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dates the presence of undesirable nonperforming loans — an inherent characteristic of the bank’s
production due to its exposure to credit risk. Specifically, we model nonperforming loans as an
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banking technology is likely to suffer from the endogeneity of inputs, we propose addressing
this problem by considering a system consisting of the DTDF and the first-order conditions
from the bank’s cost minimization problem. The first-order conditions also allow us to identify
the “cost-optimal” directional vector for the banking DTDF, thus eliminating the uncertainty
associated with an ad hoc choice of the direction. We apply our cost system approach to the
data on large U.S. commercial banks for the 2001–2010 period, which we estimate via Bayesian
MCMC methods subject to theoretical regularity conditions. We document dramatic distortions
in banks’ efficiency, productivity growth and scale elasticity estimates when the endogeneity of
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1 Introduction

One can hardly overstate the role of the banking sector in the economy. Given the importance of
financial intermediation in facilitating economic activity, in general, and the transformation that the
banking industry has been undergoing in recent decades, a large number of studies have analyzed
banks’ performance in an attempt to quantify their productivity and efficiency (see Hughes and
Mester, 2010, for an excellent review). The interest in quantifying banking technology has been
particularly fueled by the wave of regulatory changes1 as well as natural technological and financial
innovations which have spurred the consolidation of the industry (e.g., see Berger et al., 1999; Berger
and Mester, 2003; Berger, 2004). The recent financial crisis of 2007 has further focused researchers’
attention on banks’ production technology in the pursuit of the evidence of scale economies and high
efficiency which may provide arguments against the “too-big-to-fail” criticism of large-sized banks
(see Hughes and Mester, 2013; Restrepo-Tobón and Kumbhakar, 2014, and references therein).

In this paper, we address some econometric issues related to a consistent estimation of banking
technology which explicitly accommodates the presence of undesirable nonperforming loans — an
inherent characteristic of the bank’s production due to its exposure to uncertainty. Textbooks
explain that commercial banks are subject to the credit risk associated with the likelihood that
a borrower will default on the debt by failing to make payments as obligated contractually (e.g.,
Freixas and Rochet, 2008). This credit risk materializes in the form of “nonperforming loans”, i.e.,
loans that are not paid back duly. Researchers studying banks’ productivity and efficiency have
long ago acknowledged the importance of taking such nonperforming loans (NPL) into account
when estimating banking technology. The two approaches to modeling bank’s nonperforming loans
prevailing in the literature have been to treat the former as either (i) a “control variable” capturing
bank’s risk and/or quality of loans (e.g., Berger and Mester, 1997, 2003; Altunbas et al., 2000;
Koutsomanoli-Filippaki et al., 2009) or (ii) an “undesirable output” (e.g., Park and Weber, 2006;
Assaf et al., 2013; Guarda et al., 2013).

Due to its apparent advantages, we focus on the second approach to modeling nonperforming
loans. Treating NPL as an undesirable output is advantageous over modeling it as a mere banking
technology shifter (i.e., a contextual control variable) because not only does this approach recognize
that NPL is a by-product of producing desirable outputs, such as earning loans and securities, but it
also accommodates the undesirability of NPL. That is, by acknowledging that nonperforming loans
are undesirable, we can credit banks for the reduction in NPL along with the expansion in desirable
outputs when computing their productivity and technological efficiency.

To estimate the banking technology in the presence of nonperforming loans, we use the direc-
tional technology distance function (DTDF) of Chambers et al. (1998) generalized to the case of
undesirable outputs (also see Chung et al., 1997; Färe et al., 2005; Hudgins and Primont, 2007). The
DTDF can be estimated parametrically in two ways: via a linear programming technique, if treating
it as a deterministic function, or via a stochastic frontier, if allowing the DTDF to be subject to a
random error. In this paper, we consider the latter approach due to its additional flexibility and an
increasing popularity among productivity studies seeking to estimate directional distance functions
(e.g., see Guarda et al., 2013; Atkinson et al., 2014; Feng and Serletis, 2014; Tsionas et al., 2014).

The estimation of the stochastic DTDF is however not trivial because of the potential endo-
geneity problem. While in many empirical applications (e.g., studies of service industries such as
commercial banking) one can justify the exogeneity of outputs (both desirable and undesirable) with
relative ease (e.g., Feng and Serletis, 2009; Hughes and Mester, 2010; Assaf et al., 2013; Malikov
et al., 2014b), the exogeneity of inputs is however a much harder sell. Economists commonly agree

1E.g., permitting interstate branching or merging commercial banking with security trading and/or insurance, etc.
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that input allocation is an outcome of endogenous choice made by bank managers.

In this paper, we propose addressing the endogeneity of inputs in the stochastic DTDF for-
mulation of the banking technology from the perspective of economic theory. More specifically, we
suggest invoking the assumption of the bank’s cost minimizing behavior not only to justify the treat-
ment of outputs as exogenous2 but to also tackle the endogeneity of inputs in the DTDF. We do so
by augmenting the stochastic DTDF with the set of independent (nonlinear) first-order conditions
derived from the bank’s cost minimization problem, which we then estimate as a system of simul-
taneous equations. We prefer the assumption of cost-minimizing behavior over profit-maximization
primarily because it is consistent with the premise of exogenously determined outputs, which is
common to the banking industry, and it does not require price information on undesirable outputs
which is hard to measure and is rarely available in practice. Our identification strategy thus relies
on competitively determined input prices as a source of exogenous variation.

Incidentally, Atkinson and Tsionas (2013) and Atkinson et al. (2014) have recently proposed
tackling the endogeneity in the DTDF by formulating a system of equations based on the assumption
of profit-maximizing behavior. While being a valid alternative to our estimator, the inconvenience of
such an approach is that, due to the unobservability of prices of undesirable outputs, a researcher is
forced to augment a system of quasi -profit-maximizing first-order conditions3 with the reduced-form
demand equations for undesirable outputs. Our cost system approach is however not subject to the
above problem. Further, endogeneity in the estimation of the stochastic DTDF is also discussed,
although in a more narrow sense, in Guarda et al. (2013). In their paper, the authors are primarily
concerned with the endogeneity problem due to the appearance of the left-hand-side “dependent
variable” on the right-hand side of the normalized DTDF regression equation, which they suggest
to remedy by choosing the directional vector so that the dependent variable disappears from the
right-hand side of the equation.4 Guarda et al. (2013) however leave the endogeneity of inputs due
to simultaneity, which is a primary focus of our paper, unaddressed.

We note that there are advantages to using our cost system approach even if the DTDF does
not suffer from the endogeneity of inputs. Since additional equations (the first-order conditions)
do not contain any extra parameters, the system-based parameter estimates are likely to be more
precise. Furthermore, technological metrics obtained from the cost system of DTDF are likely to be
more meaningful because the economic behavior is embedded into the system through the first-order
conditions. The inclusion of the cost-minimizing first-order conditions in the system also permits
us to estimate the “cost-optimal” directional vector for the banking DTDF. That is, in contrast to
a common tradition in the literature, we do not pre-specify the (fixed) directional vector for the
DTDF but rather employ Färe et al.’s (2013) idea and let the data help us determine the direction
in which the bank’s movement toward the stochastic frontier is to be estimated.5 This approach
eliminates the uncertainty associated with the fact that the DTDF is an implicit function of the
direction, which implies that the DTDF-based estimates of banking technology change with the
choice of the directional vector.

We apply our cost system approach to the data on large U.S. commercial banks for the 2001–
2010 period. The nonlinear cost system of equations is estimated via Bayesian MCMC methods
subject to monotonicity and curvature regularity conditions in order to ensure that our results are
economically meaningful, as emphasized by Barnett et al. (1991) and Barnett (2002). The reported

2See Malikov et al. (2014b) and the references therein.
3The prefix “quasi” indicates that the employed profit-maximizing first-order conditions omit the terms containing
the prices of undesirable outputs.

4Tsionas et al. (2014) propose a more general solution to the same problem, which is based on accounting for a proper
Jacobian of the transformation during the estimation.

5Also, see Atkinson and Tsionas (2013); Tsionas et al. (2014); Hampf and Krüger (2014).
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results on technological efficiency, technical change, productivity and (desirable) scale elasticity
from our preferred system-based model are contrasted with those obtained from a single-equation
DTDF model formulated under a rather strong assumption of exogenously determined inputs. We
further assess the sensitivity of the results to the choice of the directional vector for the DTDF by
re-estimating both models in the fixed Färe et al.’s (2005) “unit” direction specified prior to the
estimation. We document dramatic distortions in banks’ efficiency, productivity growth and scale
elasticity estimates obtained from the DTDF estimated via a traditional single-equation approach
and/or in an ad hoc pre-specified direction. We conclude that in studies of banking technology,
where exogeneity of inputs is hardly plausible, a cost system approach, which we consider in this
paper, is likely to provide a more robust estimation strategy.

