.244) 0.318 (0.284) 0.016 (0.378) -0.19 (0.387)
Education 0.976 (2.259) 1.26 (2.546) 5.77 (4.764) -8.006 (5.909)
Experience -2.678*** (0.999) 1.9* (1.02) -0.216 (1.066) 0.994 (0.985)
Control 1.572 (1.311) 3.17 (2.346) -1.022 (2.205) -3.72 (2.294)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem -0.464 (0.482) 0.808 (0.858) 0.348 (0.787) -0.692 (0.46)
AFQT:Rotter 0.114 (0.202) 0.07 (0.332) 0.532 (0.473) -0.716* (0.413)
AFQT:Education -0.636 (1.615) -2.694 (2.664) 2.422 (2.968) 0.908 (2.338)
AFQT:Experience 1.77 (1.24) -3.958*** (1.725) 0.266 (1.435) 1.922* (0.99)
AFQT:Control -0.082 (1.584) 0.838 (2.736) -1.154 (2.766) 0.398 (1.771)
Esteem:Rotter 0.014 (0.115) 0.018 (0.232) -0.044 (0.315) 0.012 (0.224)
Esteem:Education -0.262 (0.535) 0.074 (0.815) 1.12 (0.82) -0.932 (0.582)
Esteem:Experience -0.072 (0.455) -0.444 (0.716) 0.606 (0.652) -0.09 (0.341)
Esteem:Control -0.538 (0.466) 0.96 (0.911) 0.046 (0.868) -0.468 (0.482)
Rotter:Education 0.072 (0.216) -0.034 (0.329) 0.382 (0.54) -0.42 (0.468)
Rotter:Experience 0.106 (0.211) -0.156 (0.285) 0.112 (0.36) -0.062 (0.297)
Rotter:Control 0.134 (0.192) 0.092 (0.329) 0.31 (0.455) -0.536 (0.383)
Education:Experience 0.35 (1.217) -2.238 (1.616) -2.52 (2.198) 4.408** (1.841)
Education:Control -0.62 (1.391) -2.284 (2.495) 1.238 (2.982) 1.666 (2.16)
Experience:Control 1.194 (1.194) -3.492** (1.625) 0.802 (1.486) 1.496 (0.985)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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Table 9: Decomposition of Bottom (Parental) Quartile - IV results

1st Q 2nd Q 3rd Q 4th Q

Total Difference: ∆v
o -16.176*** (2.349) -1.984 (1.992) 5.1** (1.984) 13.06*** (1.433)

Structure Effect: ∆v
s -6.99*** (2.555) -1.656 (3.432) 1.888 (3.247) 6.758 (2.867)

Composition Effect: ∆v
x -9.186*** (2.437) -0.328 (3.374) 3.212 (2.987) 6.302*** (2.439)

Dependence Effect: ∆v
d -1.2** (0.542) 1.364* (0.746) -0.492 (0.883) 0.328 (1.056)

Marginal Effect: ∆v
m -7.986*** (2.465) -1.692 (3.239) 3.704 (3.001) 5.974*** (2.06)

“Direct” Contibution to Marginal Effect: ∆v
m(ej)

AFQT -1.116 (3.702) -4.116 (3.818) 3.1 (3.406) 2.132 (3.827)
Esteem 0.16 (0.759) -0.258 (0.964) -0.23 (0.867) 0.328 (0.615)
Rotter 0.392 (0.535) -0.554 (0.593) -0.236 (0.567) 0.398 (0.431)
Education -13.146** (6.611) 2.13 (6.301) 2.68 (5.774) 8.336 (7.151)
Experience 4.226** (1.836) -2.418 (1.632) -2.104 (1.627) 0.296 (1.396)
Control 3.668 (3.544) -3.52 (3.636) -1.808 (3.39) 1.66 (3.621)

“Two-Way” Interactions: ∆v
m(k) with |k| = 2

AFQT:Esteem 0.444 (0.746) -0.592 (1.106) 0.024 (0.992) 0.124 (0.701)
AFQT:Rotter 0.07 (0.318) -0.096 (0.529) -0.38 (0.612) 0.406 (0.435)
AFQT:Grade -2.476 (2.678) 7.922 (4.964) -0.996 (5.42) -4.45 (3.445)
AFQT:Experience 0.12 (1.23) -0.096 (1.727) 0.698 (1.547) -0.722 (1.057)
AFQT:Control 2.726 (2.786) -1.412 (4.566) -2.896 (4.437) 1.582 (2.418)
Esteem:Rotter -0.02 (0.145) -0.15 (0.262) 0.146 (0.329) 0.024 (0.234)
Esteem:Education -0.024 (0.682) 0.666 (1.243) -0.616 (1.167) -0.026 (0.679)
Esteem:Experience -0.464 (0.576) 0.238 (0.835) 0.29 (0.685) -0.064 (0.393)
Esteem:Control 0.964 (0.737) -0.226 (1.031) -0.826 (0.853) 0.088 (0.595)
Rotter:Education -0.088 (0.308) 0.04 (0.607) 0.484 (0.771) -0.436 (0.596)
Rotter:Experience -0.068 (0.213) -0.012 (0.351) 0.3 (0.419) -0.22 (0.303)
Rotter:Control -0.116 (0.246) 0.138 (0.433) -0.468 (0.6) 0.446 (0.414)
Education:Experience -0.716 (1.528) 0.98 (2.612) 1.572 (2.664) -1.836 (1.586)
Education:Control -1.524 (2.314) 7.056 (4.423) -1.344 (4.938) -4.188 (3.214)
Experience:Control -0.954 (1.348) 0.956 (1.88) 0.806 (1.56) -0.808 (0.97)

Notes: Standard errors, based on 200 bootstraps, are in parenthesis. Statistical significance is
denoted by *** for the 1% level, ** for the 5% level, and * for the 10% level. All results are
multiplied by 100 for readability.
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