The contribution of our paper is threefold. First, we offer a cost system approach to a consistent
estimation of the DTDF based on the (behavioral) cost minimization assumption consistent with
the economic theory. Second, our model of banking technology treats NPL as an undesirable
output thus allowing us to credit banks for its reduction. To do so, we derive the DTDF-based
Solow-type primal productivity index which is defined as the difference between the expansion
rate in desirable outputs and contraction rates in inputs and undesirable outputs. The index thus
explicitly recognizes the undesirability of NPL. Third, we estimate optimal directions for all inputs
and outputs (both desirable and undesirable) conditional on banks’ cost-minimizing behavior. The
estimated DTDF direction captures the bank’s movement to the point on a technological frontier
where costs are minimized, thus eliminating the uncertainty associated with an ad hoc choice of the
direction.

The rest of the paper unfolds as follows. Section 2 presents the DTDF framework for modeling
banking production technology in the presence of undesirable outputs as well as discusses the
associated productivity growth decomposition. In Section 3, we introduce a cost system approach
to tackling endogeneity in the stochastic DTDF, followed by the discussion of the cost-optimal
direction. Section 4 discusses Bayesian implementation of our estimator. Data are discussed in
Section 5, and empirical results are reported in Section 6. We conclude in Section 7.

2 The Directional Technology Distance Function with Undesirable

Outputs

We start by introducing the directional distance function formulation of the banking production
process. Consider the production process in which J inputs x ∈ R

J
+ are being transformed into

M desirable (“good”) outputs y ∈ R
M
+ and P undesirable (“bad”) outputs b ∈ R

P
+. The banking

production technology is given by

T
def
= {(x,y,b) : x can produce (y,b)} , (2.1)

subject to usual assumptions (see Chambers et al., 1998; Färe et al., 2005):

(1) closedness of T;

(2) no free lunch: if (x,y,b) ∈ T and x = 0, then (y,b) = (0,0);

(3) null-jointness of the output production: if (x,y,b) ∈ T and b = 0, then y = 0;

(4) free input disposability: if (x,y,b) ∈ T and x′ ≥ x, then (x′,y,b) ∈ T;

(5) weak joint disposability of desirable and undesirable outputs: if (x,y,b) ∈ T and 0 ≤ κ ≤ 1,
then (x, κy, κb) ∈ T;
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(6) free disposability of desirable outputs: if (x,y,b) ∈ T and y′ ≤ y, then (x,y′,b) ∈ T;

(7) feasibility of inaction: (0,0,0) ∈ T;

(8) convexity of T.

The maximal distance between the observed (x,y,b) and the boundary of banking technology T

in a given direction g ≡ (−gx,gy,−gb) ∈ R
J
− × R

M
+ × R

P
− is given by the value of the directional

technology distance function (DTDF) defined as

~Dτ (x,y,b;g)
def
= sup

β
{β ∈ R+ : (x− βgx,y + βgy,b− βgb) ∈ T} . (2.2)

The DTDF in (2.2) seeks the simultaneous maximal expansion in desirable outputs and maximal
reduction in inputs and undesirable outputs. It is advantageous over traditional (input- and/or
output-oriented) distance functions because the distance that it measures is technology-oriented
and can vary across individual inputs and outputs. However, unlike a traditional distance function,
the DTDF constitutes an additive (not proportional) measure of inefficiency in a given direction g,
where the zero value of ~Dτ (x,y,b;g) implies full technological efficiency. The function ~Dτ (x,y,b;g)
satisfies the following theoretical properties:6

(1) ~Dτ (x,y,b;g) ≥ 0 ⇐⇒ (x,y,b) ∈ T;

(2) the translation property: for α ∈ R

~Dτ (x− αgx,y + αgy,b− αgb;g) = ~Dτ (x,y,b;g)− α ; (2.3)

(3) concavity of ~Dτ (x,y,b;g) in (x,y,b) ∈ T;

(4) positive monotonicity in inputs: if (x′,y,b) ≥ (x,y,b) ∈ T, then ~Dτ (x
′,y,b;g) ≥ ~Dτ (x,y,b;g);

(5) negative monotonicity in desirable outputs: if (x,y′,b) ≤ (x,y,b) ∈ T, then ~Dτ (x,y
′,b;g) ≥

~Dτ (x,y,b;g);

(6) positive monotonicity in undesirable outputs: if (x,y,b′) ≥ (x,y,b) ∈ T, then ~Dτ (x,y,b
′;g) ≥

~Dτ (x,y,b;g);

(7) homogeneity of degree minus one in g: ~Dτ (x,y,b;λg) = λ−1 ~Dτ (x,y,b;g) for λ > 0.

Note that the DTDF in (2.2) nests several special cases of the directional distance functions. In
the case of b = 0 (and hence gb = 0), the DTDF in (2.2) collapses to the standard directional
technology distance function (Chambers et al., 1998; Hudgins and Primont, 2007), which assumes
no by-production of undesirable outputs, i.e.,

~Dτ (x,y,0; (−gx,gy,0)) = ~D⊤(x,y; (−gx,gy)) . (2.4)

When (gy,gb) = (0,0), the DTDF in (2.2) becomes the directional input distance function similar
to that of Chambers et al. (1996), i.e.,7

~Dτ (x,y,b; (−gx,0,0)) = ~Di(x,y,b;−gx) . (2.5)

Lastly, if gx = 0, function (2.2) nests the directional output distance function with undesirable
outputs (Chung et al., 1997; Färe et al., 2005), i.e.,

~Dτ (x,y,b; (0,gy,−gb)) = ~Do(x,y,b; (gy,−gb)) . (2.6)

6The proofs are very similar to those in Chambers et al. (1996).
7To be precise, Chambers et al. (1996) consider the directional input distance function under the assumption of no
undesirable outputs.
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2.1 Productivity Growth Decomposition

Since the DTDF in (2.2) explicitly accommodates the by-production of undesirable outputs in the
banking technology, we are able to credit banks for the reduction in undesirable outputs (nonper-
forming loans) along with the expansion in desirable outputs (earning assets such as loans, securities,
etc.) when computing their productivity growth.

Specifically, letting the time enter the DTDF in (2.2) directly and recognizing that (x,y,b) are
all changing over time, the total time-differentiation of ~Dτ (x,y,b, t;g) yields

d ~Dτ (x,y,b, t;g)

dt
=
∑

j

∂ ~Dτ (·)

∂ log xj
ẋj +

∑

m

∂ ~Dτ (·)

∂ log ym
˙ym +

∑

p

∂ ~Dτ (·)

∂ log bp
ḃp +

∂ ~Dτ (·)

∂t
, (2.7)

where the “dot” above a variable denotes the time derivative of its log. Dividing both sides of (2.7)

by (non-zero)
(
1 + ~Dτ (x,y,b, t;g)

)
and some rearranging yields an equivalent expression:

PG ≡ −
∑

j

∂ log
(
1 + ~Dτ (·)

)

∂ log xj
ẋj −

∑

m

∂ log
(
1 + ~Dτ (·)

)

∂ log ym
˙ym −

∑

p

∂ log
(
1 + ~Dτ (·)

)

∂ log bp
ḃp

=
∂ log

(
1 + ~Dτ (·)

)

∂t
−

d log
(
1 + ~Dτ (·)

)

dt
, (2.8)

where the left-hand side of the equality is a Solow-type Divisia index of productivity growth which
we label PG, and the right-hand side of the equality yields a natural decomposition of PG into

technical change TC ≡ ∂ log
(
1 + ~Dτ (·)

)
/∂t and efficiency change EC ≡ −d log

(
1 + ~Dτ (·)

)
/dt.

The PG index constitutes a weighted aggregate of percentage growth rates in inputs and desirable
and undesirable outputs: ẋj ∀ j, ˙ym ∀ m and ḃp ∀ p, respectively. The corresponding weights are

−
∂ log

(
1 + ~Dτ (·)

)

∂ log xj
≤ 0 ∀ j = 1, . . . , J

−
∂ log

(
1 + ~Dτ (·)

)

∂ log ym
≥ 0 ∀ m = 1, . . . ,M

−
∂ log

(
1 + ~Dτ (·)

)

∂ log bp
≤ 0 ∀ p = 1, . . . , P , (2.9)

where the signs are dictated by the monotonicity properties of the DTDF in (2.2) and are in line
with one’s intuition.

3 Endogeneity in the Stochastic Directional Technology Distance

Function: A Cost System Approach

In order to estimate the DTDF, one needs to specify its functional form. The quadratic form is a
common choice for the directional distance functions, since it can be easily restricted to satisfy the
translation property (e.g., Färe et al., 2005; Hudgins and Primont, 2007; Feng and Serletis, 2014).
The function can then be estimated in two ways. Treating it as a deterministic function, one may
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estimate it for a given direction g using the linear programming technique (subject to symmetry
and theoretical regularity conditions).8 Here, we employ an alternative approach where we treat the
DTDF as a stochastic function in the spirit of Guarda et al. (2013) and Feng and Serletis (2014),
who estimate the stochastic directional input and output distance functions.

3.1 Stochastic Formulation of the Directional Technology Distance Function

Before we proceed, note that the direction in which the DTDF is specified is uniquely defined by
(J +M + P − 1) ratios of the elements in the (J +M + P )-dimensional vector g. For example, in
the case of one input (J = 1), one desirable (M = 1) and zero undesirable outputs (P = 0), the
directional vector is given by (−gx, gy, 0) and is uniquely defined by the ratio of gx to gy.

9 Without
the loss of generality, we can therefore normalize one of the elements in the directional vector g to be
equal to one and control the direction of the DTDF using (magnitudes of) its remaining elements.

Following Guarda et al. (2013) and Feng and Serletis (2014), we normalize the stochastic DTDF
in (2.2) in order to impose the translation property onto it for a given direction g.10 Specifically,
setting α equal to the negative of one of the desirable outputs, say α = −yk, and normalizing the
corresponding gyk = 1 (in the light of the argument above), the translation property in (2.3) can
be rewritten as11

~Dτ (x+ ykgx, ŷ − ykĝy,b+ ykgb;g) = ~Dτ (x,y,b;g) + yk , (3.1)

where we define ŷ ≡ (y1, . . . , yk−1, yk+1, . . . , yM ) and ĝy ≡ (gy1 , ...,gyk−1
,gyk+1

, . . . ,gyM ). Note
that, due to the normalization gyk = 1, the desirable output yk now enters the left-hand side
of (3.1) in the capacity of “α” from (2.3) only. The “output” yk has however disappeared from
~Dτ (x + ykgx, ŷ − ykĝy,b + ykgb;g) because yk + αgyk = yk − yk · 1 = 0. After rearranging, from
(3.1) we get

yk = ~Dτ (x+ ykgx, ŷ − ykĝy,b+ ykgb;g)− ~Dτ (x,y,b;g)

def
= ~Dτ (x+ ykgx, ŷ − ykĝy,b+ ykgb;g)− u , (3.2)

where u
def
= ~Dτ (x,y,b;g) ≥ 0 represents the (unobserved) composite technological inefficiency.12

After adding the white noise term, the normalized DTDF in (3.2) constitutes a standard stochastic
frontier model.

3.2 Endogeneity in the Stochastic Directional Technology Distance Function

The estimation of (3.2) is not trivial because of the potential endogeneity problem. While in
many empirical applications (e.g., studies of service industries such as banking or electric power

8E.g., see Chung et al. (1997) and Färe et al. (2005) who estimate the deterministic directional output distance
function in such a way.

9Intuitively, the direction is uniquely defined by (J +M +P − 1) angles between the vector g and its (J +M +P − 1)
projections on all two-dimensional subspaces. The magnitudes of elements in (gx,gy,gb) per se do not matter.

10We note that the translation property may alternatively be imposed using the set of parameter restrictions applied
to the DTDF directly during the estimation (e.g., see Atkinson et al., 2014).

11Note that the normalization can be performed by setting α equal to any of the arguments of the DTDF. For instance,
other options include setting α equal to some input or some undesirable output. However, opting for an input to
normalize the DTDF produces highly nonlinear (although equivalent to those we employ) cost-minimizing first-order
conditions, which we make use of later in the paper.

12Defined over inputs and both the desirable and undesirable outputs. For the discussion of how to disentangle
technical inefficiency, conventionally defined over inputs and desirable outputs, from environmental inefficiency,
defined over undesirable output, see Malikov et al. (2014a).
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generation/distribution) one can justify the exogeneity of outputs (y,b) with relative ease, the
exogeneity of inputs x is however a much harder sell. Economists commonly agree that input
allocation is an outcome of endogenous choice made by firms. Specifically, the endogeneity problem
arises due to the presence of J endogenous inputs x on the right-hand side of (3.2). To mitigate
the problem, one either needs to instrument for x or, alternatively, to employ a system approach.
In what follows, we opt for the system approach solution.

In order to meet the rank condition for the identification of the model, one needs the total of
at least J independent equations in the system,13 which equals the total number of endogenous
variables (in our case, inputs x ∈ R

J
+). Also note that, despite that the desirable output yk appears

in the normalized DTDF (3.2) in the capacity of a left-hand-side “dependent variable”, it is not
an endogenous variable. Equation (3.2) can therefore be classified as an implicit function, which
requires a proper Jacobian of the transformation be taken into account during the estimation (which
we discuss in detail in Section 4).

We turn to economic theory in order to formulate additional independent equations for x. Specif-
ically, we augment the normalized DTDF in (3.2) with (J − 1) independent first-order conditions
from banks’ cost minimization problem. We prefer the assumption of the cost-minimizing behav-
ior over profit-maximization primarily because (i) it is consistent with the premise of exogenously
determined outputs, which is common to the banking industry, and (ii) the assumption of profit-
maximization requires price information on undesirable outputs which is hard to measure and is
rarely available in practice.14 Incidentally, Atkinson and Tsionas (2013) and Atkinson et al. (2014)
consider the estimation of the DTDF with undesirable outputs, where they propose tackling the
endogeneity problem by formulating a profit-maximizing system of equations. While being a valid
alternative to our estimator, the inconvenience of such an approach is that, due to unobservability
of prices of undesirable outputs (say, p), a researcher is forced to augment a system of quasi -
profit-maximizing first-order conditions (which omit the terms containing p) with the reduced-form
demand equations for b. Our cost system approach is not subject to the above problem.

Endogeneity in the estimation of the normalized DTDF is also discussed, although in a more
narrow sense, in Guarda et al. (2013). In their paper, the authors are primarily concerned with
the endogeneity problem due to the appearance of the left-hand-side “dependent variable” on the
right-hand side of the normalized regression equation, which they suggest to remedy by setting
ĝ = 0 (in our notation).15 The endogeneity of inputs due to simultaneity, which is a primary focus
of our paper, is however left unaddressed.

To formulate our cost system approach, we start with the bank’s cost-minimizing objective
defined as

min
x

w′x : (x,y,b) ∈ T , (3.3)

which can be equivalently defined in terms of the DTDF in (2.2) as

min
x

w′x : ~Dτ (x,y,b;g) ≥ 0 , (3.4)

where w ∈ R
J
+ is the vector of J exogenous, competitively determined inputs prices.16

13Including the normalized DTDF (3.2).
14Furthermore, outputs in banking are services which are demand-determined and non-storable. Hence, cost mini-
mization appears to be a more natural framework as opposed to profit maximization. This is one of the primary
reasons why cost functions are routinely estimated for service industries.

15Tsionas et al. (2014) propose a more general solution to the same problem, which is based on accounting for a
proper Jacobian of the transformation during the estimation.

16It may at first seem somewhat counterintuitive to speak of optimal behavior such as cost minimization while also
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To link the optimization problem in (3.4) to the normalized DTDF in (3.2) which we seek to
estimate, we substite (3.1) for ~Dτ (x,y,b;g) [using the translation property for α = −yk] and let
gyk = 1. Equation (3.4) then transforms into

min
x

w′x : ~Dτ (x+ ykgx, ŷ − ykĝy,b+ ykgb;g)− yk ≥ 0 . (3.5)

The corresponding first-order conditions are

wj

wq
=

(
∂ ~Dτ (·)

∂x̃q

)−1
∂ ~Dτ (·)

∂x̃j
∀ j( 6= q) = 1, . . . , J, (3.6)

where, for convenience, we have defined x̃j
def
= xj + ykgxj

∀ j = 1, . . . , J .

Combining (J − 1) equations given in (3.6) with the normalized DTDF in (3.2) constitutes a
complete, exactly identified (nonlinear) system of equations. Specifically, under the assumption of
the quadratic functional form, the system consists of the following normalized DTDF (where we
also introduce the time trend t)

yk = θ0 +
∑

j

αj x̃j +
∑

m( 6=k)

βmỹm +
∑

p

γpb̃p + θtt +

1

2

∑

j

∑

j′

αjj′ x̃j x̃j′ +
1

2

∑

m( 6=k)

∑

m′( 6=k)

βmm′ ỹmỹm′ +
1

2

∑

p

∑

p′

γpp′ b̃pb̃p′ +
1

2
θttt

2 +

∑

j

∑

m( 6=k)

δjmx̃j ỹm +
∑

j

∑

p

φjpx̃j b̃p +
∑

m( 6=k)

∑

p

ϕmpỹmb̃p +

∑

j

θx,jtx̃j +
∑

m( 6=k)

θy,mtỹm +
∑

p

θb,pt̃bp − u (3.7)

and (J − 1) equations for x̃j , which we obtain from (3.6):17

x̃j =
2

αjjwq − αqjwj


wj


αq +

1

2

∑

j′( 6=j)

αqj′ x̃j′ +
∑

m( 6=k)

δqmỹm +
∑

p

φqpb̃p + θx,qt


−

wq


αj +

1

2

∑

j′( 6=j)

αjj′ x̃j′ +
∑

m( 6=k)

δjmỹm +
∑

p

φjpb̃p + θx,jt




 ∀ j 6= q , (3.8)

where we have defined ỹm
def
= ym − ykgym ∀ m( 6= k) = 1, . . . ,M and b̃p

def
= bp + ykgbp ∀ p = 1, . . . , P .

allowing for technological inefficiency in the banking production process, i.e., the instance when ~Dτ (·) takes a positive
value. However, cost minimization (or even profit maximization) does not necessarily imply that the firm is fully
efficient and operates on its technological frontier [ ~Dτ (·) = 0] (e.g., see Färe and Primont, 1995; Chambers et al.,
1998). That is, banks may seek to minimize expenditures on inputs given the level of their technological inefficiency
due to, say, imperfect organization of the production process, poor management and other (often unobserved) factors.
In fact, this technological inefficiency can also be linked using duality to the cost inefficiency which measures the
extra cost of producing below the technological frontier, as first shown by Schmidt and Lovell (1979). Also, see
Chapters 4 and 6 of Kumbhakar et al. (2015).

17Note that, for the ease of it, we solve the first-order conditions for x̃j thus treating them as endogenous variables
(as opposed to xj). The equivalence of working with x̃j and working directly with xj holds because ∂x̃j/∂xj = 1.
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We estimate the system (3.7)–(3.8) subject to symmetry and theoretical monotonicity and cur-
vature restrictions.18 Specifically, the symmetry conditions are

αjj′ = αj′j ; βmm′ = βm′m ; γpp′ = γp′p . (3.9)

Monotonicity of the (normalized) DTDF (3.2) in inputs and desirable and undesirable outputs,
respectively, require that

∂ ~Dτ (·)

∂xj
= αj +

1

2

∑

j′

αjj′ x̃j′ +
∑

m( 6=k)

δjmỹm +
∑

p

φjpb̃p + θx,jt ≥ 0 ∀ j (3.10a)

∂ ~Dτ (·)

∂ym
= βm +

1

2

∑

m′( 6=k)

βmm′ ỹm′ +
∑

j

δjmx̃j +
∑

p

ϕmpb̃p + θy,mt ≤ 0 ∀ m( 6= k) (3.10b)

∂ ~Dτ (·)

∂bp
= γp +

1

2

∑

p′

γpp′ b̃p′ +
∑

j

φjpx̃j +
∑

m( 6=k)

ϕmpỹm + θb,pt ≥ 0 ∀ p . (3.10c)

Note that the above monotonicity restrictions are observation-specific and imposed at every data
point. Further, the joint concavity of the DTDF in inputs and desirable and undesirable outputs
is imposed by ensuring that all odd-numbered (even-numbered) principal minors of the Hessian
matrix for (3.2) are non-positive (non-negative). The Hessian matrix is given by




α11 . . . α1J δ11 . . . δ1(M−1) φ11 . . . φ1P
...

...
αJ1 . . . αJJ δJ1 . . . δJ(M−1) φJ1 . . . φJP

δ11 . . . δJ1 β11 . . . β1(M−1) ϕ11 . . . ϕ1P
...

...
δ1(M−1) . . . δJ(M−1) β(M−1)1 . . . β(M−1)(M−1) ϕ(M−1)1 . . . ϕ(M−1)P

φ11 . . . φJ1 ϕ11 . . . ϕ(M−1)1 γ11 . . . γ1P
...

...
φ1P . . . φJP ϕ1P . . . ϕ(M−1)P γP1 . . . γPP




(3.11)

where, for the ease of exposition, we have set yk = yM .

Since additional equations (the first-order conditions) do not contain any extra parameters, the
system-based parameter estimates are likely to be more precise. Furthermore, technological metrics
obtained from the cost system of DTDF are likely to be more meaningful because the economic
behavior is embedded into the system through the first-order conditions. That is, if one believes
in the economic behavior of bank managers, the first-order-conditions ought to be used in the
estimation.

3.3 Optimal Direction

In our discussion above, following a common tradition in the literature, we have treated the direc-
tional vector g, or its normalized counterpart ĝ, as fixed (pre-specified). However, it is important
to recognize that the DTDF-based representation of the production process is an implicit function
of the pre-specified direction. That is, there exists an infinite number of the DTDFs as defined by

18Recall that the translation property is already imposed by construction.
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the unique values of ĝ. Hence, the estimates of the DTDF-based inefficiency, the productivity index
PG as well as any other technological metric of the banking production process will change with
the different choice of the directional vector.

To eliminate this uncertainty, we follow Tsionas et al. (2014) and let the data help us determine
the direction in which the bank’s movement toward the stochastic frontier is to be estimated. More
specifically, we treat elements of the normalized directional vector (gx, ĝy,gb) as unknown (non-
negative) parameters which we estimate jointly with the remaining parameters in the cost system
(3.7)–(3.8). The obtained “data-driven” estimates of the directional vector can then be interpreted
as being “cost-optimal” due to the inclusion of the cost-minimizing first-order conditions in the
system. That is, the estimated DTDF direction captures the bank’s movement to the point on a
technological frontier where costs are minimized. Atkinson and Tsionas (2013) and Atkinson et al.
(2014) offer a similar “optimal” interpretation for the estimated directional vector. For the data-
driven selection of the directional vector in a deterministic framework, also see Färe et al. (2013)
and Hampf and Krüger (2014).

4 Bayesian Estimation

We start by rewriting the normalized DTDF in (3.7) for each cross-section i = 1, . . . , N and time
period t = 1, . . . , T in the following form:

yk,it = r̃it(ĝ)
′β − uit + v0,it , (4.1)

where r̃it contains the quadratic regressors (including a unity for the intercept term) generated
from x̃it ≡ (x̃1,it, . . . , x̃J,it) ∈ R

J , ỹit ≡ (ỹ1,it, . . . , ỹk−1,it, ỹk+1,it, . . . , ỹM−1,it) ∈ R
M−1, b̃it ≡

(̃b1,it, . . . , b̃P,it) ∈ R
P and the time trend t; β is a conformable vector of unknown parameters;

and ĝ ≡ (−gx, ĝy,−gb) ∈ R
J
− × R

M−1
+ × R

P
− is the normalized vector of directional parameters.

Here, we explicitly recognize that r̃it is a function of g̃ used in the construction of “tilde” regressors.
Lastly, uit is an (unobserved) one-sided composite technological inefficiency, and v0,it is a two-sided
stochastic disturbance.

The (J − 1) first-order conditions in (3.8) can be written as

x̃j,it(gxj
) = fj,it(αj)z̃j,it(ĝ)

′βj + vj,it ∀ j = 1, . . . , J − 1 , (4.2)

where z̃j,it denotes the vector of regressors in each one of the (J − 1) equations in (3.8), and βj is a
subset of β which can be obtained using a selection matrix Aj , i.e., βj = Ajβ (selection matrices

contain elements which are either 0 or 1). Further, fj,it(αj)
def
= 2/(αjjwq,it − αqjwj,it) (j 6= q) is a

nonlinear function, where αj denotes the “α” coefficients from the DTDF in (3.7), a subset of β.
That is, αj ⊂ β ∀ j = 1, . . . , J . Lastly, vj,it is a two-sided stochastic disturbance.

We employ the following stochastic specification for system (4.1)–(4.2):

vit = (v0,it, v1,it, . . . , vJ−1,it)
′ ∼ i.i.d. NJ (0,Σ) (4.3)

and independently of

uit ∼ N+

(
a0 + a1t+

1

2
a2t

2, σ2
u

)
, (4.4)

where a ≡ (a0, a1, a2)
′ are unknown parameters. Thus, we allow technological inefficiency to have

a time-varying mean.
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We next write the entire system (4.1)–(4.2) in the following form:




yit
x̃1,it
...

x̃J−1,it


 =




r̃it(ĝ)
′

f1,it(α1)z̃1,it(ĝ)
′

. . .

fJ−1,it(αJ−1)z̃J−1,it(ĝ)
′







β

β1
...

βJ−1


−




uit
0
...
0


+




v0,it
v1,it
...

vJ−1,it


 .

(4.5)

The (observation-specific) Jacobian of the transformation Jit from the vector of random disturbances
(v0,it − uit, v1,it, . . . , vJ−1,it)

′ to the endogenous variables xit (inputs) for system (4.5) is given by

Jit =

∣∣∣∣det
[
∂(v0,it − uit, v1,it, . . . , vJ−1,it)

∂x′
it

]∣∣∣∣

=

∣∣∣∣det
[
−∂yit/∂x̃

′
it

Cit

]∣∣∣∣ , (4.6)

where we have made use of the fact that the gradient with respect to xj,it equals the gradient

with respect to x̃j,it for all j and Cit
def
= [cjj′ ; cjj = 1, cjj′ =

αjj′wq,it−αqjwj,it

αjjwq,it−αqjwj,it
∀ j 6= j′]. If it were

not for the (observation-specific) nonlinear factors fj,it(αj) in (4.5), then we would have a linear
simultaneous equations model with technological inefficiency.

To perform Bayesian analysis and tackle the nonlinearity of our model, we estimate it in two
stages. First, we estimate a single-equation DTDF in (4.1) subject to all constraints so that β ∈ B,
where B denotes the set of acceptable parameters, using a Bayesian approach.19 The resulting
estimates of the parameter subset α ≡ (α1, . . . ,αJ−1) ⊂ β, say α, can be used to produce an
approximately linear system of the first-order conditions in (4.2) of the form

x̃j,it(gxj
) = fj,it(αj)z̃j,it(ĝ)

′βj + vj,it = Z̃j,it(ĝ)
′βj + vj,it ∀ j = 1, . . . , J − 1 , (4.7)

where Z̃j,it(ĝ)
def
= fj,it(αj)z̃j,it(ĝ).

Taking into account that βj = Ajβ, we can rewrite the system in (4.5) as




yit
x̃1,it
...

x̃J−1,it


 =




r̃it(ĝ)
′

(
A′

1Z̃1,it(ĝ)
)′

. . . (
A′

J−1Z̃J−1,it(ĝ)
)′



β −




uit
0
...
0


+




v0,it
v1,it
...

vJ−1,it


 , (4.8)

which can be written in a more compact notation as follows:

Yit = Zit(ĝ)β − uitι+ vit , (4.9)

where ι = (1, 0, . . . , 0)′.

Although the system above is only approximate, we can use it to perform Bayesian inference
through MCMC to obtain first-stage inferences for

(
β,Σ,a, σ2

u

)
. These approximate inferences

can then be made exact by taking the nonlinear terms fj,it(·), which have been previously fixed at
α = α, into account. Conditional on uit, the implementation of MCMC for (4.9) is well known. Since

19We use 850,000 MCMC iterations, the first 350,000 of which are burned to mitigate start-up effects and obtain
convergence.
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first-stage inferences are only approximate, we impose the restrictions (monotonicity and curvature
constraints) only at the means. Furthermore, while exact posterior inference requires taking the
Jacobian of the transformation into account in (4.9), we however ignore it at this preliminary stage
and thus treat the system as seemingly unrelated regressions.

In the second stage, we use a Metropolis-Hastings algorithm taking the exact Jacobian into
account to impose regularity restrictions at each data point and to perform exact inferences for the
entire parameter vector β. Specifically, drawing from uit relies on the following conditional posterior
distribution:

σ−1
u exp

{
−
1

2
(Qit + uitι)

′Σ−1 (Qit + uitι)

}
× exp

{
−

1

2σ2
u

(uit − µit)
2

}
Φ

(
µit

σu

)−1

(4.10)

which can be expressed more compactly as follows:

uit|Y,Z,β, ĝ, σu ∼ N+

(
ûit, v

2
u,it

)
(4.11)

where Qit = Yit − Zit(ĝ)β, ûit =
−Σ−1Qit+µit/σ

2
u

ι
′Σ−1

ι+σ2
u

, µit = a0 + a1t+
1
2a2t

2 and v2u,it =
1

ι
′Σ−1

ι+σ2
u
.

From (4.9), we obtain the approximate posterior mean β and its posterior covariance matrix V.
We use a Student-t with 5 degrees of freedom, denoted by t5

(
β, hV

)
, as a proposal distribution,

where h > 0 is a tuning parameter used to calibrate the acceptance rate of MCMC. We denote the
corresponding density by φ

(
β;β, hV

)
.

Suppose the MCMC is currently at draw β(s) and we obtain a candidate draw β(c) ∼ t5
(
β, hV

)

subject to regularity restrictions β(c) ∈ B. Then, the candidate is accepted with probability

min



1,

p
(
β(c)|Y,Z,u,Σ,a, σu

)
/φ
(
β(c);β, hV

)

p
(
β(s)|Y,Z,u,Σ,a, σu

)
/φ
(
β(s);β, hV

)



 , (4.12)

where u = [uit] denotes the vector of technological inefficiencies. The tuning parameter h is selected
so that the acceptance rate is between 20% and 30%.

Drawings from the conditional posterior of a are facilitated by the re-parametrization a∗κ =
aκ/σu; κ = 0, 1, 2, the conditional posterior for which is given by

p (a∗|u) ∝ exp



−

1

2

∑

i,t

(
uit − a∗0 − a∗1t− a∗2t

2
)2



∏

i,t

Φ
(
a∗0 + a∗1t+ a∗2t

2
)−1

. (4.13)

Random drawings can be realized using the first term and accepting the draw with a Metropolis-
Hastings probability determined by the second term. Specifically, from the first term, we have

a ∼ N (a∗,Va) , (4.14)

where a∗ = (D′D)−1D′u, D = (1, t, t2)′ and Va = (D′D)−1.

Similarly, for σ2
u, we have

∑
i,t

(
uit − a0 − a1t− a2t

2
)2

σ2
u

∣∣∣u ∼ χ2
NT . (4.15)
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The nonlinear term Φ
(
a0+a1t+a2t2

σu

)−1
is accommodated by a Metropolis-Hastings step. Lastly, the

system covariance matrix can be drawn easily using standard results for the Wishart distribution:

p (Σ|Y,Z,β, ĝ) ∝ |Σ|−(NT+J+1)/2 exp



−

1

2
trΣ−1

∑

i,t

Qit(β, ĝ)Qit(β, ĝ)
′



 . (4.16)

To compute observation-specific posterior means of the vector functions of interest, such as returns
to scale, technological change, productivity growth, etc., generically denoted by hit (β), we use an

MCMC sample
{
β(s), s = 1, ..., S

}
, i.e.,

E [hit (β) |Y,Z, ĝ] = S−1
S∑

s=1

hit

(
β(s)

)
. (4.17)

Priors. For the parameter vector β, our prior is flat in the domain of restrictions, i.e., p (β) ∝
I (β ∈ B). For σ2

u we assume a proper but relatively non-informative prior in the inverted-Gamma
family: 1

σ2
u
∼ χ2(10). For parameters of the location of a truncated normal inefficiency distribution,

we assume that a0 ∼ N
(
−3, 0.12

)
, a1 ∼ N(−0.1, 0.012) and a2 ∼ N(−0.001, 0.012). Our choice

of priors for a and σu is motivated by calibrating a proper prior for technological inefficiency
uit ∼ N+

(
a0 + a1t+

1
2a2t

2, σ2
u

)
. For the covariance matrix Σ, we choose a prior in the inverted

Wishart family, i.e.,

p (Σ) ∝ |Σ|−(ν+J+1)/2 exp

{
−
1

2
tr
(
Σ−1A

)}

for ν = 1 and A = 0.01× IJ , where IJ is the identity matrix of dimension J .

Optimal (data-driven) direction. The described MCMC scheme can be implemented for any
given pre-specified (fixed) value of the normalized directional vector ĝ. However, when the direc-
tional vector is unknown, given any normalization, we can redefine β as (β′, ĝ′)′ so that both the
parameter vector β and the directional vector ĝ are merged into the same vector and then treat
them together as unknown parameters of interest. We can then apply the Metropolis-Hastings
MCMC scheme described above without any major changes. Our prior for ĝ ≡ (−gx, ĝy,−gb) is
non-informative and only imposes the restriction that each element (gx, ĝy,gb) is positive. We do so
by re-parameterizing ĝ as ĝ∗ = exp (ĝ) and treating ĝ∗ as the unrestricted parameters of interest.

5 Framework and Data

The data on commercial banks come from Call Reports available from the Federal Reserve Bank of
Chicago and include all FDIC insured commercial banks with reported data for 2001:I-2010:IV. It is
well-known that commercial banks may starkly differ from one another in terms of the size, capital-
ization, regulatory environment, etc., suggesting potential heterogeneity in production technologies
across banks. To alleviate these complications, in this paper we focus on a selected subsample
of relatively homogeneous large banks,20 namely those with total assets in excess of one billion
dollars (in 2005 U.S. dollars) in the first three years of observation. We further exclude internet
banks, commercial banks conducting primarily credit card activities and banks chartered outside

20We thank an anonymous referee for this suggestion.
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Table 1: Data Summary Statistics

Variable Mean 5th Perc. Median 95th Perc.

y1 1,910,364.2 5,382.6 123,954.4 6,027,401.5
y2 8,118,512.7 357,906.2 1,451,297.8 29,005,330.8
y3 5,971,810.2 100,482.6 503,807.1 23,392,817.5
y4 8,132,195.2 169,367.0 784,193.8 20,153,051.7
y5 446,770.0 3,448.2 23,813.0 1,520,048.4
b 382,804.4 1,070.8 19,360.0 950,395.0
x1 5,109.1 236.3 759.0 16,520.9
x2 245,563.1 7,344.3 41,884.4 902,259.0
x3 7,790,193.8 198,008.1 844,580.2 24,478,720.1
x4 355,793.5 8,447.0 71,546.4 1,249,705.9
x5 14,257,910.2 593,056.8 1,726,840.7 47,503,806.2
e 2,614,537.0 96,702.2 323,246.5 9,055,215.2
w1 65.23 40.75 60.05 107.68
w2 0.435 0.148 0.308 1.035
w3 0.032 0.012 0.031 0.052
w4 0.011 0.001 0.008 0.031
w5 0.019 0.005 0.017 0.037
ta 27,222,337.8 1,207,845.8 3,267,751.7 85,622,664.2

NOTES: y1 – consumer loans; y2 – real estate loans; y3 – commercial and
industrial loans; y4 – securities; y5 – off-balance sheet income; b – total
nonperforming loans; x1 – labor; x2 – physical capital; x3 – purchased
funds; x4 – interest-bearing transaction accounts; x5 – non-transaction
accounts; e – financial (equity) capital; w1–w5 are the prices of x1–x5,
respectively; ta – total assets. All variables but labor (x1) and input prices
(w1–w5) are in thousands of real 2005 U.S. dollars. x1 is the number of
full-time equivalent employees. All input prices but w1 are interest rates
and thus are unit-free. w1 is measured in real 2005 U.S. dollars.

the continental U.S. We also omit observations for which negative values for assets, equity, outputs
and input prices are reported. These are likely to be the result of erroneous data reporting. The
remaining data sample is an unbalanced panel with 2,397 bank-year observations for 285 banks.
We deflate all nominal stock variables to 2005 U.S. dollars using the Consumer Price Index (for all
urban consumers).

We model the bank’s production technology using the commonly used “intermediation approach”
of Sealey and Lindley (1977), according to which a bank’s balance sheet is assumed to capture the
essential structure of its core business. Liabilities, together with physical capital and labor, are taken
as inputs to the bank’s production process, whereas assets (other than physical) are considered as
outputs. Liabilities include core deposits and purchased funds; assets include loans and trading
securities. In this paper, we generalize the standard framework of modeling banking technology
by explicitly recognizing that the bank’s production of desirable outputs, such as earning loans, is
usually accompanied by the simultaneous by-production of an undesirable output that takes the
form of non-performing loans.

We define the following desirable outputs of the bank’s production process: consumer loans
(y1), real estate loans (y2), commercial and industrial loans (y3) and securities (y4). These output
categories are essentially the same as those in Berger and Mester (1997, 2003). Following Hughes
and Mester (1998, 2013), we further include off-balance-sheet income (y5) as an additional output.21

21In this paper, we measure off-balance-sheet income by the net non-interest income (less service charges on deposits).
We acknowledge that this measure of off-balance-sheet income may be biased downward by losses. Ideally, one
would want to use the gross non-interest income, which however is infeasible to construct based on the information
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The bank’s undesirable output is defined as the total non-performing loans (b). The variable inputs
are labor, i.e., the number of full-time equivalent employees (x1), physical capital (x2), purchased
funds (x3), interest-bearing transaction accounts (x4) and non-transaction accounts (x5). We also
include financial (equity) capital (e) as an additional input to the production technology. However,
due to the unavailability of the price of equity capital, we follow Berger and Mester (1997, 2003)
and Feng and Serletis (2009) in modeling e as a quasi-fixed input. The treatment of equity capital
as an input to banking production technology is consistent with Hughes and Mester’s (1993, 1998)
argument that banks may use the latter as a source of loanable funds and thus as a cushion against
losses. Since equity capital is modeled as being quasi-fixed, it does not have a corresponding first-
order condition and rather enters the system as a conditioning (contextual) variable. We compute
the prices of variable inputs (w1 through w5) by dividing total expenses on each input by the
corresponding input quantity. Table 1 presents summary statistics of the data we use.22

Lastly, we note that, because the DTDF yields an additive measure of the distance to the
frontier, it is not invariant to the units of measurement of its arguments (x,y,b). That is, the
value of the DTDF in any given direction changes, should the variables be rescaled. To mitigate
this problem, we follow Färe et al. (2005) and standardize all variables prior to the estimation by
subtracting their respective sample means and dividing by their sample standard deviations.

6 Empirical Results

Instead of looking at the parameter estimates of the DTDF, we focus on more informative technolog-
ical metrics of the banking production process: technological efficiency, productivity growth (PG)
and its two components — technical change (TC) and efficiency change (EC), and scale elasticity.
Observation-specific posterior estimates of technological efficiency are obtained from the posterior
conditional mean of u, and the estimates of PG, TC and EC are computed as specified in (2.8).
To compute posterior scale elasticity estimates, we generalize the results in Zelenyuk (2013) to the
case of the DTDF with undesirable outputs. Specifically, for any given direction the desirable scale
elasticity is given by

DSE (x,y,b;g)
def
=

∂ log λy

∂ log λx

∣∣∣∣∣
λy=λx=1

: ~Dτ (λxx, λyy,b;g) ≥ 0 , (6.1)

which, under our DTDF normalization, can be easily shown to equal

DSE (x, ŷ,b; ĝ) = −

∑
j
∂ log ~Dτ (·)
∂ log xj

∑
m( 6=k)

∂ log ~Dτ (·)
∂ log ym

. (6.2)

Here, we define DSE as the ratio of equiproportional percentage change in desirable outputs to
equiproportional percentage change in inputs, while holding the levels of undesirable outputs un-
changed. The latter can be accomplished by diverting some of the inputs into ensuring that no
additional undesirable outputs are by-produced along with the production of desirable outputs. For
instance, banks may engage labor and capital to more carefully examine new loan applications or
more actively monitor the latter upon their issuance in order to ensure that all new loans are “per-
forming”, i.e., paid back duly. The above definition of scale elasticity is such that the bank is said
to exhibit increasing/constant/ decreasing returns to (desirable) scale if DSE is greater than/equal
to/less than one.

reported in the data.
22For more details on the construction of the variables, see the Appendix of Malikov et al. (2014b).
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Table 2: Summary of Posterior Estimates over the 2001–2010 Period

System System Single Eq. Single Eq.
Fixed Dir. Optimal Dir. Fixed Dir. Data-Driven Dir.

Efficiency

Mean 0.9644 0.9431 0.4583 0.9459
Median 0.9640 0.9513 0.4580 0.9533
S.D. 0.0042 0.0403 0.0044 0.0390
95% Bayes Interval (0.9560; 0.9740) (0.8482; 0.9945) (0.4490; 0.4680) (0.8562; 0.9966)

Productivity Growth (PG)
Mean 0.0177 0.0110 0.0119 0.0042
Median 0.0177 0.0110 0.0117 0.0040
S.D. 0.0020 0.0022 0.0105 0.0334
95% Bayes Interval (0.0138; 0.0216) (0.0063; 0.0158) (0.0088; 0.0321) (–0.0608; 0.0725)

Technical Change (TC)
Mean 0.0177 0.0110 0.0120 0.0042
Median 0.0178 0.0111 0.0120 0.0042
S.D. 0.0017 0.0022 0.0032 0.0321
95% Bayes Interval (0.0146; 0.0212) (0.0057; 0.0184) (0.0058; 0.0183) (–0.0551; 0.0699)

Efficiency Change (EC)
Mean 0.0000 –0.0000 –0.0000 0.0000
Median 0.0000 –0.0003 0.0000 –0.0001
S.D. 0.0010 0.0008 0.0100 0.0098
95% Bayes Interval (–0.0019; 0.0019) (–0.0015; 0.0016) (–0.0192; 0.0195) (–0.0190; 0.0197)

Desirable Scale Elasticity (DSE)
Mean 1.0211 0.8979 1.2580 1.3323
Median 0.9782 0.8831 1.4657 1.2783
S.D. 0.2916 0.2170 0.2391 0.3214
95% Bayes Interval (0.5863; 1.7018) (0.5821; 1.2774) (1.0066; 2.4332) (0.8607; 2.1036)

Undesirable Output Elasticity (Eb)
Mean 0.2796 0.2089 0.1702 0.2203
Median 0.2800 0.2100 0.1700 0.2200
S.D. 0.0901 0.0507 0.0394 0.0146
95% Bayes Interval (0.1049; 0.4570) (0.1090; 0.3060) (0.0949; 0.2521) (0.1910; 0.2500)
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Table 3: Posterior Estimates of Directional Parameters

System Single Eq.
Mean S.D. Mean S.D.

gx1
1.642 0.037 0.340 0.564

gx2
3.969 0.041 0.704 0.6413

gx3
36.563 0.018 8.550 0.868

gx4
5.858 0.018 1.854 0.511

gx5
1572.078 0.058 0.025 0.788

gy1 0.372 0.233 0.219 0.799
gy2 10.453 0.188 5.509 1.431
gy3 1.256 0.050 0.679 2.649
gy4 905.785 0.006 378.694 0.234

gb 0.060 0.003 0.022 1.285

In order to comprehensively investigate how the results change if the endogeneity of inputs
is taken for granted when estimating the DTDF for banks, we estimate several auxiliary models.
Specifically, in addition to our preferred system-based model (3.7)–(3.8) developed in Sections 3–
4, we also estimate a single-equation stochastic DTDF as commonly done in the literature (e.g.,
Koutsomanoli-Filippaki et al., 2009; Feng and Serletis, 2014). That is, we estimate (3.7) without
additional first-order condition equations, which is equivalent to making a rather strong assumption
of exogenously determined inputs. Furthermore, we estimate both system- and single-equation-
based models twice: (i) in a given fixed direction specified prior to the estimation and (ii) in the
data-driven direction as discussed in Section 3. However, note that, unlike in the case of the system-
based model (3.7)–(3.8), the data-driven direction selected when estimating a single-equation DTDF
cannot be interpreted as “optimal” since no economic behavior is imposed on the parameters of
the equation. When fixing the direction, we use Färe et al.’s (2005) “unit” direction and set all
elements of (gx, ĝy,gb) equal to ones. In total, we estimate four models. In all four instances,
we use yM (off-balance-sheet income) to impose the translation property onto the DTDF (via the
normalization α = −yM ) and let gyM = 1 as described in Section 3.

Table 2 reports the summary of posterior estimates of the technological metrics computed based
on the cost system of the DTDF and a single-equation DTDF for both fixed and estimated di-
rectional vectors. Comparing technological efficiency estimates across the models, we find that a
single-equation approach, which assumes the endogeneity of inputs away, produces unreasonably
low estimates of banks’ efficiency when being fitted in the popular ad hoc fixed “unit” direction:
the posterior mean and median are at 0.45. All other models, including our preferred system-based
model estimated in the optimal direction, suggest mean efficiency at the 0.94–0.96 level, indicating
a starkly low level of technological inefficiency exhibited by the large banks in the U.S. Perhaps
unsurprisingly, our preferred estimates of banks’ efficiency (column 2 of Table 2) are somewhat
greater than comparable Bayesian estimates of primal23 technological efficiency recently reported in
the literature (e.g., Feng and Zhang, 2012), since our approach explicitly recognizes the undesirable
nature of nonperforming loans and does not penalize banks for diverting some of their inputs in
an attempt to lower NPL. Further, when estimating both the system and single-equation DTDF
in the pre-specified direction, the computed posterior efficiency estimates hardly vary as indicated
by the near-zero magnitudes of the respective posterior standard deviations (see columns 1 and 3).
Letting the data select the direction produces estimates of technological efficiency with a consider-

23Note that our estimates of technological (in)efficiency cannot be meaningfully compared to those based on widely-
used dual specifications of the banking production technology such as cost and/or profit functions.
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ably greater variation across banks (also see Table 3 for the data-driven estimates of the directional
parameters).

Regardless of the model used, we consistently fail to detect any time variability in the estimates
of banks’ efficiency levels. That is, the posterior estimates of parameters a inside the mean function
of technological inefficiency u given in (4.4) are virtually zeros.24 Consequently, we document no
significant efficiency change across banks over the course of our sample period: the posterior means
and medians of EC are zeros across all four models. As a result of this, the primary driving
force behind the productivity growth in the banking industry appears to be technological change,
as indeed confirmed in Table 2. Using Bayesian methods, Feng and Serletis (2010) and Feng and
Zhang (2012) similarly document statistically insignificant EC for large U.S. banks and find technical
change to be the dominant component in the productivity growth decomposition.

We next analyze the posterior estimates of technical change. Two remarks are warranted here.
First, the TC estimates obtained based on a single-equation DTDF fitted in a data-driven direc-
tion appear to be of unreasonably low magnitude (see column 4 of Table 2). Specifically, the
model indicates virtually no significant technological advancement by large banks over the course
of 2001–2010, which seems quite difficult to believe given the favorable effects of recent advances
in information technologies and regulatory changes on large financial institutions. In contrast, our
preferred system-based model (3.7)–(3.8) produces TC estimates of rather more plausible magni-
tudes: a posterior mean of 1.1% per annum with the corresponding 95% posterior coverage region
of (0.5%; 1.8%), when estimated in the optimal direction. Second, when compared to the estimates
obtained in the data-driven direction, using the ad hoc fixed “unit” direction seems to overesti-
mate TC in the case of both a cost system approach and a traditional single-equation approach.
The latter exemplifies the sensitivity of empirical estimates of directional distance functions to the
choice of directional vector. Researchers ought to exercise caution when choosing the direction for
the DTDF. Following Atkinson et al. (2014), we advocate for the use of the data-driven optimal
direction in conjunction with the imposition of economic behavior onto the DTDF.

Differences in the estimates of TC across models translate themselves into differences in the
productivity growth estimates, which Figure 1 vividly illustrates. It plots the productivity indices
that are normalized to 100 in the year 2001 and are constructed using the (total)-asset-weighted
average annual productivity growth rates (over all banks in the sample). Figure 1, which plots
such PG indices for all four models, graphically demonstrates the sensitivity of the productivity
estimates to (i) potential endogeneity in the DTDF and (ii) the use of an ad hoc directional
vector. Specifically, the implied cumulative wedge between the (asset-weighted) productivity index
obtained from a system-based model and that from a single-equation DTDF is 540 percentage basis
points when using the pre-specified “unit” direction and 1,120 percentage basis points when using
data-driven directions. According to our preferred system-based model estimated in the optimal
direction, over the course of 2001–2010, the productivity of large U.S. commercial banks grew at
the weighted average rate of 1.1% per year with a rather timid but significantly positive cumulative
ten-year growth of 10.2%. While our PG estimates may appear to be somewhat conservative in
comparison to other estimates of the productivity growth exhibited by large U.S. banks during the
recent decade reported in the literature,25 one can plausibly argue that our productivity growth
measure is expected to produce estimates on a lower level since it accounts for the presence of an
undesirable by-product (NPL) of the banking production technology.26

24Modeling the mean of technological efficiency u as a function of time dummies (in place of the second-order poly-
nomial of time trend) yields similar results.

25For instance, both Feng and Serletis (2009) and Feng and Zhang (2012) report an average annual PG of about 2%
for large banks in 1998–2005.

26We thank an anonymous referee for bringing this point to our attention.
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Figure 1: Posterior Estimates of Asset-Weighted Productivity Indices across All Models
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Figure 2: Posterior Scale Elasticity Estimates

We next consider the posterior estimates of bank’s scale elasticity. Table 2 reports summary
statistics for desirable scale elasticity measures across all models, whereas Figure 2 presents box-plots
of their distributions. Regardless of the direction used, the single-equation-based model indicates
that, on average, banks exhibit increasing returns to desirable scale with the mean and median
posterior estimates of DSE being well above one, which is consistent with some recent estimates
reported in the literature (e.g., Hughes and Mester, 2013; Malikov et al., 2014b). However, when
controlling for the endogeneity of inputs, the scale elasticity estimates considerably decline in their
magnitudes, as can clearly be seen in Figure 2. The mean posterior estimates of DSE from the
system-based model are 1.02 and 0.90 when estimated in the pre-specified and cost-optimal direc-
tions, respectively. While the two models produce seemingly contradictory findings, respectively
suggesting slightly increasing and decreasing returns to scale, the 95% credible intervals for DSE
from both models (including our preferred one) do include unity which suggests that banks are
generally invariant to desirable scale, i.e., they enjoy constant returns to scale. Feng and Zhang
(2012) report similar Bayesian estimates of scale economies for large U.S. banks.

In addition to scale elasticities, we also report posterior estimates of the elasticity of the bank’s
DTDF with respect to an undesirable output (Eb), i.e., ∂ log ~Dτ (·)/∂ log b ≥ 0. Due to duality
(Chambers et al., 1996), the latter provides a measure of the cost elasticity with respect to nonper-
forming loans. Figure 3 plots kernel densities of the posterior distributions of Eb across all models.
The kernel densities are constructed using the second-order Gaussian kernel with the optimal band-
width selected via the data-driven least-squares cross-validation. When using the pre-specified
directional vectors, we find that the single-equation-based estimates of Eb tend to be considerably
lower than those obtained using a cost system approach: a posterior mean of 0.17 vs. 0.27 (also see

21



Figure 3: Posterior Estimates of Undesirable Output Elasticity

Table 2). However, letting the data select the direction closes the gap between the two models.

To conclude, we document dramatic distortions in banks’ efficiency, productivity growth and
scale elasticity estimates obtained from the DTDF estimated via a traditional single-equation ap-
proach, which leaves the endogeneity of inputs unaddressed. In studies where exogeneity of inputs
is hardly plausible, such as studies of banking production and productivity, a cost system approach,
which we offer in this paper, is likely to provide a more robust estimation strategy.

7 Conclusion

This paper addresses some econometric issues related to a consistent estimation of banking technol-
ogy which explicitly accommodates the presence of undesirable nonperforming loans (NPL) — an
inherent characteristic of the bank’s production due to its exposure to credit risk. Specifically, we
model NPL as an undesirable output in the bank’s production process. This approach is advanta-
geous over modeling NPL as a mere banking technology shifter (i.e., a contextual control variable)
because it (i) recognizes that NPL is a by-product of producing desirable outputs, such as earning
loans and securities, and (ii) accommodates the undesirability of NPL. By acknowledging that non-
performing loans are undesirable, we are able to credit banks for the reduction in NPL along with
the expansion in desirable outputs when computing their productivity and technological efficiency.

We formulate banking technology using the directional technology distance function (DTDF)
generalized to the case of undesirable outputs, which we treat as a stochastic function. The estima-
tion of such a stochastic DTDF is however not trivial due to the potential simultaneity of inputs.
We propose addressing this endogeneity of inputs from the perspective of economic theory. More
specifically, we suggest invoking the assumption of the bank’s cost minimizing behavior not only to
justify the treatment of outputs as exogenous (as commonly done in the literature) but to also tackle
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the endogeneity of inputs in the DTDF. We do so by augmenting the stochastic DTDF with the set
of independent (nonlinear) first-order conditions from the bank’s cost minimization problem, which
we then estimate as a system of simultaneous equations. Our identification strategy thus relies on
competitively determined input prices as a source of exogenous variation.

We note that there are advantages to using our cost system approach even if the DTDF does
not suffer from the endogeneity of inputs. Since additional equations (the first-order conditions)
do not contain any extra parameters, the system-based parameter estimates are likely to be more
precise. Furthermore, technological metrics obtained from the cost system of DTDF are likely to be
more meaningful because the economic behavior is embedded into the system through the first-order
conditions. The inclusion of the cost-minimizing first-order conditions in the system permits us to
also estimate the “cost-optimal” directional vector for the banking DTDF. That is, in contrast to
a common tradition in the literature, we do not pre-specify the (fixed) directional vector for the
DTDF but rather let the data help us determine the direction in which the bank’s movement toward
the stochastic frontier is to be estimated. The estimated optimal direction captures the bank’s
movement to the point on a technological frontier where costs are minimized, thus eliminating the
uncertainty associated with an ad hoc choice of the direction.

We apply our cost system approach to the data on U.S. commercial banks in 2001–2010. The
nonlinear cost system is estimated in two stages via Bayesian methods subject to theoretical regu-
larity conditions. We document dramatic sensitivity of the estimates of banks’ various technological
metrics to controlling for the endogeneity of inputs and the choice of the directional vector. We
conclude that in studies of banking technology, where exogeneity of inputs is hardly plausible, a
cost system approach is likely to provide a more robust estimation strategy.

Lastly, we would like to note that our cost system approach to tackling the endogeneity of inputs
in the stochastic DTDF is not limited to the banking application only. It can be applied to any
other productivity study, where the endogeneity of inputs may be of concern while exogeneity of
outputs is justified on the basis of market regulations and/or the nature of outputs.
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In Färe, R., Grosskopf, S., and Primont, D., editors, Aggregation, Efficiency, and Measurement. Springer.

Hughes, J. P. and Mester, L. J. (1993). A quality and risk-adjusted cost function for banks: Evidence on the
“too-big-to-fail doctrine. Journal of Productivity Analysis, 4(3):293–315.

Hughes, J. P. and Mester, L. J. (1998). Bank capitalization and cost: Evidence of scale economies in risk
management and signaling. Review of Economics and Statistics, 80(2):314–325.

Hughes, J. P. and Mester, L. J. (2010). Efficiency in banking: Theory and evidence. In Berger, A., Molyneux,
P., and Wilson, J., editors, Oxford Handbook of Banking. Oxford University Press, Oxford, 1 edition.

24



Hughes, J. P. and Mester, L. J. (2013). Who said large banks don’t experience scale economies? Evidence
from a risk-return-driven cost function. Journal of Financial Intermediation, 22(4):559–585.

Koutsomanoli-Filippaki, A., Margaritis, D., and Staikouras, C. (2009). Efficiency and productivity growth
in the banking industry of Central and Eastern Europe. Journal of Banking & Finance, 33:557–567.

Kumbhakar, S. C., Wang, H.-J., and Horncastle, A. P. (2015). A Practitioner’s Guide to Stochastic Frontier
Analysis using Stata. Cambridge University Press, Cambridge.

Malikov, E., Kumbhakar, S. C., and Tsionas, E. G. (2014a). Disentangling technical and environmental
productivity. Working Paper, Binghamton University.

Malikov, E., Restrepo-Tobón, D., and Kumbhakar, S. C. (2014b). Estimation of banking technology under
creedit uncertainty. Empirical Economics. forthcoming.

Park, K. H. and Weber, W. L. (2006). A note on efficiency and productivity growth in the Korean banking
industry, 1992–2002. Journal of Banking & Finance, 30:2371–2386.

Restrepo-Tobón, D. A. and Kumbhakar, S. C. (2014). Nonparametric estimation of returns to scale using
input distance functions: An application to large U.S. banks. Empirical Economics. forthcoming.

Schmidt, P. and Lovell, C. A. K. (1979). Estimating technical and allocative inefficiency relative to stochastic
production and cost frontiers. Journal of Econometrics, 9:343–366.

Sealey, C. W. and Lindley, J. T. (1977). Inputs, outputs, and a theory of production and cost at depository
financial institutions. Journal of Finance, 32(4):1251–1266.

Tsionas, E. G., Malikov, E., and Kumbhakar, S. C. (2014). Do direction, normalization and the Jacobian
matter in the productivity measurements based on the directional output distance functions? Working
Paper, Binghamton University.

Zelenyuk, V. (2013). A scale elasticity measure for directional distance function and its dual: Theory and
DEA application. European Journal of Operational Research, 228:592–600.

25


